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Abstract

Optical magnetometers use magnetically-sensitive atomic ensembles and opti-
cal read-out to detect the amplitude of magnetic fields. They have become
the most sensitive instruments for measuring low-frequency magnetic fields sur-
passing competing technologies like superconducting quantum interface devices
(SQUIDs), and find applications in a variety of fields ranging from medicine, bi-
ology and geophysics, as well as tests of fundamental physics. However, their fun-
damental sensitivity is bounded by quantum mechanical behavior of the atoms,
which gives rise to the standard quantum limit (SQL). As many instruments are
approaching this fundamental limit, it becomes necessary to explore ways to over-
come the SQL. Quantum metrology studies strategies to increase the sensitivity
beyond the SQL by means of quantum engineering the atomic states.
In this thesis, we investigate the quantum enhanced detection of time varying

radio-frequency magnetic fields using a cold atomic ensemble of 87Rb atoms held
in an optical dipole trap. We first theoretically develop a new measurement
technique based on stroboscopic back-action evading measurements that takes
advantage of the atomic coherence. This measurement scheme is suitable for
the detection of arbitrarily-chosen components of radio-frequency waveforms and
includes radio-frequency magnetometry as a special case.
Experimentally, we demonstrate the capabilities of this technique using a lin-

early chirped waveform as a test case. As a first experiment, we demonstrate
the selective response of the method in the coherently accumulated signal by
the atoms. For this, we dispersively probe the atoms via Faraday rotation and
non-destructively measure the induced magnetization.
In the last part of the thesis we demonstrate quantum enhanced magnetic field

detection. In a measure-evolve-measure (MEM) sequence, a first stroboscopic
quantum non-demolition (QND) measurement produces a state with reduced
projection noise, followed by a period of free evolution where the atoms accu-
mulate signal. A second QND measurement detects the change relative to the
first measurement. We demonstrate entanglement-enhanced sensing of sinusoidal
and linearly chirped waveforms, with metrologically-relevant noise reduction of
ξ2
m =0.84(8) and ξ2

m =0.80(3), respectively. We achieve volume-adjusted sen-
sitivity of δB

√
V ≈ 3.96 fT

√
cm3/Hz, comparable to the best radio-frequency

magnetometers.
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Resum

Els magnetòmetres òptics utilitzen conjunts d’atoms sensibles magnèticament i
lectura òptica per detectar l’amplitud de camps magnètics. S’han convertit en els
instruments més sensibles per mesurar camps magnètics de baixa freqüència, su-
perant tecnologies rivals com els dispositius superconductors d’interfície quàntica
(SQUID), alhora que troben aplicacions en camps tan diversos com la medicina,
la biologia, la geofísica, fins a proves de física fonamental. No obstant això, la
seva sensibilitat està fonamental limitada pel comportament quàntic dels àtoms
que dóna lloc al límit quàntic estàndard (SQL). Donat que molts instruments
s’aproximen a aquest límit fonamental, es imprescindible explorar maneres de
supera-l’ho. La metrologia quàntica estudia estratègies per augmentar la sensi-
bilitat més enllà del SQL mitjançant enginys quàntics en l’estat dels àtoms.
En aquesta tesi investigem la detecció de camps magnètics de freqüència de

ràdio amb un conjunt d’atòms freds de 87Rb mantinguts en una trampa de dipol
òptic. En primer lloc, desenvolupem teòricament una nova tècnica de mesura
basada en mesures estroboscòpiques que eviten la contra-acció de la mesura al-
hora que permet aprofitar la coherència atòmica. Aquest esquema de mesura és
compatible amb la detecció de components elegits arbitràriament de formes d’ona
de freqüència de ràdio i inclou la magnetometria de radiofreqüència com a cas
especial.
Demostrem experimentalment les capacitats d’aquesta tècnica utilitzant una

forma d’ona de prova amb canvi de freqüència lineal. Al primer experiment,
demostrem la resposta selectiva del mètode en la senyal coherent acumulada pels
àtoms. Per aconseguir-ho, provem de forma dispersiva els àtoms amb la sonda
Faraday i mesurem no destructivament l’oscil.lació de Rabi de la població atòmica
entre els subnivells magnètics dels nivells hiperfins de l’àtom.
A la darrera part de la tesi, demostrem la detecció de l’amplitud de camps

magnètics amb precisió millorada gràcies a efectes quàntics. En una seqüència de
mesura-evolució-mesura (MEM), una primera mesura quàntica, estroboscòpica i
no destructiva (QND) produeix un estat amb soroll de projecció atòmic reduït. El
segueix un període d’evolució lliure on els àtoms s’acumulen senyal. Una segona
mesura QND detecta el canvi relatiu a la primera mesura. Demostrem detec-
ció millorada per entrellaçament quàntic per a formes d’ona sinusoïdals i amb
canvi de freqüència lineal, amb reduccions de soroll metrològicament rellevants
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ξ2
m =0.84(8) i ξ2

m =0.80(3), respectivament. Aconseguim una sensibilitat ajustada
pel volum δB

√
V ≈ 3.96 fT

√
cm3/Hz, comparable als millors magnetòmetres op-

erant a freqüència de ràdio.
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“Life, it seems, is not meaningless but, rather, so
full of meaning that its meaning must be constantly
murdered for the sake of cohesion and comprehen-
sion. For the sake of the storyline”

Steve Tesich, Karoo

1
Introduction

Metrology is the branch of science studying measurements. It has interest from
both theoretical and experimental perspectives. The theoretical side proposes
new measurement techniques to improve measurement precision and addresses
the fundamental question of the meaning of a measurement. Experimentally,
metrology studies improving instrumentation performance and standards. In
1879 Lord Kelvin considered the use of atomic transitions as universal references
for measurements of fundamental quantities (Snyder F. Wilbert, 1973). It is
planned from next year to redefine the International System of Units wholly
from natural constants (Ian, 2012).
Correctly predicted by Lord Kelvin, atoms are used as standards for time-

keeping (Bureau Internationel des Poids et Mesures). Pioneering work on atomic
clocks was developed by Rabi (Rabi et al., 1939) and advanced by Ramsey (Ram-
sey, 1950). Timekeeping has been an area of intense research and holds the record
for the most precise measurement performed with atoms to date (Bloom et al.,
2014; Hinkley et al., 2013). The use of atoms is not only restricted to time mea-
sures. Atomic sensors have been used for detection of magnetic fields (Kominis
et al., 2003), measurements of gravity gradients (Snadden et al., 1998; McGuirk
et al., 2002), as inertial sensors for navigation (Geiger et al., 2011; Stockton
et al., 2011), in experiments testing fundamental physics (Gaaloul et al., 2010;
Bouchendira et al., 2011; Allmendinger et al., 2014) and have been proposed for
the detection of gravitational waves (Dimopoulos et al., 2008; Chaibi et al., 2016).
When operated with an ensemble of NA non-entangled atoms, the precision of
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1 Introduction

atomic sensors is limited by the quantum mechanical nature of the atomic polar-
ization, limiting the uncertainty of the measurement to ∝ 1/

√
NA, the standard

quantum limit (SQL).
When the number of atoms is limited the precision in a measurement cannot be

arbitrarily improved by classical means, which typically is achieved by increasing
NA unrestrictedly. Quantum metrology studies ways to further improve the mea-
surement sensitivity when increasing the number of particles or the measurement
time are unfeasible or inappropriate strategies. Attempts have been made using
new measurement strategies in order to attain improved sensitivity (Giovannetti
et al., 2011). Quantum metrology is based on the profitable use of entanglement,
this is, quantum correlations among the particles used in the measurement.
Quantum metrology showed that the SQL can be surpassed using squeezed

states, i.e., states that have redistributed noise from one quadrature to an-
other (Wineland et al., 1992; Kitagawa and Ueda, 1993; Wineland et al., 1994).
Squeezed states were firstly demonstrated in photon quadratures (Grangier et al.,
1987; Predojević et al., 2008; Vahlbruch et al., 2008), and state-of-the-art exper-
iments benefit from sensitivity improvement due to squeezed light (LIGO, 2013,
2011).
In this thesis we focus on spin-squeezing in neutral atomic systems and its ap-

plication to quantum sensing. Pioneering work producing atomic spin squeezing
mapped the nonclassical state of light into atoms (Hald et al., 1999). Shortly
after, interactions between atoms constituting a Bose-Einstein condensates were
exploited to produce states with reduced noise (Orzel et al., 2001; Esteve et al.,
2008; Sackett, 2010; Riedel et al., 2010). In these setups was possible to achieve
large amounts of squeezing, but it was challenging to utilize the squeezing to
sense ambient perturbations.
The development of quantum non-demolition (QND) measurements allowed

generation of squeezed states using measurements (Kuzmich et al., 1998, 2000;
Appel et al., 2009; Takano et al., 2009; Schleier-Smith et al., 2010b; Chen et al.,
2011; Sewell et al., 2012). In this case, the squeezing is achieved by dispersive
atom-light interactions where the atoms cause a state-dependent phase shift on
the light, which then is measured. An advantageous characteristic of measured-
based squeezing is that at the same time the probing induces the squeezing, the
measurement output is used to characterize the state, reducing two challenges
of squeezing into a single one. The uncertainty of the collective atomic state is
reduced to the uncertainty of the detected photons. The light measurement preci-
sion must be of lower uncertainty than the imprinted atomic quantum projection
noise.
The main challenge for QND measurement to produce squeezing is to get the

maximum possible information per photon. Photons scattered into free space
carry information about the atomic state, and if lost they will not contribute to
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the creation of entanglement necessary to project the atoms into a spin-squeezed
state. Is therefore necessary that each atom has a low probability of scattering
a photon. In order to gain information about the atomic state, a large light-
atom interaction strength is desirable. Different systems have been used to get
the interaction strength required for producing atomic squeezed states, from hot
vapor cells containing large atom number (Lucivero et al., 2016) where each
photon interacts with a large number of atoms, to cold and trapped atoms in
special geometries (Kubasik et al., 2009) where the photons efficiently interact
with the atoms. A different approach is to build optical cavities around trapped
atoms (Schleier-Smith et al., 2010b; Chen et al., 2011) to enhance the coupling
strength as the photons interact many with the atoms, resulting in an build-
up of phase shift during the different round-trips. Cavity measurement-based
setups have enabled larger amounts of squeezing (Bohnet et al., 2014; Hosten
et al., 2016b,a). To date, in these cavity enhanced measurements the atoms are
prepared in a clock state, insensitive to magnetic field changes.

In contrast to the above-described works, here we use the atoms as sensors for
radio frequency magnetic fields. Alkali atom based magnetometers have shown
exceptional sensitivities (Kominis et al., 2003; Sheng et al., 2013) in DC mag-
netic field measurements but atoms can also be used to efficiently detect radio
frequency fields (Savukov et al., 2005; Shah et al., 2010; Chalupczak et al., 2012;
Savukov et al., 2014). A simple and effective method is to optically pump atoms
along the direction of an applied DC field, and then wait for them to interact
with an RF perturbation. The bias field keeps the spin polarization stable against
most magnetic perturbations, with the important exception of resonant fields, i.e.
those at the Larmor frequency. Resonant fields drive a precession of increasing
amplitude, so that a measurement of the amplitude after an accumulation time
indicates the amplitude of the resonant part of the RF field.

This measurement process as just described is limited by quantum noise -
the state that results from optical pumping has a spin noise in the orthogonal
components ∝ 1/

√
NA. This noise can, however, be squeezed, reducing the spin

noise and thus the minimum signal that can be detected. As described above the
squeezing can be performed by measurement, so that a sequence of measurement,
evolution, and measurement, a relatively simple modification to the naive RF
magnetometry sequence, can beat the standard quantum limit for sensing of RF
fields.

While the dynamics of time varying fields can be reconstructed by measuring
over successive, acquisition periods with increasing duration or rapidly sampling
the signal using small acquisition steps, these protocols are inefficient at sensing
the magnetic fields. Quantum noise and quantum coherence play essential roles
in determining the projection noise sensitivity of sensing magnetic fields with NA

15



1 Introduction

Figure 1.1: (a) A bias field breaks the degeneracy of the hyperfine ground states
by an energy shift proportional to the bias field strength ∆E. An
orthogonal RF magnetic field couples two hyperfine levels. The atoms
are solely resonant to radio-frequencies matching ∆E. (b) An atomic
ensemble spin polarized along the bias field will start to spiral around
its original orientation due to the interaction with the RF field. (c)
Measuring along the direction orthogonal to both magnetic fields, an
increasing signal is expected. From the amplitude of the measured
signal it is possible to infer the strength of the RF field.

spins-f atoms (Budker and Romalis, 2007)

δBPN
√
Tacq ∝

1√
2fNAτ

(1.1)

where Tacq is the total acquisition time including averaging repeated measure-
ments. The factor 1/

√
2fNAτ reflects the standard quantum limit spin projection

noise of the atomic precession angle. The signal accumulation time τ is deter-
mined by the smaller of the single-measurement duration and spin atomic coher-
ence time. Analogous expressions govern clocks and other atomic instruments
(Degen et al., 2017). As shown by Eq. (1.1), atomic magnetometers have best
performance when the measurement duration equals the atomic spin coherence
time.
We detect radio-frequency magnetic fields at ≈40 kHz taking advantage of the

quantum coherence of an ensemble of spin squeezed atoms. We first prepare the
atoms in a spin squeezed state by means of stroboscopic QND measurements
which evade the measurement back-action (Thorne et al., 1978). The quantum
enhanced atoms are then allowed to evolve for a long interrogation time where
they are solely under the influence of the external radio-frequency magnetic per-
turbation. The atoms accumulate phase information for a signal of frequency
matching the Larmor frequency. A second stroboscopic QND measurement is
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performed in order to measure the amplitude acquired by the atoms due to the
field. We show quantum noise reduction in the measurement of the field’s am-
plitude due to entanglement among the atoms. Other quantum enhanced atomic
magnetometers have been demonstrated for the detection of RF fields in the
range of 300 kHz (Wasilewski et al., 2010) to 6.8GHz (Ockeloen et al., 2013).
The method here presented can be exploited to sense a wide range of frequencies
by changing the strength of the field and carefully adjusting the probe frequency
(Savukov et al., 2005). When the coherence time exceed the measurement time,
spin squeezing improves the short-term sensitivity and the measurement band-
width (Huelga et al., 1997; André et al., 2004; Auzinsh et al., 2004).
To date, coherent measurements has been used to detect constant magnetic

fields (Leroux et al., 2010b; Sewell et al., 2012) or simple sinusoidal signals (Ock-
eloen et al., 2013). In this thesis, we demonstrate a new technique that accumu-
lates signal over a long time, as the RF magnetometry described above does, but
which is capable of detect time varying radio-frequency magnetic fields. As de-
scribed above, the RF atomic magnetometers are sensitive to RF fields matching
the Larmor frequency. By modulating the strength of the bias field we change the
atomic resonance frequency as a function of time, and thus extend the coherent
detection to more general radio-frequency waveforms, those with time-varying fre-
quencies. The measurable amplitude takes the form of an overlap integral, with
a pattern function that is controlled by the experimenter. The pattern func-
tion depends on the modulated bias field. When the bias field profile matches
the waveform the amplitude is maximal. In this way, the amplitude of an arbi-
trary signal component can be detected. We show that the sensitivity of such a
measurement can be improved by using quantum enhanced atoms

Outline of the thesis
The manuscript is organized as follows:

Chapter 2 describes the theoretical concepts. We introduce the collective
variables for atomic ensembles and see that they follow the usual commutator
relations for angular momentum operators. We explain coherent and squeezed
states. We characterize the light probe pulse in terms of the Stokes operators.
We use these definitions on the description of the light-atom interaction, and
show that this interaction can be described as a quantum non-demolition mea-
surement capable of preparing spin squeezed states. At the end of the chapter we
discuss how to experimentally estimate the interaction strength between atoms
and photons.
In Chapter 3 we briefly summarize the experimental setup as it has been pre-

sented elsewhere (Kubasik, 2009; Koschorreck, 2010; Dubost, 2012; Napolitano,
2014; Behbood, 2015; Colangelo, 2016). We describe the improvements made in
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1 Introduction

the course of this thesis: a new laser system to cool and trap more atoms into the
dipole trap and an upgrade of the dipole trap optics to increase the light-atom
coupling. We present the preparation of the atoms in two different and orthogonal
coherent spin states as well as their efficiencies. The last sections show the char-
acteristic of the trapped atoms: number of atoms and their temperature, atomic
cloud volume, lifetime, light-matter coupling constant and scattering rate.

Chapter 4 presents the development of a fast, pulsed and low-noise photo-
detector based on a charge sensitive amplifier. We measure its noise character-
istics and its shot-noise limited range of operation. We enrich the measurement
capabilities by making the signal available in real time using a solution based on
analog electronics. We compare the performance on the two scenarios, real-time
and off-line detection. Finally we compare the performance of our detector with
other detectors present in the bibliography.

Chapter 5 details the working principle of atomic ensembles for constant and
oscillating magnetic fields. We discuss the efforts to produce a homogeneous mag-
netic field along the length of the atomic cloud resulting in a long spin coherence
time. We describe the control on the magnetic field and a technique to measure
the bias magnetic field and the gradient along the trap axis. We present mea-
surements of magnetic Rabi oscillations and from those we calibrate the strength
of the radio-frequency field. We then present our measurement strategy to coher-
ently detect arbitrarily-shaped radio-frequency time varying signals using a cold
atomic ensemble. We experimentally verify the theory using a particular case of
waveform, a linearly chirped signal.

Chapter 6 describes detection of radio-frequency fields and linearly chirped
waveform amplitudes beyond the projection-noise limit, using stroboscopic back-
action evading measurements on magnetic atomic ensembles. The combination of
quantum non-demolition measurements and stroboscopic probing in a measure-
evolve-measure sequence gives this quantum sensing advantage, while also allow-
ing full use of the system coherence, resulting in a sensitivity-volume figure of
merit comparable to the best radio-frequency magnetometers at these frequen-
cies.
Finally, Chapter 7 summarizes the main results and discusses possible appli-

cations of the work.
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“Most human beings have an almost infinite capacity
for taking things for granted”

Aldous Huxley, Brave New World

“There really is nothing quite like total ignorance, is
there?”

Neil Gaiman, Neverwhere

2
Quantum description of atoms and

light

In this chapter we introduce the main actors appearing during the thesis, rubid-
ium 87 atoms and optical pulses. We start by describing the angular momentum
properties of 87Rb and see how they set limits on the precision of atomic sen-
sors. We introduce the concept of spin squeezing as a way to overcome these
limitations. We then describe the optical pulses following a collective variable
description of their spin and find strong analogies between the mathematical
description of the optical and material systems.

Once we have formally described the two “parties”, we study how they interact
for the particular case where the optical pulses are far detuned from an atomic
transition. This interaction gives rise to a Hamiltonian with a term describing a
quantum non-demolition type of measurement plus unwanted terms. We describe
our approach to cancel the undesired term in the Hamiltonian and describe how
a QND measurement can produce spin squeezed states.

The theoretical description summarized here is brief and far from exhaustive.
Along the text we include numerous references to the literature to provide the
necessary context.
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2 Quantum description of atoms and light

2.1 Atomic Spin State
The experiments described in this thesis are carried out using rubidium 87 atoms,
(87Rb ), an alkali atom. Alkali metal atoms are useful for a variety of applications
because they have a single electron in the outer-most energy shell that can be
easily manipulated. The energy level structure of the atom can be qualitatively
understood by considering only the valence electron and the nucleus, i.e., ignoring
the electrons of the inner energy shells. The valence electron has spin s = 1/2.
The ground state is an s shell with orbital angular momentum l = 0, so the total
electron angular momentum is j = l+ s = 1/2. The first excited state is a p shell
with l = 1. The fine structure splits this state into the p1/2 and p3/2 levels, where
we use the standard spectroscopic notation with the subscript denoting the total
angular momentum j. The energy transition between the ground state and the
p1/2 and p3/2 levels are referred as the D1 and D2 transitions, with transitions
wavelength of 795 nm and 780 nm, respectively.
All alkali metal isotopes have nonzero nuclear spin i. In the case of 87Rb

i = 3/2. The hyperfine interaction between electron and nuclear spins further
splits the atomic energy levels into states with total atomic spin f = i+ j. The
electronic ground state is split into levels with f = 1 and f = 2, separated by
the hyperfine energy splitting. We work on the D2 transition where the excited,
p3/2, has four manifolds f ′={0, 1, 2, 3}. Each of these manifolds has 2f + 1
magnetic sub-levels, described by mf . In Fig. 2.1 the 24 electronics states for the
D2 transition are represented.

Figure 2.1: D2 transition for 87Rb . The states are labeled with the total angular
momentum f and the magnetic quantum number mf .

The total angular momentum f and the magnetic quantum number mf are
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2.1 Atomic Spin State

enough to define the energy levels of the ground states. As we will see later,
given than the hyperfine ground state separation (6.83GHz) is much larger than
the probe detuning (∆ ∼700MHz), and that the probe is far from resonance to
any excited state, it is possible to ignore the effect of the f = 2 hyperfine level.
And so, we restrict ourselves to the f = 1 hyperfine level.
We denote the total angular momentum of a single atom by f̂ and for a collec-

tion of atoms we denote the collective total angular momentum by F̂ as

F̂ =
NA∑
i=1

f (i) (2.1)

where NA is the total number of atoms and f (i) is the total angular momentum
of the i’th atom. To write Eq. (2.1) we have assumed symmetry under particle
exchange. This allows us to write the total angular momentum of the collective
state in the symmetric space as Ftot = NAf , whereas the full Hilbert space has
dimension (2f + 1)NA .
The components for the collective spin operator obey the same commutation

relation rules as single atom operators

[F̂i, F̂j ] = iεijkF̂k (2.2)

where εijk is the Levi-Civita symbol. Here and during the rest of the thesis we
have taken ~ = 1. The non-vanishing commutator of the spin operators leads to
the Robertson-Schödinger uncertainty relation

var(F̂i)var(F̂j) ≥
1
4 |〈F̂k〉

2| (2.3)

where the variances are given by var(F̂i) = 〈F̂ 2
i 〉 − 〈F̂i〉2.

A coherent spin state (CSS) is a state with angular momentum maximum along
a particular direction in space, for example along y

〈F̂y〉 = fNA (2.4)

and is the state with minimum uncertainty, whose orthogonal spin component
variances are equal and saturate the uncertainty principle

var(F̂x) = var(F̂z) = 1
2fNA (2.5)

The above equation expresses the minimum noise that a a non-entangled state
can have due to projection noise (PN), caused by the random outcome of a
measurement orthogonal to the atom’s polarization axis. A convenient way to
illustrate the atomic state is with the generalized Bloch sphere (Bloch, 1946),
which basically is a mapping of the spin vector on a sphere. In Fig. 2.2 the CSS
expressed by Eq. (2.4) is represented on a Bloch sphere.
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2 Quantum description of atoms and light

2.1.1 Phase estimation
Consider the same state we have just introduced, a CSS polarized along the
y-axis. If the atoms are under the influence of a magnetic field of unknown
strength along the x-direction, described by B = Bxex, the collective spin will
precess around ex. The angle the atoms rotate during a time t is θ = γBxt, where
γ is the gyromagnetic ratio. It is possible to determine the magnitude of the bias
field Bx from the displaced angle θ. For small interaction time, the angle is small
and Bx can be deduced from measuring Fz

Fz ≈ 〈Fy〉θ (2.6)

By error propagation it is possible to calculate the variance of the measurement
of the angle θ, given by

var(θ) = var(Fz)
〈Fy〉2

(2.7)

Intuitively, the angular resolution depends on the variance of the measured spin
component. At the same time, it also depends on the mean spin length which
acts as a lever arm, see Fig. 2.2. The spin length is orthogonal to the uncertainty
disk. A larger the spin makes the measured displacement of Fz larger, improving
the precision on which θ can be estimated. However, a larger spin length also
increases the uncertainty in the Fz component, Eq. (2.5). This two competing
mechanisms and gives rise to the fundamental sensitivity in which an angle can
be estimated using a CSS, called the standard quantum limit (SQL). Following
Eq.s (2.4) and (2.5) it can be written as

var(θ)CSS = 1
2f

1
NA

(2.8)

2.2 Spin Squeezing
Exploring Heisenberg’s uncertainty relation for the angular spin operators, Eq. (2.3),
we notice that the inequality constrains the product of uncertainties for the in-
plane spin components, but there is no bound on the variance of individual com-
ponents. For an ensemble used in the previous example, with 〈Fy〉 = fNA, it is
possible for one if its components to have variance var(Fz) ≤ fNA/2, a reduced
noise compared to Eq. (2.5).
Collective spin states with reduced variance compared to a CSS are called spin

squeezed states (SSS). A spin state with noise reduced (squeezed) in F̂z must
have increased noise (anti-squeezed) in F̂x as the Heisenberg principle dictates.
In discussions of squeezing there are different definitions that use different noise
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2.2 Spin Squeezing

Figure 2.2: An atomic ensemble prepared with the mean spin along y is under a
magnetic field along x of strength Bx which causes the collective spin
to rotate about x by an angle θ. By measuring F̂z, the rotated angle
θ can be determined. The fundamental resolution is determined by
the quantum uncertainty of the spin projection noise, shown here as
an uncertainty patch, figure (a). The initial uncertainty in the Fz-
component limits the precision on which θ can be determined, and
the dynamical evolution coherently transfer this uncertainty into F̂y
whose uncertainty initially was neglegible, figure (b).

reference levels that lead to SSS having different properties (Ma et al., 2011). In
the following we focus on one of the criteria more widely used to quantify spin
squeezing, the Wineland criterion.

2.2.1 Quantifying spin squeezing
As we have seen, the achievable angular resolution using a CSS is bounded by the
atomic projection noise, Eq. (2.8). The SQL can, however, be surpassed by using
spin squeezed states, states which have the uncertainty of one of its components
smaller than CSS, see Fig. 2.3. Due to the smaller angular uncertainty of the SSS
the angular resolution is improved. At the same time, the spin length is orthog-
onal to the squeezed component, and a larger spin length makes the measured
displacement of Fz larger, enhancing the measurement sensitivity.
Wineland (Wineland et al., 1992; Itano et al., 1993) proposed a parameter that

quantifies the metrological usefulness of a squeezed state by comparing it to the
performance of a CSS

ζ2
m = var(θ)

var(θ)CSS
= 2fNAvar(Fz)

〈Fy〉2
(2.9)
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2 Quantum description of atoms and light

where we have used Eq. (2.8). var(θ) is the angular variance of the state we want
to quantify. A collective atomic state with ζ2

m < 1 is a spin squeezed state that
has improved metrological sensitivity over a CSS.

Figure 2.3: A spin squeezed state with reduced noise in the Fz-component is
used as to sense a magnetic field along x-axis. The reduced noise
in F̂z allows determination of the rotation angle θ with sensitivity
beyond the SQL.

2.3 Polarization States of Light
In the experiment we probe the atoms using optical pulses. In the this section we
describe how we characterize the light pulses by collective photon spin, and find
strong symmetry between the description of light and the description of atomic
spin described in Sec 2.1.
The electric field of a single mode with two orthogonal polarizations can be

expressed by (Mandel and Wolf, 1995)

Ê = Ê(+) + Ê(−) (2.10)

where the positive and negative frequency parts are described by

Ê(+) =
√

~ω
2ε0V

(â+e+ + â−e−)eik·z−ωt (2.11)

with the property that
Ê(+) = (Ê(−))† (2.12)

In the definition of Eq. (2.11), ai are the annihilation operators of the two modes
i = {+,−}, ε0 is the vacuum electric permittivity, ~ is the reduced Planck’s con-
stant, V is the mode volume and ei are unit vectors describing the polarization.
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2.3 Polarization States of Light

The angular frequency of the field can be expressed as ω = |k|c, where c is the
speed of light and k is the wave-vector.
The annihilation operator and its conjugate, the creation operator, obey the

commutation relation
[âi, â†j ] = δij (2.13)

where {i, j} ∈ {+,−}. The annihilation operator lowers the number of photons
in the given mode by one, while the creation operator increases the number of
photons in a given mode by one. The complete set of basis vector is given by

e+ =−1√
2

(ex + iey)

e− = 1√
2

(ex − iey) (2.14)

e0 =ez

where {ex, ey, ez} are unit vector in the Cartesian coordinate system.
The energy of the EM field is given by Ĥ =

∑
i ~ω(â†i âi + 1/2). From here on,

the zero-point energy (the 1/2 in the previous expression) will be neglected. The
photon number operator is given by n̂ph,i = â†i âi, and the single photon energy
is thus ~ω.
When the light is used as a meter it is convenient to derive a signal from some

comparison between two modes, as for example the polarization. The polarization
state is well described by the Stokes operators (Guenther, 1990). For a pulse of
light propagating in the z-direction it becomes

Ŝ0 =1
2(â†+â+ + â†−â−)

Ŝx =1
2(â†+â− + â†−â+)

Ŝy =1
2(â†−â+ − â†+â−) (2.15)

Ŝz =1
2(â†+â+ − â†−â−)

Eq. (2.15) can be written in the compact form of Ŝi = (â†+, â
†
−)σi(â+, â−)T

where σi are the Pauli matrices. From this definition it becomes clear that the
Stokes operators obey angular momentum commutation relations [Ŝx, Ŝy] = iŜz
and cyclic permutations. The operator Ŝ0 commutes with all the other compo-
nents of S. The non-vanishing commutator of the Stokes operators leads to a
Heisenberg uncertainty principle like for the light polarizations. The correspond-
ing uncertainty relation is

var(Ŝi)var(Ŝj) ≥ 〈Ŝk〉2/4 (2.16)

25



2 Quantum description of atoms and light

We will use linearly-polarized photonic states in which the Ŝx component dom-
inates, with expectation value 〈Ŝx〉 = NL/2, where NL is the total number of
photons in the pulse. From Eq. (2.16) and assuming equal uncertainties in the
other Stokes operators, what defines a coherent polarization state, we find

var(Ŝy) = var(Ŝz) = NL/4 (2.17)

In analogy with the atomic projection noise, when a pulse of light polarized into
one of the Stokes component is measured in an orthogonal basis the measurement
outcome will be random. The random flips of the spin components leads to the
light shot-noise.
As for the atomic angular momentum, the light spin state can be represented

as a vector pointing on a sphere, the Poincarè sphere.

Figure 2.4: The Poincarè sphere for representing light polarization.

2.4 Interaction Between Atomic Spins and Polarized
Light

In this section we briefly describe the light-atom interaction. We start the dis-
cussion with non-formal but intuitive description of the interaction based on
symmetry arguments. We then present the interaction Hamiltonian and describe
its main characteristics.

2.4.1 Pictorial description
We introduce the interaction of polarized light with an atomic ensemble of atoms.
Consider the D2 line transition of 87Rb , we detune a probe laser by an amount ∆
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2.4 Interaction Between Atomic Spins and Polarized Light

to the transition between the f = 1→ f ′ = 0, see Fig. 2.5 (b). The polarization of
the laser light will change as it interacts with the atomic sample. If the detuning
is large enough we can neglect absorption effects compared to dispersion due to
their different scaling with detuning, respectively, 1/∆2 and 1/∆. Dispersion
effects change the polarization state of light if the index of refraction is different
for two orthogonal polarization components, i.e. if the sample is birefringent.

Figure 2.5: (a) Spins oriented along the propagation direction might show cir-
cular birefringence where nσ+ 6= nσ−. A linearly polarized pulse will
have rotated its polarization direction at the output of the atomic
cloud. (b) Detuning a laser from the f = 1 → f ′ = 0 on the D2 line
of 87Rb produces this interaction.

Fig. 2.5 (a) shows a pulse of light propagating along the z-axis through an
atomic sample consisting of atoms spin polarized along the same z-direction.
Intuitively, the refractive index nx = ny = nπ/4 = n−π/4 since there is no
preferred direction in the xy-plane. But the situation is different for z. Classically,
spins polarized along the z-axis can be described as charged particle rotating
around the axis. We can decompose the linear polarization of the probe into
two circular polarizations components with opposite rotation direction, σ+ and
σ− parts. If the medium has circular birefringence, i.e., nσ+ 6= nσ−, the two
circular components describing the linearly polarized light would acquire different
phase shifts and the light at the output of the media would have its polarization
direction rotated around the z-axis. More formally, it rotates the Ŝx and Ŝy
components about the z-axis but preserves the total number of photons. This
effect, the rotation of the polarization direction of a light beam due to interaction
with a birefringent medium is known as Faraday rotation (Hammerer et al., 2010;
Budker et al., 2002).
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2 Quantum description of atoms and light

2.4.2 Dipole interaction
It is beyond the scope of this thesis to describe the dipole interaction theory in
detail. Good references for a explanation are (Geremia et al., 2006; de Echaniz
et al., 2008; Kupriyanov et al., 2005; Hammerer et al., 2010). In the following we
will briefly summarize the logic behind the formidable algebraic work to present
the interaction Hamiltonian in its final form.
To describe the interaction of the light field with the atoms we assume that

the interaction is a small perturbation of the Hamiltonian describing the atomic
free evolution (Sakurai, 1994),

Ĥ = ĤA + Ĥint. (2.18)

The first term is the Hamiltonian describing the free evolution of the atoms and
can be written as (Marlan O. Scully, 1997)

ĤA = ~
∞∑
i=1

ωi|ψi〉〈ψi| (2.19)

where ~ωi are energy-eigenvalues and |ψi〉 the corresponding energy-eigenstates.
It also includes the energy of the light field described by the single mode quantum
field of Eq. (2.10). The second term in Eq. (2.18) describes the atom-light dipole
interaction

Ĥint = −d̂ · Ê (2.20)

As described by several authors (Geremia et al., 2006; de Echaniz et al., 2008;
Hammerer et al., 2010), a second order perturbation theory known as adiabatic
elimination can be applied when the laser probe is sufficiently far of resonance
from the D1 or D2 line. It assumes that one excited state couples two ground
states via photon scattering. The excited state is virtual, i.e., never populated,
but the interaction causes a change on the field that is depends on of the spin-
state and a change in the atoms that dependents of the light shift. Under such
approximations, a light probe pulse of duration τ interacts with the collective
atomic ensemble according to the Hamiltonian

τĤint = g1ŜzF̂z

+ g2

(
Ŝx(F̂ 2

x − F̂ 2
y ) + Ŝy(F̂xF̂y + F̂yF̂x) + 1√

3
Ŝ0(2F̂ 2

z − F̂ 2
y − F̂ 2

x )
)
(2.21)

where g1 and g2 are light-atom coupling constants proportional to the vector α(1)

and tensor α(2) polarizability components. As described in (de Echaniz et al.,
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2.4 Interaction Between Atomic Spins and Polarized Light

2005), the coupling constants gi can be described as

gi = α0g
∑
F ′

α
(i)
F, F ′

∆F, F ′
(2.22)

where α(i)
F, F ′ is the rank-i unit-less polarization coefficient of the F → F ′ transi-

tion, and

α0 = 3ε0~Γλ3
0

8π2

g = ω0

2ε0V
(2.23)

with Γ being the spontaneous decay rate, λ0(ω0) the transition wavelength (fre-
quency) and V is the interaction volume. The magnitude of the coupling constant
g1 and g2 depend differently on the probe detuning with g1 ∝ 1

∆ and g2 ∝ 1
∆2

giving rise to a variety of dynamics (de Echaniz et al., 2008).
In the interaction Hamiltonian Eq.(2.21) the scalar coefficient has been ignored.

It introduces a shift on the atomic energy levels by an amount proportional to
the probe intensity, but has no effect on the dynamics of the atomic spins or
optical polarization. The vector term is responsible for the Faraday rotation
signal. It couples the circular polarization of the probe light to the collective spin
component along the light’s propagation direction. This interaction generates
correlations between the atoms and the light. The tensor component, in turn,
induces nonlinear dynamics on the internal state of the atomic spins.
Even though the tensorial term is smaller, this term is not negligible over

the interaction time scale needed to produce spin squeezing. Different probing
schemes have been proposed and implemented to minimize the nuisance intro-
duced by the tensorial term. One of them consists of applying two probe pulses
with different frequency detuned from the D1 and D2 lines to cancel the tenso-
rial component but without affecting the vector term (Appel et al., 2009). A
different method is to use probe pulses with alternating polarization, i.e., inter-
calate pulses with orthogonal polarizations in such a way that each pulse cancels
the tensorial rotation introduced by the previous pulse. This probing scheme
is known as dynamical decoupling (Koschorreck et al., 2010b). Yet there is a
third probing scheme, called magic angle probing, where a bias field is applied
in a particular angle and direction with respect to the probe beam propagation
(Smith et al., 2004). However, in this work we follow a different approach. It
based on a modulated probing scheme where the spins precess under an exter-
nal magnetic field. The same spin component is stroboscopically measured at
π-phase difference achieving back-action evasion. In Sec 2.5.2 we present it in
more detail.
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2 Quantum description of atoms and light

2.5 QND Interaction
In this section we describe the quantum non-demolition (QND) characteristics of
the interaction Hamiltonian described in Eq. (2.21) and discuss how to exploit it
to produce useful spin squeezed states for metrology.
In a QND measurement, a system S and a meter M interact through Ĥint

and end-up entangled. Because system and meter are entangled, S and M carry
information about themselves but also about the other party. By a subsequent
classical measurement on the meter, generally destructive, the imprinted infor-
mation about the system variable can be harnessed. The basic requirement that
a measurement needs to fulfill in order to be named as QND is the availability
of a variable to be measured repeatedly giving predictable results.

[Ô(t), Ô(t′)] = 0 (2.24)

Clearly, constants of the motion are QND observables. But they are not the only
variables that can be measured by means of QND measurements. Furthermore,
the coupling between meter and system should not feed-back fluctuations into
the QND variable of the system. In order to avoid this it is sufficient that the
QND variable Ô commutes with the interaction Hamiltonian of the system and
the meter

[Ô, Ĥint] = 0 (2.25)
This condition is known as the back-action evasion criterion.
Eq’s (2.24) and (2.25) are formal expressions that an operator must fulfill in

order to be QND. However, as described in (Holland et al., 1990; Poizat, J. Ph.
et al., 1994), in practical applications there are some extra requirements that a
QND observable must accomplish. An equivalent description of quantum non-
demolition measurements on spin systems can be found in (Mitchell et al., 2012).
For the experimental set-up used in this thesis, the experimental verification of
the QND interaction is described in (Sewell et al., 2013).

2.5.1 Implementation of QND measurements
Neglecting the tensorial light-shifts caused by the probe, the light atom interac-
tion Hamiltonian described in Eq. (2.21) becomes

τĤint = g1ŜzF̂z (2.26)

To study the evolution of the light and atomic operators we use the Heisenberg
equation of motion in the Heisenberg picture

dÔ

dt
= 1
i
[Ô, Ĥint] (2.27)
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2.5 QND Interaction

This gives simple input-output relations between operators before and after the
interaction, labelled (in) and (out), up to first order in the interaction time τ ,
obtaining

F̂ (out)
x = F̂ (in)

x − g1Ŝ
(in)
z F̂ (in)

y Ŝ(out)
x =Ŝ(in)

x − g1Ŝ
(in)
y F̂ (in)

z

F̂ (out)
y = F̂ (in)

y + g1Ŝ
(in)
z F̂ (in)

x Ŝ(out)
y =Ŝ(in)

y + g1Ŝ
(in)
x F̂ (in)

z (2.28)
F̂ (out)

z = F̂ (in)
z Ŝ(out)

z =Ŝ(in)
z

from which we can conclude that Ŝz and F̂z are QND observables. A com-
plete symmetry between light and atoms is noticeable. As previously described,
Eq.’s (2.28) demonstrate that two systems contain information about the other
part.

2.5.2 Stroboscopic QND measurements

In the experiments described in this thesis we apply periodically modulated Fara-
day measurements to achieve back-action evading QND measurements. We pre-
pare the atoms in a CSS with angular momentum along the y-axis, under a
parallel bias magnetic field. The magnetic field causes the spin orientation Fy
to be fixed, but the spin uncertainty distribution to precess, so the noise in Fz
coherently evolve to noise in Fx and vice-versa.
Despite the fact that Fz is a dynamical variable it is possible to measure it

using a QND scheme. First, we notice that in light of Eq. (2.25), measurements
of the Fz component are back-action evading. This is to say that it is possible to
obtain information about the Fz without disturbing it. Furthermore, since the Fz
variable is not changed, repeated measurements of it will commute, Eq. (2.24).
An ideal QND measurement as described by Eq. (2.26), combined with periodic
measurements of the same component can surpassed the standard quantum limit.
This was proposed in the late 70’s in the context of gravitational wave detection
(Thorne et al., 1978; Braginsky et al., 1980).
However, the atom-light interaction Hamiltonian includes an additional term

in addition to the simple QND interaction, Eq. (2.21). In order to cancel the
tensorial rotation induced by the probe the measurement needs alternate between
measuring +Fz and −Fz. Each individual measurement produces the undesired
tensorial rotation but in opposite directions. Consecutive probe pulses sent at
times such that they are measuring ±Fz produce coherent back-action effects that
cancel each other. As a result, the combined pulses achieve back-action evasion.
A proof is presented in Appendix A.

31



2 Quantum description of atoms and light

2.5.3 Conditional spin squeezing
We have seen that an interaction Hamiltonian of the type described in Eq. (2.26)
allows QND measurements of the atomic spins via dispersive probing. Here we
will explain the role of QND measurements in the production of spin squeezed
states.
From Eq. (2.28) we see that the interaction transfers information from F̂z to

Ŝy. The variance of the measurement outcome is

var(Ŝ(out)
y ) = var(Ŝ(in)

y ) + g̃2
1var(Ŝ(in)

x F̂ (in)
z )

≈ var(Ŝ(in)
y ) + g̃2

1〈Ŝ(in)
x 〉2var(F̂ (in)

z ) (2.29)

where we used the fact that Ŝy and F̂z are uncorrelated before the interaction,
assumed that 〈Ŝ(in)

x 〉2 � var(Ŝx), which is the case for an input coherent state
with many photons, polarized in the H or V direction, and and we have dropped
higher order terms. The symbol g̃1 differentiates from g1 as the former deals with
noise properties of the measurement and the later with mean values. Only in the
case where the light-atom coupling is homogeneous the two quantities are equal.
In all the other cases the two coupling constant must be measured independently.
The effect of non-homogenous matching between the atomic sample and the probe
light and its effect on the light-atom interaction were recognized early and have
been approached theoretically (Müller et al., 2005) and experimentally on the first
spin squeezing experiments (Appel et al., 2009). The coupling inhomogeneity has
become more relevant nowadays with the current state-of-the-art reported values
of squeezing since they are enhanced by a cavity surrounding the atomic ensemble
(Schleier-Smith et al., 2010a; Bohnet et al., 2014; Baragiola et al., 2014; Hosten
et al., 2016b).
We will come to this point later on when describing the experimental setup in

Chapter 3, where we will describe how we calibrate the mean coupling constant
described by Eq. (2.28), and also when talking about the squeezing results in
Chapter 6, where we experimentally find the constant of proportionality for the
quantum noise described by Eq. (2.29).
The first term of Eq. (2.29) describes the noise in the light meter while the

second terms expresses the phase fluctuations introduced by the atomic projec-
tion noise. We define the signal-to-noise ratio of the QND measurement as the
quotient of the atomic and light noises,

κ2 ≡ g̃2
1〈Ŝ

(in)
x 〉2var(F̂ (in)

z )
var(Ŝ(in)

y )
= g̃2

1
NANL

2 (2.30)

assuming that both the light and atomic systems are quantum noise limited as
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described in Eq. (2.17) and Eq. (2.5). This allows us to re-write Eq. (2.29) as

var(Ŝ(out)
y ) = (1 + κ2)var(Ŝ(in)

y ) (2.31)

At the same time, the atomic state is also affected by the QND interaction. As
shown by several author (Hammerer et al., 2004, 2010), the change in var(F̂z) by
the QND measurement conditioned to the measurement outcome Ŝ(out)

y is

var(F̂ (out)
z |Ŝ(out)

y ) = 1
1 + κ2 var(F̂

(in)
z ) (2.32)

The above equations confirms that a QND interaction of a meter with a system as
described in Eq. (2.26) followed by a destructive detection of the meter produces
a change in the system, leaving it in a state with reduced uncertainty.
Although a single measurement is enough to project the atomic state into a

squeezed state, verification of the squeezing requires the use of two pulses. The
first QND measurement reduces the atomic noise of the measured component
while the second measurement is used to evaluate the correlation between them.
The conditional variance between the two measurements tells how much variance
is left if we use the first measurement to predict the second. The measurement
noise reduction is quantified by

var(M2|M1) = var(M2 − χM1) (2.33)

where the degree of correlation is quantified by the coefficient χ, which minimizes
Eq. (2.33), defined as

χ ≡ cov(M1,M2)
var(M2) (2.34)

where M1 (M2) are the measurement outputs of the first (second) measure-
ment of the meter M. The covariance between the measurements is defined as
cov(M1,M2) = 〈M1M2〉+〈M2M1〉

2 − 〈M1〉〈M2〉.
The measurement outputsMi include noise both light shot noise and atomic

noise, see Eq. (2.29). As we use the atoms as sensors, the light shot noise is
inherent in the measurement. It is possible to account for it be repeating the
measurement without atoms in the trap, and subtract it from the measured noise
if we are interested in the atomic squeezed state characteristics.
For the judgment on the metrological relevance of the spin squeezing we use

the conditional spin variance Eq. (2.33) in an expression similar to the Wineland
squeezing criteria Eq. (2.9)

ξ2
m = 1

η2
var(M2|M1)

var(M1) (2.35)
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again, ξ2
m < 1 indicates metrological advantage and includes the readout noise.

Spin squeezing depends not only on the projection noise suppression but also on
the preservation of atomic coherence, so the signal-to-noise ratio is improved. η
accounts for the coherence loss of the measured state.
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“You can only live in the world you ken. The rest is
just wishful thinking or paranoia”

Irvine Welsh, Filth

3
Experimental setup

In this chapter, I describe the apparatus used to perform the experiments dis-
cussed later in the thesis. Before describing the experiment as such, I will briefly
offer an overview of the trap’s history and the people who worked with it. Next,
I present the technical details of the apparatus necessary to understand its work-
ing principle, including modifications and improvements on the setup done during
my PhD. The cooling and trapping details as well as a deeper description of the
technical aspects can be found in several previous doctoral theses (Schulz, 2002;
Crepaz, 2006; Kubasik, 2009; Koschorreck, 2010). Afterwards, I describe one of
the important properties of our experiment, the capability to prepare the atoms
in different states by using optical pumping from different directions. In the last
section of this chapter, I will describe the absorption imaging technique used to
calibrate the strength of atom-light interaction and estimate the atomic cloud
size.

3.1 Brief History of the Apparatus
The machine we work(ed) with in the lab has had a long scientific path since its
beginning. The vacuum system was physically moved twice, first from Innsbruck
to Barcelona and later from Barcelona to ICFO’s actual location in Castelldefels.
Many people has worked with it. Matthias Schulz and Herbert Crepaz built

the vacuum system and the two magneto-optical traps and are the references for
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the technical questions about the system. Originally the experiment was designed
to trap individual atoms. Once the experiment was established at ICFO, Marcin
Kubasik changed the dipole trap optics for trapping an atomic ensemble and
developed the optical pumping with which he demonstrated a good state prepa-
ration. Marco Koschorreck implemented a two-polarization probing scheme with
which he achieved squeezing. He developed the absorption imaging system and
improved the atomic coherence time by means of magnetic field gradient compen-
sation. Brice Dubost developed a two direction optical pumping scheme, parallel
and antiparallel to the trap axis, used to prepare a non-Gaussian state. Mario
Napolitano, with whom I overlapped for short time, used the nonlinear optical in-
teractions in a cold atomic ensemble to implement a nonlinear spin measurement.
Mario’s work showed that the for interacting particles the “Heisenberg limit” no
longer holds. Naeimeh Behbood implemented the off-axis optical pumping and
upgraded the experiment capabilities demonstrating real-time feedback on the
atomic state. Starting from a thermal spin state she generated a macroscopic
singlet state, a state with the three spin components simultaneously squeezed.
Giorgio Colangelo, with whom I shared most of my time during the PhD, demon-
strated simultaneous tracking of spin angle and amplitude beyond classical limits.

3.2 Description of the Cold Atoms Apparatus
The main part of the experimental setup consists of a double stage magneto-
optical trap (MOT). A two-dimensional MOT collects atoms from the back-
ground in a region with higher pressure, ≈10−8 mbar. Atoms accumulated in the
two-dimensional MOT feed a three-dimensional MOT in a chamber having lower
pressure. The two regions of the vacuum chamber are kept at different pressure
by differential pumping. The atoms are transferred by a “pushing” beam along
the untrapped direction. The power of the push-beam is of the most importance
in the loading rate of the 3D MOT, typically of few 107 atoms per second. In
the 3D MOT we have a very pure vacuum of < 10−11 mbar background pressure.
The MOT temperature is fixed by the spontaneous decay rate of the excited
level, Γ ≈ 2π×6× 106 s−1, corresponding to the Doppler limited temperature of
146 µK.
The atoms are transferred from the MOT to a far off resonant dipole trap

(FORT). The electric dipole interaction of the atoms with the dipole trap changes
the ground state energy of atoms, effect referred as ac-Stark shift (Davidson et al.,
1995). The optical trap is created by a gaussian beam gently focused to a waist
diameter of 54 µm and an optical power of 6W at a laser wavelength of 1064 nm,
which creates a potential depth of ≈200 µK. Since the gaussian beam has a non-
uniform intensity distribution it creates a gradient of intensity of the electric field
vector that translates into a dipole force caused by position dependent light shift.

36



3.2 Description of the Cold Atoms Apparatus

As the trap is red detuned the atoms are attracted towards the focus of the beam.
A schematic of the optics setup is shown in Fig. 3.1.
We cool the atoms below the Doppler limit to increase the number of atoms in

the trap using polarization gradient cooling (Metcalf and van der Straten, 1999;
Koschorreck, 2010). This is achieved by increasing the detuning of the cooler
laser from 2Γ to 15Γ in the last milli-seconds of the MOT loading while also
the repumper laser power is reduced to let the atoms accumulate into the lower
energy ground state F = 1. During this stage the quadrupole coils are switched
off achieving a pure molasses phase. The temperature is then lowered down to
almost 16 µK, and around 10% of the atoms are transferred into the dipole trap
and the laser of the MOT are switched off.
In an optimized working regime, two seconds of loading the MOTs are enough

to trap more than a million and a half atoms in the FORT. Confining the atoms in
the dipole trap has several advantages: first, this trap geometry produces a large
atom-light interaction for light propagating along the trap axis. Second, it allows
long coherence time of the atomic state. Finally, a long lifetime of the atoms in
the dipole trap, >20 s, allows the possibility to repeat experiments without the
need of recapturing atoms.

3.2.1 Laser system
In this section we summarize the most important properties of the lasers used
in the experiment, and center the attention to the improvements on the existing
setup. The laboratory is equipped with a total of four laser systems. All the lasers
light arriving to the trapping setup is fiber coupled into single mode polarization
maintaining fibers to improve the alignment stability of the trap.

MOT lasers

For the creation of the MOT two lasers are needed. The first, called cooler, is
tuned slightly below the cycling transition F = 2 → F′ = 3 and it is responsible
for the trapping force. The second, called repumper, brings the atoms back to
the cycling transition once they have fallen to F = 1. It is tuned close to the
resonance F = 1→ F′ = 2, see Fig. 3.2.
The repumer is a commercially available diode laser (Toptica DL100) frequency

stabilized to an atomic transition of 87Rb by means of saturated absorption
spectroscopy and provide output powers around 70mW. It is locked to the cross-
over F = 1 → F ′ = 1 − 2, and frequency shifted by ∼80MHz with an acousto-
optic modulator (AOM) to be on resonance with the F = 1 → F ′ = 2. The
average power per beam on the 2D MOT is 12mW and 300 µW per beam on the
3D MOT.
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Figure 3.1: Schematic of the experiment (not to scale). A 2D MOT works as a
reservoir of cold atoms where the cooling and trapping beams, shown
as red arrows, collect atoms from the background and transfer them
into a 3D MOT using a push beam along the direction where the
atoms are not cooled. In the lower chamber the atoms are trapped by
six counter-propagating laser beams. Finally the atom are held in a
far off-resonant trap (FORT) produced by a high power gently focused
laser beam. With the help of a CCD camera we perform absorption
imaging with off-axis light to measure the number of atoms in the
FORT.
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3.2 Description of the Cold Atoms Apparatus

Figure 3.2: Left: 87Rb D2 transition hyperfine structure with frequency split-
tings between the hyperfine energy level and light fields used in the
experiment. Right: Laser present in the experiment, with locking
strategy and tasks carried out by each laser.

Previously, the cooler laser was a Toptica DL100 with the same characteristics
of the repumper laser. A part of the cooler laser was split and used to injection
locked a diode laser obtaining an additional 70mW of optical power used to feed
the 2D MOT. The cooler was replaced by a diode laser and a tapered amplifier
(Toptica TA 100) to increase the amount of optical power, with the aim to increase
the total number of atoms in the FORT and the signal-to-noise ratio for the
squeezing experiments. The Toptica TA 100 has a maximum optical power of
1W at the output on air. To stabilize it a part of the light is split and blue
shifted by 60MHz before it enters a spectroscopy cell. In such a way the laser is
locked closer to the F ′ = 2 than locking in the crossover F ′ = 2− 3 and we have
a detuning range of many natural linewidths which is important for sub-Doppler
cooling. The laser is frequency stabilized using modulation-transfer-spectroscopy
(MTS) (McCarron et al., 2008; de Escobar et al., 2015) at a modulation frequency
of 200 kHz on top of the 60MHz shift. The averaged power on the MOT beams
is 12mW and 30mW for the cooler 3D and 2D, respectively, and ∼300 µW for
the push beam. A change of 10% in the push beam power can lead a reduction
of NA by 50%.
The upgrade of the cooler laser caused a remarkable increase in the number

of atoms trapped in the 3D MOT as we increased the total optical power in the
cooler MOT beams. We can describe the dynamics of the number of atoms in a
trap, NA, either MOT or FORT by a rate equation of the form:

dNA

dt
= L− αNA − βN2

A (3.1)
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where the terms with different power of NA describe different physical mecha-
nisms. The term without NA is the loading rate of the trap, L. Losses due to
collisions with background atoms are proportional to the number of atoms in the
trap and described by the coefficient α. Light assisted collisions or two-body loses
are proportional to N2

A. There are other mechanisms like ground state collisions
between cold atoms and photon reabsorption scattering which can be ignored for
the conditions of our traps. We can re-write Eq. (3.1) in the form of

dNA

dt
= −µ0(NA − µ1)(NA − µ2) (3.2)

whose solution is easier to implement as a fit function. The solution for arbitrary
µ0, µ1 and µ2 is

NA(t) = µ1 + µ1(−µ1 + µ2)
(µ1 − µ2 exp(−µ1+µ2)tµ0) (3.3)

In Fig. 3.3 is shown the improvement in the number of atoms in the 3D MOT
and in the FORT. The data is well fitted using Eq. (3.3). The fit outputs are rear-
ranged into the more meaningfull form given in Eq. (3.1) and listed in Table 3.1.
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Figure 3.3: Total atom number trapped in the 3D MOT (a) and the FORT (b)
as a function of the MOT loading time. Blue circles (green squares)
stand for the data after (before) the upgrade of the cooler laser. Solid
lines are fit using Eq. (3.3) and error bars represent ±1σ standard
error of the mean.
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3.2 Description of the Cold Atoms Apparatus

L (106) α β (10−9)

After MOT 25.4(7) 0.6(1.0) 0.02(1)
DT 2.2(3) 1.1(2) 0.29(3)

Before MOT 4.2(1) 0.02(1) 23.1(1)
DT 1.3(3) 1.3(3) 1.3(3)

Table 3.1: Table with fit results using Eq. (3.3) and rearranged using the param-
eters of Eq. (3.1). All coefficients have units of s−1.

Probing laser

The probing laser is an independent continuous wave external cavity diode laser
(Toptica DL100). The beam is chopped using an AOM to create pulses of the
desired length and photon number. Since the probing is done far from resonance
there is no transition to lock to. The lock is done employing a beat-note locking
scheme (Koschorreck, 2010). A small portion of the probe and repumper lasers,
the later referenced to an atomic resonance, are split and combined on a beam
splitter where a fast photo-detector detects the beat-note signal between the two
lights. The detector output is fed in a phase-locked loop (PLL) circuit and used
to feedback the piezo voltage and current of the probe laser to keep the frequency
stabilized at a given offset from the reference laser. The PLL is programmed with
a computer and the offset frequency lock runs from 300MHz to 3GHz, red or
blue detuned. The offset lock shows a frequency drift of few MHz, making a
negligible effect compared to the detuning from resonance, typically 700MHz.

Dipole trap laser

The laser for the FORT is a Nd-YAG at 1064 nm from IPG Photonics that emits a
maximum output power of 20W in a single mode continuous wave. The trapping
laser arrives to the setup through a large mode area photonic crystal fiber from
NKT Photonics with a solid core of 25 µm diameter. Single mode light propaga-
tion is enabled through the photonic crystal structure surrounding the solid core
in a hexagonal arrangement. The fiber coupler has a cladding mode stripper to
protect the fiber. The crystal fiber is not polarization maintaining, the light po-
larization is adjusted before the fiber coupler with polarizarion optics, a half-wave
plate (HWP) and a quarter-wave plate (QWP), and cleaned after the fiber with a
polarization beam splitter (PBS). The fiber is fixed to the table to avoid changes
and/or stress that would change the light polarization at the fiber’s output and
that will show as power fluctuations at the atoms position. The dipole trap power
is controlled with an AOM, allowing fast and precise switching of powers. The
overall efficiency, including AOM diffraction, coupling into fiber and losses until

41
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the atoms position is over 50%, with typical power at the atoms location of 6W.
It is known that displacing the focal point of the FORT with respect to the

MOT center can improve the atom transfer (Kuppens et al., 2000). However,
when focused with a single lens, the position of the focus and the beam waist
are not independent. We improved the optical system for the dipole trap with
the aim of decoupling these two quantities, the beam waist and the focal point.
It consisted on a three-lens telescope made of positive lenses, see Fig. 3.4. To
first order approximation, the focal length of the two outermost lenses define
the magnification of the telescope, M=fL1/fL3. A third lens placed close to the
focal plane of the other two lenses to change the beam propagation properties,
being convergent (divergent) when the L2 is located closer to L1 (L3) than to the
focal plane. The laser light enters the telescope through a fiber launcher from
Shäfter and Kirchhoff, which has an aspheric lens with a focal lengths of 6.2mm.
The telescope lenses have been chosen for the beam input characteristics for this
particular fiber launcher but also considering that the engineered beam would be
focused into the vacuum chamber with an already present in the system achromat
lens with focal length f =80mm. The telescope is designed to roughly have a
magnification of M=1:2 in order to be focused into a waist of ≈ 50 µm. The focal
lengths of the lens L2 has to be smaller but comparable to the focal lengths of
L1, and in order to minimize the aberrations it has to be bi-convex. The optical
system has been simulated with the software OSLO, including the distance of
the different optical elements in the simulations. The commercial available lenses
closer to the calculated ideal telescope are provided by Melles Griot; the lens L1
is a plano-convex lens with focal length fL1 =25.8mm, L2 is a bi-convex lens
with focal length fL2 =23.9mm and L3 is a plano-convex lens with focal length
fL3 =51.5mm. They three are made of fused silica and have antireflective coating
for high power. In addition of the telescope, a periscope made with two dielectric
mirrors allows beam walking the dipole laser.

Figure 3.4: Dipole laser optical system layout to decouple beam waist and focal
point. To first order approximation, the telescope composed by L1
and L3 defines the total magnification, position of L2 defines the beam
propagation characteristics.
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3.2 Description of the Cold Atoms Apparatus

To take full advantage of the enhancement two quantities need to be optimized.
One is the number of atoms trapped in the FORT, NA; as early stated, this
quantity is related to the position of the beam waist with respect to the MOT
location. The other quantity is the signal from the Faraday probe and it is given
by the size of the beam waist. Since the two quantities are not fully decoupled,
an iterative process is needed to improve both quantities.

3.2.2 Atom-light interaction phase
The heart of the experiment is the measurement of light polarization rotations.
To successfully detect these rotations it is crucial to have great control on the
polarization state of the probe light. The probe light is coupled in polarization
maintaining fibers and cleaned at the output to prepare the light into a high
purity linear polarization using PBS with an extinction ratio of 1 : 106. After the
fiber output of we have a set of zero-order wave-plates to manipulate the probe
light to compensate for changes down the path until it arrives to the atoms. We
can set the the polarization of the probe to be linear with an extinction ratio
of one part in 105. We also need to an accurate measurement of the number
of photons arriving to the atoms. For this, we split the probe beam using a
combination of HWP and a second PBS. A large fraction of the beam is directed
onto a fast reference photo-detector (RD, Thorlabs PDA10A) and the rest of the
beam is directed to the atoms. The RD signal is recorded on a digital storage
oscilloscope (DSO, LeCroy Waverunner 64Xi) and calibrated by comparison to a
power-meter placed close to the atoms position.

Figure 3.5: Optics layout for the detection of the Faraday rotation. Q and H
stand for QWP and HWP respectively.
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The probe light at 780 nm is overlapped with the dipole laser at 1064 nm on
a dichroic beam splitter cube (DBS). The two co-propagating beams are gently
focused into the vacuum chamber with the same 80mm achromat lens. The
focused waist of the probe beam was chosen to be ∼20 µm. The dipole beam size
has a beam waist of ∼54 µm. At this value the atomic transverse size matches the
probe waist, Müller et al. (2005). The two beams are re-collimated with second
achromat lens after the vacuum chamber. A second DBS is used to separate
the probe light from the trapping light. The dipole laser is then guided to a
beam dump and the probe light is sent to a balanced photo-detector. At the
detection stage we have again a set of zero-order wave-plates to compensate the
birefringence introduced by the dichroic mirror. Polarization dependent losses
through the optical elements must be taken into account when calculating the
polarization rotation angle.

3.2.3 Shot-noise-limited polarization detection
The detection of the probe pulses is done with polarization optics and a balanced
differential photo-detector, DPD, acting as a polarimeter. Light pulses propagat-
ing along the trap axis experience a polarization rotation S(out)

y = S
(in)
y cosφ +

S
(in)
x sinφ, where S(in/out)

i are the Stokes operators before/after passing the atoms,
φ = g1Fz is the Poincaré-sphere rotation angle, and g1 the atom-light interaction
strength factor. Detection of S(out)

y is done with the differential photo-detector
and S(in)

x is measured by the RD.
Of the most importance in the detection system is the balanced differential

photo-detector. Two different DPD have been used in this thesis. The first was
designed and made in the group of Eugene Polzik at Niels Bohr Institute by
Patrick Windpassinger and the second was developed during this thesis. A full
chapter of this dissertation, Chapter 4, is devoted to explain the characteristics
and properties of the latter detector, where we also compare the performance of
the two photo-detectors. In the following we will briefly describe the operation
principle of the former detector. Technical details about the construction and
characterization of this particular detector can be found in (Windpassinger et al.,
2009).
The DPD outputs the difference in photo-charges of two photo-diodes con-

nected in series. The signal comes from an imbalance of the flux of photons
reaching the two photo-diodes due to the polarization rotation of the light when
interacted with the atoms. The differential signal is integrated by a low noise
charge sensitive amplifier. The integrated signal is then followed by a pulse shaper
where the step signal coming from the integrator is converted in a pulse approxi-
mately having a Gaussian shape. The integrator and the pulse shaper amplifiers
are standard off the self components provided by Cremat Inc.
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3.3 Atomic State Preparation

The signal of the differential detector and RD are acquired by a multi-channel
DSO for later analysis. The DSO is run in segmented mode, where several trigger
events are combined into one file.

3.3 Atomic State Preparation
To prepare the atoms in a desired state we use optical pumping, i.e., we send
pulses of light resonant to a particular transition. The polarization of the light
and its direction of propagation define the hyperfine ground state and excited
state that are coupled and forbidden. States with the hyperfine ground state
manifold F that cannot be excited to F ′ by that polarization are called dark
states, and are populated by atoms decaying into the dark state by spontaneous
emission. Once the atoms have fallen into the dark state they accumulate there.
We perform optical pumping on the F = 1→ F ′ = 1 transition of the D2 line.

For the work presented here two states with macroscopic magnetization along the
z and y-axes have been used, called Fz and Fy respectively. To produce the first
state we send circularly polarized light along the trap axis preparing the atoms
in a state where 〈F〉 is along the z-axis. The Fy-polarized state is achieved by
sending circularly polarized light transversally to the trap axis, i.e., along the
y-axis.
The optical pumping is a cumulative process and the time needed to pump all

the atoms depends on the light intensity. During the preparation some fraction
of the atoms can decay into the F = 2 ground state. To achieve an efficient
state preparation another light source is needed to recycle the atoms falling into
the F = 2 level back to the F = 1 ground state. This light is called “optical
repumper” and it is resonant to the F = 2 → F ′ = 2 transition. It is addressed
to the atoms from the MOT beams to ensure that all the atoms are illuminated
avoiding residual population in F = 2. During the optical pumping process
a magnetic field in the same direction of the pump beam is applied to fix the
atomic spins.
The beam to produce the Fz-polarized state is co-propagating with the dipole

beam and focused to a waist of 100 µm, wider than the atomic cloud to uniformly
distribute the light over the cloud length. Pumping an optically thick sample can
lead to shadowing effect where atoms at the beginning of the ensemble absorb all
the light, and atoms at the end of the sample are not addressed by it, and so these
atoms are not polarized. To prevent this from happening, the pumping intensity
and duration and the optical repumper intensity as well as their frequencies have
been chosen to minimize this issue. We find a good optical pumping efficiency,
polarizing 99(3)% of the atoms (Koschorreck et al., 2010a), i.e., producing an
state with 〈Fz〉 = NA. This value has been supported by numerical simulations
done in the group (Koschorreck, 2010; Napolitano, 2014). To fully polarize the
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atomic ensemble the pumping is done with a single 100 µs long pulse under bias
field Bz of 100mG. Fig. 3.6 (a) shows a characterization curve for the preparation
of atoms in the Fz-state.
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Figure 3.6: (a) Mean optical rotation angle φ for a state with 〈F〉 along the z-axis
state as a function of the optical pumping length. (b) Fy-polarized
state preparation efficiency as a function of the optical pumping pulse
length. The amplitude has been normalized to the total magnetiza-
tion signal 〈Fz〉 = NA. Solid line are fits to the data using the function
a(1−e−t/τ )+c from which we extract τ =13.5(7) µs (2.0(1) µs) for Fz
(Fy) and an amplitude for 〈Fy〉/NA = 0.98(1). Error bars represent
±1σ standard error of the mean.

To prepare the atoms in the Fy-polarized state, a state with 〈F〉 along the y-
axis, we use a large gaussian beam with a 5mm waist and expand it horizontally
using a cylindrical telescope to ∼8mm. A perfect Fy-polarized state would give
a zero average signal in the polarimeter. To measure the degree of atomic polar-
ization we first polarize the atoms by on axis optical pumping under a Bz field
and measure the coherence with the Faraday probe. We set the field along By
and pump the atoms in Fy. The atoms are then adiabatically rotated from being
polarized along the y-axis to be along z-axis by slowly rotating the magnetic field
pointing. Once the atoms are along the z-axis they are probed with the Faraday
probe. The amplitude of the rotated atoms is compared to the signal from the
ensemble directly polarized in Fz. We observe negligible, . 1% polarization loss
during the rotation. The probing scheme is illustrated in Fig. 3.7. As shown in
Fig. 3.6 (b), a single pulse of 50 µs is enough to saturate the transition, demon-
strating that we prepare the atoms in the Fy-polarized state with high efficiency.
It is worth mentioning that the off-axis pumping has to scatter more atoms to
prepare the state because the previous state was already pumped in Fz.
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3.4 Characterization of the Trapped Atoms

Figure 3.7: Measurement strategy to measure the amplitude of the Fy-state. (i)
Initially the atoms are prepared along the z-axis under a parallel field
and the coherence is measured with the Faraday probe. (ii) After,
the state state is prepared along the y-axis. (iii) Then, the field
is adiabatically rotated towards the z-axis and the atoms follow this
rotation. (iv) Finally, the rotated state is measured using the Faraday
probe and its amplitude is compared to the amplitude from the state
initially prepared along Fz.

We noticed that the bias field direction can change the pumping efficiency
with changes in the ±2% range. We empirically set the bias field that maximize
the response of the atomic cloud using the Faraday rotation probe, with typical
preparation efficiency of 〈Fy〉 ' 0.98NA.

3.4 Characterization of the Trapped Atoms
Once the atoms have been transferred into the FORT it is necessary to study and
characterize some important parameters as for example the number of atoms in
the trap, the lifetime of the trapped atoms or the temperature of the atoms.
In the following we describe how these quantities are measured and report the
obtained values.

3.4.1 Atom number measurement
We use absorption imaging as an independent and reliable measure of the number
of atoms trapped in the FORT. The technique is widely used in the field of cold
and ultra-cold atomic physics (Ketterle et al., 1999). Although experimental
details of have changed a bit over the course of the time, a deep description of
the absorption imaging used in this set-up is present in (Koschorreck, 2010).
In short, atoms in the MOT are in a mixture of F = 1 and F = 2 ground states,

and after transfer the dipole trap both states can be occupied. The relative
populations depend on the amount of repumper light in the last steps of the
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molasses phase, and it is optimized to maximize the atoms in F = 1 as it is the
relevant state for the Faraday probe.
For the absorption imaging, it is necessary to move the population to F = 2.

The atoms are transferred to F = 2 with a 100 µs pulse light tuned on-resonance
with F = 1 → F ′ = 2 transition and sent from the MOT beams. The imaging
of the the atoms is done from the side with a 100 µs pulse of circularly polarized
light resonant to the cycling transition F = 2 → F ′ = 3. The light absorbed
by the atomic cloud casts a shadow that is detected with the CCD camera, see
Fig. 3.1. If the imaging light is not exactly on resonance the atomic sample would
act as lens leading to image distortions which might be the source of systematic
errors. After the image with the atomic shadow we collect a reference image with
the same illumination conditions but without the atoms. We also take an image
without the imaging light to account for and correct background light. To avoid
spatially dependent light shifts the dipole trap is switched off during this process.
A difference introduced in the absorption imaging routine is the correction

for the maximum observable optical depth. The atoms are allowed to expand
for longer before the imaging light is sent resulting in a dilute medium, where
the correction for the observable optical depth is unnecessary. The other main
difference already described is the use of circularly polarized light instead of
linearly polarized for the imaging as it gives a stronger signal. The new value
for the scattering cross-section and current values on the imaging system can
be found in (Colangelo, 2016). The statistical error in the number of atoms
measured with absorption imaging is ∼ 3%, mainly coming from variation of the
atom number in different loading events.

Interaction strength characterization

With the NA independently measured by absorption imaging and the good effi-
ciency optical pumping we can estimate the coupling constant of the interaction
Hamiltonian, Eq. (2.26). The per-atom rotation is calculated from the measured
rotation angle and the number of atoms by

g1 = 〈φ〉
NA

(3.4)

were we have assumed that the input light is completely polarized along the
vertical direction, i.e., 〈S(in)

y 〉 = 0 and a full polarization of the atom, 〈Fz〉 = NA.
Experimentally, we load the atoms and polarize them into Fz as described in

Sec. 3.3 of this chapter. We then probe the ensemble with the Faraday probe
and obtain a mean rotation angle 〈φ〉. After the dispersive measurement we take
an absorption image of the atoms and get NA. We vary the number of atoms
in the dipole trap by loading the 3D MOT for different times, and repeat each
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loading time to collect statistics. In Fig. 3.8 is shown a calibration plot for the
g1 coupling constant and find a value of g1 = 6.16(9)× 10−8 radian·atom−1.
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Figure 3.8: Calibration of mean Faraday rotation signal against input atom num-
ber NA measured via absorption imaging. Solid line, the fit curve
φ = a0 + g1NA with values g1 = 6.16(9) × 10−8 radian·atom−1 and
a0 = 1.42(63) × 10−3 radian. Error bars indicate ±1σ statistical
errors.

3.4.2 Atomic features
Cloud size

The shape of an atomic ensemble held in a focused single beam looks like a cigar,
and its dimensions can be accurately measured. To measure the size of the atomic
cloud we use the time-of-flight (TOF) technique, first applied by (Lett et al.,
1989). The atoms are release from the trap and allowed to expand freely. After
a variable time of expansion the atoms are measured using absorption imaging.
The density distribution of the cloud is converted in a intensity distribution on
the CCD.
Free, thermal and isotropic expansion of the atoms is described by (Kubasik,

2009)

ωa(t)2 = ω2
a(0) + kBT

m
(t− t0)2 (3.5)

where kB is Boltzmann constant and m the atomic mass, known quantities. On
the other hand, ωa(0) is the initial size of the ensemble, T is the temperature
of the atoms and t0 is a time delay for switching off the dipole trap, all three
quantities free parameters of the fit. The width of the radial profile is obtained by
integrating each frame of the image along the longitudinal direction (the z−axis)
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and fitting the resulting density profile with a Gaussian function to get the center
and the width of the atomic ensemble. In Fig. 3.9 (a) is shown the fits to the
atomic distribution for the different times used. Fitting the radial profiles versus
time with Eq. (3.5) we find ωa(0) =14.2(4) µm, from which we determine the
radial full width at half maximum (FWHM) of the atomic cloud in ρradial =
2
√

2 ln2 ωa(0) =33(1) µm. The width of the atomic cloud ωa as a function of
time is plotted on Fig. 3.9 (b). The time it takes the dipole trap to switch off is
estimated to be t0 =0.36(5)ms.
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Figure 3.9: (a) Integrated density distribution and fits using a Gaussian function
as a function of light time from which the center of mass positions
and radial widths are obtained. (b) Characteristic transverse width
of the expanding atomic cloud for different free falling times. Solid
line is a fit using Eq. (3.5) used to determine the temperature of
the atoms 15.5(1) µK and the transverse initial size of the ensemble
ωa(0) =14.2(4) µm. For both plots error bars would be smaller than
the point and are not represented.

The axial shape of the atomic cloud does not carry as much information as the
transverse dimension, but its characterization is still interesting. Unlike the trans-
verse dimension, the axial dimension of the trap is much longer than the spread of
the ensemble during the TOF, and to good approximation in ρaxial(t) ' ρaxial(0).
To measure its width we integrate the images along the transverse direction. A
Lorentzian distribution is a good approximation to the Maxwell-Boltzmann dis-
tribution of the atoms. As can be seen in Fig. 3.10, the transverse atomic dis-
tribution has an asymmetry due to the trap loading process. We load the atoms
off centre, and the atoms slowly move along the trap axis. The longitudinal trap
frequency is of the order of Hz. Despite the asymmetric distribution we can
accurately estimate the axial FWHM. The solid line in Fig. 3.10 is a fit with
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a Lorentzian of the form L(z) = aρaxial/2((z − z0)2 + (1/2ρaxial)2) + b, where
ρaxial is the FWHM. From the fit, we determine the axial FWHM atomic length
ρaxial =3.28(6)mm.
With known longitudinal and transversal dimensions we can estimate the vol-

ume of the atomic cloud. We approximate the atomic volume to an ellipsoid
with semi-axis given by ρaxial and ρradial and calculate its volume using V =
π
6 ρ

2
radialρaxial to find the atomic volume Vat =1.8(1)× 10−6 cm3. This will be

used later in the thesis to scale the magnetic sensitivity of the atoms by its
volume.
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Figure 3.10: Axial shape of the atomic ensemble. The solid line is a fit with
a Lorentzian function used to estimate the longitudinal FWHM
ρlong =3.28(6)mm.

Atom temperature

The atom’s temperature can be obtained from the TOF data as it is a free
parameter of the fit to the expansion of the atoms, see Eq. (3.5). The fit to the
data shown in Fig. 3.9 (b) determines the temperature of the atomic sample to
be 15.5(1) µK.

3.4.3 Atomic losses and depolarization

As described in the previous chapter, spin squeezing depends on the preservation
of atomic coherence. There are various physical mechanisms that will reduce the
number of atoms trapped in the trap and/or reduce their polarization. In the
following the describe the mechanisms more relevant for our experiment.
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3 Experimental setup

Depolarization due to residual elliptical trapping light

An elliptical polarized component of the trapping light couple different different
magnetic sub-levels mf . Its effect is the same as the QND interaction described
in Eq. (2.26). In the modifications introduced for the beam shaping of the trap-
ping light we changed the optical elements before the QND interaction. Thus,
the quality in the trapping light polarization is given by the same polarization
components used previously in the experiment. Our measurements are in agree-
ment with previously reported extinction ratios (Koschorreck, 2010), we have a
mostly linearly polarized trapping laser with a circular contribution < 10−5. As
described in (Koschorreck, 2010), a completely circular polarized trapping laser
will induce an energy difference between the |1,±1〉 states of around 100 kHz .
The expected precession frequency for the actual amount of circular polarization
is in the order of 10−5×100Hz=1Hz. We can safely neglect the effect of any
residual circular polarization in the trapping laser on the atomic spin state.

Depolarization due to probing

Even though the Faraday probe is far off-resonance there is a non-zero probability
for the atoms to absorb a probe photon and re-emit it. Scattered atoms out of
a polarized state can return to F = 1 in a random mf state, which adds noise
to the atomic state, or can end up F = 2, where they do not contribute to
the interaction and are effectively lost. For our atom-light coupling strength,
squeezing is optimized with ≈ 10% damage to the state (Sewell et al., 2013).
We work with an Fy-polarized state which is orthogonal to the probe axis. To

measure the polarization loss caused by the probing we follow the same procedure
used for the characterization of the Fy optical pumping, Fig. 3.7. We initially
prepare an state with 〈F〉 = Fz and measure the total number of atoms in the
trap NA. We prepare the atoms in the Fy-state and measure them for a fixed time
but varying the number of photons, keeping the other parameters fixed. After the
strong probing, we adiabatically rotate the atoms to point along the z-axis and
measure the remaining polarization. Comparing the initial signal with the signal
after the probing for known photon number NL, we can obtain the scattering
rate per photon ηsc as

〈F (after)
y 〉 = NAe

−ηscNL + b (3.6)

where the term b accounts for polarization offset. As explained in (Koschorreck,
2010), the measured signal is a contribution of atoms in the two hyperfine man-
ifolds. Initially, the atoms are polarized in the F = 1 ground level, but due
to the probing this population exponentially decays and some atoms end up in
F = 2. The signal from atoms in F = 2 is smaller but it builds up at the same
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3.4 Characterization of the Trapped Atoms

rate η. As a result, there is a polarization offset. In Fig. 3.11 (a) it is shown a
characterization curve from which we estimate ηsc =2.9(1)× 10−10 photons−1.
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Figure 3.11: (a) Atomic loss of coherence as a function of the number of pho-
tons in the measurement. The remaining coherence of Fy has been
normalized to the total atom number. Solid line is a fit with
Eq. (3.6) from which we determine the scattering rate per photon
ηsc=2.9(1)× 10−10 photons−1 (b) Number of trapped atoms as a
function of trapping time. Solid line is a fit with Eq. (3.9) to obtain
a lifetime of 19(1) s, text for details.

Trap lifetime

Measuring the lifetime of trapped atoms gives information about the background
pressure of the vacuum system but also about the density of the atomic ensemble.
As we have increased the atom number in the trap, it is worth checking if atomic
collisions are now a limiting factor in the experiment. Experimentally, we load the
dipole trap for one second and hold the atoms inside the dipole trap for a varying
length of time before measuring NA with absorption imaging. Analogously with
the dynamics of the loading, the lifetime of trapped atoms can be described by
a rate equation of form (Sofikitis et al., 2011; Kuppens et al., 2000)

dN(t)
dt

= −ΓN − βN2 (3.7)

where the Γ term describes an exponential loss rate due to collisions of the trapped
atoms with background ones and β describes losses due to collisions of trapped
atoms. For our atom density, ∼1011 cm−3, three body collisions are negligible
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and we do not include them. The analytical solution of Eq. (3.7) is

N(t) = N0Γ
−N0β + exp(Γt)(N0β + Γ) (3.8)

Fitting the data with a solution to Eq. (3.8) gives a result compatible with Γ = 0,
i.e., the main loss mechanism in our FORT are two-body collisions.
Having a closer look to the model, we see that it predicts a super-exponential

decay for short trapping times, t� 1/Γ, where the fit function can be simplified
as

N(t) ≈ N0

1 + βN0t
(3.9)

were, as we are in the short time, we have taken Γ = 0. Repeating the fit with
the simplified equation described by Eq. (3.9) we obtain β =0.042(3) s−1. From
it, we determine the time needed to have half the maximum trapped population
to be 19(1) s, much longer than the experiment time scale.
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“What do you despise? By this are you truly known”

“Hope clouds observation”
Frank Herbert, Dune

4
Balanced photo-detector with

real-time capabilities

In previous chapters we have described the basic principle of our measurement
scheme. To extract information from a measurement a good signal-to-noise ratio
(SNR) is needed. There are two obvious possibilities to improve the SNR, one is
to maximize the signal, which basically means to increase the number of photons
used in the measurement (for a fixed detuning and atom number, see Eq. (2.30)),
and the other is trying to reduce the measurement noise as much as possible.
Focusing on the latter, the minimum detectable signal of a detector is set by the
electronic noise of the detector itself. Hence, reducing the electronic noise of the
detector is certainly helpful.
Planned experiments (Colangelo et al., 2017b,a) required a detector with a

larger dynamic range and a higher measurement bandwidth. At the same time,
this was an opportunity to improve the electronic noise performance of the next
generation of detectors. This chapter is the summary of the work needed for
the construction and test of a new balance, differential photo-detector meeting
the requirements listed above. It showed a noise equivalent charge (NEC) of 242
electrons, which reduces the shot noise limited photon number level to NL ∼ 105.
The chapter starts out by describing the working principle of the differential

photo-detector. We then move into the analysis of its noise properties in pulsed
regime. Next we present a solution to access the signal of the photo-detector
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in real time and show its performance. Parts of this chapter are published in
(Martin Ciurana et al., 2016).

4.1 Fast, Low Noise Balanced Photo-Detector
The difference signal from two PIN photo-diodes (PDs) (Hamamatsu S3883) is
obtained by connecting them in series and sensing the differential photo-charge
between the diodes. To improve the response time of the photo-diodes they
are reverse biased by 5V to reduce their capacitance. The differential output
current is DC coupled to the integrator, a very low noise charge-sensitive pre-
amplifier (Cremat CR-110) with a capacitor Ci and a discharge resistor Ri in
the feedback branch. Together these determine the relaxation time constant
τdischarge = RiCi = 290 µs of the integrator, Fig. 4.1 (a). The response of the
detector to an imbalanced signal is shown in Fig 4.1 (b). The 50 ns rise-time of the
circuit is set by the capacitance of the photodiodes and the parasitic capacitance
from the path between the photo-diodes and the charge-sensitive pre-amplifier,
while the CR-100 itself has a nominal rise time of 7 ns. Pulses longer than the
rise time will produce a ramp on the output voltage with amplitude proportional
to Ndiff , the difference of photon numbers on the two photodiodes. After such a
pulse, the signal decays exponentially with time constant τdischarge to its initial
value, see Fig 4.1 (b).
Previous differential photo-detectors used a similar circuit layout (Windpassinger

et al., 2009), which was adapted from the original design of (Hansen et al., 2001).
In these detectors the signal from the integrator was then fed into a pulse shaper
amplifier, resulting in an output signal pulse shaped like a Gaussian function, an
element not used in the design described here.

4.1.1 Detector test setup
To characterize the noise performance of the differential photo-detector DPD we
use the setup shown schematically in Fig. 4.1 (a). A continuous beam from an
external grating stabilized, frequency locked diode laser at 780 nm is chopped
with an acousto-optic modulator (AOM) to produce pulses of desired duration
and energy and coupled into a polarization maintaining optical fiber. At the
output of the fiber the polarization is cleaned with a polarizing beam splitter
(PBS). To monitor the power of the pulses, a large fraction of the beam is directed
onto a reference photo-detector (RD) with a half-wave plate (HWP) and second
PBS. The rest of the beam is split by means of a half wave plate and a Wollaston
prism and each beam is focused onto one PD of the DPD. The wave-plate is
adjusted to produce a zero mean signal, i.e., to balance the optical powers at the
two photodiodes. We record the RD and DPD output voltages on an 8-bit digital
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4.1 Fast, Low Noise Balanced Photo-Detector

Figure 4.1: (a) Schematic of the optics and detector electronics. (b) Detector
response to an imbalanced signal. Red line shows the reference de-
tector (RD) signal and blue curve is the differential photo-detector
(DPD) response, where the integrated signal rises linearly during the
pulse. After the detection event the detector output decays to its
initial value with a time constant of τdischarge =290 µs.

storage oscilloscope (LeCroy Waverunner 64Xi) which continuously records the
detector output voltage at a sampling rate of 100 Msps, asynchronously to the
pulse generation.

4.1.2 Noise performance of the DPD
To characterize the noise performance of the DPD we send trains of pulses with
a desired photon number NL, pulse duration τ , and pulse repetition period Trep.
We define a single measurement for the DPD as Ndiff = C(V 1 − V 2), where
V 1(V 2) is the mean of Nsamp voltage samples before (after) the optical pulse and
C is a calibration factor. The number of photons Nphot in a pulse is estimated as
Nphot = CRD

∑
i VRD(ti) where VRD is the voltage output of the RD. The sum

is taken over the duration of the pulse and CRD is a calibration factor obtained
by comparison against a power meter. For a given set of conditions, we adjust
the waveplate to give a balanced signal Ndiff ≈ 0 and record M pulses in a single
pulse train, from which we extract M values for Ndiff and Nphot and compute
statistics, see Fig. 4.2.
When source and detector fluctuations are taken into consideration, a linear

detector will have an output signal variance given by a second-order polynomial
in the average optical input energy (Bachor and Ralph, 2004),

varNdiff = a0N
0
L + ηNL + a2N

2
L (4.1)

where a0 is the “electronic noise” (EN) contribution, a2N
2
L is the “technical noise”

(TN) and the second term is the shot noise (SN) contribution with η the quantum
efficiency of the detector. The different scalings with NL allow an unambiguous
identification of the different noise contributions.
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4 Balanced photo-detector with real-time capabilities

Figure 4.2: Timing diagram illustrating a possible response of the DPD to two
pulses of a pulse train. Popt: optical power, VDPD: Balanced de-
tector output. Red circles show oscilloscope voltage samples used to
characterize the DPD noise characteristics.

To estimate the coefficients of Eq. (4.1) we collect data at a variety of pulse
energy (NL) in each case recording a train of 2500 pulses with repetition period
Trep = 0.8 µs and pulse duration τ = 200 ns. Our light source is not powerful
enough to measure the turning point from SN-limited to TN-limited detection.
In order to measure this transition one could change τ , the probe pulse length.
A more convenient way is to sum the signal from multiple pulses building a
“composite pulse”, i.e., a pulse containing a larger total number of photons. For
a linear detection, a composite pulse will have the same information as a single
higher-energy pulse (Koschorreck et al., 2010a).

The analysis parameter t(DPD)
1 (t(DPD)

2 ) is the time separation from the ending
(beginning) of the DPD voltage samples and the start (end) of the optical pulse,
see Fig. 4.2 for reference and definitions. We set t(DPD)

1 = 10ns to ensure that
V 1 is measuring the voltage before the detection of the optical pulse. In order
to determine t(DPD)

2 we take different values of it and fit var(Ndiff) to obtain the
corresponding fit parameters a0, η and a2. In Fig. 4.3 it is shown the parameter
η as a function of t(DPD)

2 . We fit η with a hyperbolic tangent to determine the
minimum t(DPD)

2 to sample > 99% of the DPD signal and obtain t(DPD)
2 > 90 ns.

With known analysis parameters, t(DPD)
1 = 10ns, t(DPD)

2 = 90ns and Nsamp =
10 points, we fit the measured variances with Eq. (4.1) to obtain the electronic
noise floor, a0 = 4.26(5)× 105, the shot-noise contribution, η = 1.05(1), and the
technical noise coefficient a2 = 2.64(1.45) × 10−10 for the DPD. Typical results
are shown in Fig. 4.4. The linear scaling of the data confirms the quantum
nature of the noise. For ideal quantum noise measurements the slope should be
η = 1, the discrepancy between the ideal value and the measured is coming from
an error in the calibrating factor C, with difference within the ±5% typical error
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Figure 4.3: Quantum noise parameter, η, as a function of t(DPD)
2 . Dashed purple

line fit using a hyperbolic tangent to determine t(DPD)
2 >90 ns to

sample > 99% of the DPD signal. Error bars are smaller than the
points and are not represented.

of the power-meter used at this wavelength 1. The detector is shot-noise limited
when a0/η < NL < η/a2. From the fit outputs, we determine that the DPD is
SN-limited from 4.1(1) × 105 < NL < 4(2) × 109 photons, i.e., its SN limited
behavior extends over 4 orders of magnitude.
The electronic noise of DPD contains high-bandwidth noise, e.g. Johnson noise,

that can be reduced by averaging the in-principle constant output over a time
window, which could be longer than the pulse itself. On the other hand, longer
windows will be more sensitive to drifts and “1/f” noise. We investigate this
trade-off by changing Nsamp used to obtain V 1 and V 2 and then fit varN (DPD)

diff
with Eq. (4.1) to get a0, η and a2.
We repeat the experiment with the same pulse length τ = 200 ns but a much

longer probe period, Trep = 30 µs. For the analysis we use the same parameters
as before, i.e., t(DPD)

1 = 10ns and t(DPD)
2 = 90ns. For each NL we record more

than 300 pulses in a single pulse train. From these parameters we evaluate the
SN limited region of the DPD as a function of the Nsamp used in the analysis.
We fit the EN (TN) limited region a0/η < NL (NL > η/a2) with the polynomial

NL = α1N
β1
samp + α2N

β2
samp (4.2)

where the two terms are for the two noise time-scales.
In Fig. 4.5 we observe a transition from EN ∝ Nβ1

samp, where β1 < 0 for Nsamp .
100 points, describing the effects of averaging, to a 1/f regime for Nsamp & 600
points, with EN ∝ Nβ2

samp where β2 > 0. The fit results are αEN
1 = 1.68(11)×106,

1 Ophir PD300. Data-sheet can be found at http://ophiropt.com/laser–
measurement/sites/default/files/PD300_PD300-1W_PD300-TP_0.pdf
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Figure 4.4: Variance of the output signal of the DPD in “balanced configuration”
as function of the input photon-number in log-log scale. Solid red line
fit to Var(Ndiff) using expression Eq. (4.1). Shaded areas depicts the
different detection responses: green EN-limited, blue SN-limited and
yellow TN-limited. Error bars represent ±1σ standard error. Broken
lines represent the different contribution from EN, SN and TN.

αEN
2 = 40(25), βEN

1 = −0.60(2) and βEN
2 = 1.08(9). We also notice that as shown

in Fig. 4.5, increasing Nsamp from 1 point to 400 we can reduce the electronic
noise of the DPD by 10.2 dB, and that at 400 samples the DPD electronic noise
is minimal. From the coefficients a0 we can deduce the noise-equivalent charge
(NEC), the number of photo-electrons necessary to create a signal equivalent to
the electronic noise defined by qSN = ηQ

√
Nphot, SN, where ηQ is the quantum

efficiency of the photo-diodes. Operating at 780 nm our photo-diodes have ηQ=
0.92, resulting in a minimal NEC of 242 electrons.
Even though the EN increases for Nsamp > 400, the SN limited region i.e.,

the area between the EN and the TN curves, still increases with Nsamp as the
reduction of the TN-limited region compensates the increase of the EN. We can
observe that the TN is almost flat for Nsamp . 300 but rapidly decreases for
Nsamp > 500. We fit the technical noise limited region using Eq.(4.2), to find the
fit parameters αTN

1 = 1.36(56)× 108, αTN
2 = 0.53(4.65)× 103, βTN

1 = 0.03(0.11)
and βTN

2 = 1.99(1.31). Recalling the oscilloscope sample rate of 100 Msps, or
10 ns/sample, the DPD is SN-limited over measurements bandwidth running from
3MHz to 35 kHz.
The minimum separation between consecutive pulses, or equivalently the max-

imum measurement bandwidth, is given the analysis parameters t(DPD)
1 , t(DPD)

2
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Figure 4.5: DPD SN-limited region (blue area) as function number of the oscil-
loscope samples used in the measurement in log-log plot. EN-limited
region (green) and TN-limited (yellow), see text for details. Error
bars represent ±1σ standard error. Green dashed (blue dotted) curve
is a fit of EN (TN) using Eq. (4.2).

and Nsamp and the detector’s rise time 50 ns, with the first found to be 10 ns and
90 ns, respectively. As clearly shown by Fig. 4.5, the measurement bandwidth
and the electronic noise are closely related. The electronic noise has a minimum
at Nsamp = 400, or given our sampling rate, at an averaging time of 4 µs. From
this we determine the minimal noise performance of our DPD to be at a mea-
surement repetition of 125 kHz. The fastest measurement repetition occurs for
minimal Nsamp, that is Nsamp = 10ns, with a value of 6MHz.
However, the ultimate measurement repetition is given by the detector’s rise

time and the shortest analysis times possible. This is to say to reduce t(DPD)
2 .

The effect of this will be to have a non-steady quantum noise parameter which
will cause a narrowing of the shot noise limited detection range as the technical
noise will increase. The minimum repetition period is given by detector rise
time, 50 ns, the time parameters t(DPD)

1 and t(DPD)
2 , each 10 ns, and two Nsamp,

2 × 10 ns, resulting in 90 ns, or equivalently, a maximum detection bandwidth
of 11MHz, which to our knowledge makes it the fastest quantum-noise limited
differential photodetector for this energy regime, i.e., for pulses with as few as
6.8× 105 photons.
We repeat the measurement under the same scope settings to determine the

electronic noise contribution of the scope itself terminating it with a 50 Ω termi-
nator. Analogously, we vary Nsamp to obtain V 1 and V 2 and fit N scope

diff with the
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4 Balanced photo-detector with real-time capabilities

Figure 4.6: Electronics noise coefficient for the DPD (blue circles) and oscillo-
scope (green squares) as function of the oscilloscope samples used in
the measurement in log-log plot. Solid lines are fits using Eq. (4.2).
Error bars are smaller than the points and not represented.

Eq. (4.1) to find a list of scope “electronic noise” parameters ascope
0 . We fit ascope

0
with Eq. (4.2) to find the scope noise scaling parameters αscope

1 = 3.79(47)× 104,
αscope

2 = 0.17(16), βscope
1 = −0.96(3) and βscope

2 = 0.99(13). From the fit out-
puts we conclude that it is safe to neglect the scope “electronic noise” relative to
DPD electronic noise, see Fig. 4.6. The fact that βEN DPD

1 = −0.60 and not −1
as in the case of βscope

1 , means that there is some correlated noise in the DPD
output signal. This is expected as the 100MHz sampling frequency exceeds the
oscilloscope input bandwidth at this setting. The measured −3 dB oscilloscope
bandwidth is 30MHz.

4.2 Real-time Detection Capability
Using the DPD requires a digital storage oscilloscope (DSO) to acquire the data
for its later processing. In most experiments, the DSO is employed in segmented
mode, with a specified number of time segments. Issues with digitalization noise
can occur if the signals recorded at different segments have different amplitudes.
Oscilloscope traces with many segments can result in a large file, and having
to save and store the files in a different computer or server can slow down the
repetition rate of the experiment. At the time we were testing the DPD, we
just finished an experiment on real time feedback for cooling the atomic ensem-
ble (Behbood et al., 2013a). It was based on a field-programable gate array
(FPGA) that collected the RD signals and the signal from the previous differ-
ential balanced detector and calculated its ratio R= VDPD/VRD to control an
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optical pumping feedback. For the feedback step the FPGA showed a latency of
11 µs for computation.
All together, these factors motivated the design and construction of a real

time detection system to upgrade the experiment. It is based on standard off-
the-shelf analog electronics, namely a pair of sample and hold amplifiers (SHA)
and a differential amplifier (DA), and it uses the fact that the DPD output is
proportional to the integral of the signal measured.

4.2.1 Principle of operation
The output from the DPD is captured by a pair of SHAs (Analog Devices AD783),
gated with TTL signals. The SHA1 captures the voltage of the DPD before
the optical pulse arrives, and the SHA2 captures it after the end of the pulse,
analogous to V 1 and V 2, respectively. A differential amplifier DA (Analog Devices
AD8274) amplifies the difference of the two voltages held on the SHAs.

Figure 4.7: (a) Schematic of the real time detection electronics. (b) Differential
amplifier (DA) response to an imbalance optical input signal. Red line
shows the RD signal and green curve is the DA response. The DA
outputs the difference of a pair of SHAs signals sampling the VDPD
output shortly before and shortly after the pulse. After the detection
event the DA output stays steady.

4.2.2 Noise performance of the DA
To characterize the noise properties of the DA we repeat the same procedure
as for the DPD: we record on the oscilloscope the RD and DA output voltages.
The SHA1 captures VDPD(t(gate)

1 ) before the optical pulse arrives, and the SHA2
captures VDPD(t(gate)

2 ) after the end of the pulse, see Fig. 4.8 for reference and
definitions.
We define a single measurement as Ndiff = C ′V DA, where V DA is the mean

of N ′samp voltage samples a time tDA after the end of the SHA2 and C ′ is a
calibration factor obtained by comparison against a power meter. Under the
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Figure 4.8: Timing diagram illustrating a possible response of the DA to two
pulses of a pulse train. Popt: optical power, gate 1, gate 2: gate volt-
ages causing the respective SHAs to sample (high) and to hold (low),
VDA: differential amplifier output. Red circles show oscilloscope volt-
age samples use to characterize the DA noise characteristics.

same experimental conditions as for the DPD characterization, Trep = 0.8 µs and
τ = 200 ns, we record a train of 2500 pulses for each value of NL and fit varN (DA)

diff
with Eq. (4.1) we obtain a0, η and a2. As before, we construct “composite pulses”
to determine a2. The SHAs are gated for τgate = 100 ns at times t(gate)

1 = 10ns
and t(gate)

2 = 20ns. The analysis parameters are tDA = 170 ns and N ′samp = 10
points.
Typical results are shown in Fig. 4.9. From the fit outputs we determine that

the DA is shot-noise limited from 7.4(1)× 105 < NL < 3.7(9)× 108 photons, i.e.,
over almost 3 orders of magnitude. From the coefficients a0 we can deduce the
NEC for the DA and compare to the DPD performance. For the same number
of samples, Nsamp = N ′samp =10points, we find NECDPD= 600 electrons and
NECDA= 808 electrons. Since the two calibration experiments were taken under
the same experimental conditions, i.e., Trep = 0.8 µs and τ = 200 ns, we see that
the capability of having the signal available in real time has the cost of increasing
the electronic noise level by 2.6 dB.
We investigate the effect of τgate, the time for which the SHA are gated, by

measuring varNDA
diff vs NL for different values of τgate and compare the noise

performance. We obtain the same results for τgate = 250 ns, the manufacturer
recommended value, as for τgate = 100 ns, with fit parameters comparable within
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Figure 4.9: Variance of the output signal of the DA as function of the input
photon-number in log-log scale. Solid red line fit to Var(NLdiff) using
expression Eq. (4.1). Shaded areas depicts the different detection
responses: green EN-limited, blue SN-limited and yellow TN-limited.
Error bars represent ±1σ standard error. Broken lines represent the
different contribution from EN, SN and TN.

the error, but not for 50 ns where the DA-output is independent of NL, i.e.,
dominated by electronic noise.
We study the effect of the settling time of SHA2 by varying the number of

samples used for V DA with tDA. The gating times are unchanged, being t(gate)
1 =

10ns and t(gate)
2 = 20ns but for the analysis we take N ′samp = 1 point. We then

fit varN (DA)
diff to obtain the fit parameters a0, η and a2, from which we determine

the EN-limited and TN-limited regions. In Fig. 4.10 we see that for values of
tDA where the noise of the SHA has not had time to settle the EN and the TN
contributions are large, dominant over the SN. We also observe that once tDA is
sufficient, the EN region is flat as expected from the output of a the DA. From
the fit output η we determine that the minimum time delay to faithfully sample
the signal is tDA = 170 ns.
Comparing Fig. 4.9 and Fig. 4.10 we see that the SN-limited region is a bit

narrower in the latter, due to the different N ′samp used in the analysis. This
suggests that the output of the DA has fast frequency noise components that
could be filtered to obtain the same noise performance as in the case of Fig. 4.9,
i.e., averaging the DA output voltage.
Assuming an optical pulse with length equal to the DPD dead time, the mini-

mum separation between consecutive pulses, or equivalently the higher measure-

65



4 Balanced photo-detector with real-time capabilities

15 20 25 30 35105

106

107

108

109

1010

tDAHsamplesL

N
ph

ot

Figure 4.10: DA SN-limited region (blue area) as function of the SHA2 settling
time (tDA). Green shaded area is EN-limited region and TN-limited
region in yellow, see text for details. Analysis done with N ′samp = 1
point at a sample rate of 100 Msps or 10 ns/sample. Error bars
represent ±1σ standard error.

ment bandwidth, is given the gating of the SHA, τgate = 100 ns, its settling time
of the second SHA, tDA =170 ns and the analysis parameters N ′samp =10ns. The
maximum detection bandwidth in real time is ' 2.3MHz.

4.3 DPD in Action
The DPD was used in the first experiment to combine simultaneous sub-projection-
noise Faraday rotation measurements of both parallel and perpendicular compo-
nents (Colangelo et al., 2017b). Several earlier experiments had demonstrated
sub-projection-noise Faraday rotation measurements of a small component or-
thogonal to the mean spin, (Appel et al., 2009; Schleier-Smith et al., 2010b;
Chen et al., 2011; Sewell et al., 2012) among other, and a few had made sub-
projection-noise Faraday rotation measurements of the large component parallel
to the mean spin (Béguin et al., 2014; Gajdacz et al., 2016; Kristensen et al.,
2017).
Detecting the radial component with sub-Poisson sensitivity is a technical chal-

lenge since the radial component is large and the Poisson fluctuations are small,
requiring a detector with high dynamic range. Moreover, the detector must pre-
cisely record both large and small rotations angles in rapid succession. The DPD
we developed meets these technical challenges.
In the realization of that experiments a magnetic field along the x direction
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drives a coherent rotation of the atoms in the y-z plane with a period TL. It
was necessary that the probe pulses length was much shorter than the Larmor
precession period, τ � TL. This ensures that the time taken to complete a single-
pulse measurement is small, i.e., the interaction between the light pulse and the
atoms is almost instantaneous and the atomic state does not evolve during the
probing. We sent probe pulses of τ =600 ns and the Larmor precession period
was 38 µs.
As shown by Eq. (2.21) and described in references (Koschorreck et al., 2010a;

Colangelo et al., 2013), the interaction Hamiltonian contains tensor light shifts.
One possible strategy to minimize the tensorial polarizability is to alternate
probe pulses with orthogonal polarizations, called “dynamical decoupling” prob-
ing (Koschorreck et al., 2010b). This cancellation works better when the time
separation between different pulses is reduced. For this reason, having a detec-
tor with a high bandwidth was indispensable. Even though in the experiments
reported in (Colangelo et al., 2017b,a) we did not take full advantage of the mea-
surement bandwidth, we probed the atoms with vertically polarized probe pulses
at 3 µs interval, with horizontally polarized probe pulses between the V-probe
pulses, such probing rate would have been impossible with the previous detector.
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Figure 4.11: Shaper detector variance output signal in “balanced” configuration
as a function NL in log-log scale. Solid red line fit to Var(Ndiff)
using expression Eq. (4.1). Experimental parameters Trep = 10 µs,
τ = 1 µs.

The balanced detector we were using previously was developed by the group
of Prof. Eugene Polzik from the Niels Bohr Institute of Copenhagen. It is based
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on the same working principle, an integrator measures the difference in photo-
charge between two photo-diodes. The main difference is that the signal from
the integrator is fed into a pulse shaper giving an almost gaussian pulse output
signal. As shown in Fig. 4.11, it had a larger electronic noise floor, requiring
measurements with NL > 2× 106 photons to be in the shot noise limited region.
At the same time, the detection of photons is technically noise limited for photons
number NL > 2 × 108, i.e., the shot noise limited range spans over two order of
magnitude. The combination of integrator followed by a pulse shaper broadens
the electronic response pulse compared to the detected optical pulse, where an
input pulse of 25 ns FWHM produces a response pulse of 600 ns, limiting the
measurement speed. Further details about this particular detector can be found
in (Windpassinger et al., 2009; Windpassinger, 2008; Koschorreck, 2010).

4.4 Comparison with Literature
The DPD presented here offers a significant improvement in speed compared to
other state-of-the-art detectors, while also having somewhat lower noise (Hansen
et al., 2001; Windpassinger et al., 2009; Takeuchi et al., 2006). In (Windpassinger
et al., 2009) two detectors based on two different charge-sensitive pre-amplifier
are described with minimal NEC=280 electrons (Amptek-based detector) and
NEC=340 electrons (Cremat-based detector) operated at speeds . 200 kHz, exact
value not reported. Our DPD shows a minimal NEC=242 electrons at 125 kHz,
representing a noise improvement of 0.63 dB with respect to the Amptek-based
detector and 1.84 dB to the Cremat-based detector, while operating at similar
measurement bandwidth. Similarly, in (Takeuchi et al., 2006) the maximum
measurement speed is 200 kHz and SN limited starting from 106 photons/pulse
whereas at this bandwidth our DPD is SN limited from 7 × 104. Reference
(Hansen et al., 2001), working at a repetition rate of 1MHz reports a NEC of
730 electrons. At this speed, our DPD has a NEC of 600 electrons, a reduction of
0.87 dB.
Real time active control of quantum systems is a key element for advanced

quantum information processing (Wiseman and Milburn, 2009; Serafini, 2012)
and has been investigated in different platforms. It is very active area of research
in the qubits community (Blok et al., 2014; Vijay et al., 2012), and has been
applied to the detection of magnetic fields using real-time adaptive measurements
(Bonato et al., 2016).
Focusing on atomic systems, prior work on feedback was done in Mabuchi’s

group (Geremia et al., 2004). Feedback schemes (Lloyd, 2000) have been theo-
retically proposed to deterministically produce spin squeezing states (Thomsen
et al., 2002a,b) and have been experimentally produced (Inoue et al., 2013; Cox
et al., 2016). Similar feedback schemes have been used to protect superposition
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states against the decoherence induced (Vanderbruggen et al., 2013) or to remove
entropy from an atomic ensemble (Behbood et al., 2013a).
Our real-time detection system fits the atomic needs where the coherence times

running from µs to seconds requiring detection with low latency and large band-
width to perform many manipulations of the atomic state before decoherence
A second atomic physics experiment in the group, this one working with a

spinor Bose-Einstein condensate, uses a copy of this detector, also to measure
Faraday rotation.
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“In no affairs of mere prejudice, pro or con, do we
deduce inferences with entire certainty, even from
the most simple data”
Edgar Allan Poe, The Narrative of Arthur Gordon

Pym of Nantucket

5
Radio-frequency interaction

In this chapter we describe the interaction of radio-frequency magnetic fields and
alkali atoms. We begin with a basic overview of atomic magnetometry and find
a theoretical description of the atomic spin evolution under such fields. After
describing the magnetic side of the apparatus, we propose a new type of mea-
surement that exploits the atomic coherence to sense arbitrarily-shaped radio-
frequency time varying signals using a cold atomic ensemble. This measurement
is compatible with spin squeezing and QND measurements. Finally, we experi-
mentally verify the theory using a particular case of waveform, a linearly chirped
signal. Parts of this chapter are published in reference (Martin Ciurana et al.,
2017).

5.1 Principles of Atomic Magnetometry
Alkali atom based magnetometers have shown exceptional sensitivities (Kominis
et al., 2003; Sheng et al., 2013; Dang et al., 2010) in magnetic field measurement.
Atomic magnetometers characterize a magnetic field by observing the response of
the atomic spins to the field. The valence electron couples more strongly than the
nuclear spin to the external field, and so, to first order, the gyromagnetic ratio is
simply that of a bare electron except that the electron spin must drag the nuclear
spin along as it precesses. Detection of a magnetic field requires monitoring the
spin precession due to the field, and there are numerous techniques for measur-
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ing the atomic spin (Budker and Romalis, 2007). To date, most sensitive atomic
magnetometers use optical read-out of the atomic state. Detection of small mag-
netic field requires detection of tiny optical rotation angles. DC magnetometers
determine the amplitude of an external magnetic field by measuring the Larmor
precession frequency of the atomic spins as

ωL = γ|B| (5.1)

where γ = µBgF /~ =0.7GHzT−1 for 87Rb . The coupling of the spin to a
magnetic field is given by the Hamiltonian

H = −γF ·B (5.2)

where we have taken ~ = 1. The time evolution of the spins under the magnetic
field is given by Eq. (2.27).

d

dt
F = 1

i
[F, H] (5.3)

Given the commutation relation between the angular momentum components we
see that the spins precesses in a magnetic field accordingly to

d

dt
F = −γB× F (5.4)

where γ is the gyromagnetic ratio. We see that Eq. (5.4) is equal to the classical
equation for a dipole in a magnetic field, i.e., the effect of B on the atomic spin
is to cause a precession about B.
Atomic magnetometers can also be used to detect radio-frequency (RF) mag-

netic fields. As described earlier, the hyperfine interaction between the electron
and the nuclear spins further splits the atomic energy level into states with total
atomic spin F. The interaction with an external magnetic field lifts the degen-
eracy between different Zeeman sub-levels. The resulting energy splitting ∆E
solely depends on the strength of the bias field, see Eq. (5.1). The presence of an
oscillating RF magnetic field applied transversally to the static bias field will in-
duce resonant, coherent coupling between Zeeman sub-levels (Bloch, 1946; Hahn,
1950). The use of radio-frequency excitation to measure the Larmor frequency
by monitoring the precessing transverse spin components was first proposed by
Dehmelt (Dehmelt, 1957a,b), and the theory and first experimental demonstra-
tion were developed by Bell and Bloom (Bell and Bloom, 1957).
Formally, consider an oscillating field

Bx(t) = xΩ
γ

cos(ωt) (5.5)
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along the x-axis, which has two counter-propagating rotational components at
frequencies ±ω with amplitudes Ω/2. The external bias is given by

ωL = γ|B0| (5.6)

We assume that the oscillating frequency ω is much closer to ωL than to −ωL,
and shift to a reference frame that is co-rotating with the precessing spins and
making the rotating wave approximation, i.e., neglecting all oscillations that are
at frequencies far from the rotation frequency. Under such approximation the
static bias field is replaced by an effective field

γ|Beff| = (ωL − ω) (5.7)

The co-rotating component of the oscillating field is static in this frame. The
total effective magnetic field is given by

γ|BT| = (ωL − ω) + Ω
2 (5.8)

Using the dynamic evolution of the atomic spins given by Eq. (5.3), we obtain
analytic expression for the time evolution of the atomic spin components assuming
and input Fy-polarized state. As we measure in the lab frame, we transform the
equations back and find:

Fx(t) =
(

Ω sin (ωt) sin (tΩ′)
Ω′ +

2∆RFΩ cos (ωt) sin ( t2Ω′)2

Ω′2

)
Fy(0) (5.9a)

Fy(t) =∆2
RF + Ω2 cos (tΩ′)

Ω′2 Fy(0) (5.9b)

Fz(t) =
(
−Ω cos (ωt) sin (tΩ′)

Ω′ +
2∆RFΩ sin (ω0t) sin ( t2Ω′)2

(Ω′)2

)
Fy(0) (5.9c)

where Ω and ω are the applied RF magnetic field amplitude and frequency, re-
spectively. Ω′ is the generalized Rabi frequency defined as

Ω′ =
√

∆2
RF + Ω2 (5.10)

where ∆RF = ω − ωL is the detuning of the RF from the resonance frequency.
From Eq. (5.10) is easy to note that if the RF drive is not on resonance with the
energy spitting introduced by the static bias field, its effect is to cause a faster
oscillation of the spins.
In a typical Rabi flopping experiment, the observable is the spin population

along the state preparation axis - i.e. in our case the Fy spin component - after

73



5 Radio-frequency interaction

a fixed period of spin excitation. Here, in contrast, we measure the orthogonal
Fz spin projection via Faraday rotation probing during the spin excitation. It
is instructive to illustrate the different behavior of the components of F. The
time evolution of the Fz and Fy components for various detunnings is depicted
in Fig. 5.1. When the frequency of the RF-signal matches the atomic energy
splitting the flopping frequency is minimal and the projection of the transverse
spin component transferred by the RF maximal.

Figure 5.1: Simulation of the spin components evolutions using Eq. (5.9) for
different detuning of the RF excitation. The spins, initially polar-
ized along the y-axis evolve due to the interaction with the RF-field
resulting in Rabi oscillations.

5.2 Detecting RF Excitations
The experimental apparatus is illustrated in Fig. 5.2. An RF field along x is
produced with a low-inductance coil and an arbitrary waveform generator. Op-
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tical pumping (OP) along the y direction is used to produce an initial atomic
polarization, with an efficiency of ∼ 96%, as measured by Faraday rotation. A
non-destructive measurement of the atomic state is made using a train of 600 ns
duration pulses of linearly polarized light sent through the atoms at 4 µs intervals
and 1500MHz red detuned from the f = 1→ f ′ = 0 transition on the D2 line.

Figure 5.2: Experimental geometry (not to scale), showing dipole-trapped atoms,
on-axis Faraday rotation probe pulses, transverse optical pumping
(OP), and polarimeter elements: half-wave plate (HWP), polarizing
beamsplitter (PBS), and balanced detector (BD). Radio-frequency
(RF) magnetic fields in the x̂ direction are produced by a coil, while
a DC field of variable strength (not shown) is applied along ŷ.

5.2.1 Bias field adjustment
The geometry of the coils and their characteristics are described in (Schulz, 2002).
In short, three coil pairs in near Helmholtz configuration surround the location
of the atoms. They are used to cancel the earth and the laboratory environment
fields and to set the desired bias field. They are operated by a low noise cur-
rent source and produce bias fields of strengths in the 50mG range. Given the
full length of our atomic cloud, ∼0.5 cm, atoms at different locations experience
slightly different magnetic fields which cause them to precess at different fre-
quencies. After a time sufficiently long the atoms would be out of phase and the
atomic averaged signal measured with the Faraday probe will be zero. In order
to minimize the field inhomogeneity along the sample length we use two sets of
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four wires placed transversally to the trap axis, horizontally and vertically. They
can handle currents up to 1500mA to compensate for the gradient components
∂Bx/∂z and ∂By/∂z. The coil pair to drive a field along the z-axis was designed
to allow a current unequal currents in the to coils, with which ∂Bz/∂z can be
controlled.
A bias magnetic field along y is generated with coils in a near-Helmholtz ge-

ometry fed by a programmable current source and monitored using the atoms as
an in-situ DC vector magnetometer. In the group we developed a technique to
gain information about the three components of the magnetic field information
and the gradient component along the trap axis (Behbood et al., 2013b). For
the experiments presented in this thesis where the bias field is along one axis, a
simplified version of the method is enough to set the field. We prepare the atoms
to have 〈F〉 along z under an orthogonal bias field By and observe free-induction
decay (FID) (Abragam, 1961) signal of the resulting Larmor precession using the
Faraday probe. A fit function of the type

φ(t) = β + α cos(ωLt+ φ0)e−t/T2 (5.11)

is sufficient to extract the field magnitude (|B| = ωL/γ) the components in the
plane orthogonal to By (β ∝

√
B2

x +B2
z ) and the atomic coherence time T2.

We minimize the amplitude of β by compensating homogeneous field along x
and z directions with the bias coils and cancel field gradients along the length
of the trap by adjusting the current in the compensating wires. The field is
optimized in an iterative routine resulting in coherence time T2 =4.8(3)ms and
fields 99.1% along the y-axis. A typical optimized FID signal is shown in Fig. 5.3.

The coherence time is inversely proportional to the field gradient along the
trap axis, 1/T2 ∝ ∂|B|/∂z. To model the effect of the compensating wires we
divide the field gradients into its parallel and perpendicular components to the
bias field (

∂|B|
∂z

)2
=
(
∂|By|
∂z

)2
+
(
∂|B⊥|
∂z

)2
(5.12)

To minimize the gradient field along the atomic cloud, the current through each
set of wires reduces the corresponding term in the r.h.s. of Eq. (5.12). We fit the
effect of the gradient compensation with the function

T2(I) = a√
(∂By(I)/∂z− ∂By,0/∂z)2 + (∂|B⊥|/∂z)2

(5.13)

The effect of the vertical compensating gradient wires is shown in Fig. 5.4 (a).
Experimentally we found that the bias field direction does have an effect on

the efficiency of the Fy-state preparation. In order to have both a good state
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Figure 5.3: Free induction decay measurement of the Fz polarized state precess-
ing in a magnetic field By, dark blue line. The orange line is a
fit with the function Eq. (5.11), with fit outputs β =0.4(2)mrad,
α =37.3(6)mrad, ωL = 2π×50.35(5) kHz and T2 =4.8(3)ms. Left
plot is a zoom in on the FID trace for the first 200 µs.

polarization and a good coherence time it is necessary to iterate and fine tune
the current through the bias coils and gradient wires. Fig. 5.4 (b) shows the
change in atomic polarization for the same gradient compensating.
Another important aspect of the magnetic field is its stability. We can distin-

guish two time scales, short-term and long-term stability. By short-term stability,
we refer to the stability of the B-field during a measurement process, including
state preparation, evolution and detection, all in the range of 1ms. In practice,
the most important factor for the short-term stability is locking the measure-
ment to the 50Hz cycle of the mains, so that the field and its time derivative
are reproducible from one measurement to the next. In Behbood et al. (2013b)
we measured a peak to peak field fluctuation of ∼1 µT within a single 50Hz cy-
cle. By long-term stability we mean to have the experiment close to the same
conditions in order to repeat it many times to collect statistics. For the squeez-
ing experiments we need a large NA and we run multiple experiments with the
same atoms, we repeat successive trap loadings typically every 10 s. To collect
statistics for the squeezing experiments we repeat the trap loading a minimum of
100 times. Thus, by long term stability we refer to have the same environmental
conditions over to course of 15min. In order to improve it one can use magnetic
shielding (Kominis et al., 2003), active field control (Smith et al., 2011).

5.2.2 Radio-frequency Setup
The strength of the bias field determines the resonant frequency of the RF exci-
tation. We decided to work in the ∼50 kHz regime as it was a good compromise
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Figure 5.4: Atomic coherence time T2 (a) and normalized atomic polarization
along the y-axis (b) as a function of the current applied to the
gradient-inducing vertical wire pairs. After the field optimization
we can prepare the atoms in a macroscopic magnetization along the
y-axis, with Fy ' NA, > 96%, and having a long coherence time,
T2 ≈4.8ms. Solid line is fits using Eq. (5.13). Error-bars represent
±1σ standard error.

between the measurement bandwidth and the field homogeneity. The atom-light
interaction described by Eq. (2.21) is valid when the dynamical evolution of the
system has to be much slower than the interaction time, i.e., the pulse duration
τ has to be much shorter than the Larmor period TL. On the other hand, the
measurement time must be shorter that the atomic coherence time T2. These
two conditions can be expressed by the set of equations

τ � TL ∝ |By| (5.14a)

Npτ < T2 ∝
∂B
∂z (5.14b)

where Np are the total number of pulses used in the measurement. Although we
can apply a larger bias field and still fulfill Eq. (5.14a), we observed that for fields
in the range of 100mG, the gradient compensation was poor and the coherence
time was reduced.
In order to drive radio-frequency fields to the atoms four main elements are

needed: a frequency source that produces the RF signal, a switch to trigger the
emission of the signal, an amplifier and the antenna responsible for driving the ex-
citation. At this low frequencies and given the physical space limitations around
the vacuum chamber, it is challenging to make a resonant antenna based on a
driving LC-resonant circuit. The antenna we made to drive the RF-excitation
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was a loop antenna with 25mm diameter with 14 windings made out of a 1mm
thick copper wire. The coil was placed outside the vacuum chamber, approx-
imately 8 cm from the atoms position, i.e., in the near-field. Its position and
orientation were adjusted while watching the Rabi flopping driving the amplifier
in the linear regime, i.e., far from saturation. We maximized the amplitude of
the Rabi oscillations and the time the atoms oscillated for. In this way we ensure
that the radiation pattern produced by the antenna is homogeneously distributed
over the atomic cloud. The RF-signal is generated by the function generator (Ta-
bor WW1281 A) and amplified using a low-frequency amplifier (Mini-Circuits,
ZHL-32A+). The output of the amplifier is connected to the antenna via a
unidirectional-coupler (Mini-Circuits, ZDC-15-6) to prevent the reflected power
of the antenna, which is not impedance matched, from reaching the amplifier.

5.2.3 Rabi flopping measurements
To characterize the field-atom coupling we add an oscillatory driving field per-
pendicular to a static bias field. The combined effect of these two magnetic
fields is to induce Rabi oscillations between the magnetic sub-levels of the atoms
in the hyperfine levels. We load the ODT, apply a bias field along the y-axis,
optically pump the atoms with a single 50 µs long pulse along the bias field
and apply the RF signal with constant amplitude but varying frequency. In or-
der to minimize probe scattering the atoms are probed semi-continuously with
NL ≈ 2 × 106 photons and ∆ =1.5GHz. The measured Fz component is fitted
with Eq. (5.9c) to determine the best-fit values for the mean drive field amplitude
Ω̄/2π =0.23(3) kHz and the mean on-resonance frequency ω̄L/2π = 42.28(1) kHz.
The parameters ω̄L and Ω̄ are used to compute the theoretical solid curves in
Fig. 5.6 (a). From the measured Fz evolutions we estimate fy = min

√
F 2 − F 2

z ,
the minimum of the longitudinal spin projection. In Fig. 5.6 (b) we plot the nor-
malized maximal spin projection along the z-axis, Fz, normalized by the total
spin, |F |, obtained from the measured Fz(t).
In Fig. 5.5 we plot the measured Rabi frequencies as a function of the RF

excitation frequency and find good agreement between the data and the theory.

5.3 Waveform Component Detection
State-of-the-art atomic sensors coherently detect the signal of interest in an
scheme based on a Ramsey interferometry sequence. These sensors employ a
measure-evolve-measure (MEM) sequence, in which a the system is prepared in
a desired state, followed by a period of free evolution sometime called “Ramsey
time” which accumulates signal over a time comparable to the atomic coherence
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Figure 5.5: Measured generalized Rabi frequencies. Solid line is a theory curve
using Eq.(5.10) and the best-fit values for Ω̄ and ω̄L.

time. To stop the signal accumulation, the atomic system is transformed back
and read-out. The atomic state readout typically destroys coherence.
It was originally devised as a way of measuring nuclear magnetic moments

in a molecular beam using two oscillating fields at different points along the
beam (Ramsey, 1950), but it has evolved into a widely applicable metrological
technique. The Ramsey sequence underpins nearly all precision measurement
made with atomic sensors. To list some examples, it has been used in precise
measurements Earth’s gravitational field (Rosi et al., 2014; Gillot et al., 2014),
as inertial measurements (Dutta et al., 2016), to measure fundamental constants
(Bouchendira et al., 2011) and to measure magnetic fields and time (Sewell et al.,
2012; Leroux et al., 2010b), resulting in the most precise measurements ever made
using an atomic ensemble (Hinkley et al., 2013; Bloom et al., 2014).
Focusing on magnetometry, up to now MEM sequences have been applied for

the detection of constant (Sewell et al., 2012) and oscillating magnetic fields
(Ockeloen et al., 2013). Here we extend coherent detection type of measurements
to more general waveforms, those with time varying radio-frequency. As we
have just seen, atoms are resonant to the particular RF matching the Larmor
energy splitting. By adjusting the strength of the bias field we modify the atomic
resonance frequency. The measurable atomic displacement takes the form of
overlap integral, with a pattern function that is controlled by the experimenter.
We extend coherent detection type of measurements to allow quantification of
arbitrarily-shaped radio-frequency signal components. In the following section
we formally describe our protocol.

5.3.1 Principle of the method
We consider an ensemble of atoms, described by a polarization F, precessing
in response to a magnetic field B(t) = yBy(t) + xBx(t), with |By| � |Bx|.
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Figure 5.6: Atom-field coupling characterization. (a) Normalized minimum spin
projection along the y-axis fy/|F |, an estimate of the amount the spin
vector has been tilted away from Fy by the RF-field. Solid line is a
theory curve. (b) Normalized maximal spin projection along the z-
axis, Fz, normalized by the total spin, |F |. Error bar indicate ±1σ
standard error of the mean. Insets show representative traces of Fz
versus time (blue curves) and fits of the rotating-wave solution of
Eq. (5.15) (red curves).
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F precesses about y at an experimenter-controlled Larmor angular frequency
ωL(t) = γBy(t) + O(γB2

x/By) ≈ γBy(t), driven transversally by the small un-
known perturbation Bx(t). The component Fz is assumed accessible to QND
measurement.
The dynamics of the spins are governed by the Heisenberg equations of motion,

Eq. (5.3), to find
d

dt
Fi = −i[Fi, H0(t) +H ′(t)] (5.15)

where H0 = −γF · B = −γFyBy(t), γ is the gyromagnetic ratio for the F = 1
ground hyperfine state, and H ′ = −γFxBx(t) describes the unknown perturba-
tion, assumed to be in the radio-frequency range. Under the assumption that
|By| � |Bx| a perturbation treatment is enough to solve the system dynamics.
We use a Dyson series (Sakurai, 1994) to solve the resulting system of differential
equations. We define F(0)(t) to be the solution to Eq. (5.15) when H ′ = 0, i.e.
F

(0)
y (t) = Fy(0)(

F
(0)
z (t)
F

(0)
x (t)

)
=

(
cos Θ(t) sin Θ(t)
− sin Θ(t) cos Θ(t)

)(
Fz(0)
Fx(0)

)
(5.16)

where Θ(t) ≡
∫ t

0 dt
′ ωL(t′), with ωL(t) ≡ γBy(t) is the accumulated angle. We

then use the well-known result (Sakurai, 1994)

Fi(t) = F
(0)
i (t)− i

∫ t

0
dt′ [F (0)

i (t), H ′(t′)] +O(H ′)2 (5.17)

which, from the definition of H ′(t′) gives the signal

Fz(t) = cos Θ(t)Fz(0) + sin Θ(t)Fx(0)

−γ
∫ t

0
dt′ Fy(t′)Bx(t′) cos[Θ(t)−Θ(t′)]

+O(Bx)2 (5.18)

We note that Fy(t′) = Fy(0) + O(Bx)2. At the same time, we can express
δF 2

y = 〈F 2
y 〉 − 〈Fy〉2, finding

Fz(t) = cos Θ(t)Fz(0) + sin Θ(t)Fx(0)

−γ〈Fy(0)〉
∫ t

0
dt′Bx(t′) cos[Θ(t)−Θ(t′)]

+O(Bx)2 +O(γtBxδFy)2. (5.19)

We note that the first line describes an operator relation, namely a rotation of
the spin components Fz, Fx about y, and contains the quantum noise associated
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5.3 Waveform Component Detection

with the spin variables. In contrast, the second line of Eq. (5.19) has no operator
content and describes a noiseless displacement by an amount proportional to the
integral of the waveform Bx(t′) multiplied by the pattern function cos[Θ(t) −
Θ(t′)]. This describes a coherent build-up of the signal component matching
the pattern function and a cancellation of signal components orthogonal to it
(de Icaza Astiz et al., 2014). By proper choice of Θ(t), the pattern function
can be made to take on any functional form bounded by ±1. In this way, an
arbitrarily-chosen waveform component can be selected for quantum-enhanced
coherent estimation, with the measurement programmed by the applied By(t).
The third line of Eq. (5.19) is negligible for the interesting case of weak signals
and large atom number.
The formalism we have just described is general and valid for any type of

excitation. In the following we experimentally verify it using a particular type
of waveform, linearly chirped radio-frequency drives. In the following section we
describe how to increase the signal accumulated by the atomic ensemble, that is,
we restrict ourself to the second line of Eq. (5.19). In the subsequent chapter,
Chapter 6, we will describe how to increase the sensitivity of the measurement
by preparing the atoms in a reduced noise state.

5.3.2 Coherent detection of chirped radio-frequency signals
We have started this chapter describing the working principle of radio-frequency
magnetometers. These magnetometers are sensitive to sinusoidal signals, which
are a particular case of chirped signals in which the chirp, i.e. the change of
frequency per unit time, is zero. We can use some of the things we have learned
from the standard RF case for the detection of chirped excitations.
The signal we want the detect has a frequency varying in time as described by

Bx(t) = Ω
γ

cos(ω0t+ κt2) (5.20)

Intuitively, the atomic energy splitting also has to change in time to efficiently
detect this signal. This is to say that the bias magnetic fields need to be ramped.
To characterize the ramp of the bias field we fit the FID signal with a chirped
function of the form φ(t) = β + α cos(ωLt + κt2 + φ0)e−t/T2 , and follow the
procedure described in Sect 5.2.1 to optimize the homogeneity of the field and
the state preparation efficiency, i.e., we adjust the field gradients during the ramp
to minimize the inhomogeneities introduced by the field ramp. We set the bias
field to be constant for 200 µs and apply a ramp over 800 µs. Fitting the FID
traces we find κ = 2π×7.0(2)× 106 Hz2 and T2 =4.5(4)ms over the full 1ms
long measurement. Comparing against the T2 value obtained for the constant
bias field, we observe that the we can control the field homogeneity equally well
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5 Radio-frequency interaction

in the two cases.
To confirm the linearity of the chirp we divide the FID-signal in 100 µs long

segments and fit them individually with a function φ̃(t) = β′+α′ cos(ω(i)
L t+φ′0),

where ω(i)
L is the Larmor frequency of the i-th segment. A quadratic fit to the

fit outputs for ω(i)
L confirms the linearity of the ramp as the quadratic term in

negligible, a2t/a1 = 1.6 × 10−4, where t =800 µs is the time during the ramp is
on, see Fig. 5.7.
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Figure 5.7: Change in Larmor frequency ωL as a function of time. Solid line is
a linear fit with slope 2π× 7.0(2)× 106 Hz2. Broken line is the mean
ωL before the current of the y-coils is increased. Error bars represent
±1σ standard error of the mean.

To study the chirped RF-excitation, the atoms are prepared by optical pumping
in Fy-polarized state under a parallel and constant field. After the state prepara-
tion, we produce the same shape of the bias field as described above, constant for
200 µs followed by a ramp over 800 µs. This produces a Larmor frequency that
sweeps linearly from ω

(1)
L = 2π × 42.2 kHz to ω(2)

L = 2π × 47.8 kHz. During the
ramp we send transverse RF chirped fields produced by the arbitrary waveform
generator while we probe the atoms with the Faraday probe. Fig. 5.8 shows the
observed Fz signal at different times during the frequency reamp as a function
of the chirp κ. Agreement with theory from Eq. (5.15) is good, and variation in
experimental signal is consistent with the independently-measured fluctuations
of the magnetic field at the position of the atoms.
Selective response to chirped waveforms is shown in Fig. 5.9. There we plot
Fz, the maximal spin projection along the z-axis normalized by the total spin
|F |, obtained from the measured Fz(t) There we plot the normalized maximal
spin projection along the z-axis Fz normalized by the total spin |F |, obtained
from the measured Fz(t). The ramp produces a “chirped” pattern function Θ(t),
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5.3 Waveform Component Detection

making the atoms sensitive to Bx(t) signals with similar chirp, but less sensitive
to other waveforms, e.g. at constant frequency or with the opposite chirp. As
expected, we observe a peak in the population transferred by the RF drive when
κ matches the field ramp.
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Figure 5.8: Axial polarization Fz(t)/|F | at time (a) t=400 µs (b) t=600 µs and
(c) t=800 µs. Solid line shows the solution of Eq. (5.15) with no free
parameters.
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Figure 5.9: Maximal axial polarization maxt Fz(t)/|F | versus chirp of the RF ex-
citation and confirms the specificity for waveforms resembling the
pattern function. Representative traces in the insets. Solid line
is the result of a Lorentzian fit giving the resonant chirp κ/2π =
6.7(2)× 106 Hz2. Error bars show ±1σ standard error of the mean.
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“But we cannot do it all at once; it is a sequence.
An unfolding process. We can only control the end
by making a choice at each step”

Philip K. Dick, The Man in the High Castle

6
Quantum enhanced radio-frequency

waveform detection

In this chapter we describe atomic spin squeezed measurements in a magnet-
ically sensitive system. We achieve spin squeezing using modulated quantum
non-demolition measurements to evade the measurement back-action. We com-
bine quantum nondemolition measurements and stroboscopic probing to detect
waveform components with magnetic sensitivity beyond the standard quantum
limit. We do this for two cases of interest, linearly chirped RF-magnetic fields and
sinusoidal RF excitations, and achieve in both cases metrologically relevant im-
provement due to spin squeezing. The combination of quantum sensing advantage
while also allowing full use of the system coherence results in a sensitivity-volume
figure of merit comparable to the best RF magnetometers at these frequencies.
Most of the contents of this chapter are published in reference (Martin Ciurana
et al., 2017).

6.1 Creating Squeezed States by Stroboscopic
Back-action Evading Measurements

The squeezed state is created by first preparing a CSS along the ŷ-axis and
then making a collective measurement of Fz with measurement outcome φ. The
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6 Quantum enhanced radio-frequency waveform detection

presence of a bias field along the same direction of the OP cause the mean spin
to remain aligned along the field. The spin uncertainty in the x-z plan precesses
around the external field at the Larmor period ωL. Stroboscopic probing at twice
the Larmor frequency allows the quantum uncertainty to redistribute, producing
a state with a uncertainty below the SQL for the measured component while still
fulfilling the Heisenberg uncertainty principle Eq. (2.3). In this way, the variable
measured, Fz, is cyclic and as a result, the stroboscopic probing is equivalent to
the probing of a constant of the motion. The measurement back-action appears
in the orthogonal spin component, Fx, which will be anti-squeezed. However, Fx
is not coupled in the measurement as the probing is always done at every π-phase
interval.
This probing scheme was theoretically proposed in the context of gravitational

wave detection in the late 70’s (Thorne et al., 1978). Variations of this approach
have been implemented with magnetic spin oscillators (Vasilakis et al., 2011,
2015) and mechanical oscillators (Suh et al., 2014).

6.2 Back-action Evading Waveform Detection

Looking back to Eq. (5.19), the first line described an operator relation. As
with other squeezing-enhanced atomic measurements, the noise in Fz(t) can be
reduced by squeezing a linear combination of Fz(0) and Fx(0). To detect chirped
waveform components beyond the projection-noise level we combine back-action
evading measurements with coherent detection. Reduction of spin projection
noise below the SQL (Takano et al., 2009; Appel et al., 2009; Schleier-Smith
et al., 2010b; Chen et al., 2011; Sewell et al., 2012), has been demonstrated by
quantum non-demolition measurement (Mitchell et al., 2012; Sewell et al., 2013)
including large degrees of squeezing using cavity enhancement (Bohnet et al.,
2014; Hosten et al., 2016b). Use of conditional spin-squeezed states has been
demonstrated in magnetometry (Sewell et al., 2012) and clock operation (Appel
et al., 2009; Leroux et al., 2010a; Hosten et al., 2016b).
These works employ a measure-evolve-measure (MEM) sequence, in which a

first QND measurement produces a state with reduced projection noise, a period
of free evolution accumulates signal, and a second QND measurement detects the
change relative to the first measurement. This method exploits the coherence of
the atomic system, allowing signal to accumulate prior to readout of the atomic
state, which typically destroys coherence.
We generalize this method and apply it for the quantum enhanced detection

of linearly chirped waveforms.

88



6.2 Back-action Evading Waveform Detection

6.2.1 Experimental details
Measuring the quantum noise requires repetitions of the preparation and measure-
ment of the atomic system many times to compute the variance of the measured
optical signals var(Ŝy).
For a single experiment we load the ODT with NA = 1.3× 106 atoms, measure

the bias field ramp as in (Behbood et al., 2013b) and then repeat the following
MEM sequence 21 times: dispersive measurement of NA as described in Sect. 3.3;
optical pumping to produce full polarization along +y; stroboscopic QND mea-
surementM1 with result Φ1; free evolution for time thold = 600 µs; and a second
stroboscopic QND measurement M2 with result Φ2, as illustrated in Fig. 6.1.
During the hold time By is ramped with κ = 2π × 5.6(1)× 106 Hz2. The QND
measurementsM1 andM2 are made over 200 µs and contained 2.9× 108 photons.
The 21 repetitions of the MEM sequence allow us to vary NA since atoms are
lost from the trap during optical pumping.

Figure 6.1: (a) Simple pulse sequence for stroboscopic QND measurement of
atoms. We load atoms into the dipole trap. We polarize them along
the z-axis under a By-field and measure a free induction decay signal
to monitor the bias magnetic field. We re-polarize the atoms along
the z direction under a Bz field to measure NA in the dipole trap.
Immediately afterward the atoms are polarized along the y-direction
under a y-directed B-field and stroboscopic trains of QND-pulses are
applied with thold =600 µs in between them. We repeat Nrep =21
times the spin state measurements. The atoms are released from
dipole trap and the same probing sequence is applied one time to
the empty trap to measure the polarimeter bias. This whole cycle
is repeated 83 times. (b) Measure-evolve-measure sequence and il-
lustration of back-action evading measurement of precessing spins for
chirped ωL(t). Probe times ti are illustrated by red dots, timed to
give precession angle Θ(ti) = nπ for integer n.
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6 Quantum enhanced radio-frequency waveform detection

The probing is done using τpulse =600 ns duration pulses of linearly polarized
light with a detuning of 700MHz to the red of the 87Rb D2 line. During a probe
pulse the atomic spins rotate by an angle θ = γBτpulse. For the experiments here
described the strength of the bias is B = |B| < 50mG, so during the optical
pulse the atoms experience a rotation of their spins of θ ≈ 13mrad, which can
safely be neglected to treat the pulses as “instantaneous” from the atoms’ point of
view. Each QNDmeasurement experiences a polarization rotation φn = g1Fz(tn),
where n indexes the pulses. Because of the inversion of Fz between pulses and
the pulse length, the φn can be aggregated as a single distributed measurement
of Fz, quantified by the pulse-train-averaged rotation signal

Φ ≡ Np
−1

Np∑
n=1

(−1)n−1φn (6.1)

as described in (Sewell et al., 2013; Koschorreck et al., 2010a). This represents
a composite QND measurement of the input Fz variable (Vasilakis et al., 2011,
2015).
DuringM1 the field is constant. As we have shown in the previous chapter, in

order to detect a chirped waveform the bias field needs to be ramped. For this
experiment, the bias field produced Larmor frequency starting at ω(1)

L = 2π×
42.5 kHz and finishing at ω(2)

L = 2π× 47.1 kHz over a time interval of 800 µs,
i.e., the atoms are sensitive to linearly chirps with κ/2π = 5.8(1)× 106 Hz2.
This value is determined using the method described in Sec. 5.3.2. For technical
reasons (the large inductance of the coils setting the bias field) the field produced
by the bias coils was still increasing andM2 is performed on a slope of field. The
probe periods T (1)

probe =11.8 µs and T (2)
probe =10.7 µs matched the Larmor precession

frequency during M1 and M2 and contained N
(1)
p = 16, N (2)

p = 18 pulses,
respectively, with NL = 1.81× 107 photons per pulse.

6.2.2 Statistics of probing inhomogeneously-coupled atoms

As described in Sect. 2.5.3, in oder to properly determine the coupling between
the atoms and the probe beam the spatial structure becomes important. We
consider the statistics of the Faraday rotation measurements of an ensemble of
NA atoms, described by individual spin operators fi. To define the SQL, we
consider the atomic ensemble to be in a coherent spin state, with independent
individual spins and fully polarized with 〈Fy〉 ' NA. When the spatial structure
of the probe beam is taken into account, the Faraday rotation is described by the

90



6.2 Back-action Evading Waveform Detection

input-output relation for the Stokes component Ŝy

Ŝ(out)
y = Ŝ(in)

y + Ŝ(in)
x

NA∑
i=1

g(xi)f (i)
z (6.2)

where g(xi) is the coupling strength for the i-th atom, proportional to the in-
tensity at the location xi of the atom. Ŝ(in)

y has zero mean and variance NL/4,
where NL is the mean photon number in the probe pulse Ŝx. The atomic spin
is polarized along Fy and orthogonal to the measured Fz direction. The rotation
angle φ = Ŝ

(out)
y /Ŝ

(in)
x has statistics

〈φ〉 = 〈fz〉
NA∑
i=1
〈g(xi)〉xi

≡ 〈fz〉〈NA〉g1 (6.3)

var(φ) = var(φ0) + var(fz)
〈
NA∑
i=1

g2(xi)
〉
NA,xi

≡ var(φ0) + var(fz)〈NA〉g̃2
1 (6.4)

where φ0 is the polarization angle of the input light, subject to shot-noise fluc-
tuations and assumed independent of Fz, and the angle brackets indicate an
average over the number and positions of the atoms. For known 〈fz〉 and var(fz),
measurements of 〈φ〉 and var(φ) versus NA give the calibration factors g1 and g̃2

1 .

Calibration of the g1 factor

We calibrate 〈φ〉, the measured rotation angle of the dispersive atom number
measurement against an independent estimate of NA made via absorption imag-
ing. The results where shown in Fig. 3.8. To save on page-turning we reprint the
calibration curve in Fig. 6.2 (a).

Calibration of the g̃1 factor

To measure g̃1 we use the the stroboscopic QND data. The atoms are prepared
in an Fy-polarized state and then probed stroboscopically at twice the Larmor
period, in such a way that the measured variable is ±Fz, evading back-action
effects. The variance of the averaged rotation signal defined in Eq. (6.1) is

var(Φ) ≡ var(Φ0) + g̃2
1

Np∑
n=1

var(Fz,n) (6.5)
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6 Quantum enhanced radio-frequency waveform detection

with zero mean and variance var(Φ0) = (NpNL)−1, and Fz,n is the value of Fz at
the time of the n-th probe pulse.
We compute the resulting evolution of the state using the covariance matrix

methods described in (Colangelo et al., 2013) including probe-induced decoher-
ence resulting in

var

 g1

Np

Np∑
n=1

Fz,n

 = g̃2
1

1
2αNA (6.6)

where the correction factor α accounts for decoherence and noise introduced into
the atomic state due to off-resonant probe scattering during the QND measure-
ment.

Calculation of the noise contribution α

During each QND probe off-resonant scattering of photons introduces decoher-
ence by pumping some into the far-off-resonance f = 2 ground state, and adds
noise as some atoms return to the f = 1 state with randomized polarizations.
As described in Sec. 3.4.3, to measure the damage due to probing ηsc we prepare

a state polarized along the y-axis under a By-field and send probe pulses with
constant amplitude but varying length. The atomic polarization is then rotated
into Fz by adiabatically rotating the bias field from By to Bz and probed with the
Faraday probe, the same method used to quantify the state preparation efficiency.
We fit the rotation angle of the probed states versus NL with an exponential and
find the atom-photon scattering probability ηsc = 2.9(1) × 10−11. The curve is
shown in Fig. 3.11 and reprinted in Fig. 6.2 for convenience of the reader.
For known ηsc and branching ratio for atom excited from f = 1 to f ′ = {0, 1, 2}

and returning to the f = 1 manifold with random polarization, it is possible to
calculate the atomic noise reduction, as described in (Colangelo et al., 2017b).
We find α = 0.96.

Projection noise level

Fig. 6.3 shows the measured variance of Φ2 of the second train of QND-pulses as
a function of the number of atoms in the trap. A linear measurement will show
a variance that is quadratic in NA:

var(Φ) = var0(Φ) + g̃2
1

1
2αNA + a2N

2
A. (6.7)

Here var0(Φ) is the readout noise, which can be quantified by repeating the
measurement without atoms in the trap since a negligible fraction of photons
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Figure 6.2: (a) Calibration of the mean Faraday rotation signal against input
atom number NA measured via absorption imaging. Solid line, the fit
curve φ = a0 + g1NA with values g1 = 6.16(9)× 10−8 radian·atom−1.
(b) Atomic loss of coherence as a function of the number of photons
in the measurement. Solid line is a fit with an exponential decay used
to determine ηsc=2.9(1)× 10−10 photons−1 Error bars indicate ±1σ
statistical errors.

ηscNA ' 10−4, where ηsc is the atom-photon scattering rate, is lost due to
off-resonant scattering. The term a2N

2
A corresponds to atomic technical noise

associated with, e.g., fluctuations in state preparation, and the term ∝ NA corre-
sponds to atomic projection noise. The factor 1/2 describes the Fz variance of an
f = 1 atom polarized along y, and α accounts for the net noise reduction due to
off-resonant scattering of probe photons, as we have just described. A fit of Eq.
(6.7) to the data finds g̃2

1 = 1.2(2)×10−14 rad2, determining the projection-noise
level.
It is noticeable that Fig. 6.3 has a significant amount of technical noise. This

extra noise is coming from the fact that the second QND measurement is done
during the ramp of the magnetic field, and as a consequence the cancellation of
the measurement back-action is poor.

6.2.3 Squeezing
To study the generation of squeezing we look at the correlation betweenM1 and
M2. The first train of QND-pulses redistributes the noise to the non-measured
component and M2 is used to evaluate its variance conditioned on the first
measurement. The measurement noise reduction is quantified by var(Φ2|Φ1) =
var(Φ2 − χΦ1), where χ = cov(Φ1,Φ2)/var(Φ1) > 0 describes the correlation be-
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Figure 6.3: Atomic noise scaling of the stroboscopic QND measurement as a
function of NA for chirped bias field. Black dashed line shows cal-
culated atomic projection noise for a coherent spin state (CSS) with
var(Φ) = g̃2

1NA/2 plus readout noise (optical shot noise). Blue solid
line is a quadratic fit to Φ2 (blue circles) using Eq. (6.7). Blue shaded
region shows atomic technical noise. The red squares indicate the con-
ditional variance var(Φ2|Φ1) as a function of NA, and the solid red
line quadratic fit. Gray shaded area shows region of metrologically-
relevant spin squeezing. Error bars represent ±1σ standard error.
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6.3 Entanglement-assisted RF Sensing

tween Φ1 and Φ2. The conditional variance is 0.71(8) below the projection noise
level, or equivalently, 1.5(3) dB of noise reduction.
Metrological improvement is quantified by an expression similar to theWineland

criterion (Wineland et al., 1992), but taking into account the coherence loss and
the noise reduction of the measured state, as defined in Eq. (2.35)

ξ2
m = 1

η2
var(Φ2|Φ1)
varL(Φ1) (6.8)

where ξ2
m < 1 indicates metrological advantage and η accounts for the total loss

of coherence of the spin-squeezed state relative to the input coherent spin state.
The symbol in the denominator, varL(Φ1), stands for the measured variance in
Φ1, including the N -independent component (read-out noise) and the component
linear in N , which comes from atomic projection noise. The coherence after the
first measurement is F (M1)

y = ηFy, where η ≡ (1− ηsc)(1− ηfield) and ηsc = 0.08
and ηfield = 0.04 are independently measured coherence loss due to probe scatter-
ing and field inhomogeneities, respectively, duringM1. We find the metrological
improvement due to squeezing ξ2

m = 0.84(8). The noise in the optical rotation
signal is reduced by 1.5(3) dB, while precision in the angle rotated by the atoms
is increased by 0.8(3) dB.

6.3 Entanglement-assisted RF Sensing
The radio-frequency case is included as a special case of the chirped waveform
detection beyond the projection-noise level when κ = κL = 0. In this section
we demonstrate back-action evasion in a MEM sequence to detect RF magnetic
fields.
We load the ODT with NA = 1.5× 106 atoms, measure the bias field and

then repeat the following MEM sequence 16 times: dispersive measurement of
NA; optical pumping to produce full polarization along +y; QND measurement
ofM1 with result Φ1; free evolution for time thold = 300 µs; and a second QND
measurementM2 with result Φ2, as illustrated in Fig. 6.4.
During the hold time By is held constant, i.e. κ = 0, with ωL = 2π×50.16 kHz.

The QND measurementsM1 andM2 are made over 200 µs with Tprobe =9.9 µs
and containing N (1)

p = N
(2)
p = 20 probe pulses, each with NL = 2× 107 photons.

We repeat the full sequence 463 times to collect statistics. The experimental
results are shown in Fig. 6.5.
Analyzed as above, we find a noise reduction of 0.58(5), or in power, 2.4(2) dB.

Using Eq. (6.8) we find metrological improvement due to squeezing of ξ2
m =

0.79(5), or 1.0(2) dB. The increased squeezing relative to the chirped case is
due to the larger NA and higher total photon number used in each collective
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6 Quantum enhanced radio-frequency waveform detection

Figure 6.4: (a) Simple pulse sequence for stroboscopic QND measurement of
atoms. Details are given in Fig. 6.1. Atom trap loading. Bias field
monitoring. Nrep =16 repetition of the stroboscopic spin state mea-
surements with thold =300 µs. Atoms are released from dipole trap,
and a bias of polarimeter is measured. This whole cycle is repeated
more than 463 times. (b) Measure-evolve-measure sequence and il-
lustration of back-action evading measurement of precessing spins ex-
periencing a fixed ωL(t). Probe times ti are illustrated by red dots,
timed to give precession angle Θ(ti) = nπ for integer n.

measurement. The technical noise accumulated during the thold is smaller as the
free evolution time is reduced. The limitation of thold is coming from the noise
introduced by the mains, resulting in a different Larmor precession for the two
measurements.
The presence of squeezing implies quantum correlation among the atoms, i.e.,

entanglement, which could be intra-atom entanglement of electron and nuclear
spin, as presented in (Fernholz et al., 2008) or inter-atom entanglement, or both.
To determine multi-particle entanglement we make use of the theory developed
in (Sørensen and Mølmer, 2001). From this reference, we find that a single spin-1
system obeys the relation var(fz) ≥ (1 −

√
1− 〈fy〉2)/2, where the f operators

describe a single atom. By convexity arguments the macroscopic versions is

var(Fz/NA) ≥ (1−
√

1− 〈Fy/NA〉2)/2 (6.9)

where the F operators describe the collective spin of NA spin-1 atoms. The spin
polarization after the measurement M1 is given by 〈Fy〉 = ηNA, where η ≡
(1− ηsc)(1− ηfield) and ηsc = 0.11 and ηfield = 0.04 are independently measured
coherence loss due to probe scattering and field inhomogeneities, respectively.
This gives var(Fz/NA) ≥ 0.24.
Considering only the spin noise of the state produced by the QND measurement

in Fig. 6.5, i.e., subtracting the readout noise, the measured atomic conditional
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Figure 6.5: Atomic noise scaling of the stroboscopic QND measurement as a
function of NA for constant bias field. Black dashed line shows cal-
culated atomic projection noise for a coherent spin state (CSS) with
var(Φ) = g̃2

1NA/2 plus readout noise (optical shot noise). Blue solid
line is a quadratic fit to Φ2 (blue circles) using Eq. (6.7). Blue shaded
region shows atomic technical noise. The red squares indicate the con-
ditional variance var(Φ2|Φ1) as a function ofNA, and the solid red line
quadratic fit to it. Gray shaded area shows region of metrologically-
relevant spin squeezing. Error bars represent ±1σ standard error.

variance is [var(Φ2|Φ1)− var0(Φ)] /var(Φ2)=0.20(4). The results thus suggest
(with 1σ confidence) inter-atom entanglement.

6.4 Field Sensitivity

In the previous section we have shown that by means of stroboscopic probing we
can elude the measurement back-action and successfully achieve spin squeezing.
Furthermore, from the optical rotation signal we can infer the Fz-component,
and from its displacement from the origin we can infer the strength of the radio-
frequency magnetic field.
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6 Quantum enhanced radio-frequency waveform detection

6.4.1 Faraday Rotation Signal
We make use of the measured Faraday rotation signal to estimate the field am-
plitude. The observed signal is

φ = g1Fz (6.10)

with variance
var(φ) = var(φ0) + g̃2

1var(Fz) (6.11)
where var(φ0) is the read-out noise. For the spin squeezed state, we measure the
conditional variance

∆2φcond ≡ var(φ2|φ1) = var(φ0) + g̃2
1var(F (SSS)

z ) (6.12)

By error propagation, the sensitivity to a parameter β is

δβ = ∆φ(t)∣∣∣d〈φ(t)〉
dβ

∣∣∣ (6.13)

from which we can estimate the sensitivity to the field amplitude Ω using a
coherent spin state to be

δB(CSS) = ∆φ
|d〈φ〉/dΩ| = ∆φ

g1|F |
1
I

(6.14)

In Eq. (6.14) we can see that to precision with which we can estimate the phase
depends on the mean spin length which acts as a lever arm, as discussed in
Sec. 2.1.1. It also depends on I, the total coherent signal accumulated by the
atoms described by the second line of Eq. (5.19).
Using spin squeezed atoms to sense a field would lead to a measurement sen-

sitivity

δB(SSS) = ∆φcond

ηg1|F |
1
I

(6.15)

where η is the polarization loss during the measurement. The sensitivity en-
hancement due to spin squeezing is quantified by

δB(SSS)

δB(CSS) = ∆φcond

η∆φ (6.16)

or in variance, by the ratio

ξ2
m = 1

η2
var(φ2|φ1)

var(φ1) (6.17)

which justifies the definition of metrological spin-squeezing factor introduced ear-
lier, see Eq. (6.8).
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6.4 Field Sensitivity

6.4.2 Coherent signal accumulation
As shown in Eq. (6.15), in order to estimate the field sensitivity it is necessary to
calculate the signal accumulated by the atoms during the free evolution period.
Recalling Eq. (5.19), dropping the higher order terms and including that the
probing is done at times such that Θ(ti) = nπ, simplifies this expression further

Fz(tn) = (−1)n
(
Fz(0)− γ〈Fy(0)〉

∫ tn

0
dt′Bx(t′) cos Θ(t′)

)
(6.18)

The accumulated signal during the hold time thold can be obtained by computing
Eq. (6.18) for the two waveforms used.
For the detection of linearly chirped RF-excitations the bias field By(t) needs

to have a ramp, which makes the atoms resonant to signals of the form Bx(t) =
Ω cos(ωt + κt2). The phase accumulated is Θ(t) = ωLt + κLt

2, where κL =
(ωf − ωi)/∆t describes the change of the Larmor frequency caused by the ramp,
applied for a time ∆t. The radio-frequency magnetometry is included as a special
case when κ = κL = 0. The probing is done twice per Larmor period, i.e.,
Θ(t) = nπ, which allows us to write Eq. (6.18) as

Fz(T ) = Fz(0)− γ〈Fy(0)〉
∫ T

0
dt′ Ω cos(ωt′ + κt′2) cos(ωLt′ + κLt

′2)

= Fz(0)− γΩ〈Fy(0)〉Ichirp(ωL, ω, κL, κ, T ) (6.19)

Evaluating the integral on resonance, this is with ω = ωL and κL = κ we get

Ichirp(ωL, ω, κL, κ, thold) = thold

2 +
√
π

4
√
κ

[
cos
(
ω2
L

2κ

)(
C

(
ωL√
πκ

)
− C

(
2tholdκ+ ωL√

πκ

))
+

(6.20)

+ sin
(
ω2
L

2κ

)(
S

(
ωL√
πκ

)
− S

(
2tholdκ+ ωL√

πκ

))]
where S(u) and C(u) are Fresnel sine and cosine integrals. Note that for u� 1,
S(u) ' 1/2− 1

πu sin(πu2/2) and C(u) ' 1/2+ 1
πu cos(πu2/2). In cases of interest,

κ � ω0, giving the leading-order linear increase in signal. The error in ignoring
the oscillating terms is smaller than 3% for our parameters.
From Eq. (6.13), the sensitivity of a coherent spin state to the RF drive am-

plitude Ω during a time thold is

δBCSS
RF = ∆Φ

|d〈Φ〉/dΩ| = ∆Φ
g1〈Fy(0)〉

1
γ I(ωL, ω, κL, κ, thold)

' ∆Φ
g1〈Fy(0)〉

2
γ thold

(6.21)
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6 Quantum enhanced radio-frequency waveform detection

where we have used the definition of g1 = φ/NA and the fact that 〈Fy(0)〉 = NA.
For the spin squeezed state

δBSSS
RF '

∆Φcond

g1η〈Fy(0)〉
2

γ thold
(6.22)

where ∆Φ2
cond = var(Φ2|Φ1) is the conditional variance between the Φ2 and Φ1

optical signals.
Even though standard RF drive is included in the discussion presented above,

it is illustrative to take a closer look at this case for a moment. In this experiment
By is constant so that ωL(t) = ωL and Θ(t) = ωLt. Following the same analysis
as for the case of chirped RF excitations, the signal accumulated can be estimated
by solving Eq. (6.18), written as

Fz(T ) = Fz(0)− γ〈Fy(0)〉
∫ T

0
dt′Bx(t′) cos(ωLt′)

= Fz(0)− γ〈Fy(0)〉IRF(ωL, ω, T ) (6.23)

We take the radio-frequency drives to have the quadrature B(c)
x (t) = Ω cos(ωt).

Evaluating the integral on resonance, i.e. with ω = ωL, we get

I
(c)
RF(ωL = ω, ω, thold) = thold

2 − sin(2ωthold)
4ω ' thold

2 (6.24)

since 1/ω � thold. This result is a simplified solution of Eq. (6.20), which is
not surprising since the RF-drive scenario is a special case of the most general
chirped waveforms. However, solving the integration for the other quadrature,
B

(s)
x (t) = Ω sin(ωt) on resonance, we find the solution

I
(s)
RF(ωL = ω, ω, thold) = sin(ωthold)2

2ω (6.25)

We see that the two integrations describe different quantities. The cosine quadra-
ture can be associated with the spins’ phase accumulation as it grows with time,
whereas the sine component gives information about the spins trajectory as it
shows a oscillating nature. In Fig. 6.6 we plot the solution for Eq. (6.24) and
Eq. (6.25).

6.4.3 Magnetic sensitivity
The quantum enhanced single-shot sensitivity of the atoms to RF-drive amplitude
can be estimated by using Eq. (6.22), which we re-write as

δBRF
√
thold '

√
var(Φ2|Φ1)

g1ηhold〈Fy(0)〉
2

γ
√
thold

(6.26)
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Figure 6.6: Analytical solution to the IRF(ωL, ω = ωL, thold) for (a) the cosine
quadrature of the RF-drive and (b) the sine component using the
experimental parameters. In (a) we can observe a growing as expected
from the phase accumulation, whereas (b) has a cyclic character.

where var(Φ2|Φ1) is the conditional variance between the Φ2 and Φ1 optical
signals, including the atomic noise and read-out noise, 〈Fy(0)〉 = NA and ηhold is
the total coherence loss duringM1 and thold.
The experimental parameters for the two RF waveform used, i.e., constant

frequency and linearly chirped, were different, having distinct evolution times and
maximum number of atoms in the ODT. For the chirped excitation detection, the
parameters are thold =600 µs and NA = 1.3× 106 atoms, from which we estimate
a single-shot sensitivity of 3.36 pT/

√
Hz. For the constant frequency case, the

free evolution time is thold =300 µs and NA = 1.5 × 106 atoms, from which we
estimate a single-shot sensitivity is 2.96 pT/

√
Hz.

Focusing on the latter, scaling the sensitivity by the volume of the atomic cloud,
see Sec. 3.4.2 for details, V = 1.8×10−6cm3, we find δB

√
V ≈ 3.96 fT

√
cm3/Hz.

For comparison, the best alkali-vapor RF magnetometer (Lee et al., 2006) in
this frequency range showed a sensitivity of 0.24 fT/

√
Hz with V = 96 cm3 or

δB
√

V = 2.35 fT
√

cm3/Hz. Thus the RF magnetometer demonstrated here has
a volume-adjusted sensitivity comparable with the best existing instruments.
It is illustrative to compare the sensitivity achieved with the quantum enhanced

atoms to the ideal classical sensitivity. We use Eq. (6.21) to estimate the classical
sensitivity, where the noise in the rotation angle ∆Φ2 = var(Φ0) + g̃2

1NA/2 is
coming from the atomic projection noise for an ideal coherent spin state and
the optical shot noise. The estimated single-shot sensitivity is 3.28 pT/

√
Hz.

Comparing the two values, we see that the squeezed sensor outperforms the best
classical measurement with an improvement of ≈ 11% in the sensitivity.
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“Perhaps that is the secret. It is not what we do, so
much as why we do it”

George R.R. Martin, Game of Thrones

“To define is to limit”
Oscar Wilde, The Picture of Dorian Gray

7
Conclusions and outlook

Summary
This manuscript summarizes the core of the activities I led during my PhD stud-
ies. They can be split in two lines of research. On the one hand a technological
development of a new generation of balanced differential photo-detectors with
real-time capabilities. On the other hand we have theoretically proposed and
experimentally verified a new measurement protocol to detect the amplitude of
arbitrarily chosen components of radio-frequency waveforms with quantum en-
hanced sensitivity.
First, we have demonstrated a pulsed differential photo-detector (DPD) and a

detection system to make the signal available in real time. The DPD has band-
width up to ∼11MHz, which to our knowledge makes it the fastest quantum-
noise-limited differential photo-detector for pulses with as few as 6.8× 105 pho-
tons per pulse. We have made the signal available in real time by using analog
electronics, namely, a pair of sample and hold (SHA) and a differential amplifier
(DA). The DA is shot-noise-limited per input pulses varying from 7.4 × 105 to
3.7× 108 photons per pulse and shows low latency, 170 ns. We have shown that
the DPD together with the DA can directly be employed in real-time quantum
control experiments with flexible measurement bandwidth varying from kHz up
to 2.3MHz.
Second, we have derived an analytical expression for the time evolution of the
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7 Conclusions and outlook

spin operators under external radio-frequency magnetic field using perturbation
theory. We relate the transverse noiseless spin displacement to the coherent
accumulation of the radio-frequency perturbation. The noise in the measurement
is contained in the spin variables. We have experimentally tested our theory for
two different waveforms, sinusoidal and linearly chirped. We have demonstrated
the selective response of the method in the coherent build-up of the perturbation
signal with the programmed applied bias field. The combination of quantum non-
demolition measurements and stroboscopic probing in a measure-evolve-measure
sequence has allowed us to prepare the atoms in a spin squeezed state resulting in
quantum sensing advantage, while also allowing full use of the system coherence.
Using a cold atomic ensemble of ∼1.5× 106 87Rb atoms, we have demonstrated
entanglement-enhanced sensing with metrologically relevant noise reduction for
sinusoidal and linearly chirped waveforms, with ξ2

m =0.84(8) and ξ2
m =0.80(3),

respectively. The sensitivity-volume figure of merit achieved is comparable to the
best radio-frequency magnetometers at these frequencies.

Outlook
The experiments presented and the technical tools developed in this thesis will
enable advanced sensing of non-trivial waveforms. The first and more natural
extensions of this work will be the detection of non-trivial time-varying frequency
magnetic fields. The detection of signals of biological origin such as neuronal
activity (MacGregor et al., 2012) or heart beats (Bison et al., 2009; Xia et al.,
2006) is an active field from the biological and physical point of view. Recent
experiments on neural impulses detection have shown sensitivities approaching
quantum limits (Barry et al., 2016; Jensen et al., 2016), and detection of such
signals can certainly benefit from the measurement protocol demonstrated in this
manuscript.
An area of research where this technique can be advantageous is cosmologi-

cal radio-frequency signals. Astronomical radio sources coming from planets and
stars are extremely weak, and radio telescopes require very large antennas to col-
lect enough radio energy to study them combined with highly sensitive detection
equipment. A more exotic but not goofy application can be to search of extra-
terrestrial civilizations (Cocconi and Morrion, 1959; Dyson, 1960; Siemion et al.,
2013). It is known that some kind of radio emissions are produced only from
artificial sources, and large radio-telescopes are build to search for these signals
(Hall, 2005).
From the theoretical point of view there is a long list of questions that remain

unanswered. We have shown that with prior information about the dynamics of
the signal of interest coherent detection outperforms continuous measurements at
sensing time-varying magnetic fields. The signal accumulated in a measurement
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that uses the atomic coherence is proportional to the overlap integral between
the time-varying signal and a pattern function. Only in the case when they are
orthogonal, the signal accumulated is null. It would be an interesting problem to
study the minimum information required a priori in a coherent-based detection
in order to improve the sensitivity of a continuous measurement or rapid sampling
strategies.
Complementary studies have been done in NV-center form magnetic field sens-

ing where the sensors is described using qubits formalism rather than the contin-
uous variable (Magesan et al., 2013). In these experiments the dynamic of the
signal is unknown but the noise properties are identified. They can reconstruct
not only the amplitude but also the complete field profile by means of dynamical
decoupling pulses which cancel the noise. They are based on control sequence
combining sets of π-pulses and Walsh functions (Cooper et al., 2014).
A more general problem in quantum sensing is to identify methods to perform

dynamical parameter estimation while reducing the number of measurements but
still have robust and high fidelity estimates. Proof-of-principle experiments have
been done in magnetometry (Puentes et al., 2014). Robust methods have been
proposed (Magesan et al., 2013) as well as theoretical works taking into account
the effect of imperfect measurements (Candès et al., 2006).
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Appendix A

As explained in Section 2.5.2, probing stroboscopically at twice the Larmor period
is a method to cancel the tensorial rotation of the probe polarization. Here we
demonstrate this statement using input-output relations between operators before
(in) and after (out) the interaction, to first order in the interaction time τ . To
keep the notation as simple as possible, it is convenient to define the single atom
rank-2 tensor operators (Colangelo et al., 2013), for which we use the symbol ĵ,
as

ĵx = (f̂x)2 − (f̂y)2 (A.1a)
ĵy = f̂xf̂y + f̂yf̂x (A.1b)
ĵk = f̂xf̂z + f̂zf̂x (A.1c)
ĵl = f̂yf̂z + f̂zf̂y (A.1d)

ĵm = 1√
3

(2(f̂z)2 − (f̂x)2 − (f̂y)2) (A.1e)

The full interaction Hamiltonian can be written in the more compact form of

τĤint = g1ŜzF̂z + g2

(
ŜxĴx + ŜyĴy + Ŝ0Ĵm

)
(A.2)

To obtain evolution of the light and atomic operators we use the Heisenberg
equation of motion in the Heisenberg picture

dÔ

dt
= 1
i
[Ô, Ĥint] (A.3)

The output of the F̂z operator after a single optical pulse under the full Hamil-
tonian Eq. (A.2) is

F̂ (out)
z = F̂z + 2g2

(
ŜxĴy − ŜyĴx

)
(A.4)

After the probing, the spins precess under the magnetic field along the y-axis.
After evolving for a time t = π/ωL the spins components F̂z and F̂x have flipped
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sign. The atomic state is

F̂ (mid)
z = F̂z − 2g2

(
ŜxĴy − ŜyĴx

)
(A.5)

The change on the state given by Eq. (A.5) caused by the probe is

F̂ (end)
z =− F̂z − 2g2ŜxĴy + g2

2

(
4F̂z(Ŝ2

x − Ŝ2
y) + 2Ĵ2

x Ŝz + 2Ĵ2
y Ŝx

)
+ g1g2

(
2F̂z(ĴxŜx + ĴyŜy)− 4ĴxŜxŜz + 4ĴyŜyŜz

)
(A.6)

The probe pulses are linearly polarized, and so only the 〈Ŝx〉 Stokes operators
is large while the mean value of the other Stokes operators is small. Similarly,
the atoms are spin polarized along the y-axis, with negligible mean value in the
other components. Finally, g1 ∝ 1

∆ and g2 ∝ 1
∆2 . From scaling arguments, only

the first two terms of Eq. (A.6) contribute to the mean value of the measured
Fz component. There is a residual contribution of the tensor light-shift that the
stroboscopic probing does not cancel, the term 2g2ŜxĴy.
The measurement of the atomic components is done by detecting the Ŝy Stokes

component. The detected signal when the atoms are along the +z-axis is

Ŝ(out)
y =Ŝy + g1ŜxF̂z − g2ŜzĴx (A.7)

Equivalently, when the atoms have rotated by a phase π, the measured optical
rotation signal is

Ŝ(end)
y =Ŝy + g1

(
−F̂zŜx + g2(−2ĴyŜ

2
x + 2ĴxŜxŜy − F̂zĴyŜz + 2ĴyŜ

2
z )
)

+ F̂ 2
z g

2
1Ŝy − 2g2ĴxŜz + g2

2

(
2Ĵx(ĴyŜx − ĴxŜy) + 2F̂zŜyŜz

)
(A.8)

Using the scaling argument as for the atomic evolution, we see that in Eq. (A.8)
only the first two terms contribute to the mean measured optical signal. Compar-
ing Eq. (A.7) and Eq. (A.8), we see a sign difference between the two expression.
Because of the inversion of Fz, in order to compute statistics of a single measure-
ment of Fz distributed in several pulses, there must be a sign difference between
odd an even pulses, as expressed by Eq. (6.1).

Degree of Squeezing
All along the manuscript we have characterized the interaction strength through
the coupling constant coefficient g1. However, the coupling coefficient depends on
the detuning of the Faraday probe. An alternative characterization of the light-
atom interaction strength independent of the detuning is based on the definition
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of the on-resonance optical depth d0. Since 87Rb is a multilevel atom with three
relevant excited states, f = 1→ f ′ = {0, 1, 2}, and the ‘on-resonant’ term might
be confusing. We define the on-resonance in the case of large detuning where the
main transition for the dispersive interaction is the f = 1 → f ′ = 0. Although
the atomic distribution is far from homogeneous, we define it in analogy with
the usual definition of optical depth for a homogeneous medium Hammerer et al.
(2004, 2010),

d0 = σ0

A
NA (A.9)

where σ0 = λ2

π is the on-resonance scattering cross-section for atoms in f = 1.
In turn, A characterizes the interaction area of light and atoms. We infer the
interaction area from the measured value of g1 and its definition, Koschorreck
(2010):

g1(∆, A) = 1
A

Γλ2

32π

(
− 4

∆− δ0
− 5

∆− δ1
+ 5

∆− δ2

)
(A.10)

where δi is the frequency difference between the lowest excited hyperfine level,
f ′ = 0, and the level with i. The detuning from the resonance f = 1→ f ′ = 0 is
∆, and take ∆ < 0 as red detuned. Γ is the excited state line-width. In Fig. A.1
we show the different scaling of g1 with detuning.
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Figure A.1: Theory curve of the coupling constants for vector light shift (g1) for
the interesting region of detunings from transition f = 1 → f ′ = 0.
The interaction area was chosen to be A = 4×10−9 m2, a value close
to the estimated for our trap.

An equivalent definition of the interaction area is to say that it is the transverse
area over which one could spread the atoms and light homogeneously and achieve
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the same interaction strength as measured. For the measured value of g1 =
6.16(9)×10−8 radian·atom−1, we infer an effective interaction area ofA = 4.0(5)×
10−9m2. With the maximum number of atoms in the ODT for the reported
experiments, NA = 1.54(2)× 106, we estimate d0=72(1).
If we ignore decoherence and loss mechanisms, the degree of squeezing for spin-

1/2 particles has been shown Duan et al. (2000); Madsen and Mølmer (2004);
Hammerer et al. (2004); de Echaniz et al. (2005) to be

ξ2 = 1
1 + d0η

(A.11)

where η is the number of photons scattered during the probing. As a side com-
ment, comparable results are obtained using the signal-to-noise metric for the
QND measurement, see Eq. (2.30). In this description, Eq. (A.11) can be written
as

ξ2 = 1
1 + κ2 (A.12)

with κ2 = g̃2
1NANL/2, being NA the number of atoms in the trap and NL the

number of photons used in the measurement.
It is possible to generalize Eq. (A.11) in the presence of decoherence and atoms

loss, de Echaniz et al. (2005), to find

ξ2 = 1− β
1 + d0η

+ η
1− β
1− η + γ

1− β
(1− η)2 (A.13)

where β is the number of scattered photons which produce atom losses and γ
those that produce decoherence, with η = β + γ. For 87Rb , γ = 5

3β according
to the branching rations.
From Eq. (A.13), we find that the maximum squeezing is achieved for η = 0.07,

resulting in ξ2 = 0.28. The spin squeezed states generated in this thesis where
prepared using different photon number, N (RF)

L = 4×108 and N (C)
L = 2.9×108 for

constant field and chirped waveform detection, respectively. The corresponding
scattered atom fractions are η(RF) = ηscN

(RF)
L = 0.12 and η(C) = ηscN

(C)
L = 0.08,

where ηsc was reported on Sec. 3.4.3. From the scattered fractions we predict noise
reductions of ξ2

(RF) = 0.32 and ξ2
(C) = 0.29, close to the theoretical optimal value.

The quantum enhanced atoms are let to evolve for a time thold where they ac-
quire information about the magnetic field. During this time, the quantum cor-
relations decay. Assuming two body correlations among the atoms, the squeezing
will decay at a rate ∝ e−2t/T2 , where T2 is the atomic spin coherence time. With
the experimental parameters thold

(RF) =300 µs and thold
(C) =600 µs and coher-

ence times T(RF)
2 =4.8ms and T(C)

2 =4.5ms for constant and ramped bias field,
respectively, we estimate the squeezing to be reduced by a factor 1.13 for the
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quantum enhanced RF-magnetometer and 1.30 for the quantum enhanced wave-
form estimation. Thus, the ideal noise reduction we could have obtained with
this system are ξ2

(RF) = 0.36 for sinusoidal magnetic fields and ξ2
(C) = 0.37 for

magnetic waveforms.
We stress that this estimation is based on theoretical models for spin-1/2 sys-

tems. We exploit the spin-1 nature of the ground state of 87Rb . In order to
model and quantify this system more sophisticated descriptions, Colangelo et al.
(2013) are needed.
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Appendix B

In this Appendix we include the schematics for the Differential Photo-Detector
(DPD) and for the Sample and Hold (SHA) detector which allows real time
capabilities. Due to ICFO’s intellectual property rights, the schematics have
been simplified and some details have been omitted.
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