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Abstract  In the discretization of the Poggio-Miller-Chan-
Harrington-Wu-Tsai (PMCHWT) formulation by the Method 
of Moments (MoM), the unknown currents are usually 
expanded with the divergence-conforming RWG set. Recently, 
the discretization of the PMCHWT formulation with the 
monopolar-RWG basis functions, discontinuous across edges, 
has been successfully developed through a volumetric-
tetrahedral testing scheme. We present a novel even-surface 
odd-volumetric monopolar-RWG PMCHWT-discretization 
that relies on the rearrangement of the monopolar-RWG set in 
terms of the RWG and the odd-monopolar-RWG subsets. This 
scheme offers improved accuracy for a wider range of heights 
of the testing tetrahedral elements than the volumetrically 
tested monopolar-RWG PMCHWT-discretization in the 
analysis of small sharp-edged ferromagnetic targets. 

1 INTRODUCTION 

The integral formulation Poggio-Miller-Chan-
Harrington-Wu-Tsai (PMCHWT) [1][2] is widely 
used in the scattering analysis of penetrable targets. 
In the standard Method-of-Moment discretization of 
the PMCHWT formulation, the unknown electric and 
magnetic currents, defined over the surface-boundary 
of the object, are usually expanded with the RWG 
basis functions, an example of divergence-
conforming set. These basis functions are especially 
convenient since the hypersingular Kernel 
contributions, arising in the expansion of scalar 
potentials, electric and magnetic, are cancelled out 
thanks to the normal continuity of the expanded 
currents across the edges arising from the 
discretization. Furthermore, these schemes are 
conforming with respect to the function spaces of the 
integral operators and therefore ensure converging 
solutions [3]. However, for the successful 
implementation of these edge-based schemes, the 
underlying mesh has to be conformal, i.e. every pair 
of adjacent facets can only intersect over a common 
edge. In practice, the generation of such a mesh 
becomes a complicated engineering task that often 
results in elements of disparate sizes and impedance 
matrices with high condition numbers. Moreover, 
domain decomposition schemes relying on 
divergence conforming basis functions require the 
artificial enclosure of the sub-regions involved thus 
introducing additional sets of unknowns [4]. These 
pitfalls are mitigated with the recent development of 
a facet-based discretization of the PMCHWT [5]. 
Whereas the unknown electric and magnetic currents 
are expanded with the monopolar-RWG set, the 

scattered fields are tested over small tetrahedral 
entities attached to the boundary surface, inside the 
region where, according to equivalence principle, 
fields must be zero [5]. The hypersingular Kernel 
contributions can then be evaluated numerically. 
Interestingly, this implementation shows better far-
field accuracy than the conventional RWG 
discretization in the scattering analysis of single 
small sharp-edged targets with moderate or high 
dielectric contrasts [5]. The improved accuracy, 
though, is mainly observed for a restricted range of 
heights (H) of the tetrahedral entities. In this paper, 
we propose the hierarchical rearrangement of the 
monopolar-RWG space of currents, electric and 
magnetic, into the subspaces even monopolar-RWG 
(unnormalized RWG) and odd monopolar-RWG [6]. 
Although the new scheme is edge-based and 
therefore not amenable for the analysis of 
nonconformal meshes, better RCS-results are 
observed in the scattering analysis of single small 
sharp-edged ferromagnetic objects for a wider H-
range when compared with the volumetrically tested 
PMCHWT implementation. 

2 EVEN-ODD  PMCHWT-DISCRETIZATION 

The monopolar-RWG basis functions are defined as 
the RWG basis functions inside the triangular facets 
but with no normal continuity constraint across 
edges; hence, two independent contributions arise at 
both sides of edges [6]. The space spanned by the 

monopolar-RWG basis functions, nm , can be 

decomposed into two subspaces that are spanned by 
the even monopolar-RWG and the odd monopolar-

RWG subsets, respectively,  e
nm  and   o

nm .These 

are defined in terms of the two contributions  1
nf r  

and  2
nf r  defined at the two facets ( 1

nS  and 2
nS ) that 

share the nth edge [6]  as   
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where  1 en N  and Ne denotes the number of edges 

arising from the discretization of the boundary-

surface. We call the subset  e
nm  even-monopolar-

RWG because it enforces normal continuity of the 
currents across edges. This subset corresponds with 
the RWG set. In light of (2), the odd-monopolar-

RWG subset  o
nm  enforces the normal component 

of the currents at both sides of the common edge to 
have the same absolute value but opposite sign [6].  

The electric and magnetic currents, iJ  and iM , 

residing on each side (i=1,2) of the boundary 
interface, are expanded in terms of the even and odd 
monopolar-RWG components as follows 
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where the sequences    e, o,,i i i
n n nJ a a  and 

   e, o,,i i i
n n nM b b  represent, respectively, the sets of 

unknown coefficients associated with the expansion 
of the electric and magnetic currents. The PMCHWT 
formulation relies on the approximated scattered 
fields associated with two regions (1 and 2). In this 
paper, the index choice i=1 denotes the outer free-
space region, whereas i=2 denotes the inner 
ferromagnetic region. The approximated scattered 
fields generated by the even or odd monopolar-RWG 
current components are defined as 
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and the integral operators in (5) and (6) yield 
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where the integral operator   e /oi

nK r  should be 

interpreted in the Cauchy principal value sense and 

iG  denotes the Green’s function of the homogeneous 

medium associated with region i; that is, 

 / 4ijk R
iG e R  where R  r r . The constants 

i  and ik  stand for the wave impedance and the 

wave number, respectively, of the i-th region. In this 
paper, they are defined in terms of the free-space 
wave number, 0k , and impedance, 0 , as 

 

1 0k k  ,  1 0   ,  2 0 rk k   ,  2 0 r       (9) 

 
where μr denotes the relative permeability of the 
target.  

The discretized PMCHWT formulation is defined at 
the surface of the ferromagnetic object from the 
subtraction of the tangential components of the 
approximated scattered electric and magnetic fields 
in (5) and (6). The sets of unknowns become 

   e e e,n n nc a b  and    o o o,n n nc a b  because 
e / o 1 e / o 2 e / o
n n na a a    and  e / o 1 e / o 2 e / o

n n nb b b    is 

assumed. The Galerkin testing of the even-odd 
monopolar-RWG discretization of the PMCHWT 
results in the following matrix system  
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where  the excitation vectors are defined as   
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and  incE  and incH denote the incident electric and 
magnetic fields.  The impedance submatrices in (10) 
and (11) yield 
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The odd monopolar-RWG testing integrals in (11) 
cannot be evaluated numerically for self or edge-



adjacent interactions because of the hypersingular 
contributions of the gradient of the scalar potentials. 
In this work we circumvent this problem through the 
introduction of a non-Galerkin testing scheme. We 
test the fields over pairs of tetrahedral elements 
attached to the boundary (matching pairs of adjacent 
facets of the surface triangulation), inside the region 
where, in accordance with the equivalence theorem, 
fields must be null. 

2.1  Odd monopolar-SWG testing 

To reach best coupling with the odd monopolar-
RWG basis functions we define the odd monopolar-

SWG testing functions,  i
p
 oM ,  as [6] 
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where the functions 1i

pv  and 2i
pv  denote the 

monopolar-SWG contributions defined over the two 
facet-adjacent tetrahedral elements ( 1i

pV  and 2i
pV )   

attached to the boundary, lying in the medium i (see 
Fig. 1) and sharing the pth edge arising from the 
surface triangulation [5].  

We define the even-surface odd-volumetric 
monopolar-RWG discretization of PMCHWT from 
the matrix equations in (10) and (11). Whereas we 
keep the even surface-tested equations in (10), we 
replace the odd Galerkin-testing in (11) by a 
volumetric testing with the odd monopolar-SWG 
functions. The corresponding odd-volumetrically-
tested matrix equations become  

 

, , , , ,e e , , ,o o

, , , , ,e e , , ,o o

= Z + Z

= Z + Z

e e

e e

N N
V inc V E V E
p pn n pn n

n=1 n=1

N N
V inc V H V H
p pn n pn n

n=1 n=1

E c c

H c c

 

 

o o o

o o o

       (17) 

 
and the excitation vectors are now defined as  
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The submatrices in (17) accordingly yield 
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In view of Fig. 1, the testing volumetric entities are 
attached to the boundary in the side where, for that 
particular region, in accordance with the equivalence 
theorem, fields must be zero. The accuracy of this 
implementation depends on the height of the testing 
entities (H), which we characterize, in view of Fig. 1, 
with the same value at both regions, as a fraction of 
the lengths (h) of the associated edges in the 
matching triangles.  
   

 

Figure 1: Volumetric testing over pairs of tetrahedral 
elements 11 12

p pV V  and 21 22
p pV V , attached to the pair 

of triangular facets 1 2
p pS S , and defined, respectively, 

inside regions 1 and 2. 

3 NUMERICAL RESULTS 

In Fig. 2 we show bistatic RCS results near the 
forward direction computed with the monopolar-
RWG discretization of the PMCHWT with 
volumetric testing (PMCHWT[v-monoRWG]) [5] 
and the new even-surface odd-volumetric monopolar-
RWG discretization of PMCHWT (PMCHWT[v-eo-
monoRWG])  for an electrically small (side 0.1m) 
tetrahedron made out of cobalt ( 250, 1r r   ). 

The height of the testing elements, H, is set to be 
h/100. In Fig. 3, we show the root mean square 
relative RCS-error with respect to a RCS-reference 
over 60 directions in the xz-plane of the 
PMCHWT[v-monoRWG] and PMCHWT[v-eo-
monoRWG] for a square pyramid made out of cobalt  
with side 0.071m. With no analytical solutions 
available, we compute the reference results for Figs. 
2 and 3 with the conventional RWG-discretization of 
the PMCHWT formulation, PMCHWT[RWG], and 
very dense mesh (38400 unknowns for the square 
pyramid and 43200 unknowns for the tetrahedron). 
For the sake of a fair comparison, the involved 
implementations need to handle similar number of 
unknowns. Coarser triangulations are then adopted in 
the monopolar-RWG implementations, with two 
unknowns per edge, with respect to the triangulations 



of the RWG-implementations, with one unknown per 
edge. Therefore, in Fig. 2, for the small tetrahedron, 
PMCHWT[RWG] makes use of Nt=784 triangles, 
while PMCHWT[v-monoRWG] and PMCHWT[v-
eo-monoRWG] adopt triangulations with Nt=400 
facets. Similarly, in view of Fig. 3, for the small 
square pyramid, PMCHWT[RWG] makes use of 
Nt=800 facets while PMCHWT[v-monoRWG] and 
PMCHWT[v-eo-monoRWG] are computed with  
Nt=392 triangles. In both examples the target is 
impinged by an x-polarized +z-propagating plane 
wave and the free-space wavelength (λ0) is set to 1m.  
 

 
Figure 2: xz plane cut of the bistatic RCS near the 

forward direction computed with PMCHWT[v-
monoRWG],  PMCHWT[v-eo-monoRWG] and 

PMCHWT[RWG] for a cobalt tetrahedron with side 
0.1m. 

 

 
Figure 3: The relative rms RCS-errors of the 

monopolar-RWG PMCHWT implementations against 
the height of the testing entities H, of a cobalt square 

pyramid with side 0.071m. 

From Figs. 2 and 3 we observe better far-field results 
for PMCHWT[v-eo-monoRWG] when compared 
with RCS-results computed with PMCHWT[v-
monoRWG]. We attribute this improvement to the 
fact that the generation of the impedance matrix for 
PMCHWT[v-eo-monoRWG] relies partly on the 
well-established RWG-discretization of the 
PMCHWT-formulation.   
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