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1 
 

1.  Introduction and Goals 

The incidence of skin cancer in Europe, US, and Australia is rising rapidly. One in five 
people will develop some form of skin cancer in the course of a lifetime. Skin cancer accounts 
for one in three cancers worldwide. A person has a 1:25 chance to develop melanoma, the 
most aggressive skin cancer which causes the greatest number of deaths [1]. In fact, it is 
the second most common cancer in young adults (aged 15-34 years) and twice as common 
in women in this age group. About 90% of skin cancers are caused by exposure under 
ultraviolet (UV) light in sunlight. Moreover, the use of sunbeds doubles the risk of 
developing melanoma. The World Health Organization estimates that 60,000 people die 
every year from too much sun: 48,000 from melanoma and 12,000 from other skin cancers.  

The 5-year survival rate for people with skin cancers significantly improves if detected 
and treated early. Accordingly, significant improvement of the current diagnostic tools of 
dermatologists is required in order to identify dermal disorders at a very early stage as well 
as to monitor directly the effects of treatment.  

Visual inspection followed by histological examination is, still today, the gold standard 
for clinicians. This visual inspection is carried out by dermoscopy. A dermoscope is a 
handheld device with a magnifying lens and a white and uniform illumination field. The 
light is often polarized to remove specular reflection from the skin surface to obtain 
information from deeper layers. Dermoscopy allows the specialists to identify different 
structures, patterns and colours of the skin lesions suggesting if they are benign (seborrheic 
keratosis, haemangiomas, lipomas, warts) or malignant (melanoma, basal cell carcinoma) 
(Figure 1.1).  

The dermoscopic technique requires considerable training in the interpretation of what 
is seen and is highly dependent on subjective impressions [2]. One of the most used rules 
to inspect skin lesions is the ABCD, which outlines warning signs of the most common 
type of melanoma: A is for asymmetry (one half of the lesion does not match the other 
half), B is for border irregularity (the edges are ragged, notched, or blurred), C is for colour 
(the pigmentation is not uniform, with variable degrees of tan, brown, or black) and D is 
for a diameter greater than 6 millimetres. However, while most melanomas tend to exhibit 
these features, amelanotic melanomas usually do not, and hence their diagnosis is often 
delayed. In addition, melanomas arising de novo (not within pre-existing nevi) will be 
smaller than 6 mm at an early stage. The acronym is also not very specific, as seborrheic 
keratosis which are very common in older patients often will exhibit “ABCD” features. 
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Figure 1.1 Commercial dermoscope [3] (top left), nevi observed through naked-eyed (top 
centre), nevi observed through dermoscopy (top right), melanoma observed through naked-
eyed (bottom left), and melanoma observed through dermoscopy (bottom right) [4]. 

On the other hand, short-term monitoring studies have revealed that most growing 
melanomas exhibit observable changes over a period of 3-6 months and longer-term 
observational studies similarly found that melanomas tend to exhibit non-uniform growth 
patterns. Given these considerations, the addition of ‘E’ of evolution to the ABCD acronym 
is recommended, to increase its sensitivity and specificity [5], [6]. 

Even so, a large number of unnecessary surgical procedures are still performed. Around 
10,000 biopsies are investigated annually in a typical sized hospital. The direct annual costs 
of diagnosis and treatment of skin cancer are several billion dollars in United States. 
Therefore, a significant improvement of the current diagnostic tools of dermatologists is 
demanded in order to identify dermal disorders at a very early stage as well as to monitor 
directly the effects of treatment [4], [7].  

As a means of overcoming the limitations of dermoscopy, confocal microscopy has 
started to be used. Even this technique provides in-vivo characterisation of skin data at 
cellular-level resolution and can notably improve diagnosis of skin cancer, there is still a 
long way to go. 

For this reason, the European Project DIAGNOPTICS “Diagnosis of skin cancer using 
optics” (ICT PSP seventh call for proposals 2013) aimed to launch a hospital service based 
on a multiphotonic platform to improve skin cancer diagnosis with the combination of four 
non-invasive novel techniques: 3D imaging which based on fringe projection to obtain 
information of the lesions’ topography, a multispectral system which provided precise 
colorimetric and spectral information of the skin lesions, optical feedback interferometry 
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(OFI) to analyse their blood flow by means of a laser imaging technique, and the confocal 
microscopy, offering improved diagnostic accuracy for skin tumours. These technologies 
and their associated procedures were envisaged to improve the detection ratio and the 
evaluation of the prognosis of skin cancer at earlier stages, compared with the conventional 
approach based on simple naked-eye inspection of lesions or digital dermoscopy. 

The abovementioned technologies were demonstrated in a pilot project, in accordance 
with standard clinical workflows, protocols and procedures, involving professional 
healthcare end-users and covering a sufficient range of skin cancer profiles in two healthcare 
specific institutions: Hospital Clinic i Provincial de Barcelona (and its associated research 
centre, IDIBAPS) (Spain) and the Università degli Studi di Modena e Reggio Emilia (Italy) 
clinical facilities. Both clinical teams are world-class experts in in-vivo and ex-vivo skin 
cancer diagnosis and prognosis. The consortium involved the rest of actors required. The 
Centre for Sensors, Instruments and Systems Development from Universitat Politècnica de 
Catalunya (CD6-UPC), (Spain) is an experienced centre in photonics engineering, and the 
Institut National Polytechnique de Toulouse (INPT) (France) is expert in blood flow 
analysis using laser imaging. Finally, two Small and Medium-Sized Enterprises (SME) 
pursue the commercialization of the results of the project. Carril is a medical device 
company interested in the exploitation of the in-vivo imaging platform, while MAVIG is a 
manufacturer of confocal microscopes with products already in the market for the analysis 
of skin cancer lesions.  

In this context, this thesis is focused on a multispectral system developed in the 
DIAGNOPTICS project, which allowed precise colour and spectral information of the 
lesions to be obtained. Multispectral systems capture image data through several specific 
wavelengths or spectral bands along the electromagnetic spectrum. Therefore, colour and 
spectral information from the lesion is available pixel by pixel. Chromophores such as 
melanin, haemoglobin, water etc. as well as other structures might differ among lesions of 
different etiologies, so, diagnosis of skin cancer can be improved through the use of 
spectroscopic and colour data given by multispectral technology. 

In order to reach the goal of this thesis, i. e., the development of a multispectral system 
for the analysis of skin lesions, the following stages have been completed: 

1. Review of multispectral system devices, focusing on those used for skin cancer.  

2. Design, implementation and calibration of the multispectral system.  

3. Generation of the software acquisition for physicians.  

4. Implementation of the system in the hospitals to measure real skin lesions.  

5. Analysis of the images obtained and classification for diagnosis.  

This thesis is structured in eight chapters including this one. Chapter 2 provides a 
description of the different topics covered by this work. The concept of spectral imaging 
systems, image sensors and the analysis of spectral, colorimetric and textural features is 
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also included. The last part comprises a summary about the applications of spectral 
imaging systems, focusing on cancer detection. 

Chapter 3 describes the experimental system developed. First, the four techniques used 
in the multiphotonic platform built in the DIAGNOPTICS project are briefly explained, i. 
e., confocal microscopy, 3D and Optical Feedback Interferometry (OFI) systems; the 
second section is entirely focused on the multispectral imaging system developed in this 
thesis. 

Chapter 4 is centred in the image processing and analysis of the spectral images obtained 
from real skin lesions in order to extract valuable information. That is, computing 
reflectance and colour images from the images taken, the segmentation algorithm used, and 
the spectral, colour and textural parameters analysed from the lesions. 

In chapter 5 the main results of this thesis are shown. The measurement protocol, 
inclusion criteria and classification algorithm used to account for malignancy of lesions are 
presented as well as the outcomes and discussion. 

Chapter 6 describes some preliminary results obtained with the combination of 
multispectral technology and 3D, also available in the multiphotonic platform. 

Chapter 7 and 8 contain the most relevant conclusions of this work and lines of future 
research. 

Finally, the bibliography used in this thesis and the appendices containing the data 
sheets of components, the instrumentation used and the user manual of the multispectral 
system, are presented.
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2.  State of the art 

In this chapter, a detailed view of the spectral imaging technology is presented first as 
well as the different approaches to spectral sampling and sensors included in such systems. 
Then, the spectral data management and metrics used to evaluate their performance in 
terms of spectral and colour quality are explained. Finally, several applications of spectral 
imaging systems are shown, paying special attention to those used for skin cancer detection 
and diagnosis. 

2.1. Spectral imaging systems 

In general, a spectral imaging system is defined as that having an image sensor attached 
to a spectrometric device, which allows the reflected or transmitted light from a sample to 
be measured through several spectral bands of the electromagnetic spectrum range with 
high spatial resolution [8], [9]. 

Although a standard classification has not been established yet, spectral imaging 
systems are often classified taking into account the amount of spectral bands or acquisition 
channels they include. In this way, a monochromatic system contains only one spectral 
band, a trichromatic system three (R, G, B), a multispectral system between 4 and 9, and 
a hyperspectral one from 10 to hundreds of bands. Other authors refer to hyperspectral 
systems as those having a large number of bands very close one to each other and, therefore, 
a really good spectral resolution [10], [11]. 

Accordingly, a spectral image is a collection of images taken through several spectral 
bands which are spatially aligned [12]. The bands correspond to the total number of 
wavelengths available in the system. For instance, in a camera with sensitivity in the visible 
range (VIS) (380 nm - 780 nm) and a sampling step of 5 nm, a total of 81 bands will be 
available [13]. 

When using a spectral imaging system, the spectral resolution of an image refers to the 
number and width of the electromagnetic bands measured by the spectral camera, and the 
spatial resolution is defined as the level of spatial detail represented in this image [14]. 

The sum of a data set resulting from a spectral imaging system is the spectral datacube 
that is defined by two spatial (x, y) and an additional wavelength dimension (λ). In fact, 
this cube can be considered a stack of images, one for each band centred at a specific 
wavelength (λi). And from it, it is possible to obtain spectral features of the scene under 
analysis and for each pixel individually, which can then be used as a “spectral signature or 
fingerprint” of materials or chemical compounds, as is depicted in Figure 2.1 [12], [15]–[18]. 
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Figure 2.1 Spectral cube of the Earth’s surface. The spectral signatures or fingerprints from 
several areas are shown on the right [19]. 

In general, spectral imaging systems can only obtain simultaneously two of the three 
dimensions of the spectral datacube at a time leading to the need of including a 
displacement system allowing for a temporal scanning. Thus, it is possible to distinguish 
three main types of systems for the collection of the whole spectral datacube; the point 
scanning systems (or whiskbroom) perform the spectral measurement of a single point at 
a time and then scan the whole area of the scene point by point; the line scanning systems 
(or pushbroom) carry out a simultaneous spectral measurement of an entire line of the 
scene and then perform a linear spatial scanning in only one direction; and the area 
scanning systems (or staring imagers) capture the entire image of the scene in a specific 
spectral band and then perform a spectral scanning process along all wavelengths [18], [20] 
(Figure 2.2). 

The point scanning or whiskbroom system configuration shown in Figure 2.3 acquires 
the whole spectral data of one single point. Light originating from this point is separated 
into different wavelengths by a spectrometer and detected by a linear array sensor. Once 
spectral acquisition is completed, the spectrum of another point can be recorded. Scanning 
has to be performed in both spatial directions to build the spectral cube. Consequently, 
this method is very time-consuming and requires a complex configuration for the spatial 
scanning over the sample. [18], [20]. 
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Figure 2.2 Methods for acquiring the spectral datacube: point scanning (left), line scanning 
(centre), and area scanning (right) systems. The spectral datacube contains two spatial (x, 
y) and one spectral (λ) dimension. Blue areas represent data acquired simultaneously. Red 
arrows represent temporal scanning required to complete the datacube [18]. 

 
Figure 2.3 Whiskbroom system layout [20]. 

 The line scanning or pushbroom system obtains simultaneously spectral information 
from one line instead of a single point. In this case, the light is dispersed onto a two-
dimensional array sensor by means of a diffraction grating or a prism. In this way, a two-
dimensional data matrix with the whole spectral dimension and one spatial dimension is 
acquired. The rest of the spatial information of the spectral cube is achieved by scanning 
across the specimen surface in a direction perpendicular to the imaging line. Therefore, 
pushbroom systems are generally faster than whiskbroom but the scanning process is still 
necessary (Figure 2.4)[20]. 

The area scanning systems or staring imagers capture a two-dimensional data matrix 
(full resolution image) of a scene at one spectral channel at a time (Figure 2.5). A complete 
spectral cube is obtained by collecting a sequence of these images. The spectral band of 
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incoming light in this configuration is typically modulated using a tuneable filter or a filter 
wheel. [20]. This configuration is the most widespread spectral imaging system while the 
use of line scanning or pushbroom approach is increasing in the last few years. 

 
Figure 2.4 Pushbroom system layout  [20]. 

 
Figure 2.5 Staring imager system layout [20]. 

Finally, snapshot systems allow spectral information to be obtained in a single exposure 
(shot) on the camera sensor. These systems first capture a low-dimensional projection of 
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the original high-dimensional spectral data. The projection process can be represented as 
a sensing matrix that projects the spectral and spatial information into a low-dimensional 
measurement, which is then computationally decoded. To multiplex the spectral and 
spatial information in a solvable manner, the coded aperture-based undersampling schemes 
usually manipulate the original data matrix in two ways: shearing and spatial modulation. 
These two transforms effectively reorganize the entries of the data matrix and are operable 
in practice (shearing by a prism or diffraction grating, and spatial modulation by an 
occlusion mask, spatial light modulator, or digital micromirror device). Depending on their 
optical configurations and exploiting statistical properties of the spectrum data, each 
method employs different sampling strategies. These systems are thought to be used in fast 
biological processes which cannot be observed with scanning devices and the simultaneously 
recording of spectral and spatial information is needed [21], [22].  

2.2. Spectral sampling techniques 

As mentioned in the previous section, staring imagers are nowadays the most widely 
used spectral imaging systems. They generally include a 2D monochrome imaging sensor 
as a CCD (Charge Coupled Device) or CMOS (Metal Oxide Semiconductor) camera 
attached to a dispersing element such as a tuneable filter or a filter wheel [20].  

A temporal spectral scan is required in such systems to complete the spectral datacube. 
Generally, the collection of this information can be performed by using two different 
approaches: the passive variant, in which the light source has a wide spectral range and 
the dispersive elements or filters to configure the different spectral bands are placed in the 
optical path in front of the image sensor; and the active variant, in which the illumination 
itself is composed by different narrow spectral emission sources that provide several spectral 
bands. 

2.2.1. Passive variant 

The spectral bands in the passive variant are achieved by interposing various filters 
with different transmittance in front of the camera sensor. Then, the spectral datacube is 
obtained by acquiring images through each of these bands sequentially.  

Nowadays, the filters most widely used are based on electro-optical devices, such as 
liquid crystal tuneable filters (LCTF) and the acousto-optic ones (AOTF). With the 
emergence, mechanical systems based on filter wheels are no longer used because of the 
limitation on the number of filters, the need of mechanical moving parts to achieve the 
rotation, which often caused vibrations and could alter the picture quality, the big size and 
the poor portability of the system (Figure 2.6) [23]. 

LCTFs are based on the application of an electric field to the different elements of a 
liquid crystal that, with the use of polarizers, allow the transmission to be changed along 
a certain spectral range in a rapid and efficient way. The transmittance achieved 
corresponds to a single narrow spectral band that can be tuned in the VIS spectrum and 
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part of the near infrared (NIR); however, the transmission is generally low in the short 
wavelengths [8], [23], [24] (Figure 2.7). 

 
Figure 2.6 Commercially available liquid crystal tuneable filter [25] (left), acousto-optic 
tuneable filter [26] (centre), and filter wheel [27] (right). 

 
Figure 2.7 : Liquid crystal tuneable filter: spectral transmittances [28] (left) and main 
components [29] (right). 

AOTFs consist of a quartz or a tellurium dioxide crystal attached to a transducer. In 
response to the application of an oscillating radio frequency signal, the transducer generates 
high frequency vibrational acoustic waves propagating through the crystal causing periodic 
changes in its refractive index. Therefore, light is diffracted depending on its wavelength. 
[23], [30], [31] (Figure 2.8). 

 
Figure 2.8 Main components of an acousto-optic tuneable filter (RF: radio frequency) [32]. 
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2.2.2. Active variant 

Unlike the passive variant, in the active variant the illumination itself is composed by 
different narrow spectral emission sources that provide the spectral bands or acquisition 
channels. This approach is feasible since the light emitting diodes (LEDs), which have a 
narrow spectral emission, are available on the market [33]. 

LEDs are solid-state devices that emit light when an electric current passes through 
them. They consist of a chip of a semiconductor material with impurities to create an 
anode-cathode junction. When it is directly polarized, the current flows from the anode to 
the cathode, the electrons cross the junction, and the recombination of electrons and holes 
produces photons in a process called electroluminescence [34]. 

The light emitted by an LED is rather monochromatic and ranges from the ultraviolet 
(UV) to the infrared (IR). Although its efficiency depends on the emitted wavelength, it 
can be generally considered as good. In addition, due to their low cost, small size, long 
durability and low energy consumption, the use of LEDs has become more popular in recent 
years, especially for lighting applications and in spectral imaging systems [34], [35]. 

2.3.  Image sensors 

The most used digital sensors in spectral imaging systems, especially in area scanning 
ones, are the CCD and CMOS cameras. From the 70s, the popularity of these sensors based 
on silicon has expanded rapidly due to their high image quality and resolution, quantum 
efficiency, wide spectral response, low noise, low power consumption and good durability. 
Both sensors convert incident photons into electrons, forming thus, an electrical signal 
proportional to the amount of light reached at every spatial location [36], [37]. 

When the exposure is complete in the CCDs, the charge of each pixel is sequentially 
transferred to a common output structure and converted into voltage, stored in a buffer 
and sent out of the chip as an analogue signal voltage. In this way, the whole pixel area 
can be devoted to capture light and therefore, the uniformity of the output signal is high, 
providing an accurate image quality. In contrast, each pixel of a CMOS sensor has its own 
charge-voltage conversion, and in addition, the sensor often includes amplifiers, noise 
correction and digital circuits, which allows that the output information are digital bits. In 
consequence, the design complexity increases and the area available to capture the signal 
reduces, providing a lower uniformity because of the non-uniformity in the pixel to pixel 
circuitry [37]–[39] (Figure 2.9). Nevertheless, CMOS and CCD have currently reached a 
similar level of performance, and consequently, CCDs are being now replaced by CMOSs 
due to the simpler manufacturing. 
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Figure 2.9 Scheme of transference process for CCD and CMOS sensors. Adapted from: [40]. 

2.3.1. Noise sources 

The reliability of the information given by a spectral imaging system depends primarily 
on the quality of the data. Thus, the assessment and removal of noise requires special 
consideration before starting any kind of measurements [36], [41], [42]. 

The noise of a digital image sensor can be classified into two main groups: temporal and 
spatial. Temporal noise is caused by the random arrival of photons at the sensor and 
quantization and reading noise due to the analogue-digital conversion. Spatial noise is 
mainly the dark current noise produced by electrons which are excited due to the heat of 
the camera itself and the non-uniformity in the picture response, which is caused by small 
differences in sensitivity among pixels [38]. 

It is essential to reduce the maximum noise sources in any imaging system, especially 
in applications that need accuracy and resolution. Temporal noise can be decreased with 
image averaging due to its random nature, and spatial noise through the application of a 
uniform field correction (flat fielding). The flat fielding is a procedure done through 
capturing a dark image with the sensor covered and the so-called “base image”, which 
corresponds to a uniform light sample. This image has to be acquired under the same 
conditions of temperature, exposure time and position as the image to be corrected. In this 
way, the basic process of calibration is described mathematically by the equation [43]–[46]: 

 
𝐷𝐷𝐷𝐷𝑐𝑐(𝑖𝑖, 𝑗𝑗) =  𝑘𝑘

𝐷𝐷𝐷𝐷 (𝑖𝑖, 𝑗𝑗) − 𝐷𝐷𝐷𝐷0(𝑖𝑖, 𝑗𝑗)
𝐷𝐷𝐷𝐷𝐵𝐵(𝑖𝑖, 𝑗𝑗) −𝐷𝐷𝐷𝐷0(𝑖𝑖, 𝑗𝑗)

 (2.1) 

where DL(i,j), DL0(i,j) and DLB(i,j) are the digital level of the image to be corrected in the 
pixel (i,j), the dark image and the base image, respectively, and k is a calibration constant 
estimated as the average digital level image resulting from the difference between the base 
image and the dark image [47], [48]. 

Even though correcting much of the noise, CCD and CMOS sensors tend to decrease 
their performance permanently due to the total dose of ionizing and the displacement 
damage. The total ionization dose causes voltage changes, and the damage displacement 
reduces the efficiency of charge transfer, increases and produces irregularities in the dark 
current and creates more random noise in isolated pixels [49]. Therefore, a hot-pixel can be 
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defined as one in which the dark current is statically anomalous compared to the rest of 
pixels, generating excessive signal in the absence of illumination [50], [51]. In order to know 
the location of these hot-pixels, several algorithms can be used looking for those pixels with 
a digital level around twice above of the dark image average. Once located, they are 
corrected masking them by interpolation from the surrounding pixels and achieve a good 
image quality (Figure 2.10). 

 
Figure 2.10 Interpolation used to mask a hot-pixel. 

2.4. Obtaining spectral and colour information from spectral imaging 
systems 

Once the spectral datacube has been built, i. e., the spectral images at several 
wavelengths are available, spectral and colour information must be extracted from it. 

Spectral reflectance images can be easily computed from the spectral images of the 
datacube by means of a variation of Eq. (2.1) [52], [53]: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝐺𝐺𝐺𝐺𝜆𝜆 ·
𝐷𝐷𝐷𝐷𝜆𝜆(𝑖𝑖, 𝑗𝑗) − 𝐷𝐷𝐷𝐷𝜆𝜆0(𝑖𝑖, 𝑗𝑗)
𝐷𝐷𝐷𝐷𝜆𝜆𝐵𝐵(𝑖𝑖, 𝑗𝑗) −  𝐷𝐷𝐷𝐷𝜆𝜆0(𝑖𝑖, 𝑗𝑗)

 , (2.2) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆(𝑖𝑖, 𝑗𝑗) is the spectral reflectance estimated corresponding to a specific pixel (i,j), 
𝐷𝐷𝐷𝐷𝜆𝜆(𝑖𝑖, 𝑗𝑗) the digital level of the original image, 𝐷𝐷𝐷𝐷𝜆𝜆0(𝑖𝑖, 𝑗𝑗) the digital level of the dark image, 
𝐷𝐷𝐷𝐷𝜆𝜆𝐵𝐵(𝑖𝑖, 𝑗𝑗) the digital level of the base image - in this case a uniform and calibrated sample 
-, and 𝑅𝑅𝐺𝐺𝐺𝐺 the reflectance of the calibrated sample provided by the manufacturer, all them 
for a certain wavelength (λ) available in the spectral datacube. Again, all images must be 
taken with the same configuration, under the same illumination and position conditions. 

From the spectral reflectance, colour coordinates can be also calculated pixel by pixel. 
In this context, the colour space XYZ CIE-1391 defined by the CIE (Comission 
Internationale de l’Éclairage) is one of the most widely used [11]. In this colour space, each 
colour is represented by three tristimulus values called X, Y and Z which are related with 
the amount of primaries needed to match the stimulus, and are defined as follows: 

 𝑋𝑋 =  𝑘𝑘�𝑆𝑆𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆�̅�𝑥𝜆𝜆𝛥𝛥𝛥𝛥 ,
𝜆𝜆

 (2.3) 

 𝑌𝑌 = 𝑘𝑘�𝑆𝑆𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆𝑦𝑦�𝜆𝜆𝛥𝛥𝛥𝛥
𝜆𝜆

 , (2.4) 
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 𝑍𝑍 = 𝑘𝑘�𝑆𝑆𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆𝑧𝑧�̅�𝜆𝛥𝛥𝛥𝛥 ,
𝜆𝜆

 (2.5) 

 𝑘𝑘 =  
100

∑ 𝑆𝑆𝜆𝜆𝑦𝑦�𝜆𝜆𝛥𝛥𝛥𝛥𝜆𝜆
 , (2.6) 

where 𝑆𝑆𝜆𝜆 is the spectral emission of the light source used to light the sample, �̅�𝑥𝜆𝜆, 𝑦𝑦�𝜆𝜆, 𝑧𝑧�̅�𝜆 are 
the colour matching functions of the CIE 1931 standard observer (for visual angles between 
1º and 4º) or the CIE 1964 standard observer (for larger visual angles) and 𝛥𝛥𝛥𝛥 is the 
wavelength step. 

However, when the main objective is to assess colour differences between colours, the 
uniform CIELAB colour space defined by CIE in the 1976 is more convenient [54]–[57]. In 
this colour representation space the colour coordinates are: 

 𝐷𝐷∗ = 116𝑅𝑅 �
𝑌𝑌
𝑌𝑌𝑊𝑊
� − 16 , (2.7) 

 𝑎𝑎∗ = 500 �𝑅𝑅 �
𝑋𝑋
𝑋𝑋𝑊𝑊

� − 𝑅𝑅 �
𝑌𝑌
𝑌𝑌𝑊𝑊
�� , (2.8) 

 𝑏𝑏∗ = 200 �𝑅𝑅 �
𝑌𝑌
𝑌𝑌𝑊𝑊
� − 𝑅𝑅 �

𝑍𝑍
𝑍𝑍𝑊𝑊

�� , (2.9) 

where: 

 𝑅𝑅(⍵) = ⍵
1
3   if   𝜔𝜔 >  (24 116⁄ )3 ,  (2.10) 

 𝑅𝑅(⍵) = 7,787⍵+ 16 116⁄   if  𝜔𝜔 ≤ (24 116⁄ )3 , (2.11) 

𝐷𝐷∗ is the lightness and can have values from 0 (black) to 100 (white), 𝑎𝑎∗ represents the red-
green component, and  𝑏𝑏∗ corresponds to the yellow-blue component. The 𝑋𝑋𝑊𝑊, 𝑌𝑌𝑊𝑊 and 𝑍𝑍𝑊𝑊 
are the tristimulus values for the reference white used that can either be the D65, A or any 
standard illuminant defined by the CIE. 

If the former cartesian coordinates are converted into cylindrical ones, we obtain: 

 𝐶𝐶𝑎𝑎𝑎𝑎∗ = �(𝑎𝑎∗)2 + (𝑏𝑏∗)2 , (2.12) 

 ℎ𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑏𝑏∗

𝑎𝑎∗
�  , (2.13) 

where 𝐶𝐶𝑎𝑎𝑎𝑎∗  is the chroma and ℎ𝑎𝑎𝑎𝑎 the hue angle expressed between 0º and 360º (Figure 
2.11). 

From the previous description it is clear that provided spectral imaging systems give a 
spectral datacube in terms of digital levels, later any kind of image can be computed in 
terms of reflectance values, colour coordinates, etc. 
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Figure 2.11 space: 3D representation [58] (left), and spatial projection for a constant 
lightness value [59] (right). 

2.5. Metrics used for the evaluation of spectral and colour differences 

From the reflectance and colour representation described above, there are several ways 
to measure the spectral and colour deviations between a pair of samples. They are explained 
next [60]. 

2.5.1.  Spectral differences 

One of the most common metrics used when spectral curves are to be compared is the 
RMSE (Root Mean Square Error) [61], [62]: 

 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1𝜆𝜆𝐺𝐺 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝜆𝜆𝐺𝐺)2 λ𝑛𝑛
𝜆𝜆1

𝑛𝑛
 ,  (2.14) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1𝜆𝜆𝐺𝐺 and  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝜆𝜆𝐺𝐺 refer to the reflectance values of the two samples compared at 
a specific wavelength, and 𝑛𝑛 represents the number of wavelengths in which differences are 
evaluated. For a perfect match between both curves, the RMSE should be zero while in 
the worst case it tends to infinity.  

Alternatively, the GFC (Goodness-of-Fit Coefficient) parameter can also be used, which 
is based on the Schwartz inequality: 

 𝐺𝐺𝐺𝐺𝐶𝐶 =
�∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1𝜆𝜆𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝜆𝜆𝐺𝐺)𝜆𝜆𝑛𝑛

λ1 �

��∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1𝜆𝜆𝐺𝐺)2𝜆𝜆𝑛𝑛
λ1 ���∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝜆𝜆𝐺𝐺)2𝜆𝜆

𝐺𝐺=1 �
 ,  (2.15) 

GFC ranges from 0 to 1, where 1 indicates a perfect match [62]. According to the scale 
commonly linked to this parameter, a GFC ≥ 0.995 is considered “colorimetrically 
accurate”, a GFC ≥ 0.999, a “good spectral fitting” and a GFC ≥ 0.9999, an “excellent 
spectral fitting”[63]. 
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2.5.2.  Colour differences 

Colour differences can be easily computed in the CIELAB space as the Euclidean 
distance between two points (or colour stimuli) [54]: 

 𝛥𝛥𝑅𝑅𝑎𝑎𝑎𝑎∗ = �(𝛥𝛥𝐷𝐷∗)2 + (𝛥𝛥𝑎𝑎∗)2 + (𝛥𝛥𝑏𝑏∗)2 , (2.16) 

This equation can also be expressed in terms of polar coordinates: 

 𝛥𝛥𝑅𝑅𝑎𝑎𝑎𝑎∗ = �(𝛥𝛥𝐷𝐷∗)2 + (𝛥𝛥𝐶𝐶𝑎𝑎𝑎𝑎∗ )2 + (𝛥𝛥𝐻𝐻𝑎𝑎𝑎𝑎∗ )2 , (2.17) 

where: 

 𝛥𝛥𝐻𝐻𝑎𝑎𝑎𝑎∗ = [(𝛥𝛥𝑅𝑅𝑎𝑎𝑎𝑎∗ )2 −  (𝛥𝛥𝐷𝐷∗)2 −  (𝛥𝛥𝐶𝐶𝑎𝑎𝑎𝑎∗ )2]1/2 , (2.18) 

In practice, the CIELAB space is not entirely uniform although it is a good approach 
to colour perception for most of the samples under certain conditions of observation. 
However, as a means of improving the correlation achieved with perceptual estimates, the 
CIE has recently proposed new formulas to calculate colour differences. The CIEDE2000, 
which was proposed by Luo et al., 2001 [64] includes weighting coefficients among others 
to improve the results for blue, dark and neutral colours [65], [66]. 

Based on the CIELAB space, the Individual Typology angle (ITA) is a parameter often 
used in the literature to classify the skin colour types in the field of dermatology. In fact, 
this parameter allows classifying the skin into six different groups: from very light to dark 
skin types (Figure 2.12). ITA is computed as follows [67]: 

 𝐼𝐼𝐼𝐼𝐼𝐼(°) =  �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 �
𝐷𝐷∗ − 50
𝑏𝑏∗

� ×  
180
𝜋𝜋 � , (2.19) 

It can be though as a customized “hue angle”, similarly to hab from the CIELAB, valid 
to describe common hues of the skin. 

 
Figure 2.12 ITA examples for different skin types with the corresponding histologies (left), 
and scale used for classification (right) [67]. 



2. STATE OF THE ART 

17 
 

2.6. Textural analysis 

The output of spectral imaging systems are images and thus, they can be used to study 
the spatial distribution over the samples or texture besides their spectral and colour 
features.  

A frequently used approach to study texture of samples is based on the statistical 
properties of the image histogram, which encompasses from first to second or even higher 
order statistics. This strategy has been used to process photomicrographs of sandstones, 
superconductors, human cholesterol and microprocessors, aerial and satellite images [68], 
[69], and images of the human iris [70]. These statistical descriptors can be extended to 
any kind of image that, as previously stated, can be in terms of digital levels, reflectance, 
colour coordinates, spectral and colour differences, or any other parameter.  

The first order statistics performs general evaluations of the histogram, without any 
consideration on the relationship among neighbouring pixels. A clear example of these 
measures are statistical moments, for instance the mean (𝑚𝑚 or µ), the variance (𝜎𝜎2 or µ2), 
whose positive square is the standard deviation (𝜎𝜎), and the third central moment, also 
called skewness (µ3) [71]–[73]: 

 𝑚𝑚 =  �𝑖𝑖 𝑃𝑃𝐺𝐺

𝑛𝑛−1

𝐺𝐺=0

 , (2.20) 

 𝜎𝜎 =  �µ2𝐺𝐺 =  �𝜎𝜎2 , (2.21) 

 𝜇𝜇3 =  �(𝑖𝑖 − 𝑚𝑚)3𝑃𝑃𝐺𝐺

𝑛𝑛−1

𝐺𝐺=0

 , (2.22) 

where 𝑃𝑃𝐺𝐺 is the relative frequency of the bin 𝑖𝑖 of the histogram, and 𝑛𝑛 is the number of bins 
or intervals that the histogram is divided into. 

A positive/negative value of the µ3 parameter means that the histogram is skewed to 
the right/left about the mean, while it is 0 for symmetric histograms. 

Other texture descriptors that are usually employed are the energy (𝑅𝑅𝑛𝑛) and the entropy 
(𝑅𝑅𝑝𝑝) of the histogram:  

 𝑅𝑅𝑛𝑛 =  �𝑃𝑃𝐺𝐺2
𝑛𝑛−1

𝐺𝐺=0

 , (2.23) 

 𝑅𝑅𝑝𝑝 =  −�𝑃𝑃𝐺𝐺 𝑅𝑅𝑙𝑙𝑎𝑎2(𝑃𝑃𝐺𝐺), (2.24)
𝑛𝑛−1

𝐺𝐺=0

 (2.24) 

Energy is a numerical descriptor of the image uniformity that ranges between 0 and 1, 
reaching the maximum value for a constant image. On the other hand, entropy is a well-
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known statistical measure of randomness, uncertainty or disorder in image values, being 0 
the minimum value for a constant image, and log2(𝑛𝑛) the maximum. 

2.7. Applications of spectral imaging systems 

The first applications of spectral imaging systems were made in the field of remote 
sensing, related to studies of the Earth’s surface; mostly to create maps of specific areas 
through capturing satellite images or from airplanes [14], [74] (Figure 2.13 left) or to 
perform studies on atmospheric or even outer space phenomena; Montmessin et al. 2007).  

Another field of application of such systems is culture heritage, as they are non-invasive. 
Examples of such applications include the analysis and conservation of paintings and 
manuscripts, monitoring of buildings’ surfaces [76], the study of archaeological materials 
[23], the detection of small vertebrate fossils [77], among others. Due to the large number 
of spectral bands that some of these systems have, it is possible to measure accurate 
spectral properties and colour from non-uniform samples as paints, allowing thus, the 
identification of pigments and inks used, the monitoring and evaluation of conservation 
treatments, and the image digitalization for documentation and archiving [23], [31] (Figure 
2.13 right). 

 
Figure 2.13 Examples of spectral information obtained from different spectral imaging 
systems: images over Cuprite (Nevada, USA) obtained from the AVIRIS imaging 
spectrometer with a spectral range from 400 nm to 2500 nm and used to measure and 
monitor the components of the Earth’s surface [74] (left). The monochrome image 
corresponds to a specific spectral image and the pseudo-coloured image to the mineral 
distribution of alunite or kaolinite obtained from several bands. Spectral monochromatic 
images corresponding to 640 nm and 1000 nm, respectively, of a Byzantine painting (right). 
In the 1000 nm image some corrections of the hand’s virgin can be observed [23]. 

Spectral imaging systems have started to be used recently in the quality control of 
various industries. In the food industry VIS and IR systems have been used for the study 
of cucumbers [78], mandarin affected by Peinicillum digitatum [79] (Figure 2.14 left), 
bruises on apples [52] (Figure 2.14 right), properties of some fruits and vegetables [16], [80] 
or the beef tenderness [81]. Other industrial applications are the measurement of the 
amount of unwanted material in the cotton textile industry [82], the assessment of the 
density and moisture on wood [83] and the sorting of solid waste particles for further 
recycling such as glass, plastic etc. [84]. 
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Figure 2.14 Spectral images of a mandarin acquired at 550, 660 and 1000 nm with a VIS 
and a NIR LCTF [79] (left), images and intensity profiles of two apples at 680 nm where 
the irregularities in the plot of the right apple indicates a fungal contamination [85] (right). 

Another area in which much research is being done nowadays with this type of systems 
is the forensic science. Spectral imaging systems seem to be able to improve significantly 
the detection, visualization, identification and age estimation of forensic traces without 
destroying or contaminating them, such as fingerprint, hair, strokes, blood and fibres [18] 
(Figure 2.15). 

 
Figure 2.15 Simulation of a crime scene, in which fresh and older blood stains were 
automatically detected based on their reflectance and coloured in the image in blue and 
red, respectively [18]. 

In addition to the applications described above, the field that has more open research 
lines in regard to spectral imaging systems is biomedicine. Examples range from the spectral 
analysis through a microscope to obtain information on tissue allowing different molecules 
to be differentiated despite being superimposed [86]; the detection of subcutaneous veins 
for the insertion of intravenous catheters with the aid of a NIR source [87]; the oxygen 
blood flow and saturation measurement and the intracellular calcium dynamics assessment 
[88], [89]; and systems for the diagnosis of retinal diseases and the oxygen saturation maps 
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measurement [90]–[92] (Figure 2.16). Other medical applications include the diagnosis of 
diseases through the spectral study of the tongue [93] and the diagnosis of cancer.  

 
Figure 2.16 Images of the retina at several wavelengths from a spectral imaging system 
based on LEDs [90]. 

In this context, attempts have been made to achieve automatic detection of white blood 
cells in the bone marrow [94], improve diagnosis of prostate cancer [95], cervical cancer [96] 
or gastric cancer [97], among others. Furthermore, spectral imaging systems have also been 
used in the detection of skin cancer lesions and they are explained next, as they are the 
closest application to the scope of this thesis. 

2.7.1. Spectral imaging systems for the skin cancer detection 

As stated in the introduction, clinical (naked eye) and dermoscopy are the conventional 
techniques used for the diagnosis of skin cancer, but in most cases they are not enough 
sensitive for the detection of small and early malignancy.  This means that there are lots 
of false positives due to the lack of adequate tools and that better detection and diagnostic 
tools are still demanded [98].   

Skin is composed of several structures and components, such as blood, fat or melanin 
pigment, among others. Although optical properties of the skin vary from person to person, 
the 2-layer model from Ohtsuki and Healy can be assumed [99]; it states that the surface 
reflectance, which takes place at the epidermis, is about 5% of the incident light, 
independently of the light wavelength and the human race. The rest of the incident light 
(95%) enters deeper into the skin and becomes absorbed and/or scattered within the 
epidermis and dermis (Figure 2.17).  

The absorption, and therefore the colour of the skin, is mainly caused by groups of 
organic molecules called chromophores, such as melanin, haemoglobin, water, beta-
carotene, collagen and bilirubin; although the last three are not very significant [100], [101]. 
Melanin absorbs much of blue light and thus it is perceived as brown (Figure 2.18) while 
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haemoglobin absorbs mostly blue and green wavelengths with peaks at 400 and 550 nm; 
therefore, it has a reddish appearance. Spectral properties caused by these chromophores 
might differ among skin lesions of different etiologies. 

 
Figure 2.17 2-layer skin model from Ohtsuki and Healy [99] 

 
Figure 2.18 Absorption of oxy-, deoxyhaemoglobin and melanin [102]. 

According to all this, colour and spectral imaging technology that enhances and analyses 
spectral properties of the skin are currently being explored to improve early detection and 
diagnosis of skin cancer (Figure 2.19) [103]. However, most of them only use three spectral 
bands in the VIS range (typically three colour RGB channels), which limits their spectral 
resolution, and an additional one located at the NIR range. Notably, most tools only 
analyse the averaged colour and spectral properties.  

In this context, commercial devices such as SIAscope [104] and MelaFind [105] have 
already been proposed as tools for improving skin cancer diagnosis. The SIAscope VTM 
system, sold together with the MoleMateTM program [98], [106], [107], consists of a 4-
spectral bands system (blue, green red and IR). The system provides the distribution maps 
of haemoglobin, collagen and melanin, and the latter identifies whether the melanin is from 
the epidermis or the dermis (dermis location indicates that the melanoma is expanding and 
could reach the bloodstream and thus spread). Regarding the MoleMateTM program, it is 
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ready to be used by non-specialist physicians in identifying melanomas with a previous 
training for interpreting the images. It is based on a diagnostic tree monitoring in which 
not only the colour of the lesion is considered, but also the diameter, the presence of dermic 
melanin, the vessels of the lesion, or even the age of the patient. If the final score is equal 
or greater than 6, the lesion is considered as suspicious (Figure 2.20). 

 
Figure 2.19 Mean spectral optical density of 17 melanomas, 65 common nevi and 82 healthy 
skin samples [103]. 

On the other hand, MelaFind® is a 10-wavelengths (430, 470, 500, 550, 600, 650, 700, 
770, 880, 950 nm) imaging system; from the images acquired, 6 linear classifiers are used 
to differentiate melanomas from other pigmented lesions with 100% sensitivity such as 
common nevi, low-grade dysplastic nevi, congenital nevi, seborrheic keratosis, solar lentigos 
and pigmented basal cell carcinomas. They are trained by means of a database of 
approximately 10,000 excised lesions [108]. A lesion is recommended for biopsy if all the 
scores are above the threshold value [109]. After the measurement, the system provides a 
disorganization value and a treatment suggestion for dermatologists: positive or negative 
for high degree of morphological disorganization, where positive means the lesion should 
be considered for biopsy (Figure 2.21). 

Besides the commercial devices described, prototypes such as those developed by Bekina 
et al. [110], Diebele et al. [103]  and Kapsokalivas et al. [111] have also been proposed to 
improve skin cancer diagnosis. 

The system from Bekina and colleagues [110]  was composed of a commercial video-
microscope which was modified and equipped with four different LEDs at blue (450 nm), 
green (545 nm), red (660 nm) and IR (950 nm) wavelengths. From the images acquired, 
the authors proposed the following calculations to resemble distribution maps of bilirubin 
(B), and erythema (E) (Figure 2.22): 

 𝑅𝑅 = 𝐼𝐼660(𝑖𝑖, 𝑗𝑗) 𝐼𝐼545(𝑖𝑖, 𝑗𝑗)⁄  (2.25) 

 𝐵𝐵 = 𝐼𝐼450(𝑖𝑖, 𝑗𝑗) 𝐼𝐼660(𝑖𝑖, 𝑗𝑗)⁄  (2.26) 
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Figure 2.20 Distribution maps measured with the SIAscope VTM [104]) (top), system and 
MoleMateTM program [112] (bottom left), and scoring algorithm based on a diagnostic tree 
[98] (bottom right). 
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Figure 2.21 Melafind® system  [113] (left) and software screenshot [108] (right). 

where  𝐼𝐼545, 𝐼𝐼660 and 𝐼𝐼940 are the intensities of the diffuse light reflected from the skin at 
these wavelengths. 

Furthermore, the system also provided a fluorescence map obtained by the irradiation 
with blue light.  

 
Figure 2.22 Spectral images at 450, 545, 660 and 940 nm (top), and maps of a melanoma 
(E: erythema, B: bilirubin) (bottom) [110]. 

Moreover, the same authors developed a similar system [103] that consisted of a 
multispectral imaging system with a CCD imaging sensor and a LCTF (from 450-950 nm 
in steps of 10 nm) (Nuance EX), a spectral optimized lens and internal optics. The 
illumination system was a ring of halogen lamps with a polarizer orthogonal to the camera 
in order to remove the artifacts caused by light reflection. In order to differentiate between 
melanoma and nevi, a new parameter was suggested: 

 𝑝𝑝 = 𝑘𝑘 · (𝐼𝐼540(𝑖𝑖, 𝑗𝑗) �𝐼𝐼650(𝑖𝑖, 𝑗𝑗) ∗ 𝐼𝐼950(𝑖𝑖, 𝑗𝑗)�)⁄  (2.27) 
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where 𝑘𝑘 is the intensity coefficient that describes the white etalon reference used for the 
calibration of the system. The parameter 𝑝𝑝 was calculated for each pixel, and then 
parametric 𝑝𝑝-images. Furthermore, a clinical study in a small group of skin lesions, 17 of 
which corresponded to melanomas and 65 to benign lesions (nevi), was conducted. The 
results suggested that, in general, the parameter 𝑝𝑝 was higher for melanomas (Figure 2.23). 

 
Figure 2.23 Scatter plot with the averaged parameter 𝑝𝑝 for nevi and melanomas subtracted 
by the same parameter of the surrounding healthy skin of the patient (𝑝𝑝0) [103]. 

Kapsokalyvas, et al. [111] also developed a prototype for the analysis of skin lesions 
composed of a CMOS camera and a light source. The illumination consisted of 3 LEDs 
emitting at 470, 530 and 625 nm with a polarizer in front of it. The lesion under analysis 
was placed on a glass window optically coupled by means of a drop of water. Furthermore, 
an analyser was placed in front of the camera mounted on a motorized rotator configured 
to rotate at 0º and 90º with respect to the polarizer. So, images containing reflected light 
from the first surface of the skin and images containing scattered light from deeper layers 
were obtained. Operating among these images, the authors provided distribution maps of 
melanin contrast to enhance pigmented structures of the skin, blood contrast to highlight 
the contrast of haemoglobin absorption and scattering contrast to enhance the structures 
with high scattering properties (Figure 2.24).  

It should be remarked that not all devices described are able to diagnose by themselves, 
but an experienced dermatologist must interpret the data. Furthermore, many of them, 
especially MelaFind®, generate a large number of false positives and, consequently, a large 
number of unnecessary biopsies. 

 Besides spectral imaging systems, other non-invasive optical techniques have 
started to be used to aid in the diagnosis of skin cancer [114]. For instance, optical 
coherence tomography (OCT), which is an interferometric technique that generates images 
corresponding to transversal sections of the skin tissue in 2D or even in 3D through the 
measurement of the reflected light. This technique provides information of deeper 
structures of the skin and tumours as energy penetrates into the tissue around 2-3 mm 
[115]. Fluorescence spectrometry involving the use of ultraviolet energy to light the tissue, 
which is later reemitted at longer wavelengths depending of the skin fluorophores, might 
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also provide information of tissue composition, and therefore, it is now investigated as a 
means of distinguishing among different lesions types [116]. Raman spectroscopy, based on 
the scattering that occurs after exciting the molecules of samples with an IR laser beam is 
nowadays investigated to provide information of different chemical components present in 
skin lesions [117]. Finally, confocal microscopy, which provides vertical and horizontal 
images from the tissue with high contrast and good lateral resolution, is nowadays one of 
the most accepted complementary tools to improve skin cancer diagnosis [118]. More 
information on this technique is provided in the next chapter. 

 
Figure 2.24 Spectral images and distribution maps of a malignant lesion (basal cell 
carcinoma) [111].
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3. Experimental system 

This chapter comprises the “Multiphotonic platform” section, which describes the 
system developed in the context of the European Project DIAGNOPTICS including several 
optical and photonic techniques for in-vivo imaging of skin cancer lesions; and the 
“Multispectral system” section, which explains with a particular emphasis the new 
multispectral imaging system based on LEDs developed in this doctoral thesis, including 
details of the components, design and performance, and some clinical issues related with 
the device that are relevant for its use in the hospitals. 

3.1. Multiphotonic platform 

As stated in the introduction, this thesis was part of the European Project 
DIAGNOPTICS seventh call for proposals 2013, CIP-ICT-PSP.2013.3.5; GA621066), the 
aim of which was to launch a hospital service to help in the detection and the prognosis 
evaluation of the skin cancer at earlier stages with novel optical and photonic technologies. 

Besides examining the skin lesions from patients with conventional dermoscopy, 
physicians were asked to use a multiphotonic platform to complete the diagnosis of the 
lesion. Accordingly, the lesions suspicious of malignity were also examined with confocal 
microscopy (MAVIG VivaScope®), which helped to decide if the cytology of the lesion was 
needed; 3D technology, which provided topographic information of the skin lesion; optical 
feed-back interferometry (OFI) providing information of the amount of blood flow; and 
finally, multispectral imaging technology to obtain spectral information of the tissue at 
several wavelengths. 

Two identical multiphotonic platforms were developed and simultaneously installed in 
two hospitals: Hospital Clínic i Provincial de Barcelona (Spain), and Università degli Studi 
di Modena e Reggio Emilia (Italy), where they were applied to over 600 patients.  

The different systems included in the platform were assembled in a medical cart, as it 
can be seen in Figure 3.1. Each of the systems are briefly described in the next sections. 
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Figure 3.1 Medical cart with the confocal microscope, the OFI, the 3D and the 
multispectral systems. 

3.1.1.  Confocal microscopy 

Confocal microscopy is a modern medical imaging technology that serves as an 
additional non-invasive tool for the diagnosis of equivocal skin lesions including screening 
and diagnosis, image-guided biopsy, pre- and intraoperative mapping of tumour margins 
to guide surgery, and monitoring of treatment efficacy [119]. The system based on this 
technology (MAVIG VivaScope®) included in the platform allowed obtaining real-time 
maps of cells in grayscale images in which it was possible to observe the cellular size and 
shape, the epidermal structure, the dermal collagen morphology and the keratin with a 
zoom field of view of 0.5 x 0.5 mm, i. e., with high optical resolution. Furthermore, 
information in different skin depths - one layer/depth at a time - as the epidermis and 
dermis skin layers, were also available [120].  

The ability to acquire in-focus images from selected depths is achieved thanks to a 
pinhole placed in front of the detector. Light that scatters from the plane of focus is focused 
on the pinhole plane while light that scatters in other layers is imaged in a plane other 
than the pinhole and is blocked from reaching the detector. Images of an illuminated spot 
of few micrometers are acquired point-by-point, scanned all over the sample and 
reconstructed with a computer. 

To generate confocal images with the available system, a laser beam at 830 nm is 
directed through an interconnected lens system including a beam splitter and onto the area 
of the skin to be examined. The laser beam reflected by the skin returns through the beam 
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splitter and hits the detector after crossing the pinhole. The light source, the illuminated 
spot on the skin, and the aperture opening of the detector are on optically conjugated focal 
planes, so they are confocally interconnected (Figure 3.2). As it can be seen, the confocal 
generates single images of tissue that are parallel to the tissue surface. The position of the 
single image inside the tissue can be changed by moving the objective lens up, down, or 
laterally, relative to the surface. 

With a monochromatic laser illumination and a confocal optical system, the quality of 
the image is greatly enhanced over conventional microscopy because the image information 
from multiple depths in the specimen is not superimposed. A conventional microscope 
"sees" as far into the specimen as the light can penetrate, while a confocal microscope only 
"sees" images one depth level at a time, as formerly mentioned. 

 
Figure 3.2 Confocal microscopic system (MAVIG VivaScope®) included in the 
multiphotonic platform: layout (left), picture of the head and image provided (right) [121]. 

3.1.2.  3D technology 

The 3D system included in the platform used a stereoscopic optical technology which 
provides accurate 3D measurements of the human skin surface. It is worth noting that, 
nowadays, the palpation of the lesion is made in order to obtain clinical information of the 
lesion shape, border irregularity, and lesion diameter, and so, 3D information is expected 
to bring more knowledge on skin cancer.  
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The system included in the platform was composed by two monochrome cameras placed 
in a standard stereo geometry, a light picoprojector and a colour camera, located both 
between the two monochrome cameras. All cameras had an objective lens with fixed focal 
length (25 mm) with a working distance of 110 mm, obtaining a field of view of 19x14 mm 
[122].  

The principal measurement used is based on a stereovision technique combined with the 
projection of a sinusoidal pattern set shifted over the skin [123]. For each projected pattern, 
both monochrome cameras capture the images in a synchronized way and after the 
measurement, the skin is uniformly illuminated with the projector in order to acquire a 
colour image of the lesion. Afterwards, the phase maps are unwrapped based on the 
Goldstein algorithm which allows a good balance between a fast processing time and a 
good performance quality [124]. Finally, the corresponding phases between both cameras 
are identified and the 3D data is obtained by triangulation based on the epipolar geometry 
[125] and the calibration of the system previously computed (Figure 3.3). 

 
Figure 3.3 Projected fringes, colour image and epipolar triangulation used (top), lesion and 
3D prototype (middle) and topographic images of the skin and the lesion (bottom) obtained 
with the 3D system. 
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3.1.3. Laser self-mixing technology (Optical Feedback Interferometry, 
OFI) 

The platform also included a laser self-mixing technology system, also known as OFI. 
This technique is based on the projection of a laser onto the skin, which is back-scattered 
by seeding particles in flows, e. g., red blood cells. Interferences between the backscattered 
and the laser itself are then registered, providing a 2D skin micro-capillarity blood flow 
image (Figure 3.4). This method is envisaged to detect abnormal vascularization network 
on regions of malignant lesions, especially, melanoma, which is the most aggressive form of 
skin cancer. 

 
Figure 3.4 OFI system. 

The OFI system used in this project consisted of a distributed feedback (DFB) laser 
diode at 1310 nm, packaged with a monitoring photodiode located at the back facet of the 
laser which enabled acquisition of the power variations induced by the interferences inside 
the active cavity of the laser, and a collimating lens placed in front of the laser to fit and 
keep the beam width along the optical path and onto the circular aluminium coated mirror 
of diameter 4.2 mm. The mirror used was a 2 axis beam-steering which was mounted in a 
Micro-Electro-Mechanical Systems (MEMS) to scan the skin across two directions. It 
presented an angle of -5º to +5º in each direction (X/Y), with a step angle of 0.0025º, 
which implies a maximum resolution of 5 µm. A focusing lens was placed at its focal length 
from the target to focus the beam (Figure 3.5) [126], [127]. The interferometric signal was 
recovered by monitoring of the laser output power in the internal photodiode. The system 
also included a base to provide the power supply, a signal acquisition card and the 
connections to the computer. The system allowed to scan 225 different points in a 11 mm 
x 12 mm skin surface to obtain a 2D image of the lesion blood flow. The information 
provided at each measurement point by the OFI sensor is a parameter proportional to the 
blood perfusion level in the skin. 

Due to the fact that this thesis is focused on the development of the multispectral 
system, next section (3.2) describes this system in more detail. 
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Figure 3.5 Scheme of the laser beam, where the red dot lines indicate the laser path when 
X and Y are at 0º and the black dot lines indicate the path in the extremes of the angular 
range of the mirror  [127] (left). 2D OFI signal image proportional to the blood perfusion 
level (right). 

3.1.4.  Barcelona and Modena platforms: operation, computers and 
metal rings for the spatial correlation 

Figure 3.6 shows pictures of the two multiphotonic platforms installed in Barcelona and 
Modena, respectively. The confocal microscope was attached to the lower telescopic arm 
and the 3D system to the upper one. Although they were placed at different heights, both 
devices could be moved by the operator using the possibilities of extension and rotation of 
the arms, to reach the different parts of the patient’s body in an easy and comfortable way. 
Given that the OFI and multispectral systems were handheld devices, they were located 
on the top shelf of the cart. 

A total of two computers were also included in each platform with their own computer 
screen. The first computer controlled exclusively the confocal microscope with the 
VivaScanTR software application developed by Mavig GmbH that enabled the acquisition 
and visualization of the confocal images of a lesion. The second computer run the software 
applications implemented in the DIAGNOPTICS project to get the data from the 3D, the 
OFI and the multispectral systems. The main reason for having two different computers 
was that the VivaScope needed a dedicated computer to run properly, i. e., to guarantee 
an smooth imaging process without overloading the computer. Both computers ran under 
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Windows 7 64 bits Operating System and were connected with a switch which allowed the 
use of only one keyboard and one mouse. 

 
Figure 3.6 Multiphotonic platforms installed in Barcelona and Modena, respectively. 

The four devices of the platform were used one by one in the in-vivo examination of the 
patient’s lesion. Therefore, there was no more than one device simultaneously measuring a 
particular lesion, and consequently, just the corresponding software of the active device 
was needed to run at the same time. For this reason, the transfer speed, the CPU 
performance and the RAM capacity was not a problem. Accordingly, each device was 
controlled independently through its program interface, as it is schematically shown in 
Figure 3.7. 

Since the four technologies included in the platform provided images, a scheme to enable 
correlation of the data collected from the different devices was designed. In this context, 
two metal rings were built: a big one, with 41 mm and 32 mm of outer and inner diameters, 
respectively, enabling the acquisition of 3D, OFI and multispectral images. It was attached 
to the skin through a double-sided adhesive film that covered just the ring area; and a 
small one, with 31 mm and 27 mm of outer and inner diameters, respectively, used for the 
confocal microscopy. The outer diameter of this last ring almost equals the inner diameter 
of the big one. The adhesive ensured that the location did not change during the clinical 
measurements. The coincidence of the two types of ring (outer and inner diameters) and 
also a notch to control the tilt made it possible to spatially correlate the images obtained 
with all devices (Figure 3.8). 
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Figure 3.7 Connection scheme and computers to operate with the different devices included 
in the platform. 

 
Figure 3.8 Big metal ring for the acquisition of the 3D, OFI and multispectral system (top 
left), small metal ring for the confocal microscopy acquisition (top right), and the big metal 
ring being used at the clinical setting (bottom). 

The metal rings were made of rust free stainless steel - they were not allergy-inducing - 
and could be reused repeatedly with an appropriate disinfection after each use.  The double 
coated adhesives were a medical tape of polyethylene with acrylate adhesive designed for 
medical/surgical use. It was a one-time use product, and so a new one had to be used for 
each examination. 
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3.2. Multispectral system 

3.2.1.  Design and components 

This thesis deals with the development of a new handheld multispectral system with 
spectral bands along the VIS and the NIR ranges for the diagnosis of skin cancer. The goal 
is to compute spectral features, e. g., the reflectance, and colour information from the 
lesions trying to determine if there are differences between malignant and benign ones. 
This is the reason why in this section the multispectral system prototype developed is 
presented individually in more detail.  

The system was designed taking into consideration the requirements in hospitals, where 
the space is usually limited because of the architectural fittings [128] and where the 
dedication time to each patient is restricted [129]. For this reason, the system consisted of 
a handheld ergonomic cylindrical multispectral head of approximately 10 cm in length and 
7.5 cm in diameter coupled to a conus of 5 cm length including a camera, a lens, an 
illumination system with two polarizers, and a separate base which permitted to hold the 
multispectral head between measurements making the whole procedure more comfortable 
for physicians and nurses (Figure 3.9).  

 
Figure 3.9 Several views of the multispectral system with the base. 

The cylinder was made of polyvinyl chloride (PVC), and had a weight of 0.5 Kg 
approximately. The conus had an aperture of 2.5 cm of diameter and a positioning 
notch which perfectly fitted together with the metal ring designed for the correlation of 
data of different technologies (see section 3.1.4) (Figure 3.10)  (Appx. A.1). 

The camera used in the multispectral head was a DMK 23U445 (Appx. A.2) with a 
1/3” CCD sensor of Sony ICX445ALA with 1280x960 pixels of resolution and 12-bit depth 
(Appx. A.3). The lens coupled was a Schneider-Kreuznack Cinegon (Appx. A.4) with 
spectral sensitivity from 400 nm to 1000 nm and a working distance from infinite to 20 
mm, which allowed focusing the skin lesions at a distance of 4 cm with a field of view of 
15 mm x 20 mm. This field was selected taking into account that most of the skin lesions 
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are smaller than 20 mm in diameter [130]. The f-number used for the lens was f/5.6 which 
ensured a good compromise between depth of focus and chromatic aberration along the 
spectral bands of the system. 

 
Figure 3.10 Overview of the multispectral head including the cylinder and the conus. 

Our approach to obtain spectral images of the lesion was to use sequential multiplexed 
illumination. In order to fulfil the requirements of reduced space and easy control, a ring 
composed of several LEDs with narrow spectral emission over the VIS and NIR ranges was 
considered as the best option. Specifically, Surface Mounted Devices (SMD) were used. 
These kinds of LEDs are prepared to be mounted directly on printed circuit boards (PCB) 
and, therefore, their dimensions are smaller than conventional ones. Furthermore, to reduce 
the exposure time required for the image acquisition and to obtain a uniform illumination, 
the use of high power LEDs with a broad spatial emission was also necessary. 

The criteria for selecting the different LEDs wavelengths was to be able to obtain 
information of the absorption curves of the principal chromophores of the skin, especially 
taking into account their most representative minima and maxima and the spectral bands 
with considerable differences among them. Despite of this, the commercial availability was 
also a limiting factor. Table 3.1 contains the peak wavelengths (λp), the spatial emission, 
i. e., the angle of emission ϕ(º), the dimension of the LEDs and the relationship between 
the peak of the LEDs chosen and the reason of selection, taking into account the 
chromophores’ absorption features. 

Figure 3.11 shows the normalised spectral emission of the 8 LEDs purchased and Table 
3.2 contains the corresponding peak wavelengths (λp) and the full width at half maximum 
(FWHM). These values were measured with the spectrometer SPECTRO 320 and the 
optical probe EOP-146 from Instrument Systems GmbH (Appx. B.1 and B.1.1, 
respectively). The differences found between the measured values and those provided by 
the manufacturer were always below 25 nm in terms of λp.  

Four units of each wavelength (clusters) distributed over the ring, each of them with 
an angular separation of 90º, were used to achieve a good illumination uniformity over the 
lesion. Therefore, 32 LEDs (8 clusters) were finally mounted on the ring (Figure 3.12 top). 
The board and the electronic board for their precise control can be found in Appendix. A.5 
and A.6, respectively. 
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Table 3.1 Peak wavelength (λp), spatial emission (angle in degrees), and dimension of the 
LEDs given by the manufacturer, and the reason of selection of the wavelength. 

Manufacturer 
reference 

λp 
(nm) 

Viewing 
angle 
(ϕ[º]) 

Dimensions of 
the LED 
(mm) 

Reason of selection 

RLCU-440-410 410-415 120 3.8 x 3.8 x 0.9 Hb* and HbO2** peaks of 
maximum absorption. 
Melanin maximum absorption 

LXML-PR01-0500 440-460 125 4.9 x 3.2 x 2.1 Bilirubin peak of maximum 
absorption. 

LXML-PB01-0040 460-485 125 4.9 x 3.2 x 2.1 Hb* minimum absorption 
LXML-PM01-0100 520-540 125 4.9 x 3.2 x 2.1 Intermediate wavelength 

allowing a complete spectral 
sampling. 

LXM3-PD01-0350 650-670 125 4.9 x 3.2 x 2.1 HbO2
** minimum absorption 

RLCU-440-720 720 120 3.8 x 3.8 x 0.9 Typical wavelength used in 
pulse oximetry (allowing 
differentiation between Hb* and 
HbO2

**). 
RLCU-440-880 880 120 3.8 x 3.8 x 0.9 Typical wavelength used in 

pulse oximetry (allowing 
differentiation between Hb* and 
HbO2

**). 
Information from deeper layers 
of the skin. 

RLCU-440-970 970 120 3.8 x 3.8 x 0.9 Information from deeper layers 
of the skin. 

 
Figure 3.11 Normalised spectral emission of the purchased VIS and NIR LEDs. 
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Table 3.2 Measured peak wavelength (λp) and FWHM of the purchased VIS and NIR 
LEDs. 

Manufacturer 
reference 

λp (nm) 
FWHM 
(nm) 

RLCU-440-410 414 17.2 
LXML-PR01-0500 447 18.2 
LXML-PB01-0040 477 23.4 
LXML-PM01-0100 524 34.5 
LXM3-PD01-0350 671 22.1 
RLCU-440-720 735 28.9 
RLCU-440-880 890 49.9 
RLCU-440-970 995 44.6 

The ring was placed in front of the objective lens to avoid the light of LEDs reaching 
directly the camera. The inside of the front conus was wrinkled and black preventing the 
light coming from the illumination system and reflected back by the conus reaching the 
sensor (Figure 3.12 bottom).  

 
Figure 3.12 PCB with the LED ring and view of the LED ring mounted inside the cylinder 
(top) and view of the inside of the front conus (bottom). 

In addition, the system contained two rotating polarizers located in front of the LEDs 
and the lens, respectively, which allowed the removal of the specular reflection from the 
skin, if desired (Figure 3.13 top). The first polarizer was attached to the conus with some 
screws in order to avoid any rotation. On the other hand, the second polarizer was attached 
to a cylinder with a lever which could be rotated to acquire the spectral images at 3 
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different degrees of polarization: 90º (when the polarizers are crossed), 45º and 0º (when 
the polarizers are parallel) (Figure 3.13 bottom). 

 
Figure 3.13 Distribution of the multispectral head components (top): (1) camera, (2) 
objective lens, (3) LED ring, (4) polarizers; Polarizer attached to the conus (bottom left) 
and top view of the multispectral head with the lever allowing the degree of polarization 
to be changed (bottom right). 

When the polarizers are crossed (90º), the specular reflection of the skin is removed as 
only light which is backscattered from deeper layers with changed polarization is allowed 
to pass; on the contrary, when the polarizers are parallel (0º), the information obtained 
comes mostly from the first surface of the skin where the specular reflection takes place. It 
must be noted that specular reflection does not change the polarization of light (Figure 
3.14). This effect is more obvious at shorter wavelengths as they are usually strongly 
reflected by the skin. On the contrary, NIR wavelengths penetrate deeper into the tissue 
and therefore, they suffer from more scattering. 

The main criteria for choosing the polarizers was to find one with a good performance 
along the whole spectral range of the camera (400 nm to 1000 nm). Nevertheless, because 
no polarizer with a so broad range could be found in the market, a laminated film with a 
38% of transmission for unpolarised light from 400 nm to 700 nm was finally selected. 
Moreover, this flexible material helped in the final system assembly (Appx. A7).  

Another issue requiring special attention was the inclusion of a trigger in the handle of 
the multispectral head, which made the measurement acquisition easier. In a preliminary 
design only a button in the keyboard of the PC was available and, consequently, an 
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accidental movement from the physician could cause undesired translations of the 
multispectral head meaning that the spectral images of a lesion would be acquired at 
slightly different positions (therefore losing correlation between them).  

 
Figure 3.14 Spectral images taken at different wavelengths (414 nm, 524 nm, 735 nm and 
995 nm) with the polarizers parallel (left) and crossed (right). The removal of the specular 
reflection can be clearly seen, mainly at shorter wavelengths. The longer wavelengths do 
not show this effect so clearly as they penetrate deeper into the tissue. 

As formerly stated, a base was also designed and included in the system. It was 
manufactured by the CD6 and INEO Prototipos S.L., with the selective laser sintering 
(SLS) technique and Nylon 12 material. The base was used to make the measuring 
procedure more comfortable as the multispectral head was placed there between 
measurements. It has also a storing function of the power supply, the electronic boards and 
other parts of the system which are outside of the head. Moreover, it also incorporated a 
standard calibrated sample from the X Rite ColorChecker® Classic CCCR chart (Neutral 
6.5) (Appx. A.8), which could be sheltered from external agents like dust by locating a tab 
in the “IN” and “OUT” positions, thus avoiding any possible change of its reflectance 
characteristics (Figure 3.15).  

 
Figure 3.15 standard calibrated sample in the “IN” and “OUT” positions (left); and design 
of the interior of the base where the power supply, electronic boards, standard calibrated 
sample and other parts of the system are located (right). 
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This sample had a rather uniform spectral reflectance along the VIS and NIR ranges 
and was needed for the calibration of the system which was done daily before starting any 
measurement (see section 3.2.3.1) (Figure 3.16). For further information on the base the 
reader may refer to Appx. A.8. 

 
Figure 3.16 Reflectance of the “Neutral 6.5” from the X Rite ColorChecker® Classic CCCR 
chart measured with the spectrometer SPECTRO 320 attached to the integrating sphere 
ISP80 from Instrument Systems, GmbH (Appx. B.1 and B.1.2, respectively) [131]. 

3.2.2.  Acquisition software 

An acquisition software to control all the components included in the multispectral 
system was developed. First an extended version to work at the laboratory level, including 
internal operating procedures needed to perform the whole spectral acquisition and the 
calibration of the system, was built. Secondly, a simplified user version for its use in the 
hospitals was also developed. This task was done with the support of a technician of the 
CD6 and using the Borland Builder C++ programming software.  

3.2.2.1. Extended software 

Regarding the extended version of the software, it included internal operating 
procedures needed to perform the whole spectral acquisition of any lesion as well as 
calibrations to ensure the good operation of the system and the good quality of the images 
taken. 

Both the LED board and the camera were firstly programmed allowing to control for 
the emission of each LED cluster individually and the acquisition of the images, 
respectively. The next step was to synchronize them in order to acquire sequentially the 
spectral images at all wavelengths for the 3 degrees of polarization.  

To prevent overheating of the LEDs as a consequence of their close arrangement, which 
could cause a change in their emission, the sequential acquisition process of switching them 
on and off and acquiring the corresponding images was programmed avoiding the 
consecutive use of adjacent LEDs. The order was the following: 414 nm, 447 nm, 731 nm, 
477 nm, 890 nm, 524 nm, 995 nm and 671 nm. 
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As explained in the State of the art (Section 2.4), to calculate the reflectance it is 
completely necessary to acquire the reflectance image of a uniform calibrated reference (flat 
field correction) and the dark current image with the same camera settings as the sample 
measured, i. e., exposure time and gain.  

The uniform calibrated reference used for this purpose was the “Neutral 6.5” from the 
X Rite ColorChecker® Classic CCCR chart with known and almost constant spectral 
reflectance in the wavelength range used as previously described. This sample was included 
in the base of the multispectral system (see Figure 3.16) and was measured every day 
before any skin measurement to guarantee a good daily computation of the reflectance at 
all wavelengths along all LEDs lifecycle. This measurement procedure was called “daily 
calibration”.  

On the other hand, in order to properly remove the dark current noise, due to straylight 
(e. g., from internal backreflections of the LEDs from the conus) or non-uniformities of the 
pixels of the camera sensor, an image was also taken in a dark room avoiding any object 
in front of the multispectral system. This measurement, called as “dark calibration”, was 
done only once in the laboratory because of the technical difficulties of doing it in the 
hospital as it requires a dark environment and no objects close to the system. 

However, another key aspect for the acquisition along all wavelengths was to adapt the 
exposure time of the camera to be able to acquire an image of any lesion and its surrounding 
skin within the dynamic range and thus, avoiding saturated or noisy areas with digital 
values similar to those of the dark calibration. In fact, not all skin cancer lesions are 
necessarily pigmented [132], [133] and also very different reflectance values can be present 
inside the image of a unique lesion; therefore, a high variation can be registered in terms 
of digital levels within a single image, mainly if the surrounding skin of Caucasian 
individuals is considered.  

According to all this, an iterative algorithm to adapt the exposure time for each 
measured lesion was developed. It worked as follows: the exposure time chosen was that 
for which the average of the image acquired at each wavelength for a skin lesion was about 
half of the dynamic range of the camera. After performing several measurements of common 
moles of different sizes and from people with different skin pigmentation, the selected 
averaged value was of 1800 ± 200 digital levels. This value allowed not having many 
saturated images when specular reflection was not removed by means of the polarizers (i. 
e., they were parallel), while keeping good image quality when the polarizers were crossed. 

Nonetheless, the next issue to be considered was that the calibrated uniform sample 
“Neutral 6.5” had to be measured with the same exposure times in order to calculate the 
reflectance of the lesion at each wavelength. The problem of doing so was the time needed 
for all the acquisitions, which was unacceptable for the clinical practice due to the fact 
that after each lesion measurement the calibration was required lasting about 5 minutes.  

In order to solve this, the adapting algorithm was limited to 10 specific exposure times 
for each wavelength and degree of polarization, and only those were included in the daily 
calibration. These fixed exposure times were firstly calculated looking for the exposure time 
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needed to obtain an average image of the calibrated sample “Neutral 6.5” from 900 to 3600 
digital levels, with steps of 300, with a maximum error of ± 200 for each wavelength and 
polarization positions. And only one of them was later used to acquire the image of a 
particular skin lesion. 

In accordance, the daily calibration was finally defined as the spectral image acquisition 
using the 10 exposure times shown in Table 3.3 for the calibrated sample “Neutral 6.5”, 
which had to be done only once every day before any lesion acquisition. Similarly, the dark 
calibration was limited to the 10 exposure times selected. Both procedures took around 5 
minutes to be done. It is worth noting that the exposure times for the IR wavelengths were 
almost the same for the 3 different polarization levels, due to the fact that polarizers were 
not working properly above 700 nm. 

This adaptive algorithm allowed dark or light, big or small lesions from individuals with 
ivory to very dark brown skins to be measured. 

The operating protocol to acquire any particular skin lesion using the adaptive algorithm 
was then programmed as follows: firstly, the polarizers were crossed (90º). Secondly, the 
software searched for the optimal exposure time needed to obtain a digital level of 1800 ± 
200 for each wavelength. Thirdly, the exposure time found was compared with the 10 fixed 
ones available in Table 3.3. The exposure time chosen for each wavelength to perform the 
final measurement of the skin lesion was the closest one to the optimal exposure time 
previously found. The sequence was then repeated for the polarizers at 45º and when they 
were parallel (0º) using the corresponding exposure times shown in Table 3.5. By using 
this process, a measurement of one single skin lesion took around 40 seconds. 

A Guide User Interface (GUI) was created to allow both calibrations (daily and dark) 
as well as measurements of the skin lesions. Figure 3.17 shows the main screen of the 
extended version of the software, which was divided in two different areas: the turquoise 
box on the left, which was used for testing in the laboratory (not available for physicians), 
and the grey box on the right, corresponding to the user interface to conduct the clinical 
measurements at the clinical site. 

The commands inside the turquoise box allowed the good operation of the multispectral 
system and the software to be tested as well as the dark calibration to be done. Starting 
from the top, in the white box the real-time commands sent and received from the system 
are shown. The “Delay” box was used to include a time delay between switching a LED 
on and capturing the corresponding image. The final delay used was 2 seconds to ensure a 
constant emission of the LEDs minimizing registered variations among acquisitions (see 
section 3.2.3.1 for further information on this). When the “SEARCH Texp” checkbox was 
checked, the software looked for the specific exposure times shown in Table 3.3 after 
pressing the “CALIBRATION” button available below.  

The “DARK CALIBRATION” button allowed the dark calibration to be performed. 
The dark calibration images were stored in “.raw” format in an specific folder for only dark 
calibrations, and finally, the last button at the bottom (“Apaga Leds”) was used to switch 
off all LEDs to avoid them remain switched on erroneously. 



3. EXPERIMENTAL SYSTEM 

44 
 

The commands inside the grey box are explained in the next section as they were part 
of the user interface. 

Table 3.3 Exposure times (in milliseconds) needed to obtain the averaged digital levels 
(DL) from 900 to 3600 (± 200) in steps of 300 for the 3 degrees of polarization and the 
uniform calibrated sample “Neutral 6.5”. 

Polarizers 
Averaged 

DL 
414 
nm 

447 
nm 

477 
nm 

524 
nm 

671 
nm 

735 
nm 

890 
nm 

995 
nm 

90º 
(crossed) 

900 346 36 37 58 73 214 113 516 
1200 466 48 50 78 98 288 153 700 
1500 587 61 63 99 123 364 193 885 
1800 713 73 76 119 149 440 233 1070 
2100 836 87 91 139 174 516 274 1260 
2400 984 98 102 160 200 593 315 1492 
2700 1112 111 115 184 225 671 364 1675 
3000 1237 123 128 201 251 748 406 1874 
3300 1365 136 141 225 276 826 448 2112 
3600 1498 150 154 242 302 903 490 2425 

45º 900 287 28 30 47 58 171 15 541 
1200 386 38 40 63 77 231 155 727 
1500 485 48 50 79 97 291 195 913 
1800 585 58 61 96 118 350 235 1131 
2100 688 68 71 112 137 410 275 1292 
2400 789 78 83 129 158 470 323 1521 
2700 907 89 92 145 178 530 364 1706 
3000 1010 99 104 162 198 602 407 1902 
3300 1115 109 113 178 218 654 448 2139 
3600 1215 119 124 195 239 724 490 2455 

0º 
(parallel) 

900 255 25 26 42 50 148 115 546 
1200 343 34 35 56 68 200 155 732 
1500 430 42 46 71 86 251 195 919 
1800 518 52 54 86 104 303 235 1136 
2100 622 60 65 101 121 354 274 1295 
2400 715 69 74 118 139 414 315 1520 
2700 806 79 82 133 157 468 363 1704 
3000 895 88 91 145 175 521 404 1934 
3300 987 96 102 162 193 573 445 2143 
3600 1077 105 110 175 210 626 487 2443 
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Figure 3.17 Screenshot of the extended software. The turquoise box used for testing is 
shown on the left while the grey box available for physicians is on the right side.  

3.2.2.2. User interface 

A simplified version of the software was delivered to physicians with only the grey box 
of the extended version available. In this version, physicians could only interact with the 
following buttons: “MEASUREMENT” to proceed with a lesion acquisition (or the daily 
calibration if it was the first measurement of the day), “STOP PROCESS” to stop a 
measurement or the calibration at any moment, and “EXIT PROGRAM” to exit the 
software. Furthermore, the checkbox “LIVE” was added to see in real time the camera’s 
video signal to make the placement of the multispectral system on the lesion easier. 

Each time that the “MEASUREMENT” button was pressed, the software checked if 
the daily calibration of that day was done before or not. If not, a pop-up screen with the 
message “DEVICE MUST BE CALIBRATED” appeared (Figure 3.18) and the daily 
calibration was carried out. At the end of this calibration, the spectral images obtained 
were stored in “.raw” format in a specific folder for the daily calibrations. 

After the daily calibration, the “PATIENT SELECTION” screen appeared (Figure 
3.19). Pressing the “NEW” button, it was possible to insert the patient identification 
(PATIENT ID), which was an internal numerical code used in the hospitals for this project 
to preserve the patient’s information, and the approximate location of the LESION on the 
patient’s body (e. g., arm). The date was taken automatically from the Windows® OS. 
Then, the software checked if this information already existed. If not, a new window to 
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confirm the information entered was shown; otherwise, a warning message to overwrite the 
data appeared. The spectral images were stored in “.raw” format in the computer hard 
disk in a specific folder for the lesions measured.  

 
Figure 3.18 Pop-up message that appeared if the calibration was not already done. 

 
Figure 3.19 “PATIENT SELECTION” screen (top), confirmation screen (centre) and pop-
up warning message (bottom). 

Several pop-up windows were also enable to remind physicians to perform some actions 
during the whole process: when the calibrated sample was needed in the “IN” or “OUT” 
positions of the base for the daily calibration, and when the polarizers needed to be crossed 
(90º), at 45º or parallel (0º) for the daily calibration and for a lesion measurement. 

Finally, it is also worth noting that the software included several automatic verifications 
to ensure its correct operation, and also a security function to ensure that the LEDs could 
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only be switched on when a measurement was being performed. Further information of the 
software can be found in the user manual of the system in Appx. C. 

3.2.3. Validation of the system’s performance 

Once the multispectral system was built several tests were carried out to ensure its 
correct operation. They are described next. For the sake of simplicity only the results of 
the Barcelona system are reported here as very similar performances were found for both 
systems (Barcelona and Modena). 

3.2.3.1. Temporal behaviour of the LEDs emission 

The changes over time of the emission of the LEDs were analysed by measuring the 
radiance corresponding to each wavelength at different forward currents. This was achieved 
by using an International Light Radiometer (IL 1700) with the input optics R #415 and 
the filter F #16702 (Appx. B.2). As an example, Figure 3.20 shows the radiance over time 
of the LEDs emitting at 414 nm at different current values (100, 250 and 500 mA). As it 
can be observed, the stability of LEDs improves when the current applied is lower. 
Furthermore, it is also shown that LEDs need at least 2 seconds to stabilize their emission.  

 
Figure 3.20 Radiance (W/sr.m2) of the 414 nm LEDs at different forward currents 
measured every second over 10 seconds. 

The same behaviour was observed for the rest of wavelengths (LEDs). Accordingly, 
Table 3.4 shows the final currents used for each wavelength, which were selected taking 
into account the compromise between the LEDs stability and also the exposure time needed 
to make use of the whole dynamic range (0-4095) of the camera for each wavelength.  
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Table 3.4 Forward current used for each wavelength (expressed in mA). 

414 nm 447 nm 477 nm 524 nm 671 nm 735 nm 890 nm 995 
100 200 200 200 200 200 200 150 

Furthermore, a delay was also implemented each time any LED was switched on to 
avoid measuring in the peak of emission. A 2-seconds time delay was found to be suitable 
for all wavelengths. 

3.2.3.2. Linearity, uniformity and repeatibility of the system 

Three additional characteristics were also measured to ensure the good performance of 
the multispectral system as a whole: the linear response of the camera for each wavelength, 
the uniformity of the LEDs emission and the repeatability of the system acquiring images.  

In order to test the linearity of the camera response, spectral images of the uniform 
sample “Neutral 6.5” from the X Rite ColorChecker® Classic CCCR chart were taken at 
different exposure times and their averaged digital levels were computed for all 
wavelengths.  

As it is shown in Figure 3.21, the response of the camera can be considered almost linear 
at all wavelengths as only small differences between the fitting and the response were 
reported. The small mismatches might be probably caused due to small instabilities of the 
LEDs emission rather than the camera response itself. Additionally, it is worth noting the 
lower sensitivity of the camera sensor at 414 nm and at NIR wavelengths, especially 995 
nm, which implies the use of longer exposure times. 

 
Figure 3.21 Digital levels vs. exposure time at different wavelengths to test for the linearity 
of the camera response. 

Regarding the uniformity of the LEDs emission, the same images corresponding the 
uniform sample (“Neutral 6.5”) were characterized quantitatively by means of the 
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statistical descriptor SNUP (Spatial Non-Uniformity Percentage) [43], which is defined as 
follows: 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃 = 100 ×
𝜎𝜎(𝑥𝑥�𝐷𝐷𝐷𝐷)

𝑥𝑥�𝐷𝐷𝐷𝐷
 , (3.1) 

where 𝑥𝑥�𝐷𝐷𝐷𝐷 stands for the mean digital level of all the pixels in the image and 𝜎𝜎(𝑥𝑥�𝐷𝐷𝐷𝐷) is the 
standard deviation. The exposure time used was the one needed to obtain images with a 
mean digital level of 1800 ± 200 (in the middle of the dynamic range approximately). 

Figure 3.22 shows the images acquired for each wavelength with their corresponding 
SNUP values. In all cases, the SNUP values were between 2.5% and 3.5%, so a good 
uniformity was achieved by means of the 4 LED units scheme used in the prototype. 

 
Figure 3.22 Spectral images of the uniform sample “Neutral 6.5” from the X Rite 
ColorChecker® Classic CCCR chart and their corresponding SNUP values. 

Finally, the repeatability of the system was tested by comparing the averaged values of 
9 images for each wavelength taken along 9 different days (mid-term repeatability) as well 
as 9 measurements taken consecutively (short-term repeatability) [134]. All images were 
captured with the same exposure time in order to obtain a mean digital level of 1800 ± 
200 approximately. The uniform sample used was again the “Neutral 6.5” from the X Rite 
ColorChecker® Classic CCCR chart.  

Figure 3.23 depicts the averaged digital levels obtained for the 9 acquisitions along the 
9 different consecutive days; Table 3.5 shows the percentage of variation in terms of digital 
levels calculated similarly to the SNUP formerly used to account for the uniformity, but 
considering the readings done over time instead in this case. As it can be observed, the 
temporal repeatability is always below 2%, so that the system can be considered to have a 
good mid-term repeatability.  
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Figure 3.23 Mean digital levels of the 9 spectral images obtained along 9 different days for 
each wavelength. 

Table 3.5 Percentage of variation in terms of digital levels of the 9 images acquired in 9 
different days for each wavelength. 

414 nm 447 nm 477 nm 524 nm 671 nm 735 nm 890 nm 995 
1.70% 0.37% 0.27% 0.42% 1.00% 0.84% 1.60% 1.87% 

Similarly, the short-term repeatability results are depicted in Figure 3.24 and Table 3.6. 
As it can be seen, the percentages were lower than 0.5% in this case.  

 
Figure 3.24 Mean digital levels of the 9 spectral images acquired consecutively for each 
wavelength. 
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Table 3.6 Percentage of variation in terms of digital levels of the 9 images acquired 
consecutively for each wavelength. 

414 nm 447 nm 477 nm 524 nm 671 nm 735 nm 890 nm 995 
0.40% 0.08% 0.06% 0.05% 0.22% 0.18% 0.23% 0.47% 

Due to the good results achieved in terms of repeatability, images were acquired only 
once and no averaging was performed in the final measurements. 

3.2.4.  Safety issues 

In order to proceed with the Ethical Committee approval and to launch the systems in 
both hospitals, irradiance and radiance measurements were done according to the standard 
UNE-EN 62471 “Photobiological safety of lamps and lamp systems”[135], to ensure that 
the multispectral system provided light emissions under the limits established by this 
regulation and to guarantee that patients could not be accidentally damaged under any 
circumstance. 

In this standard, the limits of emission for the skin and corneal surface in terms of 
irradiance are defined. Moreover, the limits of emission regarding the light reaching the 
retina are also given in terms of radiance. 

Regarding the irradiance measurements, the following quantities were calculated:  

- Exposure limit of thermal risk of the skin (380-3000 nm): EH 
- Exposure limit of actinic UV for the skin and the eye (200-400 nm): Es 
- Exposure limit of UV-A for the eye (315-400 nm): EUVA 
- Exposure limit for the risk of blue light of small sources on the retina (300-700 

nm): Es 
- Exposure limit of IR for the eye (780-3000 nm): EIR 

The former exposure limits were calculated according to the equations provided by the 
standard, which includes weighting functions along the different spectral ranges to evaluate 
all the photobiological risks.  

In order to compute these limits, the irradiance for all wavelengths included in the 
multispectral head were measured at the same position as the skin was located in real 
measurements. The exposure time used for each wavelength was defined as the sum of the 
highest exposure time at the 3 polarization positions, simulating the largest possible 
exposure time.  

Measurements were taken with a commercial spectroradiometer Instrument Systems, 
Spectro 320 (D) Release, serial number nº 30932004 with the EOP-146 accessory (Appx. 
B.1 and B.1.1, respectively), which has an uncertainty smaller than 4% in terms of the 
irradiance according to the specifications of the instrument. Furthermore, the instrument 
has traceability with standards of the National Institute of Standards and Technology 
(NIST) and the Physikalisch-Technische Bundesanstalt (PTB). Table 3.7 contains the 
equations and the different emission limits in terms of irradiance which were calculated for 
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the multispectral head. As it can be seen, all irradiance values obtained for all the spectral 
bands were much lower than the emission limits established by the regulation.  

Table 3.7 Equations, irradiance limits and irradiance measured according to UNE-EN 
62471.   

Risk Name Equation 
Irradiance  

limit 
(W·m-2·nm-1) 

Irradiance 
measured 

(W·m-2·nm-1) 
Thermal for 
skin 

 
 
 
 
 
 
Where: 
Eλ = spectral irradiance 
[W·m-2·nm-1] 
Δλ = wavelength step [nm] 
tmax = maximum exposure 
time [s] 

414 nm: 
5.81E+3 

414 nm: 
5.51 

447 nm: 
1.08E+4 

447 nm: 
34.55 

477 nm: 
9.37E+3 

477 nm: 
34.59 

524 nm: 
9.16E+3 

524 nm: 
18.04 

671 nm: 
9.51E+3 

671 nm: 
29.00 

735 nm: 
9.00E+3 

735 nm: 
6.42 

890 nm: 
8.38E+3 

890 nm: 
14.31 

995 nm: 
7.54E+3 

995 nm: 
8.12 

Actinic UV 
exposition for 
the skin and 
the eye 

 
 
 
 
 
Where: 
Eλ = spectral irradiance 
[W·m-2·nm-1] 
SUV(λ) = UV actinic risk 
weighting function  
Δλ = wavelength step [nm] 
tmax = maximum exposure 
time [s] 

414 nm: 
5.77 

447 nm: 
13.12 

414 nm: 
9.42E-6 
447 nm: 
2.16E-4 

 

𝑅𝑅𝑠𝑠 =  �𝑅𝑅𝜆𝜆

450

200

· 𝑆𝑆(𝛥𝛥) ·  𝛥𝛥𝛥𝛥  

𝑅𝑅𝑆𝑆 𝑚𝑚𝑎𝑎𝑥𝑥 =  
30
𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥

 

𝑅𝑅𝐻𝐻 =  � 𝑅𝑅𝜆𝜆

3000

380

· 𝛥𝛥𝛥𝛥  

𝑅𝑅𝐻𝐻 𝑚𝑚𝑎𝑎𝑥𝑥 =  
20000
𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥0,75 
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UV-A for the 
eye 

 
 
 
 
 
Where: 
Eλ =Spectral Irradiance 
[W·m-2·nm-1] 
Δλ = wavelength step [nm] 
tmax = maximum exposure 
time [s] 

414 nm: 
1.92E+3 
447 nm: 
4.38E+3 

414 nm: 
0.28 

447 nm: 
0.25 

Blue Light of 
small Sources 

 
 
 
 
 
 
Where: 
Eλ = spectral irradiance 
[W·m-2·nm-1] 
B(λ) = blue light risk 
weighting function  
Δλ = wavelength step [nm] 
tmax = maximum exposure 
time [s] 

414 nm: 
19.21 

447 nm: 
43.82 

477 nm: 
36.44 

524 nm: 
35.16 

671 nm: 
37.18 

735 nm: 
34.52 

890 nm: 
31.44 

995 nm: 
27.25 

414 nm: 
3.50 

447 nm: 
15.99 

477 nm: 
15.99 

524 nm: 
0.81 

671 nm: 
0.08 

735 nm: 
0.03 

890 nm: 
0.03 

995 nm: 
0.03 

Infrared for 
the eye 

 
 
 
 
 
Where: 
Eλ = spectral irradiance 
[W·m-2·nm-1] 
Δλ = wavelength step 
[nm] 
tmax = maximum exposure 
time [s] 

414 nm: 
5.23E+3 

414 nm: 
0.12 

447 nm: 
9.69E+3 

447 nm: 
0.10 

477 nm: 
8.43E+3 

477 nm: 
0.13 

524 nm: 
8.25E+3 

524 nm: 
0.14 

671 nm: 
8.56E+3 

671 nm: 
0.16 

735 nm: 
8.10E+3 

735 nm: 
0.18 

890 nm: 
7.54E+3 

890 nm: 
14.01 

995 nm: 
6.79E+3  

995 nm: 
7.84 

𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈 =  �𝑅𝑅𝜆𝜆

400

315

· 𝛥𝛥𝛥𝛥  

𝑅𝑅𝑈𝑈𝑈𝑈𝑈𝑈 𝑚𝑚𝑎𝑎𝑥𝑥 =  
10000
𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥

 

𝑅𝑅𝐼𝐼𝐼𝐼 =  � 𝑅𝑅𝜆𝜆

3000

780

· 𝛥𝛥𝛥𝛥  

𝑅𝑅𝐼𝐼𝐼𝐼 𝑚𝑚𝑎𝑎𝑥𝑥 =  
18000
𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥0,75 

 𝑅𝑅𝐵𝐵 =  �𝑅𝑅𝜆𝜆

700

300

· 𝐵𝐵(𝛥𝛥) ·  𝛥𝛥𝛥𝛥  

 𝑅𝑅𝐵𝐵 𝑚𝑚𝑎𝑎𝑥𝑥 =  
100
𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥
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On the other hand, regarding the radiance measurements, the following quantities were 
also calculated:  

- Retinal exposure limit for the risk of blue light (300-700 nm): LB 
- Thermal retinal exposure limit (380-1400 nm): LR 
- Thermal retinal exposure limit, weak visual stimulus (780-3000 nm): LIR 

In order to compute these limits, the radiance for all wavelengths were measured by 
placing a radiance sensor at 50 cm of the multispectral head. The region of emission of the 
lamp was of 26 mm in diameter. Therefore, the angle α (source size) considered in the 
calculations was of 0.052 rad. The exposure time used for each wavelength was defined as 
the sum of the highest exposure time at the 3 polarization positions, simulating the largest 
possible exposure time. 

The measurements were taken with the commercial spectroradiometer Instrument 
Systems, Spectro 320 (D) Release, serial number nº 30932004 with the TOP-100 accessory 
(Appx. B.1 and B.1.3, respectively), which has an uncertainty smaller than 5% in terms of 
the radiance according to the specifications of the instrument.  

Table 3.8 depicts the equations and the different emission limits in terms of radiance. 
As it can be seen, all radiance values obtained for all the spectral bands were several orders 
of magnitude lower than the emission limits established by the regulation. 

Table 3.8 Equations, radiance limits and radiance measured according to UNE-EN 62471. 

Risk Name Equation 
Radiance 

Limit 
(W·m-2·nm-1) 

Radiance 
measured 

(W·m-2·nm-1) 
Blue light for 
retina 

 
 
 
 
 
Where: 
Lλ = spectral radiance 
[W·m-2·sr-1nm-1] 
B(λ) = blue light risk 
weighting function  
Δλ = wavelength step 
[nm] 
tmax = maximum exposure 
time [s] 

 
 

414 nm: 
1.92E+5 

414 nm: 
6.38E-4 

447 nm: 
4.38E+5 

447 nm: 
1.27E-2 

477 nm: 
3.64E+5 

477 nm: 
5.82E-3 

524 nm: 
3.53E+5 

524 nm: 
3.41E-4 

671 nm: 
3.71E+5 

671 nm: 
3.91E-5 

735 nm: 
3.45E+5 

735 nm: 
2.81E-5 

890 nm: 
3.14E+5 

890 nm: 
3.27E-5 

995 nm: 
2.72E+5 

995 nm: 
3.21E-5 

 

𝐷𝐷𝐵𝐵 =  �𝐷𝐷𝜆𝜆

700

300

· 𝐵𝐵(𝛥𝛥) ·  𝛥𝛥𝛥𝛥  

𝐷𝐷𝐵𝐵 𝑚𝑚𝑎𝑎𝑥𝑥 =  
1000000
𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥
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Thermal for 
retina 

 
 
 
 
 
 
 
 
Where: 
Lλ = spectral radiance 
[W·m-2·sr-1nm-1] 
R(λ) = burn risk weighting 
function  
Δλ = wavelength step [nm] 
tmax = maximum exposure 
time [s] 
 

414 nm: 
6.73E+5 

414 nm: 
6.90E-3 

447 nm: 
7.82E+5 

447 nm: 
1.27E-1 

477 nm: 
7.47E+5 

477 nm: 
5.88E-2 

524 nm: 
7.41E+5 

524 nm: 
8.04E-3 

671 nm: 
7.50E+5 

671 nm: 
1.30E-2 

735 nm: 
7.37E+5 

735 nm: 
3.73E-3 

890 nm: 
7.20E+5 

890 nm: 
2.99E-3 

995 nm: 
6.95E+5 

995 nm: 
1.87E-3 

Thermal for 
retina 
(Weak]visual 
stimulus) 

 
 
 
 
 
 
 
Where: 
Lλ = spectral radiance 
[W·m-2·sr-1nm-1] 
R(λ) = burn risk weighting 
function  
Δλ = wavelength step [nm] 
tmax = maximum exposure 
time [s] 
 

414 nm: 
1.15E+5 

414 nm: 
4.04E-4 

447 nm: 
1.15E+5 

447 nm: 
3.19E-4 

477 nm: 
1.15E+5 

477 nm: 
1.10E-4 

524 nm: 
1.15E+5 

524 nm: 
2.80E-5 

671 nm: 
1.15E+5 

671 nm: 
7.22E-4 

735 nm: 
1.15E+5 

735 nm: 
8.05E-4 

890 nm: 
1.15E+5 

890 nm: 
2.44E-3 

995 nm: 
1.15E+5 

995 nm: 
1.32E-3 

 

𝐷𝐷𝐼𝐼𝐼𝐼 =  � 𝐷𝐷𝜆𝜆

1400

780

· 𝑅𝑅(𝛥𝛥) · 𝛥𝛥𝛥𝛥  

𝐷𝐷𝐼𝐼𝑅𝑅 𝑚𝑚𝑎𝑎𝑥𝑥 =  
6000
𝛼𝛼

 

 α =   0.052 (𝑎𝑎𝑎𝑎𝑟𝑟) 

𝐷𝐷𝐼𝐼 =  � 𝐷𝐷𝜆𝜆

1400

380

· 𝑅𝑅(𝛥𝛥) · 𝛥𝛥𝛥𝛥  

𝐷𝐷𝐼𝐼 𝑚𝑚𝑎𝑎𝑥𝑥 =  
50000

𝛼𝛼 ·  𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥0,25 

 α =   0.052 (𝑎𝑎𝑎𝑎𝑟𝑟) 
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4. Image processing and analysis 

In this chapter, the software developed for the spectral image processing and 
corresponding analysis is presented. Firstly, a software devoted to compute spectral and 
colorimetric features from the spectral images (spectral datacube) acquired with the 
multispectral system is described, including also the segmentation algorithm used to extract 
the former information of the lesion from the whole image. Another software used to 
operate with the spectral images to enhance any particular spectral feature potentially 
different in healthy and malignant tissue is also explained. In the last section, the 
parameters computed for each lesion measured in both hospitals are detailed. 

4.1. From spectral to reflectance and colour images 

A multispectral image system allows a spectral datacube of images to be obtained. Each 
image in this cube corresponds to the digital level taken in a specific spectral range, so that 
the extraction of spectral and colorimetric information is necessary. To achieve this 
purpose, a Graphical User Interface (GUI) was programmed using the Matlab® R2015a 
software (Figure 4.1) by the author of this thesis. 

 
Figure 4.1 Graphical User Interface (GUI) to compute spectral and colorimetric images. 
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In order to calculate the reflectance images from the spectral images taken, an automatic 
algorithm was created. Besides the spectral images of the lesion itself, the daily and dark 
calibrations acquired were also needed to compute the reflectance cube.  

Specifically, from the spectral images of the 8 spectral bands available in the 
multispectral system, 8 reflectance and 8 absorbance images were computed for a given 
wavelength 𝛥𝛥𝐺𝐺 (i. e., 414 nm, 447 nm, 731 nm, 477 nm, 890 nm, 524 nm, 995 nm and 671 
nm) (Figure 4.2) as follows: 

 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝜆𝜆 ·  
𝐷𝐷𝐷𝐷𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗) − 𝐷𝐷𝐷𝐷0𝜆𝜆𝜆𝜆(𝑖𝑖, 𝑗𝑗)

𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗) − 𝐷𝐷𝐷𝐷0𝜆𝜆𝜆𝜆(𝑖𝑖, 𝑗𝑗)
 , 

 

(4.1) 

 𝐼𝐼𝑏𝑏𝐴𝐴𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗) = −log (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗)) , (4.2) 

where  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗) is the reflectance, 𝐷𝐷𝐷𝐷𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗) is the digital level of the acquired raw image 
of the lesion, 𝐷𝐷𝐷𝐷0𝜆𝜆𝜆𝜆(𝑖𝑖, 𝑗𝑗) is the digital level of the dark calibration image, 𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖, 𝑗𝑗) is the 
digital level of the calibrated sample “Neutral 6.5” available in the daily calibration, 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝜆𝜆𝜆𝜆 is the calibrated reflectance of the same sample measured with the spectrometer 
SPECTRO 320 and 𝐼𝐼𝑏𝑏𝐴𝐴𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗) is the absorbance.  

 
Figure 4.2 Reflectance images at different wavelengths (414 nm, 447 nm, 731 nm, 477 nm, 
890 nm, 524 nm, 995 nm and 671 nm) and degrees of polarization (0º, 45º, 90º) for a 
common nevus. 

The GUI also allowed computing a pseudo-coloured image from the spline interpolation 
of the reflectance images from 415 nm to 700 nm with steps of 10 nm (Figure 4.3 left). 
Furthermore, averaged reflectance curves and colour differences between two selected areas 
were also computed. It is worth noting that colour differences were only approximate as 
they were computed from partial spectral information acquired through the 8 spectral 
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bands of the system and the posterior interpolation rather than using precise measurements 
taken every 5 nm or 10 nm as recommended by the CIE. On the other hand, the selected 
areas could be a region of interest (ROI) of 3x3 pixels (“Spot”) or, alternatively, a squared 
area selected on the image (“Area”) (Figure 4.3 right). 

 
Figure 4.3 Pseudo-coloured image (left) and averaged reflectance curves from the ROIs 
selected (right). In the reflectance plot the solid line corresponds to the crossed polarizers 
(90º), the empty circles to 45º and the filled circles to 0º (parallel polarizers). 

On the other hand, it allowed to compute images in terms of CIELAB colour 
coordinates, i. e., L*, a*, b*, C*ab and hab (Figure 4.4), although they are called pseudo-
CIELAB colour coordinates in this thesis because they are only approximate as described 
above. For the calculation of the pseudo-CIELAB values, it was possible to select the CIE 
standard illuminant (C, D65, and D50 as daylight simulators and A as tungsten-filament 
lightning) and the standard observer (1931 (2º) or 1964 (10º)). 

In order to check the proper operation of the software and the calculation of the 
reflectance, two skins from different people were measured with the multispectral system 
and also with the spectrometer SPECTRO 320 attached to the integrating sphere ISP80 
from Instrument Systems, GmbH (Appx. B.1 and B.1.2, respectively) (Figure 4.5 top); the 
reflectance obtained from the multispectral system using the crossed polarizers was used 
for the comparison. Furthermore, these results were also converted to absorbance values 
as -log(reflectance) (Figure 4.5 bottom). 

As it can be observed, the reflectances obtained from the multispectral head are similar 
to those measured by the spectrometer, although slightly larger differences are reported at 
wavelengths above 700 nm. This can be attributed to the fact that even if we use the 
crossed polarizers and quite diffuse illumination (LEDs and conus) we do not reach the 
levels of diffusion to resemble the geometry of the integrating sphere. One must take into 
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account that above this wavelength the operation of the polarizers is not optimal. On the 
other hand, the colour differences obtained between both systems were, in terms of ΔE 
(CIELAB), of 6.4 and 5.0 for Skin1 and Skin2, respectively. Even they are not very small, 
they can be considered still acceptable taking into account the tolerances often used in the 
industry when dealing with colour differences: differences below 3 are considered to be 
hardly perceptible and therefore small, from 3 to 6 acceptable (normal tolerance) and above 
6 noticeable (large tolerance). The colour differences obtained in this work are acceptable 
if one considers the smooth reflectance or absorbance profiles linked to skin samples and 
lesions as already reported by other authors (see Figure 2.19). In this figure, the optical 
density of melanomas, nevi and healthy skin samples reported by Diebele et al. are shown. 
It can be seen that the curves are pretty similar to the absorbance ones obtained with the 
multispectral system developed in this thesis (Figure 4.5 (bottom)). 

 
Figure 4.4 Images in terms of pseudo-CIELAB colour coordinates: L*, a*, b*, C*ab and hab 

for a common nevus. 

The implemented software also allowed performing the segmentation of the lesion to 
analyse its spectral and colour features independently from the surrounding skin. The 
algorithm used consisted of searching the digital level threshold to establish which pixels 
belonged to the patient’s lesion and which ones to the surrounding healthy skin. To do so, 
the reflectance image used was the bluest one (414 nm), due to the fact that melanomas 
are pigmented lesions and the melanin chromophore has a stronger absorbance in the blue 
range of the electromagnetic spectrum; thus, this image provides information from the most 
superficial layers of the skin and allows for a better discrimination between the lesion and 
the surrounding healthy skin. As it can be seen in Figure 4.6 (top), the lesion seems to be 
smaller at 671 nm because of the lower absorbance of the melanin at this wavelength.  
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Figure 4.5 Reflectance (top) and absorbance curves (bottom) obtained for two skins from 
different people with the multispectral system with crossed polarizers and the spectrometer 
SPECTRO 320. 

The digital level threshold needed for the segmentation of the lesion was calculated with 
the Otsu method, which consists of maximizing the between-class variance of the lesion 
and the skin digital level of the pixel values, based on the intensity of the histogram [136]. 
Then, a binary image was created in which all pixels with a lower value than that of the 
threshold had a digital value of 0 (pixels inside the lesion); otherwise the value was 1 (pixels 
of the surrounding healthy skin). Because of the inhomogeneity of the lesions, some pixels 
inside the lesion were classified erroneously as skin pixels, and vice versa. 

To solve this, the algorithm worked as follows: firstly, the binary image was transposed, 
being 0 for the pixels of the skin and 1 for the pixels of the lesion; secondly, the lesion was 
considered as that with the biggest group of pixels with a value of 1, while the rest of 
groups with a value 1 but less than 15.000 pixels were considered to belong to the skin, so, 
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their value was automatically changed to 0; finally, the black areas inside the lesion (with 
a value of 0) were converted to a value of 1, obtaining the mask to segment the lesion.  

 
Figure 4.6 Reflectance images at 414 nm, 477 nm and 671 nm for two different lesions; the 
lesion on the top is a clear example of a highly pigmented lesion. Higher melanin absorbance 
at shorter wavelengths make the lesion to appear smaller at 671 nm; in this case, the image 
at 414 nm was used for the segmentation. In the one in the bottom, the contrast of the 
lesion and the surrounding skin at 414 nm is not enough as it is not as pigmented as the 
first one, so the next spectral image at 477 nm was used for the segmentation. 

The Otsu method is as global thresholding which can only be used in lesions which are 
clearly different from the skin. In consequence, a good segmentation was difficult for those 
lesions that were not homogeneous at all. In such cases, the reflectance image was divided 
into 4 different subimages, allowing different thresholds adapted to the different areas of 
the lesion to be calculated (Figure 4.7). Moreover, in order to check if the lesion was well-
segmented, its image appeared at the GUI software window. Figure 4.8 shows the flow 
chart of the segmentation process used. 

Once the segmentation was done, the software automatically computed several images 
in terms of pseudo-CIELAB colour differences (ΔE) between the segmented lesion and the 
averaged surrounding skin, the goodness-of-fit coefficient (GFC), and the Individual 
Typology Angle (ITA) (Figure 4.9). 

Besides spectral and colour information, several physical characteristics of the lesion 
could be also computed with the developed GUI: the dimensions in the X and Y axis, the 
area and the perimeter, which were obtained in terms of number of pixels and were 
converted to millimetres using a conversion factor; and the eccentricity, computed as the 
ratio of the distance between the foci of the ellipse which envelops the lesion and its major 
axis lengths; 0 means that the lesion is a circle and 1 a line segment. However, these 



4. IMAGE PROCESSING AND ANALYSIS 

63 
 

parameters were not finally used due to fact that the 3D system also included in the 
multiphotonic platform allowed this information to be obtained in a more precise way 
(Figure 4.10). 

 
Figure 4.7 Top: From left to right, a non-homogenous lesion segmented with only one 
threshold and the same lesion segmented with 4 different thresholds, respectively. Bottom: 
steps of the segmentation algorithm. The upper images correspond to the implementation 
of the Otsu method for each subimage. The images at the bottom are (from left to right): 
transposition, removal of pixel groups of the lesion with less than 15.000 pixels, fill in the 
black areas to obtain the final mask, and finally, the segmented lesion. 

Besides spectral and colour information computed using the former software, a second 
GUI with Matlab® was also programmed in order to operate with the reflectance images 
at different wavelengths, trying to enhance any particular spectral feature potentially 
different in healthy and malignant tissue that might be useful in discriminating among 
different types of skin lesions. The idea behind this was proposing easy calculations to 
resemble distribution maps of chromophores as other authors have already proposed. For 
instance, bilirubin (B), erythema (E), and the parameter to differentiate melanomas from 
nevi (p) suggested by Diebele et al. [103] and Bekina et al. [110] (see section 2.7.1 and 4.2 
for more information on these parameters). 
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Figure 4.8 Flow chart of the segmentation process. 

  
Figure 4.9 Images in terms of pseudo-CIELAB colour differences (∆E), goodness-of-fit 
coefficient (GFC) and Individual Typology Angle (ITA) between the lesion and the 
averaged surrounding skin for a common nevus (refer to figure 4.4. for the images in terms 
of pseudo-CIELAB colour coordinates of the same lesion). 

 
Figure 4.10 Physical parameters calculated after the segmentation of the lesion. 
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As it can be seen in Figure 4.11, the 24 reflectance images (8 corresponding to each 
degree of polarization) were shown simultaneously on the screen with an identification 
number at the left upper corner.  

 
Figure 4.11 Graphical User Interface (GUI) using Matlab® software to operate with 
reflectance images. 

In order to perform any math operation within reflectance images, a “calculator” was 
implemented with the following buttons: add (+), subtract (-), multiply (*), divide (/), 
parenthesis “()” and clear (C). To insert the name of a reflectance image in the calculator 
command box, only a click on the desired image was necessary and, after sending the 
formula, a new window with the resulting image was opened.  

4.2. Parameters analysed: spectral, colour and textural information 

Based on a preliminary analysis of a small group of lesions with both softwares presented 
and also taking into account the existing literature, three different groups of parameters 
were computed from the reflectance images of the lesions in order to be considered for 
further discrimination between benign and malignant ones.  

The first group consisted of pixel by pixel spline interpolation values (from 415 nm to 
995 nm with steps of 10 nm) of the 8 previous reflectance and absorbance images, in order 
to obtain more accurate information. Additionally, differences between the average of a 
region of interest (ROI) of healthy surrounding skin, which was selected manually to avoid 
other small lesions and hairs, and the segmented lesion itself were also computed in terms 
of reflectance and absorbance to prevent the patient’s skin influencing the results.  

Additional images containing a second group of parameters were computed to look for 
colour features of the skin lesions; pseudo-CIELAB colour coordinates obtained from the 
interpolation of the reflectance images from the wavelengths of the system, as well as the 
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ITA parameter were used for this purpose. Additionally, more complex parameters based 
on colour differences between each pixel of the lesion and the averaged colour of the whole 
lesion were also considered, as well as colour differences between each pixel of the lesion 
and the averaged colour of the surrounding healthy skin, including the pseudo-CIELAB 
∆E colour difference and the GFC. The interpolated reflectance values, the D65 illuminant, 
and the CIE 2º standard observer were used to compute the colour data in all cases [134], 
[137]. 

The third group of parameters consisted of what we called empirical parameters, i. e., 
parameters empirically computed by operating with reflectance values at different 
wavelengths to enhance any particular spectral feature potentially different in healthy and 
malignant tissue that might be useful in discriminating among different types of skin 
lesions, as previously described: 

 𝑃𝑃𝑎𝑎𝑎𝑎𝑚𝑚(𝑖𝑖, 𝑗𝑗) = 𝑅𝑅�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗)� , (4.3) 

where 𝑃𝑃𝑎𝑎𝑎𝑎𝑚𝑚(𝑖𝑖, 𝑗𝑗) is a particular parameter and 𝑅𝑅�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗)� is a function of the 
reflectance images computed from several wavelengths (they can be added, subtracted, 
multiplied etc.) in order to highlight subtle differences among lesions of different etiology. 

For instance, Diebele et al, [103] and Bekina et al, [110] proposed the following 
parameters to account for erythema (E) and bilirubin (B), respectively, and were used in 
this thesis: 

 𝑅𝑅 = 𝐼𝐼660(𝑖𝑖, 𝑗𝑗) 𝐼𝐼545(𝑖𝑖, 𝑗𝑗)⁄  (4.4) 

 𝐵𝐵 = 𝐼𝐼450(𝑖𝑖, 𝑗𝑗) 𝐼𝐼660(𝑖𝑖, 𝑗𝑗)⁄  (4.5) 

where 𝐼𝐼𝜆𝜆 is the intensity of diffuse light reflected from the skin at a specific wavelength of 
a multispectral system composed of 4 different spectral bands - three in the VIS (450 nm, 
545 nm and 660 nm) and one in the NIR (940 nm). 

The same authors also proposed a melanoma index (p) as follows: 

 𝑝𝑝 = 𝑘𝑘 · (𝐼𝐼540(𝑖𝑖, 𝑗𝑗) �𝐼𝐼650(𝑖𝑖, 𝑗𝑗) · 𝐼𝐼950(𝑖𝑖, 𝑗𝑗)�)⁄  , (4.6) 

where 𝑘𝑘 is the intensity coefficient that describes the white etalon reference used for the 
calibration of the system. 

These empirical parameters have been adapted to the wavelengths of our system and 
other empirical ones, which were also considered useful to highlight spectral differences 
between benign and malignant lesions. Up to our experience, the following ones were added 
too for the analysis: 

 𝑅𝑅𝑚𝑚𝑝𝑝1 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅6712 (𝑖𝑖, 𝑗𝑗)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅5242 (𝑖𝑖, 𝑗𝑗)

 , (4.7) 

 𝑅𝑅𝑚𝑚𝑝𝑝2 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅477(𝑖𝑖, 𝑗𝑗)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅671(𝑖𝑖, 𝑗𝑗)

  , (4.8) 
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 𝑅𝑅𝑚𝑚𝑝𝑝3 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅995(𝑖𝑖, 𝑗𝑗)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅524(𝑖𝑖, 𝑗𝑗)

 , (4.9) 

 𝑅𝑅𝑚𝑚𝑝𝑝4 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅671(𝑖𝑖, 𝑗𝑗) · 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅995(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅5242 (𝑖𝑖, 𝑗𝑗)
 , (4.10) 

 𝑅𝑅𝑚𝑚𝑝𝑝5 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅524(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅671(𝑖𝑖, 𝑗𝑗) ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅995(𝑖𝑖, 𝑗𝑗)
 , (4.11) 

 𝑅𝑅𝑚𝑚𝑝𝑝6 = 𝑅𝑅𝑙𝑙𝑎𝑎(𝑅𝑅𝑚𝑚𝑝𝑝5) , (4.12) 

 𝑅𝑅𝑚𝑚𝑝𝑝7 = 𝑅𝑅𝑚𝑚𝑝𝑝5 − �
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅524𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅671𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆(𝑖𝑖, 𝑗𝑗) · 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅995𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆(𝑖𝑖, 𝑗𝑗)�
 , (4.13) 

 𝑅𝑅𝑚𝑚𝑝𝑝8 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅671(𝑖𝑖, 𝑗𝑗)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅524(𝑖𝑖, 𝑗𝑗)

 , (4.14) 

 𝑅𝑅𝑚𝑚𝑝𝑝9 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅671(𝑖𝑖, 𝑗𝑗)
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅995(𝑖𝑖, 𝑗𝑗)

, (4.15) 

 𝑅𝑅𝑚𝑚𝑝𝑝10 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅524(𝑖𝑖, 𝑗𝑗)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅447(𝑖𝑖, 𝑗𝑗) · 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅890(𝑖𝑖, 𝑗𝑗)
 ,  (4.16) 

where  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜆𝜆𝑛𝑛(𝑖𝑖, 𝑗𝑗) is the reflectance at a specific wavelength and the subindex skin refers 
to the averaged reflectance of the parameter for the healthy skin surrounding the lesion. 

Specifically, they were proposed as a means to obtain information of haemoglobin 
(Emp1), bilirubin (Emp2), melanin (Emp3, Emp4), index of melanoma (Emp5, Emp6, 
Emp7), erythema (Emp8), oximetry (Emp9) and an additional parameter to highlight the 
reflectance and absorbance differences between melanomas and nevi (Emp10). 

Next, classical statistical descriptors were obtained for every segmented lesion in terms 
of all parameters, i. e., mean (𝑥𝑥�), standard deviation (σ), maximum and minimum.  

Moreover, as a first approach to the extraction of textural information, we used the 
analysis of the statistical properties of the histogram for any of the parameters calculated, 
also known as first order statistics [69], [71]. This analysis includes the study of some 
features such as entropy (Ep), a well-known statistical measure of randomness, energy 
(En), a numerical descriptor of the image uniformity having 1 as its maximum value for a 
constant image, and the third central moment (µ3), which accounts for the skewness of the 
histogram. The mathematical description of these features are shown in the following 
equations: 

 𝑅𝑅𝑝𝑝 = −�𝑃𝑃𝐺𝐺𝑅𝑅𝑙𝑙𝑎𝑎2(𝑃𝑃𝐺𝐺)
𝑛𝑛−1

𝐺𝐺=0

 , (4.17) 

 𝑅𝑅𝑛𝑛 = �𝑃𝑃𝐺𝐺2
𝑛𝑛−1

𝐺𝐺=0

 , (4.18) 
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 µ3 = −�(𝑖𝑖 − 𝑚𝑚)3
𝑛𝑛−1

𝐺𝐺=0

𝑃𝑃𝐺𝐺 , (4.19) 

where 𝑛𝑛 is the number of bins or intervals in which the histogram is divided into, 𝑃𝑃𝐺𝐺 is the 
relative frequency of the bin 𝑖𝑖 of the histogram and 𝑚𝑚 is the mean of  the parameter (see 
section 2.6 for a more detailed explanation of theses statistical descriptors). 

Accordingly, for any parameter from each of the three groups, as the reflectance at 415 
nm or the ITA, the 𝑥𝑥�, σ, maximum, minimum, Ep, En and µ3 were calculated.
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5. Results 

In the fifth chapter the main results obtained with the multispectral imaging system 
developed are presented. Particular attention is firstly drawn to the measurement protocol, 
inclusion criteria and clinical measurements conducted. Then, the classification algorithm 
based on parameters explained in the former chapter and corresponding outcomes are 
shown. The chapter ends with a discussion section in which the results obtained are 
compared with others from the bibliography available.  

5.1. Inclusion criteria and measurement protocol 

Individuals included in the study were patients with potential skin tumours attended at 
the outcare patient clinic in the Melanoma Unit of the Dermatology Department from the 
Hospital Clinic i Provincial de Barcelona (Spain), and the Skin Cancer Unit from the 
Policlinico di Modena - University of Modena and Reggio Emilia (Italy), referred for a 
single suspicious lesion (priority access with other medical doctor indications of the lesion 
of interest) or for a total body screening.  

Each lesion which was referred as priority access was considered as a suspicious lesion 
unless presenting a clearcut clinical-dermoscopic features of benign nature. All suspicious 
lesions were included to be measured with the novel technologies. One or multiple benign 
lesions belonging to one of the classification categories, explained below, were also included 
depending on the criteria of the physician. However, it was necessary to take into account 
that some areas of the body were difficult to measure, such as folds, scalp and some areas 
of the face due to the fact that the 41-mm metal ring needed to be used with the OFI, 3D 
and multispectral systems. In these cases, the lesions were discarded. 

The benign lesions detected during the examination were classified as seborrheic 
keratosis, vascular lesion, dermatofibroma or melanocytic nevus; and the suspicious lesions 
were classified as predominantly clinical suspect (i. e., ugly duckling lesions), 
predominantly dermoscopic suspect (dermoscopic criteria), suspect because changing 
digital monitoring, combination of them and not defined. 

All patients provided written informed consent before any examination and ethical 
committee approval was obtained. The study complied with the tenets of the 1975 
Declaration of Helsinki (Tokyo revision, 2004). The lesions were diagnosed by 
dermatologists (JM, SP, FP and AB in Barcelona, SB, AC, BF, CF in Modena) using a 
commercial dermoscope and the confocal laser scanning microscope VivaScope® 1500 from 
MAVIG [138].  
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A basic measurement protocol was implemented to ensure the measurements for all 
lesions were done correctly and exactly in the same manner in all cases. First of all, the 
lesion was photographed with a digital camera, obtaining a minimum of two clinical images: 
the first one to image the skin area where the lesion was located at a distance of 
approximately 50 cm, with the lesion of interest roughly in the centre of the frame; and 
the second one closer and, if considered necessary, together with a fixed ruler. 

Secondly, a comfortable position for the patient was needed to lie still during 
measurements. To achieve this, the patient lied on a stretcher, and if needed, with a cushion 
under the part of the body which was to be measured enabling a more stable surface.  

Thirdly, the area of interest was cleaned with alcohol and, if it was a hairy zone, the 
hair was carefully cut instead of shaving in order to avoid irritation or erythema of the 
skin, which could influence the information taken by the multiphotonic platform. 
Concretely, for the multispectral system the hair could difficult the later segmentation of 
the lesion (see next section), and the erythema could mask effects due to changes in colour 
of the skin.  

Fourthly, lesions were classified according with their clinical presentation based on the 
elevation upon the skin level as flat, papular (dome shape < 1cm), plaque (palpable, raised 
lesions) or nodular (dome shaped > 1cm); and coloration as partially/largely pigmented 
(>25%), light pigmented (light brown colour or colour hues slightly darker than the 
surrounding skin), hypopigmented (< 25%) or amelanotic (pink or reddish).  

Fifthly, the special double-coated adhesive was attached to the metal ring, and then the 
metal ring was applied to the skin of the patient with the lesion as centred as possible and 
in the best angle according to the characteristics of the tumour and the positioning of the 
patient in the bed, according to the anatomical site to explore (Figure 5.1). Then, the 
measurements with the multispectral, OFI and 3D systems were done, with the help of the 
user manual explanations, or in the case of the multispectral system, with the indications 
of the pop-up windows. Finally, the small ring was attached inside the big one, and the 
measurements with the confocal system were done. If after the evaluation with the 
information obtained from the confocal system the lesion was still suspicious, it was excised 
and a histological analysis was carried out. 

 
Figure 5.1 Patient lying in the bed while the practitioner prepares the big metal ring in 
order to measure a lesion with the multiphotonic platform 
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5.2. Clinical measurements and samples 

654 skin lesions from patients of both hospitals were finally included in the study. Many 
different types of lesions were analysed, but not limited to melanomas, basal cell 
carcinomas, seborrheic keratosis, nevi, to mention a few. Most of the lesions could be 
successfully measured with the new experimental devices available in the multiphotonic 
platform: 94.8% with the multispectral imaging system, 93% with the 3D technology, 76% 
with the OFI head and 72% with confocal microscopy.  

Regarding the multispectral system, while 94.8% of the lesions could be properly 
measured, the remaining 5.2% could not, due to the difficulty of using the big metal ring 
in some areas of the patients’ body (32.4%) and because it was unavailable for some days 
along which an upgrading for the inclusion of the handle’s button was carried out (67.6%) 
(Figure 5.2). 

As it can be seen, from the 620 (94.8%) lesions that were measured, the clinical or 
histopathological diagnosis of 48 (7.7%) of them was still pending at the time of this report. 
From the 572 (92.3%) lesions with a known diagnosis, 502 (87.8%) could be properly 
segmented. The reasons why the other 70 (12.2%) could not be segmented are described 
next: 

- 27 (38.7%) were non-pigmented lesions, making the definition of borders very 
difficult. This often happens with non-pigmented basal cell carcinomas (Figure 
5.3). 

- 18 (25.7%) were pigmented lesions but with irregular and blurred borders (Figure 
5.4). 

- 11 (15.7%) were lesions larger than the field of view of the camera (Figure 5.5). 
- In 5 (7.1%) of the cases, there were misalignments along the spectral images 

taken at different wavelengths due to the patient’s breath movement (Figure 
5.6). 

- In 5 (7.1%) of them there were hairs superimposed to the lesion, making it 
difficult to effectively apply the segmentation process (Figure 5.7).  

- 4 (5.7%) were very colourful (they included many different colours) and the 
algorithm could not find a unique grey level which allowed the lesion to be 
differentiated from the surrounding skin (Figure 5.8). 

The diagnosis of the remaining 502 lesions that could be properly segmented and 
analysed were the following: 290 (57.9%) corresponded to nevi (melanocytic, dysplastic, 
blue, junctional and Spitz nevi) (Figure 5.9); 95 (18.9%) were melanomas (Figure 5.10), 44 
(8.9%) basal cell carcinomas (Figure 5.11 and Figure 5.12); 35 (7%) seborrheic keratosis 
(Figure 5.13); 34 (6.9%) other benign lesions, such as, angiomas, dermatofibromas and 
actinic keratosis; and 2 (0.4%) corresponded to squamous carcinomas.  

The last three types of lesions were excluded from the analysis due to the low number 
of samples available in each category, which were not enough to perform the statistical 
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analysis and posterior classification method proposed. Therefore, 429 skin lesions were 
finally included in the study. 

 
Figure 5.2 Summary of the lesions included in the study and measured with the 
multispectral imaging system. The lesions in green and red correspond to benign and 
malignant lesions, respectively. 

 
Figure 5.3 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a non-pigmented basal cell 
carcinoma. 
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Figure 5.4 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a pigmented lesion with 
irregular and blurred borders. The lesion has two differentiated areas in terms of colour 
(light and brown). 

 
Figure 5.5 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a pigmented lesion bigger 
than the field of view of the multispectral system. 
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Figure 5.6 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a lesion with misalignments 
of the lesion along wavelengths due to the breath movement of the patient. 

 
Figure 5.7 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a lesion with hairy zones. 
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Figure 5.8 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a lesion with many different 
colours. 

 
Figure 5.9 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a nevus. 
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Figure 5.10 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a melanoma. 

 
Figure 5.11 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a pigmented basal cell 
carcinoma. 
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Figure 5.12 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a non-pigmented basal cell 
carcinoma. 

 
Figure 5.13 Reflectance images (top), conventional colour photography (bottom left), 
dermoscopic image (bottom centre), and segmented image of a seborrheic keratosis. 
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In the former figures, which show representative reflectance images of several skin 
lesions, it can be seen that nevi are usually more homogenous at all wavelengths than the 
other lesions. Furthermore, the infrared light, which penetrates deeper in the skin, shows 
that melanomas generally grow deeper as they can be distinguished from the surrounding 
skin at longer wavelengths. Basal cell carcinomas usually present blurred borders, and the 
contrast between the lesion and the skin is lower, especially for the non-pigmented ones. 

5.3. Classification algorithm and outcomes 

As commented previously, from the 429 lesions included in the analysis 290 were nevi; 
and 139 were malignant (95 melanomas and 44 basal cell carcinomas). It is also worth 
noting that the limitation of most studies is the inclusion of pre-selected lesions according 
the histopathological diagnosis while our study was a prospective study including 
consecutive lesions that could enter in the differential diagnosis of melanoma. In general, 
some basal cell carcinomas can be easily diagnosed clinically but dangerous melanomas, as 
amelanotic melanomas or nodular melanomas, can be easily misdiagnosed as basal cell 
carcinomas. Therefore, the approach used in our study is more approximate to what 
happens in real life were basal cell carcinomas are at least 10 times more frequent than 
melanomas and can be misdiagnosed if not considered. 

The averaged reflectance (±σ, standard deviation) of nevi, melanomas and basal cell 
carcinomas can be seen in Figure 5.14. In agreement with previous publications [1], [139], 
the averaged reflectance of melanomas (or equivalently absorbance) shows a trend to be 
lower (higher) than that of nevi. However, this difference decreases when considering the 
great variance among lesions of the same type, which makes the classification difficult if 
only averaged values are taken into account.  

 
Figure 5.14 Averaged reflectance (±σ, standard deviation) of nevi, melanomas and basal 
cell carcinomas. 
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In order to overcome this limitation, histograms for the whole lesion with all parameters 
were also plotted. Figure 5.15 depicts specific examples of histograms of a nevus, a 
melanoma and a pigmented basal cell carcinoma in terms of reflectance at 414 nm and 671 
nm The averaged spectral reflectance (𝑥𝑥�), the standard deviation (σ), maximum, minimum 
and corresponding Ep, En, µ3 are also shown. 

 

 
Figure 5.15 Histograms of a nevus, a melanoma and a pigmented basal cell carcinoma in 
terms of spectral reflectance at 414 nm (top), and at 671 nm (bottom) with their respective 
values of mean (𝑥𝑥�), standard deviation (σ), maximum, minimum, entropy (Ep), energy 
(En), and third central moment (µ3). 

The results show that the averaged reflectance, the standard deviation and the 
maximum and minimum at 414 nm for the three lesions are very similar. In contrast, the 
histograms look completely different; the nevus is linked to a higher En and a lower Ep 
since its pigmentation is more uniform than the melanoma and basal cell carcinoma. With 
regard to the skewness (µ3), the nevus presents a practically symmetrical distribution and 
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thus, the lowest value. On the other hand, the lesions have enhanced spectral differences 
at 671 nm, as expected from Figure 5.14, and thus, the averaged reflectance is clearly 
different; however, the En and the Ep remain more similar in this case in comparison to 
414 nm, while the melanoma and basal cell carcinoma are skewed to the left (negative) in 
terms of the third central moment contrary to what was obtained for the nevus. 

In order to decide which lesions were malignant (melanomas and basal cell carcinomas), 
a classification algorithm was developed including the complete dataset of the 429 skin 
lesions (nevi, melanomas and basal cell carcinomas) with their corresponding information 
calculated previously from all the parameters described in section 4.2: first, second and 
third groups which are based on spectral, colour and empirical information, respectively. 
And for each parameter the following statistical descriptors were available: mean, standard 
deviation, maximum, minimum, entropy, energy and third central moment. To this end, 
the data was splitted in a training and a validation set of the same size including half of 
the nevi, basal cell carcinomas and melanomas.  

Using the training set, upper and lower thresholds were firstly defined for each 
parameter as the interval limits that included all nevi. The upper (lower) threshold was 
chosen as the value of the nevus with the highest (lowest) value after some nevi were 
discarded according to the following formula:  

 𝑆𝑆𝑅𝑅𝑁𝑁𝑖𝑖 𝑙𝑙𝑜𝑜𝑎𝑎𝑅𝑅𝑖𝑖𝑅𝑅𝑎𝑎𝐴𝐴 = 𝑥𝑥�𝑛𝑛𝑟𝑟𝑛𝑛𝐺𝐺 ± 2 · 𝜎𝜎𝑛𝑛𝑟𝑟𝑛𝑛𝐺𝐺 (5.1) 

where  𝑥𝑥�𝑛𝑛𝑟𝑟𝑛𝑛𝐺𝐺 and 𝜎𝜎𝑛𝑛𝑟𝑟𝑛𝑛𝐺𝐺 are the average and standard deviation, respectively, in terms of 
each parameter calculated from all nevi lesions in the training set. For instance, 𝑥𝑥�𝑛𝑛𝑟𝑟𝑛𝑛𝐺𝐺 and 
𝜎𝜎𝑛𝑛𝑟𝑟𝑛𝑛𝐺𝐺 can be those corresponding to the energy of the reflectance at 995 nm or the maximum 
lightness (𝐷𝐷∗) of all pixels belonging to a lesion diagnosed as nevus. 

All lesions above or under the upper and lower thresholds for at least one parameter 
were classified as malignant. 

Taking into account the difficulty of working with as much as 1309 parameters (187 
reflectance, absorbance and colorimetric parameters x 7 statistical descriptors), it was 
necessary to select only the most useful ones. 

This relative importance was achieved in 3 steps: firstly, in order to detect the highest 
number of melanomas and basal cell carcinomas, the lesions in the training set which were 
detected using only one parameter were found and this concrete parameter was selected. 
Secondly, the lesions which were detected using only two parameters were found. However, 
it was necessary to decide for each lesion which was the best parameter, calculating thus, 
the rate of differentiation between the amount of melanomas and basal cell carcinomas 
classified as malignant and the quantity of nevi classified as malignant. Then, the 
parameter which had the best rate was chosen. Finally, the same process was done 
successively with those lesions which were detected using 3, 4, 5... parameters, until the 
maximum number of melanomas were detected. The other parameters were discarded as 
they did not introduce any significant improvement in the detection of melanomas or basal 
cell carcinomas. 
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From all the parameters calculated, only 15 were found not to be redundant and finally 
selected for use in the classification algorithm. Each parameter with its respective threshold 
calculated previously in the training set with formula 5.1, was used to classify the lesions 
of the validation set in benign and malignant. Finally, those lesions which were classified 
for at least one parameter as malignant, were finally considered a malignant lesion as the 
final decision of the system. From these values, the sensitivity and specificity of the system 
were calculated.  

The flow chart in Figure 5.16 shows the inner working of the classification algorithm in 
more detail. As formerly described, only those which allowed increasing the detection of 
malignant lesions were chosen, until the addition of more parameters did not improve the 
results in terms of sensitivity in the training set. 

 
Figure 5.16 Flow chart of the classification algorithm. 

From the first group (spectral reflectance (Refl) and absorbance parameters (Abs); and 
corresponding differences between the lesion and the surrounding healthy skin): En of 
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Abs875,  µ3 of Refl745, 𝑥𝑥 �of Refl645 and σ of Abs935. Also, differences between lesion and 
surrounding skin in terms Ep of Abs465, En of Abs635, µ3 of Abs985, and µ3 of Refl975. 

From the second group (colour-based parameters): maximum of L*, σ of a* as pseudo-
CIELAB colorimetric coordinates, and minimum ∆E with the surrounding healthy skin as 
the reference, and maximum ITA. 

From the third group (empirical parameters): maximum of Emp1, En of Emp6, 
maximum of Emp9. 

Figure 5.17 shows the scatter plots of the 15 selected parameters. The corresponding 
upper and lower thresholds used for classification were calculated with the training set 
while the samples shown correspond to the validation set. The plots also show that some 
of the melanomas and basal cell carcinomas tend to have higher values beyond the 
upper/lower thresholds. Furthermore, Table 5.1, Table 5.2, Table 5.3 and Table 5.4 
summarize the results of each selected parameter including the computed thresholds, mean, 
σ, maximum and minimum for any kind of lesion analysed, i. e., nevi, melanomas and basal 
cell carcinomas used in the validation set. 

With the classification algorithm based on these 15 parameters, 6 out of 47 melanomas 
and none of the 22 basal cell carcinomas were misclassified (91.3% sensitivity); in contrast, 
66 nevi from 145 were classified as malignant (54.5% specificity). Here, sensitivity or true 
positive rate is the probability of detecting malignant lesions (melanomas and basal cell 
carcinomas) and specificity or true negative rate is the proportion of nevi correctly 
identified. This information, which is often referred as confusion matrix, is shown in Table 
5.5. 

Many similar studies published in the literature only include in their analysis nevi and 
melanomas but not basal cell carcinomas; therefore, in order to be able to compare the 
results, it was necessary to calculate again the sensitivity and specificity of our system but 
only including nevi and melanomas in the analysis, being then of 87.2% (sensitivity) and 
54.5% (specificity). The confusion matrix in this case can be seen in Table 5.6. 
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Figure 5.17 Scatter plots of the 15 selected parameters. 
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Table 5.1 Thresholds for the 15 selected parameters. 

 Thresholds 
Parameters Upper Lower 
En Abs875 5.75E-02 1.64E-02 
µ3 Refl745 1.15E-03 -9.33E-04 
Mean Refl645 5.40E-01 1.33E-01 
σ Abs935 1.37E-01 4.95E-02 
Ep diff. Abs465 3.37 1.30 
En diff Abs635 -1.95E-02 -5.81E-02 
µ3 diff. Abs985 1.70E-03 -1.10E-03 
µ3 diff. Refl975 4.13E-04 -3.60E-04 
Maximum L* 85.59 51.39 
σ a* 4.44 1.89 
Minimum ΔE Skin-Lesion 10.41 6.42E-02 
Maximum ITA 40.00 4.55 
Maximum Emp1 227.08 11.49 
En Emp6 8.16E-02 3.51E-02 
Maximum Emp9 2.10 8.08E-01 

Table 5.2 Mean, standard deviation (σ), maximum and minimum for the nevi included in 
the validation set, for the 15 selected parameters. 

 Nevi 
Parameters Mean σ Maximum Minimum 
En Abs875 3.77E-02 1.22E-02 6.25E-02 1.07E-02 
µ3 Refl745 -3.76E-05 6.92E-04 4.35E-03 -3.06E-03 
Mean Refl645 3.68E-01 1.13E-01 6.29E-01 1.02E-01 
σ Abs935 8.54E-02 2.97E-02 2.67E-01 5.05E-02 
Ep diff. Abs465 2.30 6.76E-01 3.79 1.82E-01 
En diff Abs635 -3.52E-02 1.22E-02 1.11E-03 -7.64E-02 
µ3 diff. Abs985 4.77E-05 8.32E-04 7.39E-03 -2.04E-03 
µ3 diff. Refl975 -6.91 1.84E-04 7.02E-04 -8.05E-04 
Maximum L* 69.64 8.37 94.50 53.65 
σ a* 3.23 1.19 15.36 1.77 
Minimum ΔE Skin-Lesion 4.77 3.22 18.58 9.50E-02 
Maximim ITA 28.24 12.61 40.00 3.21 
Maximum Emp1 104.07 78.40 503.79 9.79 
En Emp6 5.86E-02 1.31E-02 1.17E-01 2.61E-02 
Maximum Emp9 1.52 5.44E-01 6.82 8.91E-01 
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Table 5.3 Mean, standard deviation (σ), maximum and minimum for the melanomas 
included in the validation set, for the 15 selected parameters. 

  Melanomas 
Parameters Mean σ Maximum Minimum 
En Abs875 2.86E-02 1.37E-02 6.28E-02 8.63E-03 
µ3 Refl745 1.06E-04 8.15E-04 2.17E-03 -1.56E-03 
Mean Refl645 2.79E-01 1.38E-01 6.01E-01 3.83E-02 
σ Abs935 1.23E-01 6.08E-02 3.16E-01 5.25E-02 
Ep diff. Abs465 2.26 6.52E-01 3.30 4.60E-01 
En diff Abs635 -3.91E-02 1.20E-02 -9.62E-03 -5.99E-02 
µ3 diff. Abs985 -1.09E-04 3.12E-03 1.71E-02 -6.72E-03 
µ3 diff. Refl975 9.02 3.43E-04 1.32E-03 -8.40E-04 
Maximum L* 67.31 8.53 90.07 40.83 
σ a* 3.62 1.22 7.41 2.00 
Minimum ΔE Skin-Lesion 5.37 3.85 21.46 5.78E-02 
Maximim ITA 31.94 12.57 40.00 4.87 
Maximum Emp1 169.58 147.75 644.01 21.39 
En Emp6 5.30E-02 1.58E-02 8.89E-02 2.32E-02 
Maximum Emp9 1.57 5.78E-01 3.80 7.85E-01 

Table 5.4 Mean, standard deviation (σ), maximum and minimum for the melanomas 
included in the validation set, for the 15 selected parameters. 

  Basal cell carcinomas 
Parameters Mean σ Maximum Minimum 
En Abs875 3.72E-02 1.50E-02 6.29E-02 5.26E-03 
µ3 Refl745 -1.90E-04 7.91E-04 1.39E-03 -3.15E-03 
Mean Refl645 4.37E-01 1.59E-01 6.21E-01 7.03E-02 
σ Abs935 1.25E-01 9.08E-02 4.63E-01 5.53E-02 
Ep diff. Abs465 1.38 5.69E-01 2.54 4.18E-01 
En diff Abs635 -2.16E-02 1.42E-02 1.59E-04 -4.63E-02 
µ3 diff. Abs985 -3.18E-04 6.04E-03 1.71E-02 -2.01E-02 
µ3 diff. Refl975 8.04 5.85E-04 1.35E-03 -1.32E-03 
Maximum L* 71.62 9.08 97.37 52.47 
σ a* 3.53 7.84E-01 5.13 2.03 
Minimum ΔE Skin-Lesion 2.09 1.74 5.20 1.17E-01 
Maximim ITA 30.90 11.08 40.00 8.02 
Maximum Emp1 123.50 121.39 471.16 13.68 
En Emp6 7.29E-02 2.18E-02 1.44E-01 2.97E-02 
Maximum Emp9 1.96 7.00E-01 4.10 1.25 
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Table 5.5 Confusion matrix of the validation set when including melanomas, basal cell 
carcinomas and nevi in the analysis. 

 True condition 

Predicted 
condition 

Total lesions: 214 
Melanomas and 

basal cell carcinomas 
Nevi 

Melanomas and 
basal cell carcinomas 

63 66 

Nevi 6 79 

Table 5.6 Confusion matrix of the validation set when including melanomas and nevi in 
the analysis. 

 True condition 

Predicted 
condition 

Total lesions: 192 Melanomas  Nevi 
Melanomas 41 66 

Nevi 6 79 

5.4. Discussion 

In a study of the first SIAscope scoring system applied to a dataset of 348 pigmented 
lesions (52 melanomas and remainder non-melanoma lesions, mostly nevi), Moncrieff et al. 
[107] obtained sensitivity and specificity values of 82.7% and 80.1%, respectively. As 
commented in chapter 2, the SIAscope is a multispectral system with four narrow-bands 
(from 400 nm to 1000 nm) that provides information about the amount of collagen, 
haemoglobin and melanin distribution in the epidermis and dermis of pigmented skin 
lesions in the form of maps called SIAscans. These maps presented by the MoleMate 
software have to be interpreted by general practitioners or dermatologists who have 
previously received training [5].  

Similarly, Haniffa et al. [109] conducted a study that included 881 pigmented lesions. 
The observations, carried out by a 3-year-experienced dermatologist using the latest 
SIAscope software, obtained 87% and 91% sensitivity and specificity, respectively. In the 
same study, the observations made by a dermatologist with 20 years of experience resulted 
in 94% sensitivity and 91% specificity. The authors concluded that the use of SIAscope by 
an experienced dermatologist made no additional contribution over clinical diagnosis.  

In a more recent study that analysed 188 lesions including three types of malignant 
lesions (21 melanomas, 9 basal cell carcinomas and 5 squamous cell carcinomas) and various 
benign lesions (122 nevi, 23 seborrheic keratosis, 7 dermatofibromas and 1 cherry angioma), 
Sgouros et al. [140] concluded that although SIAscope was not superior, it could support 
the results of dermoscopy. In this study, the sensitivity and specificity for suspected 
malignant lesions were 85.7% and 65.4%, respectively. The lower specificity compared with 
previous studies results from the inclusion of more types of malignant lesions. The authors 
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concluded that SIAscope should not be considered a replacement for the standard 
diagnostic procedure, but an additional tool for non-dermatologist clinicians. 

Taking into account that the classification algorithm proposed in this thesis does not 
require the skills of a dermatologist to interpret a map, this study provides slightly higher 
sensitivity (91.3%) and lower specificity (54.5%) values than previous studies. 
Consequently, the inclusion of texture information can be considered relevant for the 
detection of melanomas and basal cell carcinomas.  

However, one should bear in mind that the sensitivity decreases to 87.2% when basal 
cell carcinomas are not considered; nevertheless, this value is still similar to that obtained 
by an experienced dermatologist using the SIAscope. 

On the other hand, as already stated in the state of the art section, MelaFind® is a 10-
wavelenght (430, 470, 500, 550, 600, 650, 700, 770, 880, 950 nm) system that generates 6 
scores based on linear classifiers for each measured skin lesion. In this system, a lesion is 
recommended for biopsy if all 6 scores are above the threshold value [109]. After the 
measurement, the system provides a disorganization value and a treatment suggestion for 
dermatologists. 

The FDA Summary of Safety and Effectiveness Data of MelaFind® [141] shows a much 
higher sensitivity (98.3%) to detect in situ and invasive melanomas (172/175 melanomas 
detected) than the SIAScope; however, the specificity was only of 10.8% (157/1457 of high 
grade dysplastic nevi, atypical melanocytic proliferation/hyperplasia lesions were classified 
as melanomas). Therefore, the use of MelaFind® generates a large number of false positives 
and consequently a large number of unnecessary biopsies. Other investigations were carried 
out in which different dermatologists were asked to evaluate and diagnose a specific number 
of lesions with and without information from the MelaFind®. The averaged sensitivities 
and specificities obtained were very similar to those previously shown, ranging from 96.9% 
to 98.3%, and from 9.2% to 9.9% [105], [142], respectively. The authors concluded that the 
information obtained with the MelaFind® should be used to decide the need for a biopsy, 
since in case of an experienced dermatologist MelaFind® could improve biopsy sensitivity 
with a modest effect on biopsy specificity. 

 The lower sensitivity shown in our system could be improved by defining more 
restricted upper and lower thresholds. However, this would also result in an increase of 
false positives and thus, a marked reduction of the specificity, which is unacceptable from 
the dermatologists’ point of view. In fact, the detection of malignant lesions at early stages, 
when they can still be controlled and successfully excised, is crucial when dealing with skin 
cancer and this is the reason why dermatologists are more concerned with increasing 
sensitivity than specificity.  

On the other hand, we should underscore that in contrast with MelaFind®, our study 
only compared melanomas and basal cell carcinomas with different kinds of nevi (common, 
melanocytic, dysplastic, blue, junctional and Spitz nevi) and melanomas with nevi.  
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Using the formula 2.28 described in section 2.7.1, Diebele et al [103] found values of 
94% and 89% for sensitivity and specificity, respectively. In this case, the system developed 
by the authors consisted of a multispectral imaging camera (Nuance EX) with spectral 
bands from 450-950 nm in steps of 10 nm. The illumination system was a ring of halogen 
lamps with a polarizer orthogonal to the camera. However, they only analysed 65 nevi and 
17 melanomas and a further verification of the algorithm is still pending. Our system 
obtained a slightly lower sensitivity when excluding basal cell carcinomas, taking into 
account that in contrast with the abovementioned study, it also included dysplastic nevi 
and non-pigmented lesions. These lesions present a further difficulty in the discrimination 
of melanomas, since they are unusual benign moles that may resemble melanomas. In 
addition, our study included many more lesions.  

On the other hand, artificial intelligence is starting to enter the medicine field [143]. 
Specifically, Esteva et al. [144] used a deep convolutional neural network (CNN) to classify 
skin lesions from dermoscopic images. The algorithm was trained from a dataset of more 
than 100,000 images from 18 different clinician-curated, open-access online repositories, 
and from the Stanford University Medical Centre. An area under curve (AUC) of 96% for 
the detection of carcinomas, and 94% for the detection of melanomas was obtained, 
improving the performance of most of the 21 dermatologist which were asked to classify 
hundreds of lesions from a dermoscopic image. The conclusion of the study was that CNN 
could be a powerful tool for huge image datasets, and encouraging results will be probably 
obtained in the coming years. However, this is not the best tool for pilot studies in which 
new technologies are tested and the database of lesions is small. 

According to all this, the addition of textural information, which has not been yet 
considered in any study, has been shown to be useful for the diagnostic of malignant lesions 
(melanomas and basal cell carcinomas) than the sole use of averaged spectral and colour 
information. The sensitivity (91.3%) and specificity (54.5%) values slightly improved in 
some cases those previously achieved by means of other multispectral systems without the 
need of an experienced dermatologist as it was based on a completely automatic algorithm. 
However, when only the melanomas and nevi were considered the sensitivity decreased to 
87.2%, although this value was still similar to that obtained by experienced dermatologists 
through averaged spectral and colour features. It is also necessary to take into account that 
due to the system is composed of only eight different spectral bands, an error can be found 
in the reflectance and pseudo-CIELAB calculations, as far as such a value was spline 
interpolated. However, from our previous experience, this error should be limited since the 
reflectance curves of the lesions are rather smooth and without narrow peaks, meaning that 
bandwidths greater than 6-10 nm can be used to discriminate among them. In fact, similar 
spectral absorption curves for skin lesions have been previously reported [103]. 

Moreover, the system proposed has a specificity similar to that of confocal microscopy 
(55.1%) [138] but much closer to dermoscopy (84.1%) [145] than Melafind® (10.8%). On 
the other hand, our system has a slightly lower sensitivity than Melafind® (98.3%) and 
confocal microscopy (96.3%) [144], but closer than dermoscopy (89.2%) [145]. Therefore, 
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the system can help to improve the diagnosis of skin cancer as a supporting tool to 
dermoscopy and confocal microscopy.  
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6. Combination of the systems 

This chapter comprises preliminary results obtained with the 3D system, which is also 
available in the multiphotonic platform developed under the framework of the European 
Project DIAGNOPTICS, after applying the same statistical calculations as those used in 
the multispectral imaging device. As the final goal of this project is to improve skin cancer 
diagnosis with the combination of four non-invasive novel techniques, we explore here the 
combination of the multispectral and 3D systems as a preliminary attempt of doing so. 

6.1.  3D system results 

From the 3D topography of each lesion measured with the 3D system available in the 
multiphotonic platform, different processing algorithms were developed to extract 
parameters which characterize the morphology of each lesion. Using C++, Matlab and 
Mountains Map software programs, the lesion was segmented and 9 parameters were 
obtained: mean height, maximum height, width, perimeter, area and volume; and the 
following ones based on first order statistics: energy, entropy and 3rd central moment of 
the height distribution. The maximum and mean of the height, the width and the perimeter 
were calculated from the mean profile of a series of horizontal profiles of the lesion. The 
area and the volume were calculated using four different methods: vertical lines, horizontal 
lines, least squares planes and polynomial surface (of degree 2 and 6). Making the median 
of the five values, a single value of the area and volume were assigned to the lesion. The 
last three parameters were obtained from the histogram of the height distribution (Figure 
6.1). 

In Figure 6.2 the topography of a nevus and a melanoma are shown. As it can be seen, 
the melanoma seems to be less homogenous in height and generally higher (more elevated) 
than the nevus. 

Due to the difficulty of the lesion segmentation and processing to extract 3D information 
- the whole process lasted about 1 hour - only 57 nevi and 27 melanomas were available at 
the time of this report. Basal cell carcinomas were excluded because of the low amount of 
processed lesions. Furthermore, in order to be able to compare the results of the 3D system 
with those of the multispectral device, the lesions were also splitted into training and 
validation sets, taking into account the group in which they were previously classified in 
the multispectral classification algorithm. Regarding the lesions which were not used in the 
analysis of the multispectral system but were processed with the 3D system, they were 
included in the 3D training set. Accordingly, 27 nevi and 18 melanomas were finally 
included in the training set and 31 nevi and 9 melanomas in the validation set.  
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Figure 6.1 Horizontal width and perimeter of a lesion (top), and the 4 methods used to 
calculate the area and volume of any lesion (bottom). 

 
Figure 6.2 3D topography of a nevus (left) and a melanoma (right). 

Similarly to the former chapter, thresholds linked to 3D data were chosen according to 
the following formula: 

 𝑆𝑆𝑅𝑅𝑁𝑁𝑖𝑖 𝑙𝑙𝑜𝑜𝑎𝑎𝑅𝑅𝑖𝑖𝑅𝑅𝑎𝑎𝐴𝐴 = 𝑥𝑥�𝑛𝑛𝑟𝑟𝑛𝑛𝐺𝐺 ± 2 · 𝜎𝜎𝑛𝑛𝑟𝑟𝑛𝑛𝐺𝐺 (6.1) 

where  𝑥𝑥�𝑛𝑛𝑟𝑟𝑛𝑛𝐺𝐺 and 𝜎𝜎𝑛𝑛𝑟𝑟𝑛𝑛𝐺𝐺 are the average and standard deviation, respectively, in terms of 
each parameter based on 3D information calculated from all processed nevi lesions in the 
training set. All lesions above or under the upper and lower thresholds for at least one 3D 
parameter were classified as malignant. 

The same iterative process used to choose non-redundant multispectral parameters was 
followed to select the most relevant 3D parameters in 3 steps: firstly, in order to detect the 
highest number of melanomas, the lesions in the validation set which were detected for 
only one parameter were found and this concrete parameter was selected. Secondly, the 
lesions which were detected for only two parameters were found and then, the parameter 



6. COMBINATION OF THE SYSTEMS 

93 
 

which had the best rate of differentiation between nevi and melanoma was chosen. Finally, 
the same process was done successively with those lesions which were detected for 3, 4, 5... 
parameters, until the maximum number of melanomas were detected. The other parameters 
were discarded as they did not introduce any significant improvement in the detection of 
melanomas and basal cell carcinomas 

By doing so, 3 of the 9 parameters firstly analysed were found to be not redundant and 
finally selected to be used in the validation set: perimeter, volume and maximum height 
(Figure 6.3), obtaining thus, 5 out 9 detected melanomas (55.6% sensitivity) and 5 out 31 
nevi classified as malignant (83.7% specificity) (Table 6.1). 

 
Figure 6.3 Scatterplots of the 3 selected parameters for the 3D system. 

Table 6.1 Confusion matrix of the 3D system 

 True condition 

Predicted 
condition 

Total lesions: 40 Melanomas Nevi 
Melanomas 5 5 

Nevi 4 26 

Comparing the results with the multispectral system (87.2% and 54.5% of sensitivity 
and specificity, respectively) it is clear that the sensitivity based on 3D features is much 
lower (around 30%) although specificity is much better (about 30%, too). Therefore, even 
3D information does not seem to allow detecting more melanomas it could be used to 
improve specificity of the results.  

However, one should bear in mind that the amount of processed lesions with 3D 
technology is still very limited, and that the training set may not be the most representative 
one. So that the conclusions reached in this chapter must be taken with caution.  
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6.2.  Combined results 

The combination of the multispectral and 3D system has also been carried out in this 
thesis, despite the limited number of lesions analysed with 3D technology, as a preliminary 
attempt to improve the detection of melanomas, reselecting the best parameters which are 
not redundant and using the classification algorithm again.  

However, in order to lately compare the results, only the common lesions available in 
both systems has been finally included in the analysis (21 melanomas and 54 nevi). Since 
the number was very limited, they were used as a whole, i. e., without splitting them into 
training and test sets. 

In consequence, the recalculation of the individual multispectral and 3D sensitivity and 
specificity considering only these melanomas and nevi (76 lesions) was firstly needed. The 
process followed was on one hand, to obtain the sensitivity and specificity with the 15 
parameters of the multispectral system; and on the other hand, repeating the process with 
the 3 parameters of the 3D system; and using in both cases the thresholds calculated in 
the previous sections (5.3 and 6.1). The sensitivity and specificity values were of 95.2% 
and 50%, respectively, for the multispectral system; and 66.7% and 88.9% for the 3D 
system.  

Finally, all parameters (15 from the multispectral system and 3 from the 3D system) 
were considered together and, once again, an iterative process was used to choose non-
redundant multispectral and 3D parameters as a whole in the 3 steps explained before. By 
doing so, only 6 parameters from both systems were employed to achieve the best possible 
classification: difference between the lesion and healthy skin in Ep of Refl465, maximum L*, 
maximum ITA, maximum of Emp1, perimeter and maximum height.  

This combination of parameters allowed a sensitivity of 100% and a specificity of 72.2%, 
thus improving the detection of melanomas (actually all them were detected) and the 
specificity (the values was in between those obtained by means of the two systems used 
individually) (Table 6.2). Nevertheless, it is necessary to take into account once again that 
the number of lesions included in this analysis is rather low, and that the conclusions 
reached must then be taken with caution and explored in the future in more detail.  

Table 6.2 Sensitivity and specificity of each system individually (Multispectral and 3D) 
and when they are combined. 

 Multispectral 3D Combined systems  
Sensitivity 95.2% 66.7% 100.0% 
Specificity 50.0% 88.9% 72.2% 

On the other hand, the analysis carried out also demonstrates that some of the 
melanomas have been classified as malignant using parameters from both systems 
simultaneously (10). While 10 melanomas were only detected by means of multispectral-
based parameters and 1 with 3D ones. 40 nevi were found to be benign with both systems. 
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Therefore, a new classification could be suggested based on this: 

- If both systems classify a lesion as malignant, there is a high probability of the 
lesion to be malignant. 

- If only one of the systems classifies the lesion as malignant, it would have 
moderate possibilities to be malignant. 

- If both systems classify the lesion as benign, this would be highly predictive of 
benignity. 

However, and as formerly stated, more research on this field is still needed.  
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7. Conclusions 

The most relevant conclusions obtained in this thesis are outlined here: 

1. Concerning the developed multispectral system: 

a. A handheld ergonomic multispectral imaging system was developed as part of the 
multiphotonic platform in the European Project DIAGNOPTICS “Diagnosis of 
skin cancer using optics” (seventh call for proposals 2013, CIP-ICT-PSP.2013.3.5; 
GA621066) with the goal of improving skin cancer diagnosis with the combination 
of four non-invasive novel techniques: 3D and multispectral imaging, optical 
feedback interferometry and confocal microscopy. 

b. The system included a 12 bit-depth monochromatic CCD camera attached to an 
objective lens and a light source containing 32 LEDs (8 clusters) with 8 spectral 
bands covering the visible and the near-infrared range (400 nm to 1000 nm). 
The degree of polarization of light could also be changed with the use of two 
polarizers, enabling information from different skin depths to be obtained.  

c. An acquisition software to control all the components of the multispectral system 
was programmed. The extended version permitted to test the system in the 
laboratory, to adjust the exposure times needed to measure skin lesions as well as 
surrounding healthy skin of individuals within the dynamic range of each spectral 
band, and to perform the dark calibration to remove dark current noise due to 
straylight and non-uniformities of the pixels of the camera sensor. On the other 
hand, the user interface was a simpler version useful for physicians, in which only 
the measurements and the daily calibration (carried out by means of a uniform 
calibrated reference and needed to later compute the spectral reflectance of the 
skin lesion for each wavelength) were available. 

d. The changes over time of the emission of the LEDs was analysed by measuring 
the radiance corresponding to each wavelength at different forward currents. The 
analysis showed that LEDs needed at least 2 seconds to stabilize and therefore, a 
delay of two seconds each time that any LED was switched on was used in the 
algorithm. Three additional characteristics were also measured to ensure the good 
performance of the multispectral system as a whole: the linear response of the 
camera for each wavelength, the uniformity of the LEDs emission (which was 
below 3.5%) and the short and long-term repeatability of the system acquiring 
images (with variations reported of 0.5% and 2%, respectively). 
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e. In order to proceed with the Ethical Committee approval and to launch the 
systems in both hospitals, irradiance and radiance measurements were done 
according to the standard UNE-EN 62471 “Photobiological safety of lamps and 
lamp systems”, to ensure that the multispectral system provided light emissions 
under the limits established by this regulation and to guarantee that patients 
could not be accidentally damaged under any circumstance.  

2. Image processing and analysis: 

a. A GUI programmed in Matlab® R2015a was developed for the spectral image 
processing and corresponding analysis. Firstly, a software devoted to compute 
spectral and colorimetric features from the spectral images (spectral datacube) 
acquired with the multispectral system was implemented, including also the 
segmentation algorithm based on the Otsu method used to extract the isolated 
information of the lesion. From the spectral images acquired, the algorithm 
allowed reflectance images to be computed as well as images in terms of 
absorbance and differences between the average of a ROI of healthy surrounding 
skin with the lesion itself (spectral parameters). Additionally, images based on a 
second group of colour based parameters such as pseudoCIELAB colour 
coordinates, ITA, GFC, etc. were also calculated. Finally, another software used 
to operate with the spectral images to compute a third group of parameters called 
empirical to enhance any particular spectral feature potentially different in 
healthy and malignant tissue was also developed. 

b. For all images in terms of any of the parameters formerly described, statistical 
descriptors were obtained for each segmented lesion such as the mean, standard 
deviation, maximum and minimum. Also, as a first approach to the extraction of 
textural information, we used the analysis of the statistical properties of the 
histogram for any of the parameters calculated, also known as first order statistics, 
such as entropy, energy and third central moment. 

3. Results: 

a. Inclusion criteria and a measurement protocol were established before 
conducting a clinical study in two hospitals (Barcelona and Modena). 

b. From all the lesions analysed in both hospitals, 620 were measured with the 
multispectral system. 572 of them had a clinical or histopathological diagnosis at 
the time of this report and 502 lesions were properly segmented with the algorithm 
implemented. The diagnosis of them were the following: 290 (57.9%) corresponded 
to nevi (melanocytic, dysplastic, blue, junctional and Spitz nevi); 95 (18.9%) were 
melanomas, 44 (8.9%) basal cell carcinomas; 35 (7%) seborrheic keratosis; 34 
(6.9%) other benign lesions, such as angiomas, dermatofibromas and actinic 
keratosis; and 2 (0.4%) corresponded to squamous carcinomas.  The last three 
types of lesions were excluded from the posterior analysis due to the low number 
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of samples available in each category. Therefore, 429 skin lesions were finally 
included in the study: nevi, melanomas and basal cell carcinomas. 

c. A classification algorithm was developed to decide whether the lesions were 
malignant (melanomas and basal cell carcinomas) or not (nevi). Data was splitted 
into training and validation sets of the same size including half of the nevi, basal 
cell carcinomas and melanomas. Using the training set, upper and lower thresholds 
were firstly defined for each parameter of the three groups previously described 
(spectral, colour and empirical) as the interval limits that included all nevi. All 
lesions above or under the upper and lower thresholds for at least one parameter 
were classified as malignant. 

d. Taking into account the difficulty of working with 1309 parameters, an algorithm 
in order to select only the most useful ones was implemented. This was achieved 
in 3 steps: firstly, in order to detect the highest number of melanomas and basal 
cell carcinomas, the lesions in the validation set which were detected for only one 
parameter were found and this concrete parameter was selected. Secondly, the 
lesions which were detected for only two parameters were found and then, the 
parameter which had the best rate of differentiation between nevi and 
melanoma/basal cell carcinoma were chosen. Finally, the same process was done 
successively with those lesions which were detected for 3, 4, 5... parameters, until 
the maximum number of melanomas were detected.  

e. From all parameters calculated, only 15 were not redundant and finally selected 
for use in the classification algorithm. From the first group (spectral reflectance 
and absorbance parameters; and corresponding differences between the lesion and 
the surrounding healthy skin): En of Abs875,  µ3 of Refl745, 𝑥𝑥 �of Refl645 and σ of 
Abs935. Also, differences between lesion and surrounding skin in terms Ep of Abs465, 
En of Abs635, µ3 of Abs985, and µ3 of Refl975. From the second group (colour-based 
parameters): maximum of L*, σ of a* as pseudo-CIELAB colorimetric coordinates, 
and minimum ΔE with the surrounding healthy skin as the reference, and 
maximum ITA. From the third group (empirical parameters): maximum of Emp1, 
En of Emp6, maximum of Emp9.  

f. With the classification algorithm based on these 15 parameters, 6 out of 47 
melanomas and none of the 22 basal cell carcinomas were misclassified (91.3% 
sensitivity); in contrast, 66 nevi from 145 were classified as malignant (54.5% 
specificity). The addition of textural information was shown to be useful for the 
diagnostic of malignant lesions (melanomas and basal cell carcinomas) than the 
sole use of averaged spectral and colour information. The sensitivity (91.3%) and 
specificity (54.5%) values slightly improved in some cases those previously 
achieved by means of other multispectral systems without the need of an 
experienced dermatologist as it was based on a complete automatic algorithm.  
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g. When only the melanomas and nevi were considered the sensitivity decreased 
down to 87.2%, although this value was still similar to that obtained by 
experienced dermatologists through averaged spectral and colour features. 

4. Combination of the multispectral system with the 3D system: 

a. The same steps previously carried out for the multispectral system were done for 
the 3D system, splitting all lesions into training and validation sets and using a 
classification algorithm to find the best parameters. 57 nevi and 27 melanomas 
were included in the analysis. The perimeter, volume and maximum height were 
the parameters found to be relevant in this case, obtaining values of 55.6% and 
83.7% for sensitivity and specificity, respectively. 

b. The combination of the multispectral and 3D system was also carried out as a 
first attempt to improve the detection of melanomas through the combination of 
different optical technologies available in the multiphotonic platform. In this case, 
only the lesions simultaneously analysed with both technologies (multispectral 
and 3D) were used (54 nevi and 21 melanomas), and lesions were not splitted into 
training and test sets due to the limited number of samples available. 6 parameters 
were found to be relevant in this case providing a 100% of sensitivity and 72.2% 
of specificity: difference between the lesion and healthy skin in Ep of Refl465, 
maximum L*, maximum ITA, maximum of Emp1, perimeter and maximum 
height. However, the conclusions reached in this case should be taken with caution 
due to the limited number of lesions included in the analysis.  
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8. Future work 

In this chapter, some research lines are suggested for future work related to this thesis: 

1. Concerning the developed multispectral system: 

a. The use of the spectral images at 45º and 0º would be useful for the extraction of 
more information about the lesion’s skin behaviour at different wavelengths. 

b. Daily calibration could be reduced to weekly calibration after checking the 
repeatability of the system with the daily calibration spectral images, in order to 
facilitate the use of the system to physicians. 

2. Concerning the spectral and colorimetric analysis: 

a. The inclusion of more melanomas and basal cell carcinomas in the validation set, 
could ensure the selected parameters. 

b. The measurement of more seborrheic keratosis, basal cell carcinomas and other 
kinds of benign and malignant lesions would allow the improvement of the 
classification algorithm, in order to enhance the detection of malignant lesions. 

c. Second order statistics, i.e. co-occurrence matrices, could improve the textural 
analysis of the lesion, due to it takes into account the spatial relationship among 
digital levels. 

d. A deeper analysis using machine learning, i.e. principal components analysis 
(PCA), could be used to reduce the large list of parameters, and to find more 
suitable thresholds to classify the lesions. 

3. Concerning the inclusion of the OFI and 3D systems: 

a. More 3D lesions which have been also analysed with the multispectral system 
should be included to verify the parameters selected for the 3D. Furthermore, 
more accurate sensitivity and specificity could be obtained with the combination 
of the 3D and multispectral system. 

b. Analysis of the OFI information, in order to find parameters which could improve 
the detection of malignant lesions with the combination of the 3D and 
multispectral system. 
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Appendix A. Datasheets of components 
used in the developed system 

A.1 Big metal ring 

 

A.2 DMK 23U455 camera 
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A.3 Sony ICX445ALA sensor 
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A.4 Schenider-Kreuznack Cinegon 1.8/16 
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A.5 LEDs board 
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A.6 Electronic board to control the LEDs 
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A.7 Visible linear polarizing laminated film from Edmund Optics 
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A.8 X Rite ColorChecker® Classic CCCR 
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Appendix B. Intrumentation used in 
the thesis 

B.1 Spectrometer Instrument Systems Spectro 320 
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B.1.1 Optical probe EOP 146 
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B.1.2 Telescopic optical probe TOP 100 
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B.1.3 Telescopic optical probe TOP 100 
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B.2 International Light Radiometer (IL 1700) 
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Appendix C. User manual of the 
multispectral system 

1. Getting started  

Steps to follow: 

a) Once positioned the medical cart to examine the patients at the hospital, switch the 
medical cart by pushing the central button of power supply. 

b) Turn on the computer in the medical cart, and wait until the monitor the Windows 
7 desktop appears. 

c) Before starting the control program of the multispectral dermoscope (DM) ensure 
that it is properly located on the base. 

d) Initialize the MS PR1 program by clicking its icon.  

 
Figure 1 

The program will display an image when starting to check operation of its lighting 
system – LED ring ligh source (Figure 2). If there is an error message, follow the instruction 
presented in section "4.5. Troubleshooting". 

 
Figure 2 
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e) If it is the first time that the program is used during this day, the system performs 
an assisted calibration procedure. Follow the prompts to this process as shown in section 
"4.3. Calibration". Otherwise go to the next step. 

f) After calibration, the patient selection screen is shown, with his/her identification 
(ID PATIENT, which is a numerical code), the lesion to be measured (LESION), and the 
test date (DATE) of the last analyzed patient (Figure 3). In case you want to make a new 
measurement, press the "NEW" button to enter the data. Once this is done, press the "OK" 
button. In case you want to access the home screen, press the "CANCEL" button.  

 
Figure 3 

g) If the name of the patient and the lesion already exist, a new window will appear 
with the warning message "LESION IS ALREADY SAVED, DO YOU WANT TO 
OVERWRITE THE DATA?" (Figure 4). In case you agree to overwrite the information 
press the "Aceptar" button; in case you want to keep the information press the "Cancel" 
button to return to the patient selection window. In case this window is not shown to go 
to the next step.  

 
Figure 4 

h) A new window to confirm patient data will appear on the screen (Figure 5). Press 
the "Aceptar" button if the information is correct before continuing with the measure of 
the lesion. If not, press the "Cancel" button and return to the initial screen. The steps to 
be followed for the measurement of the lesion are shown in Section 2 "Multispectral 
dermoscope measurement". 
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Figure 5 

In any case the software will enable measuring without a patient name and the name 
of the lesion. 

2. Multispectral dermoscope measurement 

The main window of the program interface control of the MD appears after switching 
on the equipment as shown in Figure 6. This interface contains different areas, buttons 
and displays live images that are being captured with the MD.  

 
Figure 6 

To perform a measurement is necessary to follow the following steps: 

a) First, place an adhesive film onto the metal ring, which has an outer diameter of 41.9 
mm and an internal diameter of 31.75 mm. Then, put the metal ring in contact with the 
skin and centered with respect to the lesion to be measured 



C. USER MANUAL OF THE MULTISPECTRAL SYSTEM 

135 
 

b) Place the MD on the lesion with the help of the ring and put the screw in position 
1, as indicated by the pop-up screen (Figure 7). Click on "Aceptar". 

c) Place the screw in position 2 when prompted by the pop-up screen and press the 
"Aceptar" (Figure 8) button. Do the same with the position 3 (Figure 9). 

 
Figure 7 

 
Figure 8 

 
Figure 9 

- Initially, the device performs an auto-exposure according to the characteristics of 
skin pigmentation patient and subsequently, it captures the images. These images are 
captured for different polarization states, making it necessary to replace the polarizing 
screw in the positions indicated on-screen messages. 

- At the end of the process the images will be saved automatically. 

- At any time, the process can be canceled by pressing the "STOP PROCESS" button 
or the "Cancel" button in the pop-up screens. 
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d) If you need a new measurement, press the "MEASUREMENT" button to move to 
patient selection. 

3. Calibration  

The MD will perform a daily assisted calibration to ensure proper image acquisition. 
This process takes about 5 minutes and follows the same scheme of the measurement 
procedure explained in the previous section. The calibration process appears as a 
mandatory step each day, only the first time that the MD is used. You cannot do any 
action without prior calibration. The steps are: 

a) If the device has not been calibrated, a pop-up screen with the message "DEVICE 
MUST BE CALIBRATED" (Figure 10) appears. Place the MD on the base and press the 
"Aceptar" button.  

 
Figure 10 

b) Put the calibration sample in position "IN" and press the "Aceptar" button in the 
pop-up screen (Figure 11).  

 
Figure 11 

c) Put the screw in position 1 and press the "Aceptar" button in the pop-up screen 
(Figure 12).  
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Figure 12 

d) Place the screw in position 2 when prompted by the pop-up screen and press the 
"Aceptar" button (Figure 13). Do the same with the position 3 (Figure 14).  

 
Figure 13 

 
Figure 14 

f) Put the calibration sample in the "OUT" position and click “Aceptar” the pop-up 
screen (Figure 15). 

 
Figure 15 

- At the end of the process the images will be saved automatically.  



C. USER MANUEAL OF THE MULTISPECTRAL SYSTEM 

138 
 

-     At any time, the process can be canceled by pressing the "STOP PROCESS" button, 
but any action will be carried out until calibration has been completely done. 

4. Switching the device off 

a) After measurements are performed, close the program by clicking the Close button 
on the screen and press the "Aceptar" button (Figure 16). 

  
Figure 16 

b) In case you are not going to use the computer, also switch it off. 

c) In case you are not going to use the medical cart, also switch it off (Figure 17).  

 
Figure 17 

5. Troubleshooting 

Although it is not usual, sometimes specific problems may occur while using the 
program. Those most likely to occur are described here: 

a) In case there is a failure in the communication with the camera or LED ring light 
source a pop-up window is shown (Figures 18 and 19, respectively). Disconnect the USB 
cable from the camera and the LED ring light source of the computer, wait 10 seconds and 
reconnect. If the error persists, contact the Technical Support (contact details in section 
6).  
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Figure 18 

 
Figure 19 

b) In case there is a failure when checking the LEDs operation, the pop-up message of 
Figure 20 is displayed. In this case, contact the Technical Support (Contact in section 6). 

 
Figure 20 

- Other troubles (problems in the measures, failure of any component, etc.), contact 
the Technical Support (Contact in section 6).  
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6. Contact 

 

Dr. Santiago Royo Royo 

santiago.royo@upc.edu 

Tel. +34 937 398 904 

Dra. Meritxell Vilaseca 

meritxell.vilaseca@upc.edu 

Tel. +34 937 398 767 

 

CD6 - Centre de Desenvolupament de Sensors, Instrumentació i Sistemes 

Rambla Sant Nebridi, 10 

08222 · Terrassa 

Spain 

 

mailto:santiago.royo@upc.edu
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