
266

Abstract

ler. Congreso Argentino de Ciencias de la Computación

From Boxes to Worlds

Areces, Carlos Eduardo Hirsch, Dan Francisco
email:postmast@logia.uba.ar emaii:dh 7h@zorzal.uba.ar

Universidad de Buenos Aires, FCEyN
Departamento de Computación
Pabellón 1, Ciudad Universitaria
(1428) Buenos Aires, Argentina

July, 1995

In this paper we show an innovative way to represent graphic designs 01 systems
and to verify design properties. The graphic designs are thought as models of an
extended modal logic; and the methods used to verify properties are developed from
techniques typical of classic modal logic, extended to cover the differences in the
underlying formalism. We present the procedures orlogical tools to derive the mo
dal model associated to a given design, the filtration of models and the construction
01 modal descriptions.

A higher level of abstraction is obtained in this way, and it lets us reason over de
signs in a strictly formal manner. The power of formal provability is also achieved.

We use a working example to show how our tools help to veri1y properties 01 de
sign like the detection of cycles (self loops).

Keywords
Software Design, Graphic Languages, Modal Logics, Formal Verification

Acknowledgments
We specially thank Professors Miguel Felder and Daniel Yankelevich for their

help and advice in the development 01 this work. We also thank Verónica Secher
and Eduardo Fermé for helping us in the discussion of the first ideas.

ler. Congreso Argentino de Ciencias de la Computación 267

From Boxes to Worlds

1. Introduction
One 01 the steps in the software development cycle is the design stage. After

obtaining a specification of the problem to sol.ve (in a more or less strict formal lan
guage), we must give the general lines that define the components of the system,
the different inter-relations among them, the properties or restrictions the compo
nents must satisfy, etc.

Different approaches have been used to do this. The simplest among them use
sketch es, graphics, annotations and even different colors to suggest an idea. But
the designs so obtained are ambiguous and proving its properties is almost impos
sible. The great variety and the free style involved make them impractical.

An important improvement over this situation was the definition and, principally,
the general acceptance of a set of tools specifically tuned to deal with this problem,
like E-R diagrams, Data Flow Diagrams, Structured Charts, etc.

Even though these tools eliminated the variety, they didn't exclude ambiguity. Not
to mention the demonstration of properties once a design was complete.

In short, a new global language for design description was established and a
graphical one was selected as the best option. But a formal semantie for this lan
guage was missing.

Currently, many researchers have been working in this problem using new tech
niques. The work of [Consens & Mendelzon, 1992], for example, is interested in
providing tools to handle designs and obtain simplified visions of the systems that
help the designers to understand them. They use GraphLog (a graphicaJ language)
as a visualization tool over a Prolog database to represent a design specification.

In our opinion, a jump to a higher level 01 abstraction is needed. We are search
ing for a tool that lets us reason over these graphs in a more abstraet way, in addi
tion to obtain new simplified visions. We think that the use of a modal language to
describe both designs and its properties, will give us the exact expressiveness we
were looking foro We get also the power of formal provability that comes with all
logics.

This higher level of abstraction is obtained when we consider designs as modal
structures. In this way components, relations and properties of the design. are ex
pressed in the logie language. And logie operations will let us work with designs,
obtaining from them the desired visions, proving their properties and giving them
meaning.

In Section 2 we introduce the basic notions of modal logics needed inthis article.
Section 3 presents the new procedures that let us work with the design in the hew
environment just proposed. Section 4 shows examples of application like the detec
tion of cycles in the design hierarchy and the testing of consistency between the
different relations. In Section 5 we present the conclusions and finally in Section 6
we comment different points not yet analyzed or under development.

268 ler. Congreso Argentmo de (JlenclBS de la l.iOmputaClOn

2. Modal Logics
The classic modal calculus is obtained as an extension of the classic proposi

tional calculus, introducing the possibility operator <> and obtaining in this way an
alphabet A = {(,), " v, <>} [Hughes & Cresswell, 1968]. As usual, the dual opera
tor of necessity is defined as [] =dA¡ 1<>"-1.

In this paper, we extend the notion of norma/ moda//ogics, that is, we assume that
the following axioms and rules of inference are valid in our systems:

K. [](p ~ q) ~ ([]p ~ (]q).
RN. From r p, infer r []p.
MP. From r p y r p~ q, infer r q.

Normal modal logics are minimal logics (see [Chellas, 1980]). Every model in the
class of al! the models satisfies these axioms and rules. r will be use to express
provability in these minimal systems.

The semantic of a modal logic is defined using Krípke Mode/s.
A Kripke Model is a tuple M = < W, ... , R, P >, where:

W is a set, the elements of W will be called wor/ds or possib/e wor/ds;
R is a relation over W (Le. R e W x W), usually named accessíbilify re/afion;
P is a function on a set I of indexes (numerable) such that for each index , p¡

is a subset of W (Le. P: I ~ P(W)), this function is a va/uation that assigns
propositional variables to worlds. P(i) = X means that the proposition [Pi] =
X.

The ellipsis in the tuple indicates the possibility of additional elements among the
components of a model M.

A model is said to be finite if its set of worlds has only a finite number of elements;
otherwise the model is infinite.

We write ~Ma; A to mean that A is valid at the possible world a in the model M.
The notion of validity in possible worlds is defined recursively as follows:

1. ~MIX Pn iff a e P(n).
2. ~MIX lA iff not ~MIX A.
3. ~MIX A v B iff ~MIX A or ~Ma B.
4. ~M(X <>A iff there exist a world (3 E W such that (a, (3) e R and ~M~ A.

As we can see, A is possible in the world a if there is in the model a world (3 where
A is valid, and (3 is reachable from a via the relation R. Based inthis semantics, the
inverse modality <>, is defined as follows:

5. ~M(X <>¡ A iff there exist a world (3 e W such that ((3, a) E R and ~M~ A.
This modality is equivalent to the Past operator (P) of Temporal Logic and has the

same properties [Burguess, 1984]. Its dual operator is equivalent to H (always in the
past), (Ji =def I<>¡ l. That is, our minimallogic is really an extension of the minimal

temporal logic and so verifies the following axioms and rules:
K. [](p ~ q) ~ ([]p ~ []q).
KI. []¡(p ~ q) ~ ([]¡p ~ []¡q).
It. P ~ []<>¡p
ItI. p ~ []¡<>p

ler. Congreso Argentino de Ciencias de la Computación

AN. From ~ p, ínfer ~ []p.
RNI. From ~ p, ínfer ~ []¡p.
MP. From ~ p y ~ p ~ q, ínfer 1- q.

269

In our paper, we will use models that have more than one accessibility relatíon,
and so we have one modality accompanying each of them. That is, our models will
be M = <W, R1, ... , Rn, P> and we will have, for each RI in the model:

4.j ~Ma <j>A iff there exist a world ~ E W such that (a, ~) E Al and ~M~ A.
5.j ~Ma <j>¡ A jft there exist a world ~ E W such that (~, a) E RI and ~M~ A.

The group ofaxioms that characterize our logic must be extended accordingly.

We write ~M A to mean that A is valid in the model (Le., A is valid in all the worlds
of the model M) and if e is a class of models (for example, the models where the re
lations R¡ aretransitive), we write ~c A to mean that A is valid at every model in the
class.

3. New Working Tools
We already said that the more natural way to describe a design is to sketch a

graph in which we use a symbol (usually a box or a rectangle) to represent the com
ponents, and lines connecting them as the relations.

For example, take part of the design of a system that checks the CRC value of a
file.

++ lsJ'arcOf The main component is organized in two
-ft-+ Uses modules: one computes the CRC value of

the file and the other deals with errors that
may appear. Every time the module that
computes the eRe value detects an error,
the Error module shows a message

In this design there are arrows that depict
Figure N°1 difterent interactions between components.

They can be represented as labeled edges.
The components are also labeled with theirs names.

More formally, a general scheme of design is defined as a direct labeled graph
<N, E, LN, LE, RLN, RLE>, where:

N is the set of Nodes (finite).
E is a set of Edges (E s: N x N).
LN and LE are sets of labels (disjoint and finites).
RLN is a total function in LN that assigns a label to each node (RLN: N O LN).
RLE is a relation that assigns at least a label to each edge (RLE !:: E x -LE,

TI1(RLE) = E).

In other words: boxes are nodes, arrows are edges, names for boxes are node /a
be/s, names for arrows are edge /abe/s, to give a name to a box is to inc/ude a pair in
RLN and to give a name to an arrow is to Inc/ude a pair in RLE•

270 ler. Congreso Argentino de Ciencias de la Computación

We will begin now to develop the different tools that will be used in the verification
of design properties. During all this section we will work with the following example,
to show how the different procedures are used.

This graph corresponds to a short de
sign of a system that verify the CRC code
of a file.

The main component contains the rou
tines to compute the CAC value and then
notify if errors are found. To compute the
value, it calls functions from a Mathemat
ics Library. This functions access the file
using l/O routines. If there is a problem
during the l/O operations a message' is
sent to the error routine.

There are two relations:
Is_ParCOf: is used to show the rela

tion between components and principal
components.

Uses: shows the use of functions between components.

The graph associated to this design would be G = < N, E, LN, LE, RLN, ALE> with:

N = {1, 2, 3, 4, S, 6, 7, a}
LN = {Check_CRC_Error, Compute_CRC_Value, Show_Error_Msg, Math_Package, l/O_Package,

CRC_Algorithm, Retry_Operation, Data_Input}
RLN = {(1 ,Check_CRC_Error), (2,Compute_CRC_ Value), (3,Show_Error_Msg), (4,Math_Package),

(S,I/O_Package), (6,CRC_Algorithm), (7,Retry_Operation), (a,Data_lnput)}
E = {(2, 1), (3,1), (2,6), (7,3), (6,4), (6,8), (8,S), (7,S)}
LE = {/, II}
RLE = {«2, 1),/), «3,1),/), (2,6),//), «2,3),//), «7,3),//), «6,4),/), «6,8),//), «8,S),/), «7,5),/), «8,7),f/)}

3.1 From a Graph 01 Design to a Modal Model

As we will work with modal logics, we must first transform the graph that repre
sents a given design to the new language.

Given a graph < N, E, LN, LE, RLN, RLE > corresponding to a design, we can con-
struct the associated Kripke model, as M = < W, R1, .,., Rn, P > where:

W is a set of worlds W¡ with i e #N.
R¡ = {(Wk, WI) e W x W I ((k, 1), i) e ALe}.
P = {(In, {wn}) e LN x P(W) I (n, In) e RLN}.

From the definition we can infer that the number of propositional variables of the
model is finite and coincides with the number of labels the original graph has. We
interpret the proposition variable Pln as "The name of the component is In ".

Example: To give an example of the method to define the model we will work over
the graph in Figure N°2. From this graph, we would get the model M = <W, R/, R", P>
with:

ler. Congreso Argentino de Ciencias de la Computación

W = {W1, W2, Wa, W4, Ws, Ws, W7, We}
RI = {(W2, Wl), (Wa, Wl), (Ws, W4), (We, Ws), (W7, Ws)}
Rtl = {(W2, Ws), (Ws, We), (W7, Wa)), (We, W7), (W2, Wa)}
P = {(Check_CRC_Error, W1), (Compute_CRC_Value, W2), (Show_ErrocMsg, W3), (Math_Package, W4),

(l/O_Package, ws), (CRC_Algorithm, W6), (Retry_Operation, W7), (Data_Input, We)}

3.2 Filtratlon of Models
The verification of the properties of a design is typically associated to the demon

stration of properties about the relations involved. As we said aboye, given the
usual complexity of a design, the usual method is to try to obtain a more global vi
sion defining new relations over the original ones or giving attention to a subset of
them.

In a modallanguage, the relations are linked to the modal operators of the logic.
It is for this reason that theequivalent to compose relations is the definition of new
"modalities". Given the relations R¡ y Rj we can represent R¡°Rj by the definition (in
the metalanguage) of <>p ==d9f<i><j>p.

The procedure of filtration lets us arrive at a new model where this definition and
its associated relation are introduced in the language.

If the filtration is used without introducing new modalities, what we obtain is a cut
of the original modelo Only the selected relations are present

Let r be a set of sentences closed under subsentences, we define for a given
model M, the equivalence relation == over the worlds of M as a == 13 iff for every A e r,
~Ma A if and only if ~M~ A. Then we define [a] = {~ E W I a == ~}, and for a set of
worlds X, [X] = ([a] e P(W) I a e X}. [a] is the class of equivalence tor a given
world a and [Xl is the set 01 classes of equivalence corresponding to the worlds in X.

Let M = <W, Rh ... , Rn. P> be a model, and let r be a set of sentences closed un
der subsentences. We define a filtratíon of M underr as a model M" = <W*, R*1, ... ,
R* m, P*> where

1. W* = [W]
2. for every a, ~ e W

a. if [a] R*¡ [~l then for every sentence rilA e r, if ~Ma rilA then tM~ A.
b. if [a] R*¡ [~l then for every sentence <i>A e r, if ~M~ A then ~ a <i>A.
c. if rilA or <i>A e r then (aRt ~ imply [a] R*¡ [~]).

3. Pn * = [Pn] for every n such that Pn e r.

Thefiltration of a model under a set is not uniquely defined. While W* and Pn *
are uniquely defined given r and M, there exist different relations R*¡ that verify the
conditions.

As we want to obtain the minimal model, we must use the filtration that collapses
as much as possible. The coarser filtration is defined for a model M, as:

[a] R*j [~] iff for every [j]A e r, if .~Ma [j]A then ~M~ A,
for every Ol¡A e r, if ~M~ Ol¡A then ~Ma A,
for every <j>A e r. if ~MI3 A then ~Ma <j>A and
for every <j>¡A e r. if ~Ma A then ~M~ <j>¡A.

272 ler. Congreso Argentino de Ciencias de la Computación

Example: To give an example of the composition of relations using filtrations, we
define <>p =def <11><l>p. If we filter the original model obtain from Figure N°2 under
the set r = L<> (the logic over the alphabet A = {(,), -', v, <>}), we obtain the model
M* = <W·, R*, P*>, where:

W* = {{Wl}, {W2}, {W3}, {W4}, {ws}, {ws}, {W7}, {w¡¡}}
R* = {({W2}, {W4}), ({ws}, {Ws}), ({W7}, {Wl}), ({Wú, {Wl}), ({Wa}, {Ws))}}
P* = {(Check_CRC_Error, {Wl}), (Compute_CRC_Value, {Wú), (Show_Error_Msg, {Wa}),

(Math_Package, {W4}), (l/O_Package, {ws}), (CRC_Algorithm, {ws}), (Retry_Operation, {W7}),
(Data_Input, {Wa})}

In the design associated to the new model, the relation RI/RI is made explicit.

Example: To give an example of a cut of relations using filtrations, we do not need
to define a new modality. Simply, we filter the original model under the set r :!'L<I>
(the logic over the alphabet A = {(,), -', v, <I>}), and we obtain the model M* = <W·,
R*, P*>, where:

w· = {{Wl}, {W2}, {Wa}, {W4}, {Ws}, {Ws}, {W7}, {Wa}}
R* = {({W2}, {Wl}), ({W3}, {Wl}), ({ws}, {W4}), ({Wa}, {Ws}) , ({W7}, {Ws})}
P* = {(Check_CRC_Error, {Wl}), (Compute_CRC_Value, {W2}), (Show_Error_Msg, {Wa}),

(Math_Package, {W4}), (1/O_Package, {Ws}), (CRC_Algorithm, {Ws}) , (Retry_Operation, {W7}),
(Data_Input, {ws})}

In the associated design the unique relation is R/.

3.3 From Modal Models to Modal Descriptions
After doing a filtration, we arrive at a new modal model. We could obtain sema.n

tic proofs of properties over this mocjel (for example, we could prove ~M a<p, that is,
that the formula ep is valid in the world ex). But if we want to make this proof auto
matically, it is better to use a syntactic prover. We will give now a procedure that let
us get, given a. model and a world, an axiomatic base (modal description) from which
all the valid formulas in that world can be proved.

Some preliminary definitions:
We say that the model Mis minimal with respect to a set of formulas A, i1 there

are a world el in the model sueh that, for every ep E A, fM aep and it is the simplest one
with this characteristie. That is, it has the least number of worlds, relations, edges in
relations, etc.

A modal deseription from a world w¡ with respeet to a model M, is a set of sel1"
ten ces A such that the minimal model that satisfies A is M. A modal description
eontains in a sense, all the information that the model has.

We will give a procedure to obtain the description of a conneeted component 01
the graph. If the graph has more than a connected component, it is enough to calcu
late the deseription of each one and just join the sets of formulas obtained.

Given a model M = < W, R1, ' Rn, P > and a world W¡ E W, we want to get the
modal description A from W¡. We will eonstruet A in stages. A will have for each
edge, a formula that identifies it. Clearly, the relation R = U(R¡ uR j - 1) is eonnected,

jel

ler. Congreso Argentino de Ciencias de la Computación 273

then there is a minimal path beginning in W¡ that contains each edge in the model.

We will obtain 6 incrementally, considering in each step n the edges belonging to

minimal paths of length n, beginning in Wi.

CA:msider the path of length O. To represent it, we have just to identify the world

Wi, so we put 60 = {Pi}, where ~MWI Pi.

We assume constructed 6n• That is, given a path P = {(w¡O, W¡1), ... , (Wjn'1, W¡n)} 01
length n, with w¡O = W¡, we have a formula ep e 6 n that identifies the edge (W¡n-1, W¡n).

To construct 6 n+1 we have to add to 6 n a formula for every edge at a minimum

distance ofn+ 1. Let e = (W¡n, Wjn+1) be one of such edges. Let P' = {(w¡O, W¡1), ••• , (W¡n,

Wjn+1)} be the minimal path that contains e. The edge (Wjn, Wjn+1) e R and then (Wjn,

Wjn+1) e RI or (Wjn, W¡n+1) e Ri-1 for R¡ in M. Then, we have to add to 6 n+1 the formula ep' .

= ~[Pj'/(P¡n /\ <h>P¡n+1)] (if (Wjn, W¡n+1) E R¡) or ep' = ep[p¡'/(P¡n /\ <h>IP¡n+1)] (if (W¡n, Wjn+1) e
R¡).

Example: Given the model obtained from Figure N°2, we show the construction of
the modal description from Wl:

M = < W, R/, R", P > con:

W = {Wl, W2, Wa. w., W5, WS, W7, Wa}
A, = {(W2, W,), (Wa, W,), (Wa, W.), (We, W5), (W7, Ws)}
A" = {(W2, We), (Ws, We), (W7, Wa), (We, W7), (W2, W3)}
P = {(ChecILCAC_Error, W,), (Compute_CAC_Value, W2), (Show_Error_Msg, W3), (Math_Package, W.), (oo_Package,

W5), (CAC_Algorlthm, We), (Aetry_Operation, W7), (Data.Jnput, We)}
A = A, U A¡'U A" U R,¡'

Paths 01 length o:
60 = (Check_CAC_Error)

Paths 01 length 1:
{(Wl, w,)}
<p' = Check_CAC_Errorf' _cRc_Errot/(Ch.dccRC_Enor ,,<1>1 Compu\e_CRC_V_J
{(Wl, W3)}
<p' = CheclL CAC_Errorf' _cRC-E'ro'/(Ch _cRC_Enor" <1>1 ShOW_ErrOU.lOV)]

d, =.:lo v {(Check_CAe_Error /1. <1>1 Compute_CAC_Value),
(ChecILCAC_Error /1. <1>1 Show_Error_Msg)}

Paths 01 length 2:
{(Wl, W2), (wa, ws)}
<p' = (ChecILCAC_Error /1. <1>1 Compute_CAC_ Value)~-cRC-v-/(compu\e_cRc_v_" <11. CRC_AIgori1I'OII)]
{(Wl, W3), (Ws, W7)}
<p' = (ChecILCAC_Error /1. <1>1 Show_ErrocMsg)rs--Errot_Mov/(Show_EnoU.lOVA<l1>I Rotrv_Opo,J
{(Wl, W2), (W2, Wa)}
<p' = (Check_CAC_Error /1. <1>1 Compute_CAC_ Value)f""'puI·_cRC_voIuo/(Compulo_CRC_V""'" <11> SI\ow_Érror_MOVl]

d2 = d, v {(Check_CAC_Error /1. <1>1 (Compute_CAC_Value /1. <11> CAC_Algorlthm»,
(Check_CAC_Error /1. <1>1 (Show_Error_Msg /1. <11>1 Aetry_Operation»,
(ChecILCAC_Error /1. <1>1 (Compute_CAC_Value /1. <11> Show_ErrocMsg))}

Paths 01 length 3:
{(Wl, W2), (W2, We), (we, w.)}
<p' = (ChecILCAC_Error /1. <1>1 (Compute_CAC_Value /1. <11> CAC_Algorlthm»¡CRC-~/(cRC_Algo~"",,,cI> MoIII_Pacl<ogO)]
{(Wl, W2), (W2, Wa), (we, We)}
<p' = (Check_CAC_Error /1. <1>1 (Compute_CAC_ Value 1\ <11> CAC_Algorithm))¡CRCJlgoo1hn/(cRC_AIQOdllmA <11> OalaJnl>UIll
{(Wl, Wa), (Wa, W7), (W7, Ws)}
<p' = (Check_CAC_Error /1. <1>1 (Show_ErrocMsg /1. <11>1 Aetry_Operation»~trv-Opo"""/(Rotry_Opo,,, <1> vo_Pacl<.J
{(Wl, Wa), (Wa, W7), (W7, We)}
«p' = (Check_CRC_Error /1. <1>1 (Show_ErrocMsg /1. <11>1 Aetry_Operation)) ¡Rotrv_Opo"""/(Ro\ry_Opo"""AIDaIa.Jnput)]

á.a = d2 v {(Check_CAC_Error /1. <1>1 (Compute_CAC_Value /1. <11> (CAC_Algorlthm /1. <1> Math_Pacl<age»)),
(ChecILCAC_Error /1. <1>1 (Compute_CAC_Value 1\ <11> (CRC_Algorlthm /1. <11> Data.Jnput))),
(ChecILCAC_Error 1\ <1>1 (Show_ErrocMsg /1. <11>1 (Aetry_Operation /1. <1> 110_Package))),
(ChecILCAC_Error /1. <1>1 (Show_Error_Msg 1\ <11>1 (Aetry_Operation /1. <11>1 Data.Jnput)))}

274 ler. Congreso Argentino de Ciencias de la Computación

Paths of length 4:
{(Wl, W2), (W2, wa), (Wa, We),(Wa, ws)}
(ji' = (Check_CRC_Error 1\ <1>1 (Compute_CRC_ Value 1\ <11> (CRC_Algorithm 1\ <11> Data_lnput)))¡Dal8jnPUt/(oota_lnputA
<1> vO_Poc:lcogej]

L4 = ~ v {(Check_CRe_Error 1\ <1>1 (Compute_CRC_Value 1\ <11> (CRC_Algorithm 1\ <11> (Data.Jnput 1\ <1>
1/O_Package))))}

4. Applications

Next, we will see two specific exampies where we apply the procedures to detect
design problems. Note that in general, the steps to follow in each example do not
depend on the particular graph we are analyzing. The procedure can, therefore, be
automated.

4.1 Checking Relations
-IH+Cmp_Use_PCmp

---+Cmp_Use_PCmp'

Suppose that the original design con
tained the relation "ComponenLUse_Prin
cipaLComponent" with the intended
meaning of a non principal component us
ing sorne function of a principal compone1'\t.
But suppose that there was an error and
the arrow linking Retry_Operation and
Check_CRC_Error (justified by the calling
to Show_Error_Msg) is missing. The mo
dal model obtained will be M' = < W', R/,
RI/', RIII', P' > with:

W' ={Wl, W2, Wa, W4, Ws, W6, W7, Wa}
Rr' ={(W2, Wl), (Wa, Wl), (W6, W4), (WB, Ws), (W7, ws)}

Figure N°3 Rtr' ={(W2, Wa), (W6, Wa), (W7, Wa), (Wa, W7), (W2, Wa)}
RI/I' ={(W2, W4), (wa, ws), (ws, ws), (W2, Wl)}

P' ={(Check_CRC_Error, Wl), (Compute_CRC_Value, W2), (Show_ErrocMsg, Wa), (Math_Package, W4),
(l/O_Package, ws), (CAC_Algorithm, ws), (Aetry-Operation, W7), (Data_Input, Wa)}

We can now detect the error in the design using our tools. If the relation RI/!' were
correct, that is, if it corresponded to the expected meaning, RI/I' should be the com
position of the relation R,,' with R/. Thus we define: <>p =def <.//><I>p

If we filter M' under the logic L<>, <11/> we obtain the model M'" of Figure N°3:

W'· = {{Wl}, {W2}, {Wa}, {W4}, {ws}, {W6}, {W7}, {wa}}
A'· = {({W2}, {W4}), ({ws}, {ws}), ({We}, {ws}), ({W2}, {Wl}), ({W7}, {wll)}
RI/I'· = {({W2}, {W4}), ({W6}, {ws}), ({Wa}, {ws}), ({W2}, {Wl})}
p'. = {(Check_CAC_Error, {Wl}), (Compute_CAC_Value, {W2}), (Show_Error_Msg, {Wa}) ,

(Math_Package, {W4}), (l/O_Package, {ws}), (CAC_Algorithm, {W6}), (Aetry_Operation, {W7}) ,
(Data_Input, {Wa})}

Then RI/! is correct if the formula <>P H <///>p is valid in the model or equivalentiy
that h~ <>p H <I//>p holds for every description ¿\ obtained from a world in M'. But
this is not the case, as is easy to see. For example in {W7} we have
<>Check_CRC_Error and -,<///>Check_CRC_Error.

ler. Congresq Argentino de Ciencias de la Computación 275

4.2 Cycle Detection

An important 1ault 01 design consists in
the violation 01 the hierarchy 01 compo
nents. This can be seen as the existen ce
01 cycles in the relation that involves the
principal components (sel1 loops).

Cycle detection is a basic step in a
proof of design correctness and this ex,;.
ample is usually used to test the power 01
a veri1ier.

In the example we are analyzing this
relation is not explicit, and we must build
it from the basic relations.

We propose the following definition:
<>p =def""'p 1\ <I>I<I/><I>P

The formula <I>¡<I/></>p lets us, by composition of relations, obtain the more
general "Use_PrincipaLComponent", while the formula....,p prevents that this relation
includes ca lis inside the same principal component.

Now, we filter the model corresponding to Figure N°2 under the logic L<> and we
obtain the model M" 01 Figure N°4:

VV* = {{VV1}, {VV2}, {VV3}, {VV4}, {VVs}, {VVs}, {VV7}, {VVs}}
R* = {({VV1), {VV4}), ({VV4), {VVs}), {{VV6}, {VV1}) }
P* = {(Check_CRC_Error, {VV1}), {Compute_CRC_Value, {VV2}), {Shovv_Error_Msg, {VV3}),

{Math_Package, {VV4}), {I/O_Package, {VVs}), {CRC_Algorithm, {VVe}), {Retry_Operation, {VV7}),
{Data_Input, {VVe})}

If we take the modal description ..1 of M" from {W1} and we obtain the transitivity
closure adding the axiom <><>p ~ <>p, we can prove ~4 Check_CRC_Error 1\

<>Check_CRC_Error; and this shows that the component Check_CRC_Errorfrom
the original design was part of a cycle.

Repeating this procedure for every world of the model we obtain the set of the
components with this characteristic.

5. Conclusions
As the examples show, the methods proposed seem to be effective. It is also im

portant the simplicity with which they can be implemented (we could use any syntac
tic prover that let us define new modal operators). Of course, the use of a prover
takes the complexity to exponential levels, but on the other side, the proofs are al
ways done over modal descriptions that have a low number ofaxioms (linear in the
number of edges in the model). In exchange, we gain a formal tool 01 great power
and generality.

276 ler. Congreso Argentino de Ciencias de la Computación

6. Future Work

It is possible that the present work may be applied also to the description of Soft
ware Architectures [Garlan & Shaw, 1993]. In this area, anyway, the problem has
more complexity. The representation graphs used seem to capture well the static
components of the system, but not so the dynamic components that define the inter
actions between the components [Allen & Garlan, 1994]. In this graph, the relations
take a fundamental importance. For example, from the fact that two components are
in the client-server relation, we can infer the behavior of the components and the
way they communicate (the client makes requests to the server at any time; the
server answers the requests without knowing who makes them, etc.).

Other point not covered in the present work, has to do with the detection of com
ponents with the same identification label. Sorne of these cases are easily treated in
our formalism, but sorne modifications may be needed to cover all the possibilities.

There are also importat work to do in formal concept directly related to modal and
temporallogics with models with more than one relation of accessibility.

References

• [Allen & Garlan, 1994]
Allen, R. & Garlan, D. Formalizing Architectural Connection.
Proc. International Conference on Software Engineering. May 1994.

• [Burguess, 1984]
Burguess, John P. Basic Tense Logic.
Handbook of Philosophical Logic, Vol.Il. D. Reidel Publishing Company. 1984.

• [Chellas, 1980]
Chellas, Srian F. Modal Logic, An Introduction.
Cambridge University Press. 1980.

• [Consens & Mendelzon, 1992]
Consens, M. & Mendelzon, A. Visualizing and Querying Software Structures.
ACM. 1992.

• [Garlan & Shaw, 1993]
Garlan, D. & Shaw, M. An Introduction to Software Architecture .
. Advances in Software Engineering and Knowledge Engineering, Vol l. '1Jorld Sci
entific Publishing Company. 1993.

• [Hughes & Cresswell, 1968]
Hughes, G. E. & Cresswell, M. J. An Introduction to Modal Logic.
Methuen and Co. Ud. 1968.4. Applications

