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11 Abstract
12 The change in nitrogen balance causes many environmental and socioeconomic impacts. In relation to food production and
13 nitrogen release in wastewater systems, wastewater and sludge discharge and mineral fertilizer use intensify nitrogen imbalance
14 of a region. The replacement of mineral fertilizer by nitrogen from treated wastewater, biosolids, and treated urine is a promising
15 alternative. This work presents a model to support decision taking for the management of reactive nitrogen flows in wastewater
16 systems based on system dynamics. Six scenarios were simulated for nitrogen flows in wastewater systems and related
17 components.

18 Keywords Reactive nitrogen . Sustainable sanitation . System dynamics . Urine segregation

19

20 Introduction

21 The anthropogenic fixation of reactive nitrogen, mainly used
22 in agriculture for food production, has caused many changes
23 in society, economy, and environment. As regards the social
24 issue, estimates indicated that about half of the global popu-
25 lation would not have sufficient food without use of nitrogen
26 fertilizers in food production system (Erisman et al. 2008;
27 Erisman et al. 2015).

28As regards the economic issue, an important aspect to be
29emphasized is the global energy consumption to produce ni-
30trogen fertilizer. The nitrogen fertilizer industry consumes
31about 2% of world energy (Sutton et al. 2013). On average,
32the production of 1 t of ammonia demand about 36.7 GJ if
33based on natural gas and 45 GJ if based on coal, oil, and
34naphtha (IFA 2009). Due to this fact, the food prices are
35strongly influenced by the energy prices.
36From an environmental point of view, transformation of
37inert nitrogen to its reactive forms by industrial fixation (both
38ammonia and energy production) and intentional biological
39nitrogen fixation in agriculture has exceeded the planetary
40boundary for biogeochemical nitrogen cycle as indicated by
41Rockstrom et al. (2009) and Steffen et al. (2015).
42Sutton et al. (2013) presented that these anthropogenic ac-
43tivities produce at least 200 Tg N (teragram nitrogen) per year.
44It is more than three times the planetary boundary proposed by
45Steffen et al. (2015), of 62 Tg N per year. Nitrogen fertilizer
46represents 60% (120 Tg N) of produced anthropogenic reac-
47tive nitrogen (Sutton et al. 2013), of which, around 50% is
48released to the environment due to low use efficiency (Smil
492011).
50To mitigate the alterations of the biogeochemical nitrogen
51cycle is necessary to minimize the conversion of inert nitrogen
52(N2) to reactive nitrogen forms through drastic measures
53intended to close the cycle. This points directly to the optimi-
54zation of existing reactive nitrogen flows management to meet
55the nitrogen demandmainly bymineral nitrogen fertilizer. The
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56 existing reactive nitrogen flow in sanitation system mainly by
57 human excretion was set in 19 Tg N per year (Billen et al.
58 2013), which represents around 10% of anthropogenic reac-
59 tive nitrogen production and 15% of nitrogen fertilizer
60 production.
61 Conventional sanitation is characterized by open flows of
62 water and nutrients, which does not focus adequately on im-
63 portant issues such as energy use in mineral fertilizer produc-
64 tion, water supply and wastewater treatment, chemicals use in
65 water and wastewater treatment, potable water use in non-
66 potable uses such as for flushing toilets, and nutrients emis-
67 sions to ecosystems. In this way, alternative more efficient
68 means have been developed by the sustainable sanitation con-
69 cept, where segregation and use of resources flows are de-
70 signed to close the nutrients and water cycles linking sanita-
71 tion systems and agricultural production. Additionally to mac-
72 ronutrients recycling, micronutrients can also be recovered as
73 an additional advantage (Santos et al. 2015).
74 In relation to nitrogen recycling, urine segregation has
75 shown to be an effective way for closing the cycle. Human
76 urine contributes 80% of nitrogen load in wastewater flow
77 (Munch andWinker 2011; Spangberg et al. 2014). The annual
78 urine production per capita can fertilize 300–400 m2, consid-
79 ering the nitrogen application rate between 50 and
80 100 kg N ha−1 (Richert et al. 2010). This means that about
81 34 people can fertilize 1 ha.
82 Reactive nitrogen management involves industry, agricul-
83 ture, society, sanitation, and other sectors, forming a complex
84 system. There is need for a holistic integrated approach about
85 nitrogen management. The main objective of this study was to
86 develop a model of decision support system for reactive
87 nitrogen flows management in wastewater system.

88 Material and methods

89 The five steps of the modeling process developed by Sterman
90 (2000) were used as methodology to develop the model. In the
91 first step, “problem articulation,” the problems of inefficient
92 management of reactive nitrogen and its complexity was pre-
93 sented. The key variables that influence the amount of reactive
94 nitrogen excreted and its use in agriculture considered in this
95 study were population, animal, and vegetal protein consump-
96 tion, and use efficiency of treated wastewater, treated urine,
97 and biosolids in agriculture.
98 In the second step, the dynamic hypothesis are developed
99 to explain the initial system behavior and its representation by
100 causal loop diagrams of the conceptual model. Negative ar-
101 rows (−) represent effects in the opposite directions and the
102 positive arrows (+) represent effects in the same direction
103 (Martín 2006).
104 In the third step, “formulation of simulation model,” the
105 stock and flow model is developed based on previous

106dynamic hypothesis. The causal loop and the stock and flow
107diagrams were developed using the software Vensim PLE
108Plus Version 6.3. The simulation was set for the period of
10950 years, from the year 2000 to 2050.
110The model was applied to a hypothetical region with
111480,000 inhabitants in year 2000, characterized by agricultur-
112al production and inadequate sanitation as usual found in
113many in developing countries. In the “testing” and “policy
114design and evaluation” steps, simulations of six scenarios of
115policies for nitrogen flow management in wastewater system
116were carried out.

117Decision support system for management
118of reactive nitrogen flows from wastewater
119system

120Conceptual model

121The dynamic hypothesis of this study was defined as follows:

122123Nitrogen recycling from wastewater flows, including
124treated wastewater, treated urine and biosolids, can re-
125duce the need for mineral fertilizer, reducing the conver-
126sion of inert nitrogen to reactive forms and, consequent-
127ly, reducing reactive nitrogen emissions to ecosystems.
128Environmental and economical advantages will encour-
129age more the nitrogen recycling.

130The causal loop diagram formulated for the dynamic hy-
131pothesis is shown in Fig. 1. The system was divided in four
132parts, population, wastewater, urine segregation, and vegetal
133production subsystems. The population subsystem (in box 1)
134represents the variation of population size, protein consump-
135tion, considering type and amount, and human metabolism, in
136relation to nitrogen excretion. The wastewater subsystem (in
137box 2) represents the treatment and use of wastewater and
138biosolids as nitrogen sources for agriculture. The urine segre-
139gation subsystem (in box 3) represents the treatment and use
140of urine as nitrogen source for agriculture. The vegetal pro-
141duction subsystem (in box 4) represents the vegetal produc-
142tion, which depends on productivity and harvested area that
143demands nitrogen fertilizer.
144Nitrogen discharged by wastewater from human excreta
145(nitrogen in produced wastewater variable) depend on popu-
146lation size and diet, which are influenced by lifestyle and
147income. An increase of population, vegetal protein
148consumption, and animal protein consumption produce an
149increase of nitrogen in produced wastewater. Digestibility
150rates of animal protein are generally higher than those of veg-
151etal protein (WHO 2007 Q2). The higher the digestion and ab-
152sorption of protein, more nitrogen will be excreted via urine.
153Due to digestibility values, an increase of animal protein
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154 consumption variable causes an increase of nitrogen excretion
155 per capita via urine. Note that, world consumption of animal
156 products have significantly increased in recent decades
157 (Westhoek et al. 2014). Particularly in some developing
158 countries, growth of animal products consumption has
159 been determined by economic and urban development
160 (FAO 2009).
161 If nitrogen in produced wastewater is not collected, treated
162 or recycled, it will be directly emitted to ecosystems (waste-
163 water disposition) intensifying the nitrogen imbalance of the
164 region already loaded by the application ofmineral fertilizer in
165 agriculture (mineral fertilizer demand). The higher the vegetal
166 production caused by increase of productivity or harvested
167 area, the higher the mineral fertilizer demand. Away to min-
168 imize the nitrogen inflow is to replace the mineral fertilizer
169 demand in vegetal production system by nitrogen in produced
170 wastewater in the form of treated wastewater, treated urine,
171 and biosolids. Thus, a reduction of emitted reactive nitrogen to
172 ecosystems in the region would be achieved.
173 Traditionally, treating and recycling resources from
174 wastewater systems occur using treated wastewater for
175 irrigation and biosolids for fertilization. However, irriga-
176 tion and fertilization practices follow different logics. This
177 alternative has some suboptimal aspects in terms of ener-
178 gy, water, and nutrients, which make the recycling system
179 more expensive.

180More efficient alternatives have been considered by the
181sustainable sanitation approach. Urine segregation has been
182shown to be a better alternative in relation to nitrogen use and
183recovery (Zhou et al. 2010; Larsen et al. 2009), due to the
184availability of concentrated nitrogen and the optimization of
185other resources as phosphorus (Mihelcic et al. 2011; Cordell
186et al. 2009).
187It is expected that environmental impacts such as eutrophi-
188cation, provoked by the emitted reactive nitrogen to
189ecosystems, together with rising prices of energy and fertil-
190izers, cause a pressure for investments on new systems for
191nitrogen recycling. This is highlighted in Fig. 1 by thick ar-
192rows, representing links between three variables: wastewater
193use in agriculture, treated urine use in agriculture, and bio-
194solids use in agriculture. This would cause a reduction of
195mineral fertilizer demand, and consequently a reduction of
196mineral fertilizer production and emitted reactive nitrogen to
197ecosystems.

198Stock and flow model

199The stock and flow models of population, wastewater, urine
200segregation, and vegetal production subsystems are here de-
201veloped and detailed. The equations of the variables used are
202detailed in Appendix A.

1

3
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Fig. 1 Causal diagram of
decision support system for
management of reactive nitrogen
flows in wastewater system
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203 Population subsystem

204 As described before, this subsystem includes the human me-
205 tabolism and variation of population. The model to quantify
206 the variation of nitrogen in produced wastewater is shown in
207 Fig. 2. The population of the hypothetical region was deter-
208 mined by the logistic curve method, where Ps is the saturation
209 population and, K1 and c are coefficients.
210 Population, nitrogen in gray water, nitrogen in water, ni-
211 trogen in yellow water, and nitrogen in brown water deter-
212 mines the nitrogen in produced wastewater. Animal protein
213 consumption per person per day (animal protein per capita per
214 day), vegetal protein consumption per person per day (vegetal
215 protein per capita per day), and protein digestibility rates de-
216 termined nitrogen excretion via urine (nitrogen in yellow
217 water) and nitrogen excretion via feces (nitrogen in brown
218 water). The total nitrogen excreted per year in the hypothet-
219 ical region was calculated by multiplying nitrogen excreted
220 per capita per year and population. The nitrogen excreted
221 per capita per yearwas estimated by sum of nitrogen in yellow
222 water and nitrogen in brown water. The urine segregation
223 rate was used to determine the nitrogen amount that enters
224 the urine segregation subsystem.

225 Wastewater subsystem

226 Figure 3 shows the model representing nitrogen flows in the
227 wastewater system. The produced wastewater is composed by
228 yellow water (urine and water), brown water (feces and wa-
229 ter), and gray water (kitchen and bathing water). The nitrogen

230amount that enters the wastewater system (nitrogen in waste-
231water production) was determined by nitrogen in produced
232wastewater, with the same meaning. The figure below de-
233scribes the conventional wastewater system considered in this
234study.
235We assumed that part of total nitrogen in produced
236wastewater is diverted to the wastewater collection system.
237Total nitrogen in collected wastewater was determined based
238on the wastewater collection rate. The rest of total nitrogen in
239produced wastewater was assumed to be disposed into water
240ecosystems (nitrogen discharged from produced wastewater).
241Part of total nitrogen in collected wastewater is treated and
242can be directed to wastewater recycling system. The total
243nitrogen in treated wastewaterwas calculated based onwaste-
244water treatment rate. The other part of total nitrogen in col-
245lected wastewater was assumed to be disposed (nitrogen
246discharged from collected wastewater).
247Part of total nitrogen in treated wastewater is recycled
248(nitrogen in recycled wastewater), which was determined
249based on wastewater recycling rate. The nitrogen emissions
250to ecosystems from wastewater treatment system, including
251sludge treatment system, occur by gases losses (N2O, NH3,
252NOx, and N2), non-recycled biosolids, and non-recycled treat-
253ed wastewater.
254The nitrogen discharged from treated wastewater was ob-
255tained by subtraction between total nitrogen in treated
256wastewater and the sum of nitrogen losses to atmosphere in
257wastewater treatment, nitrogen in produced sludge, and nitro-
258gen in recycled wastewater. In the view point of closing nitro-
259gen cycle, nitrogen discharged from treated wastewater rep-
260resents the potential available nitrogen in treated wastewater
261that could be used in agriculture, but that eventually is dis-
262posed into water ecosystems.
263The nitrogen in produced sludge was estimated by sludge
264production rate, assuming that all produced sludge is treated.
265A part of total nitrogen in biosolids is recycled and the other
266part is disposed in landfill. The nitrogen in recycled biosolids
267was calculated based on biosolids recycling rate. The nitrogen
268discharged from biosolids disposal in landfillwas obtained by
269subtraction between nitrogen in produced sludge and the sum
270of nitrogen gases losses in sludge treatment and nitrogen in
271recycled biosolids. The nitrogen discharged from biosolids
272disposal in landfill represents the potential available nitrogen
273in biosolids that could be used in agriculture, but that eventu-
274ally is disposed.

275Urine segregation subsystem

276In Fig. 4 is shown the urine segregation subsystem model.
277Urine segregation rate, nitrogen in yellow water, and
278population determined the total nitrogen in segregated urine.
279Some nitrogen losses (nitrogen losses to atmosphere in urine
280collection system) occur before the urine treatment system, in

conversion factor from
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digestibility rate
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<Time>
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Fig. 2 Population subsystem
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281 the collection and segregation system, which were determined
282 by the nitrogen losses rate to atmosphere in urine collection
283 system. In urine treatment system also occur nitrogen gases
284 losses, which were determined by the nitrogen losses rate to
285 atmosphere in urine treatment system. The nitrogen in
286 recycled urine was determined based on urine segregation
287 rate, assuming that all treated and segregated urine is recycled.

288 Vegetal production subsystem

289 In Fig. 5 is shown the vegetal production subsystem model.
290 The vegetal productionwas estimated through harvested area
291 and productivity, which was related to the desired nitrogen
292 application rate from mineral fertilizer. The harvested area
293 varies in accordance to growth rate of harvested area. The
294 desired nitrogen application rate from mineral fertilizer could
295 be estimated based on crop production expectation, economic
296 factors, or agricultural practices. The function WITH
297 LOOKUP was used to determine the productivity, assuming
298 that for given desired nitrogen application rate from mineral
299 fertilizer exists an associated productivity.
300 The total nitrogen application from mineral fertilizer was
301 obtained from harvested area and nitrogen application rate

302from mineral fertilizer, which was determined by the function
303IF THEN ELSE. Thus, if nitrogen application rate from or-
304ganic fertilizer is equal to or greater than desired nitrogen
305application rate from mineral fertilizer, then nitrogen appli-
306cation rate from mineral fertilizer will be zero, if not, will be
307determined by the subtraction between desired nitrogen appli-
308cation rate from mineral fertilizer and nitrogen application
309rate from organic fertilizer.
310The nitrogen application rate from organic fertilizer is the
311sum of equivalent nitrogen application from treated urine,
312treated wastewater, and biosolids. The equivalent nitrogen of
313each organic fertilizer was determined by multiplying the ni-
314trogen application rate from each organic fertilizer by the ni-
315trogen fertilizer replacement value (NFRV), which represents
316the fraction of applied total nitrogen by organic fertilizers that
317have the same effect in vegetal production that applied total
318nitrogen by mineral fertilizer (Schroder 2014).
319The nitrogen losses by leaching, gases losses, and runoff of
320each organic fertilizer and mineral fertilizer were calculated to
321analyze the evolution of total nitrogen emissions (emitted re-
322active nitrogen to ecosystems) for different scenarios of nitro-
323gen flows management. In order to analyze the potential en-
324vironmental impact, the emitted reactive nitrogen to
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325 ecosystems were calculated by sum of emitted reactive nitro-
326 gen to air, emitted reactive nitrogen to water, and emitted
327 reactive nitrogen to soil (Fig. 6).

328 Application of the model in an hypothetical
329 region

330 In order to analyze the system behavior, the variables
331 population, total nitrogen excreted per year, nitrogen in
332 wastewater production, total mineral fertilizer replaced, and

333emitted reactive nitrogen to ecosystemswere used as manage-
334ment indicator of the model.

335Population dynamics

336The population of the hypothetical region in 1991 (t0), 2000
337(t1), and 2010 (t2) were defined in 400,000 (P0), 480,000
338(P1), and 560,000 people (P2), respectively. From initial con-
339ditions, the population of the hypothetical region in 2050 was
340established in 805,169 people. The population increased
341around 1.7 times since year 2000.
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342 Human metabolism

343 Assuming average protein consumption of 75 g person−1 day−1,
344 being 67 and 33% of vegetal protein and animal protein (Smil
345 2011), respectively, the nitrogen excreted per capita per year, in
346 2000, was set around 4.4 kg N person−1 year−1.
347 The protein digestibility rate was set as 90% for animal
348 protein and 75% for vegetal protein (WHO 2007). Thus, in
349 2000, the nitrogen in yellow water and nitrogen in brown water
350 were fixed in around 3.5 and 0.9 kg N person−1 year−1, respec-
351 tively. The conversion factor of protein to nitrogen (conversion
352 factor from protein to nitrogen) was set at 16%.
353 The consumption of animal and vegetal protein in the sim-
354 ulation period is presented in Table 1. The protein consump-
355 tion variation was set based on the world average evolution in
356 protein consumption per capita, for the period between 1961
357 and 2011 (FAO 2016). The values were determined to archive
358 an increase of 25 g in per capita protein consumption in
359 50 years, from 75 to 100 g person−1 day−1. Thus, the total
360 nitrogen excreted per year varied from 2067 t of nitrogen, in
361 2000, to 4702 t, in 2050.

362 Wastewater system

363 The nitrogen amount in gray water (nitrogen in gray water)
364 was fixed at 0.74 kg N person−1 year−1, being around 50%
365 from kitchen water and 50% from bathing and washing water
366 such as used by Magid et al. (2006). Thus, the nitrogen in
367 wastewater production varied from 2416 t, in 2000, to
368 5298 t, in 2050.
369 It was assumed that the wastewater collection rate and
370 wastewater treatment rate gradually grow in time, as shown
371 in Table 2, initially as 60 and 30%, respectively. Based on
372 Gronman et al. (2016), it was assumed that 30% of nitrogen
373 inflow in wastewater treatment system leaves as sludge
374 (sludge production rate) and 26% leaves as gases emissions
375 by N2 and N2O (nitrogen losses rate to atmosphere in waste-
376 water treatment).
377 The nitrogen amount that will enter in the wastewater col-
378 lection and treatment systems, by 2050, will be 4716 and
379 3690 t, respectively. The available nitrogen in produced
380 sludge increased from 5.4 to 20% of nitrogen in produced

381wastewater. Figure 7 shows the evolution of variables nitro-
382gen in wastewater collection, nitrogen in wastewater
383production, nitrogen in wastewater treatment, and nitrogen
384in produced sludge.

385Mineral fertilizer demand

386The desired nitrogen application rate from mineral fertilizer
387was set in 170 kg N ha−1 year−1. The harvested area in 2000
388was considered to be 50,000 ha. The growth rate of harvested
389area was assumed to be 0.1% per year. Thus, total nitrogen
390application from mineral fertilizer varied from 8500 t, in
3912000, to 8935 t, in 2050.

392Total nitrogen emissions to ecosystems

393The emitted reactive nitrogen to ecosystemswas calculated by
394sum of all emissions from wastewater system, urine segrega-
395tion system, and vegetal production system by treated
396wastewater, biosolids, treated urine, and mineral fertilizer.
397The nitrogen losses were determined through leaching,
398runoff and gases emissions rates.
399Nitrogen losses from the application of fertilizers were as-
400sumed to be similar to those reported by Zhang et al. (2013)
401for China. Those are 1% for N2O emissions, 12.9% for NH3

402losses, and 9.8% for NO3
− losses. These numbers can be com-

403pared to others found in the literature. Bouwman et al. (2002)
404estimated that world average of NH3 losses in application
405were 14% (10–19%) for mineral fertilizer and 23% (19–
40629%) for animal manure. IPCC’s methodology uses an emis-
407sion factor of 0.01 (1%) for N2O emissions (De Klein et al.
4082006). Gu et al. (2015) assumed loss rates from organic

t1:1 Table 1 Protein consumption (g person−1 day−1)

Year Animal protein Vegetal protein Total protein

2000 25 50 75

2010 25.5 53 78.5

2020 26 58 84

2030 29 60 89

2040 32 62 94

2050 35 65 100

t2:1Table 2 Wastewater
collection and treatment
rates

Year Collection rate Treatment rate

2000 0.6 0.3

2020 0.7 0.5

2040 0.8 0.7

2050 0.9 0.8

Fig. 7 Evolution of nitrogen flows in the wastewater system
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409 fertilizer application in 23, 15, 4, 5, 1, 0.7% for NH3 emission,
410 denitrification, leaching, runoff, N2O emission, and NO
411 emission.
412 In this study, the loss rates through leaching, runoff, and
413 gases emissions in application of mineral fertilizer and treated
414 urine were set to 5, 5, and 15%, respectively. For treated
415 wastewater and biosolids, the losses rates were assumed to
416 be those used by Gu et al. (2015), being 4, 5, and 25% for
417 leaching, runoff, and gases emissions, respectively.
418 Application of these values lead to an emitted reactive nitro-
419 gen to ecosystems varying from 4.5 to 7 t of nitrogen between
420 year 2000 and 2050.

421 Scenarios for new policies of nitrogen
422 management

423 Six scenarios where considered in this study.

424 Scenario 1—no nitrogen is removed from wastewater in
425 the region

426 The first results shown in section 4 were determined for
427 Scenario 1. In this scenario all nitrogen excreted that enters in
428 wastewater system is emitted to the environment. That is,
429 there is no recycle and no replacement of mineral fertilizer
430 in the system.

431 Scenario 2—no nitrogen is removed from wastewater in
432 the region, which applies advanced agricultural practices

433 Scenario 2 is an improvement of Scenario 1. Here, the
434 efficiency of mineral fertilizer application was assessed. It
435 was assumed a reduction of 20% in mineral fertilizer demand
436 from improving of nitrogen use efficiency without reduction
437 of yield. Thus, the desired nitrogen application rate frommin-
438 eral fertilizer was set in 136 kg N ha−1 year−1.

439 Scenario 3—nitrogen is recovered fromwastewater in the
440 region

441 This scenario considers nitrogen recycling from treated
442 wastewater and biosolids in a traditional approach. The
443 recycling rate of treated wastewater and biosolids were de-
444 fined in Table 3.
445 To determine the mineral fertilizer replaced by the applica-
446 tion of treated wastewater, the nitrogen fertilizer replacement
447 values published by Gutser et al. (2005) where applied. These
448 authors indicate that the mineral fertilizer equivalent of sew-
449 age sludge vary between 15 and 30%. The Nitrogen Fertilizer
450 Replacement Values of treated wastewater and biosolids were
451 assumed to be 60 and 25%, respectively.

452Scenario 4—urine is segregated at the source and no N is
453removed from wastewater

454In order to analyze the effects of urine segregation, in this
455scenario it was assumed that all N recovered comes from
456treated urine. The NH3-N losses in segregation and collection
457system where set to be 0.1% following Jönsson et al. (2000)
458work quoted by Spangberg et al. (2014).
459NH3-N losses in urine treatment by storage were consid-
460ered to be 4% as measured by Karlsson and Rodhe (2002) in
461storage of animal urine, and used by Spangberg et al. (2014).
462The NFRV values of urine vary between 90 and 100% (Gutser
463et al. 2005). This study considered this value to be 100%. The
464urine segregation rate is indicated in Table 4.

465Scenario 5—nitrogen is recovered from three sources:
466treated wastewater, biosolids, and segregated urine

467

468This scenario represents the sum of Scenario 3 and 4 to
469show a transition between scenario of treated wastewater
470and biosolids recycling and scenario of treated urine
471recycling.

472Scenario 6—nitrogen is recovered from treated wastewa-
473ter, biosolids, and segregated urine, and a policy for the
474stabilization of protein consumption is in place

475Scenario 6 considers Scenario 5 and ads the effects of a
476successful policy for the stabilization of protein consumption
477from 2030 onwards maintaining a total protein consumption
478in 89 g person−1 day−1, being 29 g person−1 day−1 of animal
479protein, and 60 g person−1 day−1 of vegetal protein.

t3:1Table 3 Recycling rates
of treatedwastewater and
biosolids in the
hypothetical region

Year Wastewater Biosolids

2000 0.0 0.0

2010 0.1 0.1

2020 0.25 0.3

2040 0.35 0.6

2050 0.5 0.8

t4:1Table 4 Urine
segregation rate Year Urine segregation

2000 0.0

2010 0.1

2020 0.3

2040 0.6

2050 0.8
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480 Results

481 Quantitative effects of urine segregation

482 Figure 8 shows the quantitative effects of urine segregation
483 from wastewater. For the considered values of urine segrega-
484 tion rate, in 2050, around 40% of nitrogen in produced
485 wastewater would be segregated, as indicated for Scenarios
486 4, 5, and 6.

487 Total mineral fertilizer is replaced by nitrogen
488 from waste sources

489 Figure 9 shows the total mineral fertilizer replaced from the
490 considered scenarios. Scenario 5 shows the higher potential of
491 mineral fertilizer replacement in 2050, which represented
492 about 46% of nitrogen fertilizer use. Stabilization of protein
493 consumption from 2030, as considered in Scenario 6, can lead
494 to a nitrogen fertilizer replacement of 41.3%.
495 Scenario 4, only urine recycling, shows to bemore efficient
496 than Scenario 3, which occur only treated wastewater and
497 biosolids recycling. This occurred due to the nitrogen losses
498 rates of treated wastewater and biosolids recycling system are
499 higher than in urine recycling system.

500Nitrogen emissions to environment

501Figure 10 shows the emitted reactive nitrogen to ecosystems
502from all scenarios. As expected, in Scenario 1, where nitrogen
503recycling does not occur and has the highest rate of mineral
504fertilizer application, emitted reactive nitrogen to ecosystems,
505represents more than twice the one shown in Scenario 6,
506where recycling of treated wastewater, treated urine and bio-
507solids, and stabilization of protein consumption, are
508considered.

509Conclusions

510A model of decision support systems for the management of
511reactive nitrogen found in wastewater systems has been pre-
512sented. It is shown that considering action in multiple sectors,
513including cultural and technological changes, a reduction of
514more than half of the disposal of reactive nitrogen in the en-
515vironment can be achieved. The model allows to identify the
516effects of different variables in the task to reduce anthropo-
517genic deposition of reactive nitrogen in the environment.
518Whereas nitrogen flows are well-known, the analysis of its
519components and their relationships allows a better and more
520complete understanding of this phenomenon. The proposed
521model permits to identify the main variables of subsystems
522population, wastewater, urine segregation, and vegetal pro-
523duction, and its interactions. The model can indicate the nitro-
524gen availability and use, and their efficiencies.
525For the actions proposed in six scenarios, the urine segre-
526gation and stabilization of protein consumption showed to be
527more effective in relation to reduction of nitrogen emissions to
528environment and potential of nitrogen recycling. The pro-
529posed model permits the formulation of new policies for ni-
530trogen recycling in a region. It also helps decision-making for
531a more effective management of reactive nitrogen flows.
532New scenarios to promote the urine segregation system
533should be tested from aspects as technology change in water
534and sanitation sector from economic incentive, reduction of
535negative impact on health and environment from government

Fig. 8 Effects of urine segregation in the wastewater system on the
overall deposition of N in the region considered

Fig. 9 Total mineral fertilizer replaced

Fig. 10 Emitted reactive nitrogen to ecosystems from six scenarios
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536 policy, and changes of educational aspects to use and accept
537 the new sanitation system.
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