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Abstract— Robotic-assisted minimally invasive surgical sys-
tems suffer from one major limitation which is the lack
of interaction forces feedback. The restricted sense of touch
hinders the surgeons’ performance and reduces their dexterity
and precision during a procedure. In this work, we present
a sensory substitution approach that relies on visual stimuli
to transmit the tool-tissue interaction forces to the operating
surgeon. Our approach combines a 3D diffeomorphic defor-
mation mapping with a generative model to precisely label
the force level. The main highlights of our approach are that
the use of diffeomorphic transformation ensures anatomical
structure preservation and the label assignment is based on
a parametric form of several mixture elements. We performed
experimentations on both ex-vivo and in-vivo datasets and offer
careful numerical results evaluating our approach. The results
show that our solution has an error measure less than 1mm in
all directions and an average labeling error of 2.05%. It can
also be applicable to other scenarios that require force feedback
such as microsurgery, knot tying or needle-based procedures.

I. INTRODUCTION

Robotic surgical systems are widely used nowadays to
perform minimally invasive procedures as they enhance
the performance of surgeons by providing motion scaling,
tremor filtering and enhanced degrees of freedom at the
instrument tips [1]. Patients favor the option of undergoing a
Robotic-Assisted Minimally Invasive Surgery (RAMIS) over
conventional options due to the associated benefits of reduced
surgical trauma, faster recovery, and improved cosmetics [1].
However, currently available commercial surgical systems
still suffer from an unresolved problem, which is the lack
of haptic feedback to the operating surgeon [2], [3]. During
RAMIS, surgeons loose the direct sense of touch creating a
high mental workout for them as they need to infer the tool-
tissue interaction forces [4]. This limitation is considered an
active field of research in medical robotics and is reputed to
be one of the causes that restricts their further spread [2].

To retrieve the force information, many works have been
focused on the design of force sensing devices that can be
attached to the surgical instrument (see for example [5], [6],
[7]). Nonetheless, those devices can also measure irrelevant
force data, from the surgical environment [8], and/or are dif-
ficult to adapt to the surgical system due to different factors
including: biocompatibility and sterilization constrains, long-
term stability, size and high cost [9]. For these reasons, other
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illustrates how tissue deformation is directly proportional to the force
applied over time.
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research groups focus their efforts on utilizing the visual
information that exists in a surgical system to estimate the
interaction forces.

The feasibility of Vision-Based Force Estimation (VBFE)
has been demonstrated in different scenarios such as in [10],
[11], [12], [13]. Some works improve the VBFE solutions
by incorporating soft computing, Artificial Neural Networks
in particular, to achieve more accurate estimations of the
interaction forces like in [14], [15], [16], [17].

After estimating the force, the resulted information can
be transmitted to the operating surgeon through a sensory
modality to provide a feedback of the forces interacting
with the telemanipulated robot. Common sensory substi-
tution modalities include auditory, vibrotactile, and visual
cues [18]. Out of these options, visual feedback has the most
advantages and is the most suitable for clinical adoption [8].
Various studies have investigated the feasibility of visual
feedback on conveying force information for surgeons while
performing delicate tasks and the results show improved
performance among novice surgeons while decreasing incon-
sistencies [19].

Since all RAMIS settings include a videoscopic view of
the operation, we can employ the available visual information
of the tool-tissue interaction and relate it directly to the
applied force (illustration in Fig. 1). From the conservation
principles of continuum mechanics it is clear that the change
in shape of an elastic object is directly proportional to the
force applied. Following this principle, we propose a novel
approach to perceive the interaction forces. Unlike our work
presented in [16], here we optimize our variational frame-
work that we use to compute the observable deformation
after a force is applied. The main difference is twofold. First,
we integrated a topology preservation term that guarantees
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Fig. 2. Overall view of our approach for perceiving interaction forces in robotic surgical systems. We first compute a visual based approach that allows
recovering the deformation structure over time. Then, deformation mapping is used to display the level of the applied force.

diffeomorphic transformation. Second, we use unsupervised
learning approach that models the results in a parametric
form of several mixture elements, resulting in an assignment
of the deformation to a perceived force. While this is an
important part of the solution, our main contributions are:

e We propose a 3D deformation mapping approach that
guarantees a diffeomorphic transformation. It offers
different advantages such as finding a better minima,
decreasing the computational time and preserving the
anatomical structure of the tissue.

The exploration of a generative model to offer the
surgeon a visual stimuli as a force feedback.

To the best of our knowledge, there is no previous report
in the literature that combines a diffeomorphic deformation
and a generative model to perceive the interaction forces.

II. PERCEIVING THE INTERACTION FORCES

In this section, we present our approach to perceive the
interaction forces (see Fig. 2). This section contains two
parts: first we describe our variational framework to compute
the 3D diffeormophic deformation. Then we explain how the
interaction forces are perceived.

A. 3D Diffeomorphic Deformation Mapping

Consider a stereo-pair image sequence, the left and right
view as ff : 2, — R? and f! : 2, — R? where each
image f/ and f! is a function on the bounded domain of the
corresponding (2 at time ¢ = 1, ..., 7. With the aim of finding
a trade-off between computational time and accuracy, we
handle the tissue deformation using the following definition:

Definition 1: A m—dimensional lattice is a discrete sub-
group of an Euclidean vector space with k—linearly inde-
pendent vectors in R™.

Let L; C R? and L, C R? be the lattices defined at each
view in a stereo pair image. Then, the three-dimensional
lattice, L C R3, is computed from the projections of the
corresponding points in the given lattices (see Fig. 3). The
resulting L is composed of a set of v points, P, where
Po = (Y1,.--sYm). As a deformation model, we use the
tensor product of the b-splines as they allow performing fast
computations while keeping optimal mathematical proper-
ties [20]. Consider a given position w = (wy, ..., wq) in R?

and let £(-) be the basis spline function of degree n, then,
the deformation at a given point w can be expressed as:
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Taking Eq. 1, we now can compute the changes produced
on the tissue over ¢ by minimizing the energy functional,
Er, with respect to P as:

E7(P) =Eq(f/ (P(w; P) + w), f1(w))

+YE.(2(w; P)) + E,p (P(w; P)) @

where E; is the discrepancy term, E,. is the regularizer
for obtaining a plausible transformation with the parameter
v > 0, and E,,;, is the constrain for preserving the anatomical
structure.

In particular, for this work we selected as a discrepancy
term the Sum of Squared Differences (SSD) together with
a maximum likelihood type estimator. In this case, the
minimization ), r2 of the residual error r is changed by
the Tukey’s estimator expressed as p. We restrict the space
of search using the Tikhonov regularizer. Our functional is
then expressed as:

B/ (P) = /Q P((SH@(w: P) + w) — fH(w)))de2
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A particular advantage of our proposal is that we achieve a
diffeomorphic deformation according to the next definition:

Definition 2: Given a smooth map, f : X — Y is a
diffeomorphism if it is one-to-one and onto and also if f~!
is smooth.

Guaranteeing diffeomorphic transformations is important
to avoid violations of region convexity or distortion of the
mesh elements, which results in an unrealistic deformation.
In the case of small deformations, the smoothness of the
regularizer can be enough but this is not the case when
complex deformations appears.



Fig. 3. 3D Diffeomorphic surface reconstruction from the projection of
the lattice points defined at each stereo-pair image.

Now, we turn to explaining how we guarantee a diffeo-
morphic deformation by monitoring the Jacobian determinant
| Jo(z : P) | of the deformation. To do this, we use a
function that we first proposed in [21] in which the main
difference is the non-trivial optimization process in the three
dimensional space. From Eq. 3 dg is defined as:

1
—7 — arctan(|Js (w; P)|)
Sp(w; P) =4 2 - | Ja (w; P)[2
0 otherwise
| Je(w; P)[ 1] =7
“

where ¢ > 0 offers a control fit in our penalization, and
7 > 0 is the margin of acceptance for values close to one.
To minimize Eq. 3, we use the Levenberg-Marquardt (LM)
Algorithm.

B. Labeling Assignment Approach

Unlike most of the works in the state of the art (for
example see [5], [6]) in which the interaction forces are
directly estimated, in this work, we use the deformation
mapping (as explained in subsection II-A) for creating a
visual stimuli of the applied forces.

We transmit that stimuli by means of a dynamic bar at
the corner of the display. The bar alternates between four
different color indicators that correspond to how much force
is applied. We assign a coding color based on the perceptual
phenomena involved in color:

« Risk-free: is represented by the green color and reflects
a minimal tool-tissue interaction

o Minimal Risk: symbolizes a safe amount of force and
is coded as yellow

« Potential Risk: makes reference of a potential damage
to the tissue and is coded as orange

o Risk: is indicated in red color to warn the physician of
a tissue damage

The process of identifying where each observation belongs
is given by modeling them in a parametric form of several
mixture components and then assign them to each indicator
based on its posterior probability. To do this, and on the
basis of a training set, consider the set of points P at a
given position w as & = {z(, ..., 21} in a form L x D,
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Fig. 4. (From top to bottom) The experimental setup used to acquire our
ex-vivo datasets. Samples from the raw in-vivo and ex-vivo datasets used
to evaluate our proposed solution.

then, we can model the k—component by maximizing the
likelihood function as:

L K
wpalo) = Y { Yomatalo)}
=1 k=1

where 6 = {m, 1, >} such that y and ) are the mean and
the covariance matrices respectively and 7 is the mixture
coefficients satisfying Zle m, = 1. Moreover, let g be
a D—dimensional multivariate gaussian density function
expressed as:

1 —1
g(@i|0) = —— e T ) (g

(2m)P2 32 172

From Eqgs. 5-6, the objective is to find the set of K
parameters € = {71, ft1, ) 1, ..., TK, bK, D+ such that
we can have an assignment for each deformation mapping.
To find § = argmax{In p(x|0)}, we use the Expectation-
Maximization algorithm (EM) [22]. Let z = {z!,..., 2%}
be the L labels associated with the [ — th sample (given
lattice points), then the marginal likelihood is found by
iterating, until a local maxima, using the Expectation and
Maximization steps (E-step and M-step) as:

o E-step: Computes the expectation of the log-likelihood
function given x and the current estimate 6t as:
Q(07 ét) = E[lnp(a:, z|9t)|:l:, at]

o M-step: Updates the estimate using current estimates as:
91+ = argmaxy = Q(0, 6%)

As mentioned before, Eqs. 5-6 are computed on a training
dataset. Once 6@ is found, we use it to predict the label
of coming data. The advantages of formulating the recov-
ered deformation as mixture elements is the computational
tractability and handling uncertainty.
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Illustration of tissue deformations that result from applying force at different time instants, together with the 3D deformable structure recovered

using our proposed visual approach. Our proposal was tested under different variation of illumination, occlusions and complex deformation.
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Fig. 6. (From top to bottom) Optimization plots resulted from our energy
functional for different cases in which retrieving the 3D shape is challenging,
including complex deformations and change of illumination. The Jacobian
Determinant results of our vision based approach with and without applying
our topology preservation term.

III. EXPERIMENTAL RESULTS

In this section, we describe the set of experiments we used
to evaluate our proposed approach to perceive the interaction
forces in robotic surgical systems.

A. Data and Tasks Description

We used both ex-vivo and in-vivo datasets (see bottom of
Fig. 4) to evaluate our proposal.

The ex-vivo datasets (I and II) were acquired using an
experimental setup composed of a stereo camera, artificial
tissues, and a set of robot manipulators (Stdubli RX60B) (see
top of Fig. 4). The two artificial hearts are used to imitate
variations between two different subjects and were made of
ECOFLEX 0030 which has mechanical properties similar to

those of human tissues. We obtained two stereo-pair images
sequences of size 640x480 during 2100 seconds.

The two in-vivo datasets on the other hand (III and IV) are
from the Hamlyn Center Laparoscopic / Endoscopic Video
library [23] and they both exhibit tool-tissue interaction and
deformation. The sequences are composed of stereo-pair
images of size 720x288 recorded along 450 seconds.

During the acquisition of the datasets, general palpation
over the tissue was done. This is important since it allows
for example identifying lesion and tumors, cutting tissue,
and avoiding tissue penetration. In particular, the ex-vivo
data palpation was carried out varying three main factors:
position, orientation and illumination.

B. Results

To prove the benefits of our proposal, we offer detailed
evaluation of both our diffeomorphic deformation mapping
and the perception of the interaction force approaches. Fig.
5 shows the 3D diffeomorphic structure, bounded by our
defined lattice, recovered using our proposed visual approach
from the four different datasets. The tissues experience
deformation from applying force over time and darker shades
represent intense deformation at contact point. The plots
clearly show pleasant visual results of the deformation field
with both in-vivo and ex-vivo data in cases where recovering
the 3D deformation is complicated including change of
illumination and complex views. Apart from offering visual
results, we also analyzed the convergence of our energy
functional. The top part of Fig. 6 shows that the minimization
of our functional, on different frames and for the different
cases shown in Fig. 5, needed less than 20 iterations to get
the minima.

This is further supported by the plots in Fig.7, taken
from dataset I, in which the computed displacement at
contact point (in X, Y, Z directions) are compared against
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TABLE I

NUMERICAL ANALYSIS OF OUR VISUAL BASED APPROACH WITH DIFFERENT DEGREES OF PENALIZATION Evp

Dataset 1

Dataset I1

Dataset 111

Dataset IV

Exp. 1 — Eq. (2) with E,, =0

2.1399¢ 3

5.2846e 2

3.9488e 3

2.4958e 2

Minimum

[—1.8468 2.9830]

[—2.5960 3.0853]

[—2.5960 3.0853]

[—3.5893 2.0485]

[min, maz] of Jg

Exp. 2 — Eq. (4) with ¢ =0

4.3827¢5

3.0834e—6

6.3598¢ 6

4.2358e°

Minimum

[0.8882 1.1395]

[0.9081 1.0932]

[0.8452 1.1539]

[0.8283 1.1490]

[min, maz] of Jg

Exp. 3 — Eq. (4) with ¢ = 7102

1.9829¢~°

4.7694e6

5.4965¢ 6

4.9357¢=6

Minimum

[0.9081 1.004]

(0.9248 1.0051]

[0.9035 1.0094]

[0.9248 1.006]

[min, maz] of Jg
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Fig. 8.  Left side plots compare the computed displacement (at contact

point) in X,Y,Z directions against the reference measurements given by the
geometry of motion of the robot. Right side plots illustrate the RMSE results
in all directions.

the reference measurement. By acquiring the geometry of
motion from the robotic manipulator, we were able to obtain

a ground truth reference of the interaction between the tool
and the tissue. This point is a good reference for evaluating
our approach since its recovery is very challenging due to
the occlusions produced by the surgical tool. The results, left
side of Fig. 8, show that the measurements are very close
to each other. For a more quantitative analysis, we show the
Root-Mean-Square Error (RMSE) at the right side of Fig.
8. The plots show a concentration of values lower than 1
mm in all directions. This demonstrates the accuracy of our
computed measurements even during complex deformations.

For a detailed numerical analysis, we evaluate our en-
ergy functional, Eq. 3, using the four datasets described in
Subsection III-A and the results are reported in Table 1.
Exp. 1 shows that without a diffeomorphic deformation, the
residuum is in the order of magnitude of 102 and 1073
and has negative and big values of the Jacobian determinant.
This indicates big expansions and contractions during the
transformations which yields an unrealistic deformation.

In contrast, Exp. 2 and Exp. 3 reported a better minima
in the order of magnitude of 107° and 107%. A significant
improvement is achieved in terms of the Jacobian determinat
in which values are positives and close to 1, which indicate
preservation of region convexity of the mesh elements and,



in consequence, preservation of the anatomy. A comparison
between Exp. 2 and Exp. 3 shows that the second term of Eq.
4 allows better control of the magnitude of the expansions
and contractions. It is worth mentioning that Exps. 2 and
3 allowed a 35% faster computation than Exp. 1. Some
samples showing the Jacobian determinant over the region
of interest are displayed at the bottom part of Fig. 6.

Finally, taking into account that the ultimate goal of this
work is to offer to the surgeon a visual stimulus by relat-
ing the deformation information into corresponding force
feedback, we apply the generative labeling approach on the
computed data and show the results in Fig. 7. The left side
of the figure shows sample frames from the four different
datasets with the visual cues for transmitting the force
feedback. Furthermore, the right side shows some examples
of the labeling results in which the data was accurately
assigned. Qualitatively, our labeling approach had an average
error of 2.05% for all datasets.

IV. CONCLUSION

Surgeons who operate robotic surgical systems perform
delicate surgical tasks remotely through the manipulators
without directly interacting with the patients. This teleop-
eration setting eliminates the sense of touch and, in conse-
quence, the perception of tool-tissue interaction forces. The
force sensory substitution approach presented in this work
offers a feasible alternative that overcomes this limitation
and could potentially improve RAMIS performance. Our
approach is based on a variational framework which allows
computing the observable deformation. It allows recover-
ing a realistic deformation while preserving the anatomical
structure of the tissue. This information is then labeled to a
corresponding applied force which is represented by a color-
code in a dynamic bar.

The experimental results verify that the extracted visual-
geometric information are accurately mapped to the corre-
sponding force level with an average labeling error of 2.05%.
Experiments included various datasets, both in-vivo and ex-
vivo, and the computed results were validated against the
ground truth obtained from the robotic manipulator. Our
solution gave accurate results and offered a root-mean square
error less than 1mm in all directions.

Finally, this solution is promising in different clinical
scenarios in which force has direct implication such as
microsurgery, knot tying or needle-based procedures.

From a technical point of view, our aim is to establish
a starting point for research in this area. Future work will
include extensive clinical evaluation to measure the level of
assistance this visual aid is providing to the surgeon.
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