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ABSTRACT

The goal of this thesis is to show that chaotic orbits of a dynamical system are advan-
tageous (compared with regular ones) to determine the characteristic parameters of the
system, and to give an estimate about the behaviour of the error as a function of the num-
ber of observations.

The utility of chaotic trajectories for parameter determination in a complex dynamical sys-
tem such as the restricted full three-body problem is assessed. The model takes into
consideration the motion of a particle of negligible mass around a binary system where
the main body is modeled as a tri-axial ellipsoid, taking into account its mass distribution,
and the smaller one as point mass sphere. It is studied by means of a program coded in
Python, capable of simulating the binary system gravity field and propagating trajectories
in three dimensions around it. It returns verification values such as the Jacobi constant,
the state transition matrix and crashing event assessment allowing lots of flexibility in the
parameter settings.

A combination of Poincaré maps, which allow to study the periodicity of a trajectory in
a visual way; and mathematical tools such as the finite time Lyapunov exponents and the
Pesin entropy formula, which indicate how sensitive a trajectory is to initial conditions (main
condition for chaotic behaviour) is used. They return similar and reliable values providing
redundancy and robustness to the procedure.

For the determination of parameters we have developed a procedure, based on least
squares approximations, that determines how much the uncertainty in the parameter de-
termination of the system decreases as more measurements are taken. There is a strong
correlation between the error in the parameter determination and the length of the trajec-
tory, obviously, the error is reduced as more measurements are taken. If N denotes the
number of measurements, for a regular orbit the uncertainty in the determination behaves
as N−

1
2 . For chaotic orbits we have found scalings of up to N−3, which are better than the

scalings found in previous works for simple systems, which were between N−1 and N−2.
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section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Poincaré map showing the intersection of several planar trajectories propagated
up to t = 1000 with different initial conditions around the same binary sys-
tem (a = 400, b = 300, c = 200 and ρ = 1.7 g/cm3). Trajectories intersect
a Poincaré section in the y = 0 plane for all negative x. The closed curves de-
picted in the center of the figure are related to quasi-periodic behaviours of the
orbits. The ones closer to the edge start diverging and behaving more chaotically. 17

2.3 Representation of the evolution of finite time Lyapunov exponents for three dif-
ferent trajectories. Each trajectory tends to a different asymptotic value, λ100.
The samples have been taken in steps of ∆t = 0.01 up to t = 100 where the
trajectory already has a stable behaviour. Initial conditions for trajectories, I:
[−2.00,0.00,0.00,0.00,2.50,0.00]; II: [−0.75,0.00,0.00,0.00,1.75,0.00]; III:
[−0.45,0.00,0.00,0.00,−2.00,0.00]. . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Representation of the Pesin entropy and finite time Lyapunov exponents evo-
lution for a single trajectory. The samples have been taken in steps of ∆t =
0.01 up to t = 100 where the trajectory already has a stable behaviour. It
shows a strong similarity in both results, proving they are both valid to the de-
termination of the sensitivity to initial conditions of a trajectory. Trajectory I:
[−2.00,0.00,0.00,0.00,2.50,0.00] . . . . . . . . . . . . . . . . . . . . . . . . 20



3.1 For the sake of simplicity, the ellipsoid parameters (a, b, c) and the initial condi-
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INTRODUCTION

Placing satellites in orbit around celestial bodies is used to examine their properties. As
they collect more measurements of the trajectory, N, the uncertainty in the determination
of the parameters, σ, reduces with a scaling of σ = Nα, with α < 0. Whilst non-chaotic
systems present scalings in the order of N−

1
2 , previous research on simple systems found

out that chaotic behaviours can reach scalings between N−1 and N−2.

Previous research on chaos in astrodynamics was mostly focused on the determination
of the orbit for later times [1], but this behaviour could be very useful to characterise the
properties of celestial bodies. Prof. Andrea Milani has shown the scaling one could achieve
is N−1, but other work has shown in some systems the scaling can reach N−2 [2]. This
method requires chaos, so only special trajectories will exhibit this behaviour. Luckily
these are not too hard to find as the restricted three body problem is well known to be
chaotic, and it is found all over the Solar System with satellites passing moons and binary
asteroids. The scaling behaviour is strongly dependent on the chaos, so this method
works best in systems with a short chaotic time period. These will be systems with a
shorter characteristic time such as orbits of moons and asteroids.

State-of-the-art parameter determination

There are two main motivations for the study of asteroids and comets. The first one in-
volves the understanding of the origin and evolution of the Solar System [3]. The comet’s
composition reflects the composition of the pre-solar nebula out of which the Sun and the
planets of the Solar System formed, more than 4.6 billion years ago. Therefore, an in-depth
analysis of comet 67P/Churyumov-Gerasimenko, as the Rosetta mission and its lander
did, would provide essential information to understand how the Solar System formed.

There is convincing evidence that comets played a key role in the evolution of the planets,
because cometary impacts are known to have been much more common in the early Solar
System than today. Comets, for example, probably brought much of the water in today’s
oceans. They could even have provided the complex organic molecules that may have
played a crucial role in the evolution of life on Earth.

When Rosetta arrived at comet 67P/Churyumov-Gerasimenko in early August 2014, not
much was known about the comet [4]. The orbit of the comet had been determined from
years of tracking from ground observatories and a few months of optical tracking by Rosetta
during approach. The lander Philae was scheduled to land in about three months at a date
chosen as a compromise between the time required to acquire sufficient knowledge about
the comet and the risk of a rising comet activity worsening the navigation accuracy. During
these three months, the comet had to be characterized.

A rough estimate for the comet mass was obtained in early August but it was not until
October, one month to landing, when Rosetta was orbiting at 20 kilometers distance and
below that reliable estimates for the mass distribution in the form of gravitational spherical
harmonics coefficients of degree and order 2 then 3 were derived. The last mass distribu-
tion update, including a 7 meters shift in the center of mass position along the Z axis, was
performed in early November less than 2 weeks to landing.

1



2 Astrophysical Parameter Determination Using Chaotic Orbital Regions

By means of a non-chaotic trajectory, the characterization of the comet performed mainly
in the three months from arrival to lander delivery has allowed Rosetta to navigate safely
and accurately around the comet.

The second interest for the study of asteroids and comets is related to planetary defense
[5]. It encompasses all the capabilities needed to detect the possibility and warn of po-
tential asteroid or comet impacts with Earth, and then either prevent them or mitigate their
possible effects. It involves characterizing those objects to determine their orbit trajectory,
size, shape, mass, composition, rotational dynamics and other parameters, so that experts
can determine the severity of the potential impact event, warn of its timing and potential
effects, and determine the means to mitigate the impact.

The coming Asteroid Impact and Deflection Assessment (AIDA) mission concept is an in-
ternational collaboration among the European Space Agency (ESA), NASA, Observatoire
de la Côte d’Azur (OCA), and the Johns Hopkins University Applied Physics Laboratory
(JHU/APL). It will be the first demonstration of the kinetic impact technique to change the
motion of an asteroid in space. AIDA is a dual-mission concept, involving two independent
spacecraft – NASA’s Double Asteroid Redirection Test (DART), and ESA’s Asteroid Impact
Mission (AIM).

AIDA is a science-driven test of one of the technologies for preventing the Earth impact
of a hazardous asteroid: the kinetic impactor. AIDA’s primary objective is to demonstrate,
and to measure the effects of, a kinetic impact on a small asteroid. Its target is the binary
near-Earth asteroid (65803) Didymos, which consists of a primary body approximately 800
meters across, and a secondary body (or “moonlet”) whose 150-meter size is more typical
of the size of asteroids that could pose a more common hazard to Earth.

Chaotic determination technique

Our contribution consists of the development of a technique which performs the parameter
determination of a dynamical system by means of chaotic trajectories. The presence of
chaos is expected to reduce the time required for the characterization of the system.

With the success of several past missions such as Rosetta, Hayabusa or New Horizons
as well as the coming AIDA mission measuring the properties of these small bodies has
renewed relevance. It is unlikely that any large mission would intentionally place itself in a
chaotic orbit, but with the advent of the use of CubeSats for scientific missions, this method
of examining celestial bodies could become cheaper in future and as ChipSats are now
being used in an expendable way this technique could still bare fruit.

One of the ideal applications for this technique would consist of placing the mother ship of
the mission in a safe and ordered orbit around the body to be studied. From there, some
expendable small satellites will be shot inserting themselves in the most suitable chaotic
trajectories in order to perform a highly efficient determination of the system.

Those small determination satellites would just require to send their telemetry, containing
their own position with respect to the system, to the mother ship which will send the data
back to Earth to be analyzed.

The project is divided into three chapters. The first two are based on previous research
and set the basis for the final study. The last one comprehends original numerical methods
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for the determination of the parameters of the system.

Chapter 1 defines the problem to be studied describing the dynamical model that is used. It
starts from the simplest circular restricted three-body problem (CR3BP), which considers a
binary system with two point masses. Then, complexity increases by considering the mass
distribution of the bigger primary while leaving the smaller one as a point mass sphere. A
program has been coded in Python simulating the gravity field of the binary system and
propagating the trajectory of a spacecraft of negligible mass from its initial conditions. It
returns verification values and allows lots of flexibility in the parameter settings.

Chapter 2 describes three different tools for the definition and classification of trajectories
around a certain system according to how chaotic they are. Poincaré maps represent the
intersection of the trajectory with a selected section in state space. Depending on the
shape of the plot, the behaviour of the trajectory can be considered ordered or chaotic.
Lyapunov exponents and the Pesin entropy formula provide a measure on how sensitive to
initial conditions a trajectory is. Trajectories with the highest and least Lyapunov exponents
are used to compare the effect of the chaos.

Chapter 3 consists of finding trajectories which have particularly helpful statistical prop-
erties by means of the design and performance of different numerical methods based on
a least-squares estimation routine. The aim is to get a correlation between the error in
the parameter determination and the length of the trajectories compared. The longer the
trajectory, the more measurements are taken for a constant sampling rate of ∆t = 0.01.
Analysis based on the output of the simulation is done to calculate the parameters based
on various initial conditions. The program is then be tested by assessing if ordered and
chaotic trajectories produce Gaussian and non-Gaussian scaling respectively. The final
objective of the chapter is to get a correlation between the scaling in the determination
and the finite time Lyapunov exponents. Therefore, an assessment on how chaos affects
the reduction in the uncertainty of the determination is performed. The ultimate aim of this
project is to show that chaotic behaviour can be advantageous to determine the properties
of celestial bodies.

Finally, a discussion on the results obtained and their effects and causes as well as some
future work propositions and ideas is done.



CHAPTER 1. DYNAMICAL MODEL

As described by Newton’s law of universal gravitation, the general three-body problem de-
scribes the motion of three different bodies under their mutual gravitational interactions.
Despite the easiness of the two-body problem, which has well-known closed form solu-
tions, it becomes so complicated when adding a third body. The attempts of many physi-
cists, astronomers and mathematicians to find closed solutions have been unsuccessful
for over three hundred years. Those solutions do not exist due to the motion of the three
bodies is in general unpredictable, making the general three-body problem one of the most
challenging problems in the history of science.

The three-body problem was formulated and studied by Newton in his Principia (1687),
where he considered the motion of the Earth and the Moon around the Sun. This is just
an example among the many cases of three-body problem we can encounter in the Solar
System, such as Sun–planet–planet, Sun–planet–moon, or Sun–planet–asteroid systems.
The latter can be simplified neglecting the mass of the asteroid against the mass of either
the Sun or the planet, meaning the gravitational influence of the asteroid on the planet
and the Sun can be omitted. This condition can also be satisfied in many ways, such
as when an artificial satellite is orbiting a binary system. Then, the general three-body
problem becomes simpler and termed as restricted three-body problem. The primaries
or two bodies with dominant masses can move around their center of mass either along
circular or elliptic orbits, which leads to the respective circular or elliptic restricted three-
body problems.

The circular restricted three-body problem (CR3BP) is going to be the problem studied
during the present project due to it is the most extensively studied and well documented.
Moreover, it is highly present in the Solar System and it is well known that it produces
chaos.

1.1. Circular Restricted Three-Body Problem

The CR3BP considers a body of negligible mass m moving under the gravitational influ-
ence of two point masses m1 and m2, called primaries, in circular motion around their
common center of mass.

A synodic reference system, which rotates with the same angular velocity as the primaries,
with origin at the barycenter, being the x-axis the line joining them, y-axis perpendicular to
it and z-axis perpendicular to the orbital plane of the primaries. Thus, the coordinates of
m1, m2 and m are (x1,0,0), (x2,0,0) and (x,y,z) respectively and the distances between
m and the primaries m1 and m2 are defined as r1 and r2:

r2
1 = (x− x1)

2 + y2 + z2

r2
2 = (x− x2)

2 + y2 + z2 (1.1)

A suitable set of units for mass and distance are chosen such that the sum of the primary

4
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masses and the distance between them is unity. Therefore, m1 = 1− µ and m2 = µ,
where the mass parameter is defined as 0 < µ = m2

m1+m2
≤ 1

2 . Thus, the coordinates of
the primaries m1 and m2 in the barycentric coordinate system result as (−µ,0,0) and
(1−µ,0,0) respectively.

Being the effective potential defined as [6]:

Ω(x,y,z) =
1
2
(x2 + y2)+

1−µ
r1

+
µ
r2

+
µ(1−µ)

2
(1.2)

where the first term on the right-hand-side generates the centrifugal force. The second
and third terms are the gravitational potentials for masses m1 and m2.

The equations of motion for the circular restricted three-body problem result as:

ẍ−2ẏ =
dΩ

dx
(1.3)

ÿ+2ẋ =
dΩ

dy
(1.4)

z̈ =
dΩ

dz
(1.5)

The CR3BP considers both primaries as point masses. For the sake of accuracy, a slight
variation will be introduced in further sections, increasing complexity. The mass distribution
of the bigger body is going to be considered by modeling it as a tri-axial ellipsoid. The
smaller primary will still be considered as a point mass.

1.2. Full Two-Body Problem

The Two-Body Problem considers the dynamics of two spherical bodies in orbit about
each other. We refer to the Full Two-Body Problem (F2BP) [7] when we consider the
mass distribution of at least one of the two bodies. The general situation is shown in
Fig. 1.1a. Without any approximations, this system involves 12 degrees of freedom. The
sphere restriction shown in Fig. 1.1b reduces the problem to lower dimension. In total, six
degrees of freedom can be removed from the conservation of angular momentum and the
rotational dynamics of the sphere while keeping the interesting dynamical features.

In the current work, we study the dynamics of an ellipsoid–sphere system with uniform
density, and refer to it as the F2BP. In Fig. 1.2, we define M1 and M2 as the masses of the
ellipsoidal and spherical shapes, respectively, with a mass fraction defined as:

µ =
M2

M1 +M2
(1.6)
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(a) Full Two-Body Problem (F2BP) (b) F2BP under sphere restriction

Figure 1.1: Comparison between the real F2BP system and the restricted one with a point
mass sphere as the smaller primary. (Credit: Julie Bellerose and Daniel J. Scheeres)

Figure 1.2: F2BP under sphere restriction: geometry of the problem. (Credit: Julie
Bellerose and Daniel J. Scheeres)

In dimensional form, the position of the two bodies relative to their center of mass (located
at origin) are:

re =−µrb (1.7)

and
rs = (1−µ)rb (1.8)

where subscripts e and s refer to the ellipsoid and the spherical body, respectively, and rb
is the position vector of the sphere relative to the ellipsoid.

For a general body in a sphere restricted binary system, the dynamics of the binary system
in the general body-fixed frame is defined by

r̈b +2Ω× ṙb + Ω̇× rb +Ω× (Ω× rb) = G(M1 +M2)
∂Ũ
∂rb

(1.9)

and the rotational dynamics of the general body are described in the general body-fixed
frame by

I · Ω̇+Ω× I ·Ω =−GM1rb×
∂Ũ
∂rb

(1.10)
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where Ω is the angular velocity of the general body, I is its inertia matrix normalized by its
mass and Ũ is the mutual potential.

1.2.1. Gravity potential of a tri-axial ellipsoid

The aim of this section is to represent the dimensional gravitational potential coming from
a tri-axial body of uniform density [8].

Since the density ρ is uniform, the gravitational parameter µ for the body can be expressed
as:

µ = Gρ
4
3

πabc (1.11)

where G = 6.6695×10−11[m3/kg/s2] is the universal gravitational constant. The gravita-
tional potential V of a solid homogeneous tri-axial ellipsoid in Rs can be expressed as:

V (x,y,x) =
3
4

µ
∫

∞

κ0

(
1− x2

a2 +κ
− y2

b2 +κ
− z2

c2 +κ

)
· dκ√

(a2 +κ)(b2 +κ)(c2 +κ)
(1.12)

where κ0 is the largest root of the confocal ellipsoid C defined as

C(κ) =
x2

a2 +κ
+

y2

b2 +κ
+

z2

c2 +κ
−1 (1.13)

In order to get the roots we have to solve a cubic polynomial

c3k3 + c2k2 + c1k+ c0 = 0 (1.14)

whose coefficients are derived from Eq. 1.13:

Order Coefficient
c3 −1
c2 x2 + y2 + z2− (a2 +b2 + c2)
c1 (b2 + c2)x2 +(a2 + c2)y2 +(a2 +b2)z2− (a2c2 +b2c2 +a2b2)
c0 (b2c2)x2 +(a2c2)y2 +(a2b2)z2− (a2b2c2)

Table 1.1: Confocal ellipsoid coefficients

By relating the gravitational potential to the Carlson elliptic integrals, the expression for the
gravitational potential of a tri-axial ellipsoid becomes:

V (x,y,z) =
3
2

µRF(a2 +κ,b2 +κ,c2 +κ)

−1
2

µx2RD(b2 +κ,c2 +κ,a2 +κ)

−1
2

µy2RD(a2 +κ,c2 +κ,b2 +κ)

−1
2

µz2RD(a2 +κ,b2 +κ,c2 +κ)

(1.15)
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Where RD is one of the Carlson symmetric forms, the explicit cartesian components of the
gravitational acceleration ag in (x,y,z) can be derived by taking the gradient of V which
yields:

ax =
∂V
∂x

=−µxRD(b2 +κ0,c2 +κ0,a2 +κ0)

ay =
∂V
∂y

=−µyRD(a2 +κ0,c2 +κ0,b2 +κ0)

az =
∂V
∂z

=−µzRD(a2 +κ0,b2 +κ0,c2 +κ0)

(1.16)

Implementing the previously described equations in Python results in the gravity field
graphs for separated planes represented in Fig. 1.3.

1.2.2. Normalization

To simplify the analysis, the following normalizations are introduced. The distance between
the primaries, denoted by q, and the mean motion of the system at this radius:

n =

√
G(M1 +M2)

q3 (1.17)

are taken as length and time scales, respectively. The normalized position and angular
velocity are then

r =
rb

q
and ω =

Ω

n

Thus, Eqs. 1.9 and 1.10 now become

r̈+2ω× ṙ+ ω̇× r+ω× (ω× r) =
∂V
∂r

(1.18)

and

I · ω̇+ω× I ·ω =−µr× ∂V
∂r

(1.19)

As previously commented, the general body is modeled as an ellipsoid. The normalized
expression for an ellipsoid potential energy is written in therms of elliptic integrals. It can
be expressed as

Ue =
3
4

∫
∞

κ0

φ(r,κ)
dκ

∆(κ)
(1.20)

φ(r,κ) = 1− x2

α2 +κ
− y2

β2 +κ
− z2

γ2 +κ
(1.21)

∆(κ) =
√

(α2 +κ)(β2 +κ)(γ2 +κ) (1.22)

where 0 < γ ≤ β ≤ 1 and κ0 is the largest root (satisfies φ(r,κ0) = 0) of the confocal
ellipsoid C defined as

C(κ) =
(x+µr)2

α2 +κ
+

y2

b2 +κ
+

z2

c2 +κ
−1 (1.23)
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(a) XY projection in RTBP coordinates

(b) XZ projection in RTBP coordinates

(c) YZ projection in RTBP coordinates

Figure 1.3: Gravity potential of a tri-axial body with a = 400 m, b = 300 m and c = 200 m
and a density ρ = 1.7 g/cm3 in separated 2D planes.



10 Astrophysical Parameter Determination Using Chaotic Orbital Regions

Introducing the following variable transformation κ′ = κ−κ0 in Eq.1.20 the expression for
the normalized gravitational potential of a tri-axial ellipsoid becomes:

Ue(x,y,z) =
3
2

RF(α
2 +κ0,β

2 +κ0,γ
2 +κ0)

−1
2

x2RD(β
2 +κ0,γ

2 +κ0,α
2 +κ0)

−1
2

y2RD(α
2 +κ0,γ

2 +κ0,β
2 +κ0)

−1
2

z2RD(α
2 +κ0,β

2 +κ0,γ
2 +κ0)

(1.24)

where RF(x,y,z) is the Carlson symmetric elliptic integral of the first and RD(x,y,z) is a
special case of the third kind.

The explicit cartesian components of the gravitational acceleration ag in (x,y,z) can then
be derived by taking the gradient of Ue which yields,

ax =
∂Ue

∂x
= xRD(β

2 +κ0,γ
2 +κ0,α

2 +κ0)

ay =
∂Ue

∂y
= yRD(α

2 +κ0,γ
2 +κ0,β

2 +κ0)

az =
∂Ue

∂z
= zRD(α

2 +κ0,β
2 +κ0,γ

2 +κ0)

(1.25)

A particular solution of the F2BP is for the two bodies to be in relative equilibrium, whose
conditions are found by setting all velocities and accelerations to zero in Eqs. 1.18, 1.19.
With these equations it is possible to show that there exists equilibria when one of the
principal axes of the ellipsoid is pointed towards the sphere, as acceleration and position
vectors are parallel.

These equilibria are independent of the principal axis the ellipsoid is rotating about; solu-
tions exist along the x,y and z axis. Given a solution along a q axis, the square of the spin
rate is expressed as

ω
2 =

3
2

∫
∞

λ

dκ

(α2
q +κ)∆(κ)

(1.26)

αq represents the radius along which the sphere is located. Here, λ = q2−α2
q, in which q

is the distance between the primaries (unity).

Introducing the following variable transformation κ′ = κ−λ in Eq.1.26 the expression for
the square of the spin rate becomes:

ω
2 = RJ(a2 +λ,b2 +λ,c2 +λ,α2

q +λ) (1.27)

where RJ(x,y,z, p) is the Carlson symmetric elliptic integral of the third kind.

The relative equilibria for an ellipsoid-sphere system and their stability have been mapped
in [7] as a function of the mass ratio and distance between the bodies. This work stud-
ied two configurations in which the α or β ellipsoid parameter is aligned with the sphere,
referred to as the long-axis and short-axis configurations, respectively. We choose to
consider the long-axis configuration, as it was shown to be the only energetically stable
configuration for certain parameters. Thus, αq = α.



CHAPTER 1. DYNAMICAL MODEL 11

1.3. Restricted Full Three-Body Problem

Having a long-axis configuration in the F2BP, we look at the dynamics of a particle in this
gravitational field represented in Fig. 1.4. [9]

We now consider a spacecraft of negligible mass in the gravitational field of the binary
system. For the current problem we assume relative equilibrium of the F2BP as defined by
Eqs. 1.18 and 1.19. As shown in Fig. 1.5 we now let ρ be the position of a particle relative
to the center of mass of the system.

Figure 1.5: RF3BP: geometry of the problem. (Credit: Julie Bellerose and Daniel J.
Scheeres)

The dynamics of the problem are expressed as

ρ̈+2Ω× ρ̇+Ω× (Ω×ρ) = G(M1 +M2)
∂Ũ12

∂ρ
(1.28)

In normalized units Eq.1.28 becomes

¨̃ρ+2ω× ˙̃ρ+ω× (ω× ρ̇) =
∂U12

∂ ˙̃ρ
(1.29)

where
ρ̃ =

ρ

q
is the normalized distance of the particle. Because we take a frame fixed to the ellipsoid,
U12 is a time-invariant potential energy expression, as the bodies are in mutual equilibrium.
It is expressed as

U12(x,y,z) = (1−µ)Ue(ρ̃+µr)+
µ

|ρ̃− (1−µ)r|
(1.30)

Ue represents the normalized expression for the ellipsoid body defined in Eq. 1.24

Adding the centrifugal force term to the mutual potential expression in Eq. 1.30 we get the
effective potential equation

V (x,y,z) =
1
2

ω
2(x2 + y2)+U12 (1.31)
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(a) XY projection in RTBP coordinates

(b) XZ projection in RTBP coordinates

(c) YZ projection in RTBP coordinates

Figure 1.4: Gravity potential in separated 2D planes of a binary system being the bigger
body a tri-axial ellipsoid with a = 400 m, b = 300 m and c = 200 m and a density ρ = 1.7
g/cm3 and the smaller one a sphere with point mass.
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The free parameters of this system are the mass ratio, µ, and the size parameters of the
ellipsoid, α,β and γ. Given these parameters, the spin rate, ω, is given by Eq.1.27.

In an (x, y, z) coordinate system, the equations of motion are the result of writing the x, y,
and z components of the dynamics equation Eq. (1.29)

ẍ−2ωẏ =
∂V
∂x

(1.32)

ÿ+2ωẋ =
∂V
∂y

(1.33)

z̈ =
∂V
∂z

(1.34)

1.3.1. Jacobi integral

Being the two bodies in relative equilibrium, the system allows for one integral of motion,
the Jacobi integral. For a spacecraft navigating in this system, the Jacobi integral indicates
the regions in which it can move and provides necessary conditions for when it may escape
the system.

Furthermore, the Jacobi integral is a good indicator to assess whether the code and the
computations are working properly since its value must remain constant along the whole
trajectory when equilibrium conditions are fulfilled.

To derive the Jacobi integral we multiply the equations of motion by ẋ, ẏ, and ż respectively
and add them up to find

ẍẋ+ ÿẏ+ z̈ż−ω
2(ẋx+ ẏy) =

∂V
∂x

ẋ+
∂V
∂y

ẏ+
∂V
∂z

ż (1.35)

Substituting

ẍ =
dẋ
dt

=
dẋ
dx

dx
dt

(1.36)

and integrating with respect to time it yields

CJ = 2V (x,y,z)− (ẋ2 + ẏ2 + ż2) (1.37)

Its value dictates regions in the state space where the particle may and may not move.
Contours in the state space representing v2 = 0, the so-called zero velocity surfaces,
determine boundaries which the infinitessimal mass may not cross because v2 would be
positive on one side of the boundary and negative on the other, therefore v would be an
imaginary number.

Zero-velocity surfaces will allow us to place bounds in the infinitesimal mass motion. For
a given Jacobi integral, one can calculate the curve in space where the velocity would go
to zero. Such areas are equivalent to turning points for potential wells in inertial frames of
reference.



14 Astrophysical Parameter Determination Using Chaotic Orbital Regions

Figure 1.6: Normalized zero-velocity surfaces in the x−y coordinate frame for an ellipsoid-
sphere system with dimensional values of distance between the bodies q = 1180 m; el-
lipsoid parameters a = 400 m, b = 300 m, and c = 200 m; sphere radius rs = 75 m; and
uniform density of the system ρ = 1.7 g/cm3. The colorbar displays the Jacobi constant
value for each surface in state space or curve in the plane.



CHAPTER 2. CHAOS DEFINITION AND
MEASUREMENT TOOLS

Chaos is commonly defined as the state of total confusion with no order. Nevertheless,
chaos theory is a branch of mathematics focused on the study of dynamical systems with
high sensitivity dependence with respect to the initial conditions. It comprehends underly-
ing patterns within the apparent randomness of chaotic systems.

Related to chaos, the butterfly effect describes how a small change in one state of a
deterministic nonlinear system can result in large differences in a later state. For instance,
a butterfly flapping its wings in Brazil can cause a tornado in Texas. Defining a deterministic
system as the one in which no randomness is involved in the development of future states
of the system. A deterministic model will thus always produce the same output from a
given starting condition or initial state.

If the initial state was known exactly, the future state of such a system could theoretically be
predicted. However, in practice, knowledge about the future state is limited by the precision
at which the initial state can be measured, making the system unpredictable from a certain
point in time on. This measurement noise, by itself, will create some sensitivity to initial
conditions that could trigger positive measurements of chaos, such as positive Lyapunov
exponents, even for systems that are not chaotic at all.

The definition and measurement of chaos is far from trivial and lots of discrepancies are
found related to them. In general, chaotic systems are characterized by a sensitive de-
pendence on the initial conditions. They also have to be bounded such as to exclude the
trivial case of an unstable linear system where trajectories diverge exponentially for all
times [10]. The first statement is satisfied if a Lyapunov exponent is larger than zero. The
latter can be verified using Poincaré maps guaranteeing that trajectories fold back close to
where they where before.

As this project concerns, as long as the trajectory is bounded, the higher the Lyapunov
exponent, the more chaotic the system will be considered. The more sensitive to initial
conditions, the more information small changes will provide about the system and the less
measurements will be needed to determine its parameters for a certain accuracy.

2.1. Poincaré Maps

Henri Poincaré was a French mathematician who, in his research of the three-body prob-
lem, discovered a chaotic deterministic system which laid the foundations of modern chaos
theory. A first recurrence or Poincaré map, as named after him, is used in dynamical sys-
tems to reduce the study of continuous time systems or flows to the study of an associated
discrete time system or map.

Instead of analyzing the whole trajectory we look at the intersection of the orbit in the
state space of the continuous system with a certain lower-dimensional subspace, called
the Poincaré section. The section is transversal to the flow of the system as shown by the
red line in Fig. 2.1a representing a plane normal to the plane of the orbit.

15
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(a) Planar trajectory with Poincaré section (b) Poincaré map

Figure 2.1: Representation of a Poincaré section (red line in Fig. a) normal to the plane
of the orbit and transversal to the flow. The resulting Poincaré map (Fig. b) represents the
x coordinate and velocity (ẋ) the flow had when crossing the section.

Certain properties of the underlying dynamics of the system translate to the Poincaré map.
For instance, if the trajectory is perfectly periodic, the map will show a single point since the
particle will intersect the section at the point every period. Chaotic dynamics will show an
erratic distribution of points in the map and quasi-periodic behaviours will be represented
as a closed curve.

Several trajectories with different initial conditions around the same binary system are
represented in Fig. 2.2. The ones in the center describe a quasi-periodic behaviour since
the points intersecting the Poincaré section represent closed curves in the map. They
become more chaotic as they get closer to the edge of the map, diverging from the elliptic
curves and plotting more erratic behaviours.
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Figure 2.2: Poincaré map showing the intersection of several planar trajectories prop-
agated up to t = 1000 with different initial conditions around the same binary system
(a = 400, b = 300, c = 200 and ρ = 1.7 g/cm3). Trajectories intersect a Poincaré section
in the y = 0 plane for all negative x. The closed curves depicted in the center of the figure
are related to quasi-periodic behaviours of the orbits. The ones closer to the edge start
diverging and behaving more chaotically.

It is important to bear in mind that, despite a purely erratic behaviour of the trajectories
is not seen in the plot, they might be very useful for our objective. What matters is the
sensitivity to the initial conditions determined by the Lyapunov exponents described as
follows.

2.2. Lyapunov Exponents

It is a characteristic feature of chaotic systems that initially nearby trajectories separate
exponentially in time. The mean rate of separation is called the Lyapunov exponent of the
system.

Lyapunov exponents have proven to be the most useful dynamical diagnostic for chaotic
systems quantifying the degree of sensitivity to initial conditions. They represent the av-
erage exponential rates of divergence or convergence of nearby orbits in phase space.
Since nearby orbits correspond to nearly identical states, exponential orbital divergence
means that systems whose initial differences we may not be able to resolve will soon be-
have quite differently-predictive ability is rapidly lost. Any system containing at least one
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positive Lyapunov exponent is defined to have sensitivity dependence on the choice of
initial conditions, with the magnitude of the exponent reflecting the time scale on which
system dynamics become unpredictable.

Having a flow ẏ = f (x), a trajectory x(t) and the variational equations,

Ḋx = D f (x(t))Dx, (2.1)

where D f (x(t)) is the differential of the vectorfield evaluated on the trajectory and Dx the
state transition matrix further developed in Appendix 1 3.3..

The effective Lyapunov exponents for a given initial state and time result from the singular-
value decomposition (SV D) of the state transition matrix (Dx) of the system. The singular
values of a M×N matrix X are the square roots of the eigenvalues of the N×N resulting
from XT X .

λ
i
e f f (x0,T ) =

1
T

log
(

SV Di
[

Dx(T )
])

(2.2)

The λe f f quantify directly the mean loss of information about the localization of the trajec-
tory in state space during the forecasting time [11].

The maximum Lyapunov exponent of the system corresponds to the maximum singular
value of the state transition matrix which equals to take the euclidean norm of Dx

λ∞ = lim
t→∞

1
T

log
∥∥Dx(T )

∥∥
2 , (2.3)

for almost all trajectories and initial displacements. For segments of a trajectory, one can
obtain a finite time Lyapunov exponent from

λT (x(t)) =
1
T

log
∥∥Dx(T )

∥∥
2 (2.4)

It is impossible in practise to propagate a trajectory up to infinity. Therefore, we consider
finite time Lyapunov exponents at t = 100 for the measurement of the sensitivity to initial
conditions of a trajectory. The finite time Lyapunov exponent is computed at each time
step of ∆t = 0.01 up to t = 100 to study their evolution with time as represented in Fig.
2.3. It is clearly seen how the Lyapunov exponents of different trajectories tend to different
asymptotic values as time tends to a hundred units.
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Figure 2.3: Representation of the evolution of finite time Lyapunov exponents for three
different trajectories. Each trajectory tends to a different asymptotic value, λ100. The sam-
ples have been taken in steps of ∆t = 0.01 up to t = 100 where the trajectory already has
a stable behaviour. Initial conditions for trajectories, I: [−2.00,0.00,0.00,0.00,2.50,0.00];
II: [−0.75,0.00,0.00,0.00,1.75,0.00]; III: [−0.45,0.00,0.00,0.00,−2.00,0.00].

2.3. Pesin Entropy Formula

Another approach, the Pesin entropy formula, is a formula according to which the entropy
of a measure that is invariant under a dynamical system is given by the total asymptotic
expansion rate present in the dynamical system [12].

It suggests that entropy is created by the exponential divergence of nearby orbits. In a
conservative system, all the expansion goes back to the system to make entropy, leading
to the equality in Pesin’s entropy formula in Eq. 2.5. It claims that the amount of topological
entropy in a conservative dynamical system is proportional to the sum of the positive Lya-
punov exponents [13]. Therefore, the trajectories with highest local Lyapunov exponents
should be the most entropic, and will provide more information by measuring them.

In non-conservative systems, some of the expansion would be "wasted", meaning there
is a "leakage" or dissipation from the system bringing forth the Margulis-Ruelle inequality,
out of the scope of this work.

The local entropy can be calculated along a trajectory, or just at a point [11].
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h(x0,T ) = ∑λ
i+
e f f (x0,T ) (2.5)

As stated before, since it is impossible in practise to compute the effective Lyapunov ex-
ponents at infinity, the Pesin entropy formula is computed up to t = 100. By that time the
system should have reached a pretty steady state. Fig. 2.4 shows the evolution of the
Pesin entropy formula, computed at each time step of ∆t = 0.01 up to t = 100, to study its
evolution together with the finite time Lyapunov exponents.

Figure 2.4: Representation of the Pesin entropy and finite time Lyapunov exponents evo-
lution for a single trajectory. The samples have been taken in steps of ∆t = 0.01 up to
t = 100 where the trajectory already has a stable behaviour. It shows a strong similarity
in both results, proving they are both valid to the determination of the sensitivity to initial
conditions of a trajectory. Trajectory I: [−2.00,0.00,0.00,0.00,2.50,0.00]

As seen in the comparison, since the Pesin entropy formula is based on the effective
Lyapunov exponents, the results are very similar. They tend to a very close value, making
them both valid to classify trajectories according to their sensitivity to initial conditions.
Nevertheless, due to Lyapunov exponents are the most extended measure, we are going
to use them further on to give trajectories a single measure of chaos.



CHAPTER 3. NUMERICAL METHODS FOR
PARAMETER DETERMINATION

Assuming the dynamical model described in Chapter 1, a binary system where the larger
primary is modeled as a tri-axial ellipsoid with constant density, and the smaller one as
point mass sphere, the purpose is to determine the four parameters that define the binary
system: the mass parameter µ, and the length of the ellipsoid axes: a, b, and c. The
determination will be performed by means of the so called measured data a satellite would
send back to Earth while orbiting around the system. The data would contain its position
with respect to the barycenter of the system.

Some noise in the measured data is required. Otherwise the system would be analytically
determinable. The two types of noise are measurement noise and system noise. System
noise on a nonlinear system can lead to correlated errors in the results. This means that
the behaviour of the noise would have to be considered, which will drastically increase the
complexity of the problem. Considering this, only measurement noise is added at each
sample of the measured data.

Given a binary system (µ, a, b, c), a trajectory is uniquely identified according to its initial
conditions vector, [x,y,z, ẋ, ẏ, ż]. It indicates the initial position (x,y,z) and velocity (ẋ, ẏ, ż)
of the spacecraft with respect to the center of mass of the binary system.

From a fixed vector of initial conditions, the measured data is generated by propagating
a trajectory using the true parameters of the system. Pseudo-random generated noise is
added at each step of the integration to simulate measurement noise. The word pseudo-
random means that despite the noise generated by the computer might seem random, the
process is still deterministic. We set a seed in order to generate the exact same noise
for different trajectories. Thus, we avoid noise related errors when comparing different
trajectories. The considered Gaussian noise scale is σ = 10−4.

For the sake of simplicity and computing time, the determination of a single parameter, µ,
is assessed. The rest of them (a, b, c) remain fixed for the preliminary study. We assume
the initial conditions of the measured trajectory are known exactly.

A set of estimated trajectories is simulated using the constant parameters of the system
(a, b, c) and the same initial conditions [x,y,z, ẋ, ẏ, ż] as the measured trajectory. Each
estimated trajectory is related to a single µestimated variable within a certain range, subse-
quently defined.

Finally, each estimated trajectory is compared against the measured one. The best fitting
estimated trajectory corresponds to the one generated from the closest µestimated parame-
ter with respect to the true one, µ.

3.1. Least Squares Method for Data Fitting

Batch state estimation is where all the data is assessed simultaneously. It can work in a
very similar way to a Kalman filter. To analyze the data in this system we use least squares
estimation. This involves rerunning the simulation based on a set of estimated parameters,
and comparing the generated (estimated) data to the original (measured) one.

21
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Being a residual the difference between an observed value and the fitted value provided
by a model, the least squares function returns the sum of squared residuals normalized
over the number N of samples from a data series and a scaling factor σ.

Simulating a trajectory with some given parameters provide us with a set of estimated
(fitted) data, position and velocity. Comparing the estimated positions with the measured
or observed ones, as Eqs. 3.1, 3.2 and 3.3 describe, eventually returns the quality of fit as
Eq. 3.4 shows. Meaning the more similar the two sets of data are, the better the quality of
the fit and the lower the error, Q, will be.

Qx =
1
N

N

∑
i=0

(xi,measured− xi,estimated)
2

σ2 (3.1)

Qy =
1
N

N

∑
i=0

(yi,measured− yi,estimated)
2

σ2 (3.2)

Qz =
1
N

N

∑
i=0

(zi,measured− zi,estimated)
2

σ2 (3.3)

Q =
Qx +Qy +Qz

3
(3.4)

A measured trajectory is generated using the true parameters of the system (a = 400 m,
b = 300 m, c = 200 m and µ = 0.017274) and the following initial conditions: x =−0.75,
y = 0, z = 0, ẋ = 0, ẏ = 1.75, ż = 0. These initial conditions provide a bounded and quasi-
periodic orbit close to the bigger primary. Many other trajectories are tested in further
sections with different properties.

The initial conditions and the length of the axes of the ellipsoid are assumed as known.
The only parameter to be determined is µ. Thus, a set of 32 estimated trajectories are
simulated from a range of equidistant parameters between 0.010≤ µestimated ≤ 0.026.

Fig. 3.1 shows the result of comparing those estimated trajectories against the measured
one. Each value of Q corresponds to the quality of the fit resulting from the comparison.
The closer the estimated parameter to the true one, the better the estimated trajectory
fits to the measured one. Therefore, the minimum of the function corresponds to the best
fitting estimated trajectory. Its abscissa corresponds to the closest µestimated value with
respect to the true one, µ.
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Figure 3.1: For the sake of simplicity, the ellipsoid parameters (a, b, c) and the initial
conditions vector [x,y,z,ẋ,ẏ,ż] have been fixed. The only parameter to be determined is µ.
This plot represents the error, Q, resulting from the least squares data fitting routine. It
depends on the mass parameter, µestimated , used to get the estimated data. The closer the
estimated parameter to the true one, the better the estimated trajectory fits to the measured
one. Thus, the minimum of the function corresponds to the best fitting estimated trajectory
as well as to the closest estimated mass parameter, µestimated , with respect to the true one,
µ. The measurements are taken at a constant sampling rate of ∆t = 0.01. For the same
deviation from the true value, the error is larger as more measurements are taken, making
the parameter determination more accurate.

As expected, the abscissa of the minimum of the Q(µestimated) function corresponds to the
true value of the parameter of the system, µ, previously used to generate the measured
data. Furthermore, the longer the compared trajectories are, the more samples taken and
points compared, the narrower the plot gets. For the same deviation from the true value,
the error is larger as more points are compared, making the parameter determination more
accurate.

3.2. Optimization

The estimated parameters are now optimized to reduce the difference between the esti-
mated and measured data. This is a very concrete way to produce the best estimation of
the variables but computationally very slow since a whole trajectory propagation has to be
performed at every optimization step.
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A Nelder-Mead optimization routine is run to find the minimum of the Q(µestimated) objective
function. It is run at different lengths for each trajectory. Despite we lack its gradient, our
objective function has a pretty smooth shape and it is easy to minimize. The abscissa of
this minimum value is compared to the true one. Therefore we have a measure of the error
in the determination as a function of the length of the trajectories compared.

For a given number of measurements, each optimization step returns the difference be-
tween the abscissa of the minimum of the objective function and the true parameter, µ. It
results in the absolute error, ∆µ, of the determination of the mass parameter. The length
of the trajectories increases in 1 measurement per optimization step. It is expected that ∆µ
decreases as the length of the trajectory increases. We keep optimizing and increasing
the length up to a certain accuracy. A tolerance of 10−2 with respect to the true parameter
is set as convergence criteria for the method.

At this point, a trajectory which performs a slow determination is preferable in order to
get enough points to assess the correlation between the error in the determination and
the length of the trajectory in time. Therefore, given the previously defined binary system
(a = 400 m, b = 300 m, c = 200 m and µ = 0.017274), the following initial conditions are
chosen to get an orbit far from the primaries, causing the subsequent slow determination:
x =−10, y = 0, z = 0, ẋ = 0, ẏ = 10.525, ż = 0.

One should notice that, owing to the sampling rate is constant, ∆t = 0.01, the length of the
trajectory in time is directly proportional to the number of measurements taken, N.

Fig. 3.2 shows how the absolute error, ∆µ, in the determination of the parameter depends
on the propagation time of the compared trajectories for a given initial state and system.

Figure 3.2: Absolute error, ∆µ, obtained from the difference between the abscissa of the
Q(µestimated) minimum and the true parameter, µ; against the length of the trajectory in
time. Since the sampling rate is constant, ∆t = 0.01, the length of the trajectory in time is
directly proportional to the number of measurements taken, N. It shows an improvement
on the accuracy of the parameter determination as more points are compared.
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By taking logarithms as Fig. 3.3 shows, with a least-squares linear regression one can
get the scaling exponent, α, of the absolute error in the determination, ∆µ, with respect to
the propagation time. In other words, how fast the error decreases when the longer the
trajectory is propagated and so more measurements are considered, ∆µ = tα.

Figure 3.3: Taking logarithms in both axes allows to perform a least-squares linear re-
gression and getting a scaling exponent, α, which indicates how fast the uncertainty in the
parameter determination decreases as the trajectory gets longer and more measurements
are taken.

3.3. Scaling Dependence

The sensitivity to initial conditions of a trajectory can be determined by the computation of
its Lyapunov exponents. The convergence rate in the determination of the parameter is de-
fined by the scaling exponent, α. Making use of both tools, we can study the dependence
of the scaling in the determination of the parameters in a complex dynamical system as
described in Chapter 1.

According to previous research [1] [2] in simple dynamical systems, the higher the Lya-
punov exponent of a trajectory, the faster the determination will be for a fixed accuracy. The
scaling exponents for chaotic trajectories were bounded between α =−1 and α =−2.

One should bear in mind that, in the present work, the complexity of the dynamical system
studied might introduce many sources of perturbation in the determination of the parame-
ters apart from chaos. Therefore, the data resulting will have to be very carefully studied.

For the same dynamical system, several trajectories with different initial conditions are
sampled. Their scaling and finite time Lyapunov exponents are computed as plotted in Fig.
3.4 with the aim of observing some correlation as literature suggests. The trajectories are
sampled by shooting with different vertical velocities (ẏ) from different horizontal positions
(x) along the x-axis. They are all identified and summarized in Table 3.1.
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Initial conditions, [x, y, z, ẋ, ẏ, ż] Finite time Lyapunov exponent, λ100 Scaling, α

[−0.50,0.00,0.00,0.00,2.00,0.00] 0.614369551 -3.1077
[−0.75,0.00,0.00,0.00,1.75,0.00] 0.328471276 -1.3029
[−2.00,0.00,0.00,0.00,2.50,0.00] 0.160539669 -1.7407
[−1.00,0.00,0.00,0.00,2.20,0.00] 0.122819670 -1.4357
[−1.00,0.00,0.00,0.00,2.32,0.00] 0.167948320 -1.4357
[1.50,0.00,0.00,0.00,−1.00,0.00] 0.149160510 -1.1020
[0.50,0.00,0.00,0.00,−2.00,0.00] 0.331510662 -2.8828
[0.45,0.00,0.00,0.00,−2.00,0.00] 0.799480112 -2.6202
[0.45,0.00,0.00,0.00,−2.50,0.00] 0.224440783 -2.6202
[0.75,0.00,0.00,0.00,−1.75,0.00] 0.335904778 -2.9495
[0.70,0.00,0.00,0.00,−1.75,0.00] 0.270254064 -2.5841
[0.73,0.00,0.00,0.00,−1.75,0.00] 0.324828086 -3.0543
[1.50,0.00,0.00,0.00,−2.20,0.00] 0.087525327 -1.4238
[0.61,0.00,0.00,0.00,−1.80,0.00] 0.448072606 -2.6441
[0.60,0.00,0.00,0.00,−1.80,0.00] 0.539200981 -2.6202
[0.615,0.00,0.00,0.00,−1.80,0.00] 0.376661544 -2.6441
[0.55,0.00,0.00,0.00,−1.95,0.00] 0.299866951 -3.0948

Table 3.1: Summary of the sampled trajectories. Shot with a vertical velocity ẏ from differ-
ent horizontal positions x along the x-axis. They are related with their finite time Lyapunov
exponents and the resulting scalings.
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Figure 3.4: Each point corresponds to a different trajectory propagated up to t=100. They
represent the scaling exponent, α, it has (how fast the error in the determination of the
parameter decreases as more measurements are taken) related to the finite time Lyapunov
exponent, λ100 which represents how sensitive to initial conditions a trajectory is. The
higher λ100, the more chaotic the trajectory is.

The least-squares linear regression performed returns a correlation coefficient of −0.590
and a p-value of 0.012, meaning there is a moderate correlation between the scaling ex-
ponent, α, and the sensitivity to initial conditions measured by the finite time Lyapunov
exponents, λ100.

Some trajectories as the ones analyzed in Fig. 3.5 and Fig. 3.6, considered as outliers,
present high scaling exponents despite having low Lyapunov exponents.



28 Astrophysical Parameter Determination Using Chaotic Orbital Regions

(a) Planar trajectory (b) Poincaré map

Figure 3.5: Outlier trajectory. Initial conditions: [0.50,0.00,0.00,0.00,−2.10,0.00];
λ100 = 0.0369;α =−2.8828

(a) Planar trajectory (b) Poincaré map

Figure 3.6: Outlier trajectory. Initial conditions: [1.20,0.00,0.00,0.00,−2.10,0.00];
λ100 = 0.1411;α =−2.8294

Fig. 3.5 shows a very stable quasi-periodic behaviour, corresponding to a very low Lya-
punov exponent and a closed curve in the Poincaré map, though it has a quite large α due
to it orbits very close to the main body getting lots of information in a short time. On the
other hand, Fig. 3.6 presents a more unstable and chaotic behaviour with a higher λ100
but still quasi-periodic with a very long period as the first recurrence map shows. Never-
theless, in a short time the particle has passed many times around and very close to both
bodies, being able again to get lots of information in a few measurements.



CONCLUSIONS

The goal of this thesis is to show that chaotic orbits of a dynamical system are advan-
tageous (compared with regular ones) to determine the characteristic parameters of the
system, and to give an estimate about the behaviour of the error as a function of the num-
ber of observations.

Placing satellites in orbit around celestial bodies is used to examine their properties. As
they collect more measurements of the trajectory, N, the uncertainty in the determination
of the parameters, σ, reduces with a scaling of σ = Nα, with α < 0. Whilst non-chaotic
systems present scalings in the order of N−

1
2 , previous research on simple systems found

out that chaotic behaviours can reach scalings between N−1 and N−2.

The utility of chaotic trajectories for parameter determination in a complex dynamical sys-
tem such as the restricted full three-body problem has been assessed. The model takes
into consideration the motion of a particle of negligible mass around a binary system where
the main body is modeled as a tri-axial ellipsoid, taking into account its mass distribution,
and the smaller one as point mass sphere. It has been studied by means of a program
coded in Python, capable of simulating the binary system gravity field and propagating
trajectories in three dimensions around it. It returns verification values such as the Ja-
cobi constant, the state transition matrix and crashing event assessment allowing lots of
flexibility in the parameter settings.

Chaos can be defined in many different ways along a trajectory, which might lead to con-
fusion and errors in the analysis of the data. Thus, a common and reliable mathematical
measure of chaos is paramount. A combination of Poincaré maps, which allow to study
the periodicity of a trajectory in a visual way; and mathematical tools such as the finite
time Lyapunov exponents and the Pesin entropy formula, which indicate how sensitive a
trajectory is to initial conditions, has been used. They return similar and reliable values
providing redundancy and robustness to the procedure.

A strict procedure has been followed during the design and testing of the numerical meth-
ods used, mainly in order to avoid correlated errors. Some noise had to be inserted into
the system, otherwise it would be analytically determinable. Therefore, a least-squares
estimation routine for data fitting has been used in order to perform the parameter deter-
mination comparing real and estimated trajectories. Since the generation of noise from a
computer is pseudo-random, meaning that although it might seem random, the process to
get them is still deterministic, we have been able to compare results coming from determi-
nations with the exact values of noise, avoiding correlated errors and proving its reliability.

Numerical methods have been developed in order to determine the parameters of a chaotic
system up to a given accuracy while returning the scaling value computed from the last-
squares linear regression of the log-log ∆µ vs. time plot, which relates the logarithm in
the determination of the parameter of the system with the logarithm of the length of the
compared trajectories (the longer the trajectory, the more measurements have been taken
since the sampling rate is a constant of ∆t = 0.01). As expected, a strong correlation
between the error in the determination and the length of the trajectory has been proven,
being reduced as more measurements were taken.

Finally, a moderate correlation between the finite time Lyapunov exponents, λ100, which
indicate the chaoticity or sensitivity to initial conditions of a trajectory, and the scaling ex-
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ponent, α, that measures the rate at which the uncertainty in the determination of the
parameters of the system decreases as more measurements are taken, has been shown.
Even though further research is required, those results allow to conjecture that trajecto-
ries with a higher level of chaos will tend to perform better in the determination of the
parameters of the system showing higher scaling values than less chaotic and non-chaotic
ones.

Nevertheless, some outliers have been found, such as ordered trajectories scaling in
chaotic expected levels. This indicates that, apart from chaos, the scaling seems to de-
pend on other factors such as the distance to the main body or the ground track projected
over the system, opening new topics and insights to expand the study on astrophysical
chaotic systems.

The scaling values obtained for chaotic trajectories with positive finite time Lyapunov ex-
ponents lie between N−1 and N−3, being the results greater than N−2 not predicted by
previous research. These unexpected results might be due to those previous studies were
focused on very simple systems such as the standard map. This work is based on a more
complex dynamical system, the restricted full three-body problem, which might introduce
other factors affecting the scaling apart from just chaos.

Future work and research that will be worth to consider involve the previously commented
outliers as well as the high scaling values. Besides, it will be interesting to study the
behaviour and scaling presenting when trying to perform a full system determination (a,
b, c, and µ), which in this project has been limited to a single parameter since we were
seeking a correlation between the scaling and the chaotic behaviour.

A more in depth theoretical study on the scaling dependence on chaos would bring some
light when analyzing practical situations more efficiently. Furthermore, the use of tech-
niques such as the Space Manifold Dynamics (SMD) [14] will allow to study the chaotic
regions with greater accuracy.

Finally, once further research on the topic has been performed and succeeded, the design
of future applications on mission analysis will be able to take advantage of the chaocity
of some trajectories, together with artificial intelligence algorithms, making the spacecraft
search for and insert itself in the most suitable trajectory for the most efficient determina-
tion. Many trade-offs will arise from here, such as different levels of chaos, closer and
further trajectories with respect to the primary bodies and the security factor among many
others.
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APPENDIX 1: VARIATIONAL EQUATIONS

Being the state transition matrix, Dx, a matrix whose product with the state vector at an ini-
tial time returns the state at a latter time, whose derivative is represented by the variational
equations, Ḋx, expressing the change in the final state of a propagation when a change or
perturbation is applied in the initial conditions of the flow.

Ḋx = D f (x) ·Dx (3.5)

Being the first term on the right hand side, D f (x), the differential of the vectorfield evalu-
ated on the trajectory and Dx the state transition matrix,

Ḋx =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∂2V
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∂2V
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∂2V
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(3.6)

Due to the differential equations of the vectorfield are numbered from 1 to 6, we are order-
ing the 36 variational equations from 7 to 42

ẋ7 ˙x13 ˙x19 ˙x25 ˙x31 ˙x37
ẋ8 ˙x14 ˙x20 ˙x26 ˙x32 ˙x38
ẋ9 ˙x15 ˙x21 ˙x28 ˙x33 ˙x39
˙x10 ˙x16 ˙x22 ˙x29 ˙x34 ˙x40
˙x11 ˙x17 ˙x23 ˙x30 ˙x35 ˙x41
˙x12 ˙x18 ˙x24 ˙x31 ˙x36 ˙x42


=
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·



x7 x13 x19 x25 x31 x37
x8 x14 x20 x26 x32 x38
x9 x15 x21 x28 x33 x39
x10 x16 x22 x29 x34 x40
x11 x17 x23 x30 x35 x41
x12 x18 x24 x31 x36 x42


(3.7)

where the second derivatives of the system are defined as

∂2V
∂x2 = ω
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2

r5
2

(3.8)
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∂2V
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2

(3.13)

being the second partials of the ellipsoid potential [15]
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The variational equations result as:

ẋ7 = x10 (3.20)
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APPENDIX 2: MARKLEY’S METHOD

Instead of propagating the varaitional equations the state transition matrix, here defined
as φ, can be approximated by the Markley’s method [16] as

φ(t, t0)≈

[
φrr φrv
φvr φvv

]
(3.56)

where

φrr ≡ I +(2G0 +G)
(∆t)2

6
(3.57)

φrv ≡ I∆t +(G0 +G)
(∆t)3

12
(3.58)

φvr ≡ (G0 +G)
(∆t)

2
(3.59)

φvv ≡ I +(G0 +2G)
(∆t)2

6
(3.60)

and G(t) is a 3× 3 sub-matrix of the Jacobian of the system which is obtained by taking
the partials of the vector field, resulting as

G(t) =
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 (3.61)

The approximation requires less computations at each state of the propagation and so it
makes it faster. Though not faster enough to compensate the loss in accuracy required to
assess the results of this work.
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APPENDIX 3: PYTHON CODE

This appendix includes the code and a brief description of the most important routines
used in this project.

Binary System Construction

"make binary system" routine allows to create a binary system object that fits into the
restricted full three body problem requirements. Allowing to set the uniform density of the
system, the length of the axis of the tri-axial ellipsoid and the radius of the sphere.

class BinarySystem(object):
G = 0
rho = 0
q = 0
w = 0
mu = 0
ellipsoid_A = 0
ellipsoid_B = 0
ellipsoid_C = 0
sphere_radius = 0

def __init__(binary_system, G, rho, q, w, mu, ellipsoid_A, ellipsoid_B,
ellipsoid_C, sphere_radius):

binary_system.G = G
binary_system.rho = rho
binary_system.q = q
binary_system.w = w
binary_system.mu = mu
binary_system.ellipsoid_A = ellipsoid_A
binary_system.ellipsoid_B = ellipsoid_B
binary_system.ellipsoid_C = ellipsoid_C
binary_system.sphere_radius = sphere_radius

def make_binary_system(G, rho, q, w, mu, ellipsoid_A, ellipsoid_B, ellipsoid_C,
sphere_radius):

binary_system = BinarySystem(G, rho, q, w, mu, ellipsoid_A, ellipsoid_B,
ellipsoid_C, sphere_radius)
return binary_system

36
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Restricted Full Three-Body Problem Vectorfield and Varia-
tional Equations

"RF3BP42" returns the 42 differential equations, 6 from the flow and 36 from the variational
equations evaluated at the provide state of a binary system at a certain time.

def RF3BP_42 (t, x, binary_system):

# Particle state (position and velocity)
state = x[0:6]

x1 = x[0]
x2 = x[1]
x3 = x[2]
x4 = x[3]
x5 = x[4]
x6 = x[5]
x7 = x[6]
x8 = x[7]
x9 = x[8]
x10 = x[9]
x11 = x[10]
x12 = x[11]
x13 = x[12]
x14 = x[13]
x15 = x[14]
x16 = x[15]
x17 = x[16]
x18 = x[17]
x19 = x[18]
x20 = x[19]
x21 = x[20]
x22 = x[21]
x23 = x[22]
x24 = x[23]
x25 = x[24]
x26 = x[25]
x27 = x[26]
x28 = x[27]
x29 = x[28]
x30 = x[29]
x31 = x[30]
x32 = x[31]
x33 = x[32]
x34 = x[33]
x35 = x[34]
x36 = x[35]
x37 = x[36]
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x38 = x[37]
x39 = x[38]
x40 = x[39]
x41 = x[40]
x42 = x[41]

# Angular velocity
w = binary_system.w
w_pow2 = w * w
# Sphere mass
mu_sphere = binary_system.mu
# Sphere position with respect ot CM
position_sphere = [1-mu_sphere, 0, 0]
xs = position_sphere[0]
ys = position_sphere[1]
zs = position_sphere[2]
# Particle position with respect to sphere
pos_x_sphere = x1 - xs
pos_y_sphere = x2 - ys
pos_z_sphere = x3 - zs
# Particle-sphere position squared
pos_x_sphere_pow2 = pos_x_sphere * pos_x_sphere
pos_y_sphere_pow2 = pos_y_sphere * pos_y_sphere
pos_z_sphere_pow2 = pos_z_sphere * pos_z_sphere
# Particle-sphre position modulus
pos_particle_sphere = np.sqrt(pos_x_sphere_pow2 + pos_y_sphere_pow2 +
pos_z_sphere_pow2)
pos_particle_sphere_pow3 = pos_particle_sphere * pos_particle_sphere *
pos_particle_sphere
# Gravitational acceleration due to ellipsoid
acc = ellipsoid_potential(state, binary_system)[1]
ax = acc[0]
ay = acc[1]
az = acc[2]
# Mutual potential first derivatives
Vx = w_pow2 * x1 + ax - (mu_sphere / pos_particle_sphere_pow3) * pos_x_sphere
Vy = w_pow2 * x2 + ay - (mu_sphere / pos_particle_sphere_pow3) * pos_y_sphere
Vz = az - (mu_sphere / pos_particle_sphere_pow3) * pos_z_sphere
# Local Jacobian
G = local_jacobian_G(state, binary_system)
Vxx = G[0,0]
Vxy = G[0,1]
Vxz = G[0,2]
Vyx = G[1,0]
Vyy = G[1,1]
Vyz = G[1,2]
Vzx = G[2,0]
Vzy = G[2,1]
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Vzz = G[2,2]
# Vectorfield
xdot = np.zeros(42)
xdot[0] = x4
xdot[1] = x5
xdot[2] = x6
xdot[3] = 2 * w * x5 + Vx
xdot[4] = -2 * w * x4 + Vy
xdot[5] = Vz
# Variational equations
xdot[6] = x10
xdot[7] = x11
xdot[8] = x12
xdot[9] = x7*Vxx + x8*Vxy + x9*Vxz + 2*x11
xdot[10] = x7*Vyx + x8*Vyy + x9*Vyz - 2*x10
xdot[11] = x7*Vzx + x8*Vzy + x9*Vzz
xdot[12] = x16
xdot[13] = x17
xdot[14] = x18
xdot[15] = x13*Vxx + x14*Vxy + x15*Vxz + 2*x17
xdot[16] = x13*Vyx + x14*Vyy + x15*Vyz - 2*x16
xdot[17] = x13*Vzx + x14*Vzy + x15*Vzz
xdot[18] = x22
xdot[19] = x23
xdot[20] = x24
xdot[21] = x19*Vxx + x20*Vxy + x21*Vxz + 2*x23
xdot[22] = x19*Vyx + x20*Vyy + x21*Vyz - 2*x22
xdot[23] = x19*Vzx + x20*Vzy + x21*Vzz
xdot[24] = x28
xdot[25] = x29
xdot[26] = x30
xdot[27] = x25*Vxx + x26*Vxy + x27*Vxz + 2*x29
xdot[28] = x25*Vyx + x26*Vyy + x27*Vyz - 2*x28
xdot[29] = x25*Vzx + x26*Vzy + x27*Vzz
xdot[30] = x34
xdot[31] = x35
xdot[32] = x36
xdot[33] = x31*Vxx + x32*Vxy + x33*Vxz + 2*x35
xdot[34] = x31*Vyx + x32*Vyy + x33*Vyz - 2*x34
xdot[35] = x31*Vzx + x32*Vzy + x33*Vzz
xdot[36] = x40
xdot[37] = x41
xdot[38] = x42
xdot[39] = x37*Vxx + x38*Vxy + x39*Vxz + 2*x41
xdot[40] = x37*Vyx + x38*Vyy + x39*Vyz - 2*x40
xdot[41] = x37*Vzx + x38*Vzy + x39*Vzz

return xdot
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Ellipsoid Gravity Potential

"ellipsoid potential" returns the gravity potential and acceleration a single ellipsoid defined
in the BinarySystem object is creating in an implicit position in the state vector of the
particle.

def ellipsoid_potential (state, binary_system):

# Input:
# - binary_system
# - state: particle state [x-position, y-position, z-position, x-velocity,
y-velocity, z-velocity]
#
# Output:
# - Ve: Gravitational potential of the tri-axial ellipsoid
# - acc: Cartesian components of the gravitational acceleration
(gradient of Ve) [ax, ay, az]

# Ellipsoid geometry
a = binary_system.ellipsoid_A
b = binary_system.ellipsoid_B
c = binary_system.ellipsoid_C

# Ellipsoid semi-axes squared
a_pow2 = a * a
b_pow2 = b * b
c_pow2 = c * c

# Ellipsoid position respect to CM
re = [-binary_system.mu, 0, 0]
xe = re[0]
ye = re[1]
ze = re[2]

# Ellipsoid normalized gravitational parameter
mu_ellipsoid = 1 - binary_system.mu

# Particle position respect to CM
x = state[0]
y = state[1]
z = state[2]

# Particle position respect to ellipsoid
pos_x = x - xe
pos_y = y - ye
pos_z = z - ze

pos_x_pow2 = pos_x * pos_x
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pos_y_pow2 = pos_y * pos_y
pos_z_pow2 = pos_z * pos_z

# Set exception condition for the points inside the ellipsoid
if (pos_x_pow2 / a_pow2 + pos_y_pow2 / b_pow2 + pos_z_pow2 / c_pow2) <= 1:

import sys
sys.exit("Crash against ellipsoid")

else:
# Confocal ellipsoid coefficients
coef_3 = -1
coef_2 = pos_x_pow2 + pos_y_pow2 + pos_z_pow2 - (a_pow2 + b_pow2 + c_pow2)
coef_1 = (b_pow2 + c_pow2) * pos_x_pow2 + (a_pow2 + c_pow2) * pos_y_pow2 +
(a_pow2 + b_pow2) * pos_z_pow2 - (a_pow2 * c_pow2 + b_pow2 * c_pow2 +
a_pow2 * b_pow2)

coef_0 = b_pow2 * c_pow2 * pos_x_pow2 + a_pow2 * c_pow2 * pos_y_pow2 +
a_pow2 * b_pow2 * pos_z_pow2 - (a_pow2 * b_pow2 * c_pow2)
C_coefficients = [coef_3, coef_2, coef_1, coef_0]

# Confocal ellipsoid roots
C_roots = np.roots(C_coefficients)

# Store real roots in a list
C_realroots = []
for root in C_roots:

if np.imag(root) < 1e-7:
C_realroots.append(np.real(root))

# Set kappa as the largest real root
kappa = float(np.max(C_realroots))

# Carlson elliptic integrals
Rf0 = float(mpmath.elliprf(a_pow2 + kappa, b_pow2 + kappa, c_pow2 + kappa))
Rdx = float(mpmath.elliprd(b_pow2 + kappa, c_pow2 + kappa, a_pow2 + kappa))
Rdy = float(mpmath.elliprd(a_pow2 + kappa, c_pow2 + kappa, b_pow2 + kappa))
Rdz = float(mpmath.elliprd(a_pow2 + kappa, b_pow2 + kappa, c_pow2 + kappa))

# Gravitational potential of a tri-axial ellipsoid
Ve = mu_ellipsoid * ((3/2) * Rf0 - (1/2) * (Rdx * pos_x_pow2 + Rdy *
pos_y_pow2 + Rdz * pos_z_pow2))

# Explicit cartesian components of the gravitational acceleration
(gradient of Ve)
ax = -mu_ellipsoid * pos_x * Rdx
ay = -mu_ellipsoid * pos_y * Rdy
az = -mu_ellipsoid * pos_z * Rdz

acc = [ax, ay, az]
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return Ve, acc

Binary System Potential

"ellipsoid sphere potential" returns the gravity potential and acceleration a whole binary
system defined in the BinarySystem object is creating in an implicit position in the state
vector of the particle.

def ellipsoid_sphere_potential(state, binary_system):

# Input:
# - binary_sytem
# - state
# Output:
# - V: Ellipsoid-sphere mutual gravitational potential
# - acc: Cartesian components of the gravitational acceleration
(gradient of Ve) [ax, ay, az]

# Particle position respect to CM
x = state[0]
y = state[1]
z = state[2]

# Sphere radius
radius_sphere = binary_system.sphere_radius
radius_sphere_pow2 = radius_sphere * radius_sphere

# Sphere position with respect ot CM
position_sphere = [1-binary_system.mu, 0, 0]
xs = position_sphere[0]
ys = position_sphere[1]
zs = position_sphere[2]

# Particle position with respect to sphere
pos_x_sphere = x - xs
pos_y_sphere = y - ys
pos_z_sphere = z - zs
# Particle-sphere position squared
pos_x_sphere_pow2 = pos_x_sphere * pos_x_sphere
pos_y_sphere_pow2 = pos_y_sphere * pos_y_sphere
pos_z_sphere_pow2 = pos_z_sphere * pos_z_sphere
# Particle-sphre position modulus
pos_particle_sphere = np.sqrt(pos_x_sphere_pow2 + pos_y_sphere_pow2
+ pos_z_sphere_pow2)

# Sphere gravitational parameter
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mu_sphere = binary_system.mu

# Ellipsoid gravitational parameter
mu_ellipsoid = 1 - binary_system.mu

# Sphere potential
if ((pos_x_sphere_pow2 + pos_y_sphere_pow2 + pos_z_sphere_pow2)/
radius_sphere_pow2) <= 1:

import sys
sys.exit("Crash against sphere")

else:
Vs = mu_sphere / pos_particle_sphere

# Ellipsoid potential
Ve, acc = ellipsoid_potential(state, binary_system)

# Centrifugal force
CF = (1/2) * binary_system.w*binary_system.w * (x*x + y*y)

# Mutual potential
V = CF + Ve + Vs + (1/2) * mu_sphere * mu_ellipsoid

return V, acc

Propagation

Given a binary system and the initial conditions, it propagates a trajectory and the varia-
tional equations up to a certain final time. It returns the trajectory (position and velocity),
time, state transition matrix and Jacobi constant (to check it is constant) vectors as well as
a boolean that tells if the trajectory crashes against a body.

"Vode" method from Python’s "scipy.integrate.ode" library has been used. It is a Real-
valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient
implementation. It provides implicit Adams method (for non-stiff problems) and a method
based on backward differentiation formulas (BDF) (for stiff problems). The parameters
used along this whole work are listed as follows:

• Absolute tolerance: 10−7

• Relative tolerance: 10−7

• First step: 10−2

• Minimum step: 10−4

• Maximum step: 100

• Order: 8
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def propagation_time_42 (f, binary_system, initial_state, DX, t0, tf,
dt, noise_scale, at, rt, fs, mins, maxs, int_order):

# Evaluate if the initial state lies within a body
crash = crashing_event(initial_state, binary_system)
if crash == True:

trajectory = initial_state
time = t0
STM = DX
jacobi = [np.inf, np.inf]

# If the initial state makes sense (does not lie within a body),
start the propagation
else:

x = np.zeros(42)
x[0] = initial_state[0]
x[1] = initial_state[1]
x[2] = initial_state[2]
x[3] = initial_state[3]
x[4] = initial_state[4]
x[5] = initial_state[5]
x[6] = DX[0,0]
x[7] = DX[1,0]
x[8] = DX[2,0]
x[9] = DX[3,0]
x[10] = DX[4,0]
x[11] = DX[5,0]
x[12] = DX[0,1]
x[13] = DX[1,1]
x[14] = DX[2,1]
x[15] = DX[3,1]
x[16] = DX[4,1]
x[17] = DX[5,1]
x[18] = DX[0,2]
x[19] = DX[1,2]
x[20] = DX[2,2]
x[21] = DX[3,2]
x[22] = DX[4,2]
x[23] = DX[5,2]
x[24] = DX[0,3]
x[25] = DX[1,3]
x[26] = DX[2,3]
x[27] = DX[3,3]
x[28] = DX[4,3]
x[29] = DX[5,3]
x[30] = DX[0,4]
x[31] = DX[1,4]
x[32] = DX[2,4]
x[33] = DX[3,4]
x[34] = DX[4,4]
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x[35] = DX[5,4]
x[36] = DX[0,5]
x[37] = DX[1,5]
x[38] = DX[2,5]
x[39] = DX[3,5]
x[40] = DX[4,5]
x[41] = DX[5,5]

# Evaluate if the initial state lies within a body
crash = crashing_event(initial_state, binary_system)
if crash == True:

trajectory = initial_state
time = t0

# If the initial state makes sense (does not lie within a body),
start the propagation
else:

# Initialize state matrix
trajectory = initial_state
# State transition matrix
STM = x
# Initialize time vector
time = t0
# Set time parameter
t = t0
# Set integrator
solver = integrate.ode(f).set_integrator(’vode’, atol=at,
rtol=rt, method = ’adams’, first_step=fs, min_step=mins,
max_step=maxs, order=int_order)
# Set initial values for the integrator
solver.set_initial_value(x, t0)
solver.set_f_params(binary_system)

while solver.successful() and t < tf:
# Measurement noise
noise = np.random.normal(0, noise_scale, len(initial_state))
# Integration step
solver.integrate(t + dt)
# Time at current step
t = solver.t
# State at current step
x = solver.y
state = x[0:6] + noise
# Jacobi constant at current step
potential = ellipsoid_sphere_potential(state, binary_system)[0]
cj = jacobi_constant(state, potential)

# Store values in vectors
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time = np.vstack((time, t))
trajectory = np.vstack((trajectory, state))
STM = np.vstack((STM, x))
jacobi = np.vstack((jacobi, cj))

# Evaluate crashing event at current state
crash = crashing_event(state, binary_system)
if crash == True:

break

return trajectory, time, crash, STM, jacobi

Poincaré Map

It computes the crossing events of a given trajectory with respect to a Poincaré section
which can be set by the user by looking at the change of sign. It also applies a refinement
of the points by means of a Newton-Raphson propagation in order to get accurate Poincaré
maps.

def poincare_map(binary_system, trajectory, time):
from rkf45 import rkf45
initial_state = trajectory[0]
count = 0
# Poincaré section
y0 = initial_state[1]
for state in trajectory:

# Poincaré section
yk = state[1]
if np.dot(y0, yk) < 0:

if count == 0:
crossing = state
count += 1

else:
crossing = np.vstack((crossing, state))

# Poincaré section
y0 = state[1]

if count == 0:
return 0, False

else:
# Newton-raphson refinement (y=0)
f = RF3BP
count=0
hmin = 1e-4
hmax = 1e0
tol = 1e-7
for x in crossing:
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t = 0
while x[1] > 1e-12:

h = -x[1]/x[4] # h = -g(t)/g’(t)
[t, x, h, err] = rkf45(t,x,h,hmin,hmax,tol,f,binary_system)
if count == 0:

poincare = x
count += 1

else:
poincare = np.vstack((poincare, x))

return poincare, True

Finite Time Lyapunov Exponents

Given a state transition matrix propagation on time, it computes the finite time Lyapunov
exponent of a trajectory considering just the last state.

def finite_lyapunov(STM, time):
x = STM[-1]
t = time[-1]
# STM at final step
DX_t = np.matrix([[x[6],x[7],x[8],x[9],x[10],x[11]],

[x[12],x[13],x[14],x[15],x[16],x[17]],
[x[18],x[19],x[20],x[21],x[22],x[23]],
[x[24],x[25],x[26],x[27],x[28],x[29]],
[x[30],x[31],x[32],x[33],x[34],x[35]],
[x[36],x[37],x[38],x[39],x[40],x[41]]])

DX = np.transpose(DX_t)
# Lyapunov exponent
lyapunov = (1/t) * np.log((np.linalg.norm(DX, ord=2)))

return float(lyapunov)

Scaling

It propagates a measured trajectory with the real values of the binary system and a noise
scale of 10−4 and stores it. Then, optimizes the dynamical parameter by propagating
the estimated trajectories within a certain time range. For each length of the trajectory it
returns an optimized parameter which is then compared to the real one.

It keeps optimizing until it gets an accuracy of two orders of magnitude with respect to the
real parameter. Finally, it returns the slope of the log-log plot absolute error vs. time which
is defined as the scaling exponents, α.

It uses the "Nelder-Mead" method from the Python’s "scipy.optimize.minimize" library call-
ing the objective function Q(µ) and using the real value of the system as initial guess in
order to speed the process.
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# Objective function Q(mu)
def error_vs_mu(e_mu, e_tf, real_binary_system, m_trajectory, scale):

# Estimated binary system
estimated_binary_system = make_binary_system(real_binary_system.G,
real_binary_system.rho, real_binary_system.q, real_binary_system.w,
e_mu, real_binary_system.ellipsoid_A, real_binary_system.ellipsoid_B,
real_binary_system.ellipsoid_C, real_binary_system.sphere_radius)
# Integration data
f = RF3BP
initial_state = m_trajectory[0]
t0 = 0
dt = 1e-2
atol = 1e-7
rtol = 1e-7
first_step = 1e-2
min_step = 1e-4
max_step = 1e0
order = 8
# Estimated propagation
e_trajectory, e_time, e_crash = propagation_time (f, estimated_binary_system, initial_state, t0, e_tf, dt, 0, atol, rtol, first_step, min_step, max_step, order)

# Least-squares comparison
Q = least_squares(m_trajectory, e_trajectory, scale)

return Q

# Scaling routine
def scaling(initial_state, real_binary_system, noise_scale):

# Vectorfield to integrate
f = RF3BP
# Initial integration time
t0 = 0
# Final integration time
tf = 100
# Time step
dt = 1e-2
# Absolute tolerance
atol = 1e-7
# Relative tolerance
rtol= 1e-7
# First integration step
first_step = 1e-2
# Minimum integration step
min_step = 1e-4
# Maximum integration step
max_step = 1e0
# Integration order
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