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Abstract

This work describes a regression model based on Con-
volutional Neural Networks (CNN) and Long-Short Term
Memory (LSTM) networks for tracking objects from monoc-
ular video sequences. The target application being pursued
is Vision-Based Sensor Substitution (VBSS). In particular,
the tool-tip position and velocity in 3D space of a pair of
surgical robotic instruments (SRI) are estimated for three
surgical tasks, namely suturing, needle-passing and knot-
tying. The CNN extracts features from individual video
frames and the LSTM network processes these features over
time and continuously outputs a 12-dimensional vector with
the estimated position and velocity values. A series of
analyses and experiments are carried out in the regression
model to reveal the benefits and drawbacks of different de-
sign choices. First, the impact of the loss function is inves-
tigated by adequately weighing the Root Mean Squared Er-
ror (RMSE) and Gradient Difference Loss (GDL), using the
VGG16 neural network for feature extraction. Second, this
analysis is extended to a Residual Neural Network designed
for feature extraction, which has fewer parameters than the
VGG16 model, resulting in a reduction of ∼96.44 % in the
neural network size. Third, the impact of the number of time
steps used to model the temporal information processed by
the LSTM network is investigated. Finally, the capability
of the regression model to generalize to the data related to
“unseen” surgical tasks (unavailable in the training set) is

evaluated. The aforesaid analyses are experimentally vali-
dated on the public dataset JIGSAWS. These analyses pro-
vide some guidelines for the design of a regression model in
the context of VBSS, specifically when the objective is to es-
timate a set of 1D time series signals from video sequences.

1. Introduction

Embedding sensors in the instruments represents the
most straightforward method for an accurate measurement
of a physical variable, such as position or velocity. Nonethe-
less, for some applications, this approach is easier to imple-
ment in an experimental setup (i.e. in the laboratory) than
in a real world scenario, as in Minimally Invasive Surgery
(MIS). An alternative method, when sensor integration is
not possible, is to rely on a model that implements the con-
cept of Vision-Based Sensor Substitution (VBSS) [1] by
processing video sequences recorded by a camera (monocu-
lar or stereo). In the context of Robotic Assisted Minimally
Invasive Surgery (RAMIS), and specifically in the modeling
of gestures and in skills assessment, this approach can be
beneficial. In RAMIS, Surgical Robotic Instruments (SRI)
mounted at the end-effector of slave robot manipulators, are
teleoperated from a master console by a surgeon or trainee.
The motion of the SRIs’ tool-tip is highly correlated with
surgical gestures (i.e. suturing). Therefore, an important
step to perform surgical gesture classification strictly under
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a vision-based approach relies on the detection and local-
ization of SRIs from video sequences [2]. Subsequently, an
action recognition model can take advantage of this infor-
mation to automatically classify surgical gestures (i.e. su-
turing, knot-tying and needle-passing) from video data, as
described in [1]. Recent advances in Deep Learning (DL)
have shown that complex functions can be learned from data
using a Deep Neural Network (DNN) in a supervised set-
ting. Two of the most successful DNNs applied in the pro-
cessing of data with spatial and temporal structure are Con-
volutional Neural Networks (CNN) and Long-Short Term
Memory (LSTM) networks, respectively. Not only have
CNNs obtained state-of-the-art results in image classifica-
tion [3][4], but they have also shown superior results in
transfer learning tasks. A CNN trained for image classifi-
cation can also be used as an off-the-shelf feature extractor
for a different task, which upon fine-tuning improves gener-
alization performance [5][6]. In a similar note, LSTM net-
works highlight in the processing of sequences of data [7].
Video sequences can be interpreted as containing both spa-
tial and temporal information. Therefore, a model which
processes such data has to integrate both CNNs and LSTM
networks in its design. In the present work, VBSS is inves-
tigated using a regression model that estimates the tool-tip
position and velocity (both in 3D space) of a pair of SRIs
from monocular video sequences. The requirement of pro-
cessing velocity imposes an additional difficulty to the prob-
lem, making more evident the need for a model capable of
processing spatiotemporal information. This complex rela-
tionship between video sequences and tool-tip position and
velocity is learned from data by a regression model consist-
ing of a CNN serially connected with an LSTM network.

1.1. Related Works

A regression model based on DNNs for processing video
data should take into account its spatiotemporal structure.
In domains such as action recognition, this is essential. For
instance, a two stream CNN that processes RGB frames
(spatial information) and a RGB representation of the opti-
cal flow (temporal information) is presented in [8]. In con-
trast, a 3D CNN designed with 3D filters (of size 3× 3× 3)
was designed for learning spatiotemporal features directly
from RGB frames in [9]. The first model that integrates 3D
CNN connected in series with an LSTM network was pro-
posed in [10]. However, this model was validated only in
a small dataset. More recently, different DNNs based on
CNNs and LSTM networks have been designed and evalu-
ated in larger and more complex datasets for action recog-
nition, as described in [11] and [12].

DNNs have been applied to regression tasks in differ-
ent domains. Human pose estimation from images has been
investigated in [13]. In this work, a CNN was trained to
regress upper joints’ position using the standard L2 loss.

A different approach is described in [14], by integrating a
cascade of multiple CNNs in a single model. This model
predicts an initial human pose from a full image and sub-
sequently refines joint predictions by using higher resolu-
tion sub-images. The same application has been addressed
in [15], with a robust function that avoids the influence of
outliers during the training process. Nevertheless, [13]-[15]
only consider the processing of spatial information (i.e. im-
ages), discarding the processing of temporal information.
In contrast, the spatiotemporal structure of video data was
taken into account in [16] by using a recurrent convolutional
neural network. In this work, the authors address the prob-
lem of continuous shoulder pain intensity estimation from
video sequences of human face expressions. Likewise, due
to the sequential nature of video and audio data, [17] pro-
posed a CNN connected in series with an LSTM network to
estimate sound from silent video sequences.

In the medical domain, applications of DNNs to regres-
sion tasks are less common. In this regard, [1] introduces
a CNN architecture for learning SRIs’ position in 3D space
from monocular video sequences. The estimated position
values are subsequently used to feed an action recogni-
tion model based on a Latent Convolutional Skip Chain
Conditional Random Field (LC-SC-CRF). Recently, [2] ad-
dressed the detection and localization of SRIs with a Re-
gion Proposal Network (RPN). This neural network oper-
ates based on a multi-modal framework, using two sepa-
rate CNN streams for processing raw and optical flow video
frames (both represented in RGB color space). Further-
more, the authors in [2] pointed out that a DNN approach is
superior to the conventional hand-crafted feature based ap-
proaches in terms of precision and real-time requirements.
However, the models described in [1] and [2], do not ad-
dress the estimation of the tool-tip velocity in 3D space for
each SRI. Moreover, the LSTM network is not considered
in the regression model design.

1.2. Contributions

In the present work, a regression model that implements
the concept of VBSS is investigated. This model estimates
the tool-tip position and velocity of a pair of SRIs. These
variables are computed in the 3D space from only monocu-
lar video sequences describing the motion of two SRIs. The
position and velocity data are estimated for three surgical
tasks, namely suturing, needle-passing and knot-tying. Al-
though the present work is focused on the aforesaid applica-
tion, it can be useful to address similar problems formulated
in the context of regression. The contributions are listed as
follows:

• In the context of RAMIS, [1] and [2] only address the
SRIs’ tool-tip position and consider feed-forward neu-
ral network architectures (i.e. CNN and RPN) in their
proposed regression models. In the present work, the



estimation of the tool-tip velocity is included, and a
CNN (for FE) in addition to an LSTM network are
taken into account in the regression model. Therefore,
each estimated variable is considered a 1D time series
instead of a single real value.

• Four analyses were made in the regression model to
reveal the best design practices, as well as its short-
comings:

(i) The impact of using different loss functions in
the regression model that consist of a fine-tuned
VGG16 neural network [4] (pre-trained on 1.2
million images from ImageNet dataset [18]) for
feature extraction (FE), serially connected with
an LSTM network. The loss functions consid-
ered are the Root Mean Squared Error (RMSE)
and Gradient Difference Loss (GDL).

(ii) A Residual Neural Network (ResNet) is designed
for FE to counteract the intense computational
cost of using the VGG16 model, resulting in
a reduction in the total number of parameters
used. Subsequently, the ResNet is connected
in series with an LSTM network, and evaluated
with respect to the regression model that uses the
VGG16 neural network for FE.

(iii) The quality of the estimated signals is evaluated,
by varying the number of time steps in the LSTM
network, which takes as input feature vectors
computed from the fine-tuned VGG16 model.
This analysis provides hints about the trade-off
between model complexity and the quality of the
estimated signals.

(iv) The capability of the regression model to gener-
alize to “unseen” tasks is evaluated. This analy-
sis is carried out by training the regression model
(consisting of the VGG16 and LSTM networks)
only on data related to suturing tasks (the “seen”
task), and then evaluating its performance on
needle-passing and knot-tying tasks.

2. A Regression Model Based on CNN+LSTM
The regression model investigated in this work consists

of a CNN connected in series with an LSTM network. The
CNN computes feature vectors Φ, from input video frames
X . Afterward, the LSTM network processes Φ, and mod-
els their temporal information to produce the final output,
Y . Such architecture is applied in the estimation of the
tool-tip position and velocity in 3D space of two surgical
robotic instruments (SRI), given as input only monocular
video sequences. This architecture is illustrated in Figure 1,
with a description of X , Y and Φ in Table 1, and was val-
idated with analysis and experiments in the public dataset

Figure 1. Regression model for the estimation of the position and
velocity in 3D space for each surgical robotic instrument (SRI).

X ∈ <H×W×C

H , W , C: Image height, width and channels, respectively.

Φ ∈ <NFV

NFV : Size of the feature vectors.

Y = [xl, yl, zl, vlx, v
l
y, v

l
z, x

r, yr, zr, vrx, v
r
y, v

r
z ] ∈ <12

(xk, yk, zk): Tool-tip position (in 3D space) for the SRI k.
(vkx, v

k
y , v

k
z ): Tool-tip velocity (in 3D space) for the SRI k.

k ∈ [l, r]: l and r stand for left and right SRIs, respectively.

Table 1. Description of variables X , Y and Φ in the regression
model.

JHU-ISI Gesture and Skill Assessment Working Set (JIG-
SAWS) [19] [20]. This dataset provides video sequences
related to three different surgical tasks executed with a pair
of SRIs. The surgical tasks are suturing (ST), knot-tying
(KT) and needle-passing (NP). In addition, kinematic data
(tool-tip position/velocity in 3D space) is available at each
time instant for each SRI.

As Figure 1 shows, pre-processing operations are ap-
plied on the raw video frames. A mean frame was re-
moved from each video and subsequently, three consecu-
tive RGB frames, each one converted to grayscale, were
concatenated resulting in a space-time image representa-
tion. Since the mean frame removal suppresses the static
background present in video sequences [13], the space-time
image representation corresponds to temporal derivatives as
described in [17]. These preprocessing steps prevent the
CNN from overfitting. Although these operations were per-
formed off-line, they can be easily extended to real-time
scenarios. A sample of raw frames and their correspond-
ing processed versions for each surgical task are presented
in Figure 2. Two CNNs were studied as feature extractors,
namely the VGG16 neural network and a smaller network
with residual layers (ResNet). The LSTM used in all the
experiments is the variant with Coupled Input-Forget Gates
(CIFG), which has been studied in [21] and suggested as



Figure 2. Sample of raw (top row) and processed (bottom row)
frames for each surgical task.

an alternative model with fewer parameters than the Vanilla
LSTM network with added peephole connections. The op-
timization of the whole regression model was performed in
two stages. First, the CNN was optimized by taking the pro-
cessed video frames as input, and the ground-truth signals
as output. Subsequently, the LSTM network was optimized
by taking as input and output, the feature vectors computed
from the CNN and the ground-truth signals, respectively.

The four analyses performed on the regression model,
are described in Sections 2.1-2.4.

2.1. Loss function analysis: RMSE & GDL

A loss function that takes into account the RMSE and
GDL was investigated for the regression model. The RMSE
represents a measure of the distance between ground-truth
and estimated data, while the GDL penalizes the gradi-
ents of the ground-truth and estimated data. The gradients
adopted here are the neighboring values differences. This
simple form of the GDL has been studied in [22] to enhance
the sharpness of the objects in the task of video frame pre-
diction. The GDL can be helpful in the estimation of lower
dimensional data, such as 1D time series signals. Equation
(1) presents a loss function L describing these concepts. In
this equation, a linear combination of the RMSE (Lrmse)
and GDL (Lgdl) terms is weighed by α ∈ [0, 1]. The def-
inition for the RMSE appears in Equation (2) and GDL in
Equation (3) with the parameter β = {1, 2}. Y and Ŷ cor-
respond to ground truth and estimated signals, respectively.
The indexes i and j iterate over M samples in the dataset
and over N kinematic variables, respectively.

L(Y, Ŷ ) = α Lrmse(Y, Ŷ ) + (1− α) Lgdl(Y, Ŷ ) (1)

Lrmse(Y, Ŷ ) =

M∑
i

Ω

(√√√√ 1

N

N∑
j

(Y
(j)
i − Ŷ (j)

i )2

)
(2)

Lgdl(Y, Ŷ ) =

M∑
i

Ω

(
N∑
j

∣∣∣|Y (j)
i −Y

(j)
i−1|−|Ŷ

(j)
i −Ŷ

(j)
i−1|

∣∣∣β)
(3)

Ω(r)
Model DNN α RMSE GDL

Term Term
V1 VGG16 1.00 r —

LSTM 1.00 r —
R1 ResNet 1.00 r —

LSTM 1.00 r —
V2 VGG16 0.80 ln (r2 + ε) ln (r + ε)

LSTM 0.75 r r

R2 ResNet 0.80 ln (r2 + ε) ln (r + ε)
LSTM 0.75 r r

Table 2. Parameter α (Equation (1)) and transformation Ω(r) ap-
plied in the RMSE (Equation(2)) and GDL (Equation(3)) terms
that define the loss function used to optimize the regression mod-
els V1, V2, R1 and R2. The model composed of the VGG16 and
LSTM networks is optimized with a different set of loss functions
as described by V1 and V2. These loss functions are also investi-
gated in the model consisting of the ResNet and LSTM networks,
resulting in R1 and R2.

Each term in the summation of Equation (2) and (3) is trans-
formed by the function Ω(·). In the simplest case, this func-
tion can be defined as Ω(r) = r, where r ∈ < stands for
the residual. Other definitions are considered based on a
logarithmic function Ω(r) = ln (r2 + ε) with r ∈ <, or
Ω(r) = ln (r + ε) with r ∈ <≥0, where ε in the last two
equations is a small positive constant. Table 2 shows the
loss function used to optimize two models denoted as V1
and V2, given different values of the parameter α and def-
initions of the function Ω(·) The parameter β in Equation
(3), was set to 1.0. Following the illustration of Figure 1,
the input data is defined by X ∈ <224×224×3, and the fea-
ture vectors are computed from the fc7 layer of the VGG16
model, resulting in Φ ∈ <4096.

2.2. ResNet model as feature extractor

In recent years, ResNets have succeeded in computer vi-
sion tasks such as image recognition [23]. These models
have “shortcut” connections that allow the design of deeper
neural networks in comparison to a plain CNN. Further-
more, the optimization of a ResNet is easier than that of
a plain CNN.

Based on these performances, a feature extractor has
been designed with residual layers, which has fewer param-
eters (∼4.92 M) compared to the VGG16 model (∼138 M),
resulting in a reduction of ∼96.44 % in the neural network
size. This percentage was computed by taking into account
all the parameters found in the convolutional and fully con-
nected layers of each neural network. Each residual block
in the ResNet model was designed according to [24], and
dropout was found beneficial and applied between the con-
volutional layers as described in [25]. The proposed ResNet
architecture is illustrated in Figure 3, and consists of a con-



Figure 3. Architecture of the designed ResNet as feature extrac-
tor. The filter size and number of input-output feature maps are
indicated in the first convolutional layer (CONV 1). Each residual
layer (RES 2-6) is designed with two sub-layers, S1 and S2, and
dropout (with probability of 40 %) is applied between them during
training, as depicted in the diagram of the right side. In these lay-
ers, the number of input-output feature maps (for S1 and S2), as
well as downsampling operations (/2) are shown. The size of each
fully connected layer (FC 1-2) and the output layer (LIN-ACT) is
also indicated.

volutional layer (CONV 1), followed by 5 residual layers
(RES 2-6), 2 fully connected layers with ReLU as activa-
tion function (FC 1-2), in addition to an output layer with
a linear activation function (LIN-ACT). Max and average
pooling were applied after the first convolutional (CONV
1) and the last residual (RES 6) layers, respectively. Con-
volutions with a stride of 2 were used to downsample the
dimensions of feature maps in the residual layers.

The dimensionality of the input video frames and target
signals is X ∈ <240×320×3 and Y ∈ <12, respectively, as
shown in the diagram of Figure 3. The feature vectors are
computed by reshaping the output feature maps from the
residual layer RES 6, after an average pooling operation is
applied. Therefore, 128 feature maps of resolution 4 × 5
are reshaped as a single vector, resulting in Φ ∈ <2560.
This neural network was analyzed with two loss functions
as shown in Table 2, resulting in models R1 and R2.

2.3. Varying the time steps in the LSTM network

The quality of the estimated signals was evaluated by
varying the number of time steps used in the LSTM network
to process the feature vectors from the fine-tuned VGG16
model. These experiments were carried out by training the
LSTM network at 32, 64, and 96 time steps. Both the
VGG16 and LSTM networks were optimized with only the
RMSE, by setting α = 1.0 and Ω(r) = r in Equations (1)
and (2), respectively. These parameters were selected based
on the results of the experiment described in Section 2.1.
As discussed later (in Section 3.1), a loss function which
considers only the RMSE represents a reasonable design
choice.

2.4. Generalization to “unseen” tasks

Finally, the capability of the regression model to deal
with “unseen” tasks was evaluated. Specifically, a baseline
model which consists of the VGG16 and LSTM networks
was trained on data related to suturing tasks, and evaluated
on knot-tying and needle-passing tasks. The two mentioned
CNNs, were optimized with only the RMSE, by setting α =
1.0 and Ω(r) = r in Equations (1) and (2), respectively.

3. Experiments & Results
The experiments were carried out on the JIGSAWS

dataset, which consists of 206 video sequences of three
surgical tasks, namely suturing (78), knot-tying (72) and
needle-passing (56). Each frame in a video sequence is
associated with a 12D vector of ground-truth position and
velocity in 3D space for each SRI. The whole dataset was
split in 75 % and 25 % as the training set and test set, re-
spectively. Following the illustration of Figure 1, the input
video frames for the VGG16 neural network are reshaped
from 240 × 320 pixels to a square image (320 × 320) by
replicating pixels, and subsequently resized to a resolution
of 224 × 224 pixels. This strategy is used instead of cen-
tering and cropping the image, to avoid losing the location
of the SRIs tool-tip on each video frame. In contrast, the
ResNet model takes as input the processed video frames
(240× 320 pixels), without any further resizing.

The neural network models were implemented in
Python, making use of the Google’s open source machine
learning framework, Tensorflow [26]. The experiments
were carried out using two NVIDIA Titan X Graphic Pro-
cessing Units (GPUs).

3.1. Impact of the objective function

This experiment was performed in two steps for each
model V1 and V2 (see Table 2). In the first step, the pre-
trained VGG16 model was fine-tuned over ∼100K itera-
tions with the Root Mean Square Propagation (RMSProp)
optimizer, using a batch size of 80 samples and learning rate



Figure 4. LSTM network design. Each cell is designed with Cou-
pled Input-Forget Gates (CIFG).

of 1×10−5. Dropout was applied in the fully connected lay-
ers fc6 and fc7, with a probability of 50 %. Subsequently,
feature vectors of dimension 4096 were computed from the
fc7 layer of the VGG16 model (Φ ∈ <4096). In the second
step, an LSTM network whose design is shown in Figure 4,
was optimized by taking as input these feature vectors. This
LSTM network was trained over∼160K iterations using the
RMSProp optimizer, with a batch size of 250 samples and a
learning rate of 0.0025. Additionally, dropout was applied
at the output of each layer with a probability of 25 %.

Table 3 presents the Root Mean Squared Error (RMSE)
and Pearson Correlation Coefficient (PCC) metrics com-
puted on the test set for models V1 and V2. By examin-
ing these values, and specifically the PCC, it can be con-
cluded that using the GDL does not provide an advantage
(at least for this application). Optimizing both the VGG16
and LSTM networks with only the RMSE represents a rea-
sonable choice. Moreover, in Table 3 it is appreciated that
the PCC is higher for the position than for the velocity vari-
ables. This result can be justified by examining the shape of
a sample of ground-truth and estimated signals, as depicted
in Figure 6 for model V1. In this illustration, the position
and velocity variables have a normalized amplitude (in the
range +/-5). Furthermore, it can be appreciated that the po-
sition variables are smoother compared to the velocity vari-
ables.

3.2. ResNet model results

This experiment was carried out in two stages for each
model R1 and R2 (see Table 2). First, the ResNet was
trained from scratch over ∼140K iterations with the Root
Mean Square Propagation (RMSProp) optimizer, using a
batch size of 80 samples, and a learning rate of 0.5× 10−4.
Subsequently, an LSTM network was trained to model a
sequence of feature vectors computed from the ResNet
(Φ ∈ <2560). The LSTM network design (see Figure 4)
and hyper-parameters used during the optimization are the

same than those described in Section 3.1. This neural net-
work was trained over ∼180K iterations.

Table 4 presents a comparison between models R1 and
R2, by providing the RMSE and PCC metrics computed on
the estimated position and velocity in 3D space (data in the
test set) for each SRI. By examining this data, the results
are more favorable for the model R2 than R1. The model
R2 has higher PCC and lower RMSE metrics for most of the
variables. As discussed in Section 3.1, estimating the SRIs’
tool-tip position is easier compared to velocity. This is
quantitatively described in Table 4 by the higher and lower
quality metrics for the position and velocity variables, re-
spectively. An important observation supporting the better
performance of model R2, is that including the GDL in the
loss function results in more benefits when training a model
from scratch (ResNet) than when using a pre-trained model
(VGG16). Furthermore, model R2 is competitive with the
baseline model V1, as depicted in Figure 5. In the last il-
lustration, the metrics (RMSE and PCC) for the model R2
are deteriorated by a small margin with respect to model
V1, as indicated by the percentage on top of each variable.
Therefore, there is a compromise between the number of
parameters in the CNN used for FE and the quality of the
estimated signals.

3.3. Effect of varying the time steps in LSTM

The results of the regression model that consists of the
VGG16 network as well as the LSTM network with 32,
64 and 96 time steps, optimized only with the RMSE are
shown in Table 5. The LSTM network design (see Figure 4)
as well as the hyper-parameters used for its optimization
are the same as described in Section 3.1. By analyzing the
RMSE and PCC presented in Table 5, the regression model
that takes into account an LSTM network with 32 time steps
is competitive with the model that considers 64 time steps.
In contrast, an LSTM network optimized over 96 time steps
does not provide an advantage over the other two mentioned
models.

The aforesaid results shed light on the careful selection
of the number of time steps used in the LSTM network.
Intuitively, by increasing this hyper-parameter, the LSTM
network should provide a better performance, and only a
more expensive model is expected. However, this is not
always the case, and a more economical model can meet
the requirements (i.e. the LSTM network with 32 instead of
96 time steps).

3.4. Evaluation of the model for “unseen” tasks

This experiment was carried out in the conditions de-
scribed for model V1 in Section 3.1, however, the training
set consisted only of data related to suturing tasks. After-
ward, the capability of the model to generalize to “unseen”
tasks was evaluated by the metrics displayed in Figure 7. In



Model Left Tool Right Tool
xl yl zl vlx vly vlz xr yr zr vrx vry vrz

RMSE (Lower values are better)
V1 0.2577 0.1442 0.1421 0.3801 0.2126 0.3068 0.0723 0.0646 0.0666 0.2014 0.1158 0.1763
V2 0.1975 0.1415 0.1677 0.3896 0.2051 0.3138 0.0762 0.0650 0.0553 0.1948 0.1118 0.1795

PCC (Values close to 1.0 are better)
V1 0.9419 0.9599 0.9456 0.6949 0.3647 0.6403 0.8898 0.9177 0.7871 0.5002 0.2720 0.4929
V2 0.9497 0.9444 0.9371 0.6599 0.3798 0.6025 0.8888 0.9159 0.8049 0.4913 0.2667 0.4332

Table 3. RMSE and PCC computed for models V1 and V2 (data in the test set) for each SRI (left & right)

this illustration, the RMSE and PCC metrics are better for
the “seen” task, which is suturing, on the other hand, they
are deteriorated by a wide margin for the “unseen” tasks,
represented by needle-passing and knot-tying. These re-
sults indicate that the SRIs’ motion required for each task
is highly task-specific. Thus, a robust regression model for
this application needs to take into account data related to all
the surgical tasks.

Figure 5. RMSE (top row) and PCC (bottom row) metrics for the
regression models V1 and R2. The percentage in red/green color,
describes the decrease/increase in the quality of the metrics for the
model R2 with respect to the baseline model V1.

4. Conclusions
In the present work, a regression model based on DNNs

for the application of VBSS was developed. It estimates
the tool-tip position and velocity in 3D space of a pair of
SRIs. The analyses made on the regression model reveal

Figure 6. Estimated tool-tip position and velocity in 3D space for
each SRI, related to a suturing task using the baseline model V1.
The signals’ amplitude is shown in a normalized space (in the
range +/-5).

the benefits and drawbacks of different design choices.
Using the fine-tuned VGG16 neural network for FE rep-

resents the best design choice. However, a smaller CNN (in
terms of parameters) designed with residual layers is com-
petitive with the VGG16 model. The analysis of the loss
function, highlights that including the GDL term is benefi-
cial when the regression model takes into account a CNN
trained from scratch and designed for FE (ResNet). In con-
trast, the advantage of using the GDL in the loss function
is less clear when a pre-trained model is used for FE (fine-
tuned VGG16 neural network).

Regarding the analysis of LSTM network, increasing the



Model Left Tool Right Tool
xl yl zl vlx vly vlz xr yr zr vrx vry vrz

RMSE (Lower values are better)
R1 0.3676 0.1883 0.1923 0.4612 0.2187 0.3613 0.0938 0.0862 0.0951 0.2149 0.1203 0.1910
R2 0.2896 0.1542 0.1645 0.4292 0.2213 0.3567 0.0921 0.0643 0.0771 0.2054 0.1170 0.1845

PCC (Values close to 1.0 are better)
R1 0.8284 0.9197 0.8754 0.4823 0.2902 0.4296 0.8187 0.9011 0.7640 0.3730 0.1892 0.3516
R2 0.8837 0.9278 0.9085 0.5469 0.2698 0.4217 0.8473 0.9136 0.7216 0.4325 0.2125 0.3923

Table 4. RMSE and PCC computed for models R1 and R2 (data in the test set) for each SRI (left & right)

Time Left Tool Right Tool
Steps xl yl zl vlx vly vlz xr yr zr vrx vry vrz

RMSE (Lower values are better)
32 0.2277 0.1268 0.1422 0.3635 0.1976 0.2934 0.0913 0.0671 0.0620 0.1924 0.1111 0.1669
64 0.2577 0.1442 0.1421 0.3801 0.2126 0.3068 0.0723 0.0646 0.0666 0.2014 0.1158 0.1763
96 0.2644 0.1335 0.1292 0.3931 0.2121 0.3230 0.0885 0.0658 0.0723 0.1994 0.1124 0.1842

PCC (Values close to 1.0 are better)
32 0.9334 0.9583 0.9481 0.7119 0.4759 0.6692 0.8913 0.9194 0.7534 0.5511 0.3256 0.5530
64 0.9419 0.9599 0.9456 0.6949 0.3647 0.6403 0.8898 0.9177 0.7871 0.5002 0.2720 0.4929
96 0.9341 0.9542 0.9530 0.6382 0.3534 0.5804 0.8863 0.9121 0.7945 0.4786 0.2506 0.4023

Table 5. Number of time steps used in the LSTM network, and their impact in the quality of the estimated signals (data in the test set) for
each SRI (left & right), evaluated by the RMSE and PCC metrics.

Figure 7. RMSE (top row) and PCC (bottom row) metrics com-
puted on the regression model trained only on data related to su-
turing tasks, and evaluated on the “seen” (suturing) and “unseen”
tasks (needle-passing and knot-tying).

number of time steps used to model sequential feature vec-
tors, does not translate into an improvement in the quality of
the estimated signals. Using 32 instead of 96 time steps in
the LSTM network (to process the feature vectors from the
VGG16 model), resulted in better accuracy (in terms of the
RMSE and PCC) and a more economical model. Finally,
the analysis related to the generalization of the regression
model to “unseen” tasks, shows the importance of provid-
ing the DNN with data related to different surgical tasks
during the training process.

It is important to notice that the regression model de-
scribed in this work represents a generic framework, and it
is not restricted to a specific application (i.e. SRIs’ tool-tip
position and velocity estimation). It can be extended to sim-
ilar problems, where a non-linear mapping between monoc-
ular video sequences and 1D time series signals is required,
i.e. tracking persons in video surveillance. As future work,
this regression model is to be improved by interpreting its
predictions and identifying its weaknesses (as done for im-
age classification in [27]) using methods such as layer-wise
relevance propagation [28]. Also, a semi-supervised ap-
proach represents an interesting avenue of research.
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