
An architecture for programming distributed
applications on Fog to Cloud systems

Francesc Lordan1,2
�, Daniele Lezzi1, Jorge Ejarque1, and Rosa M. Badia1,3

1 Department of Computer Sciences, Barcelona Supercomputing Center(BSC)
2 Department of Computer Architecture, Universitat Politècnica de Catalunya(UPC)
3 Artificial Intelligence Research Institute, Spanish National Research Council(CSIC)

francesc.lordan@bsc.es daniele.lezzi@bsc.es

Abstract. This paper presents a framework to develop and execute ap-
plications in distributed and highly dynamic computing systems com-
posed of cloud resources and fog devices such as mobile phones, cloudlets,
and micro-clouds. The work builds on the COMPSs programming frame-
work, which includes a programming model and a runtime already vali-
dated in HPC and cloud environments for the transparent execution of
parallel applications. As part of the proposed contribution, COMPSs has
been enhanced to support the execution of applications on mobile plat-
forms that offer GPUs and CPUs. The scheduling component of COMPSs
is under design to be able to offload the computation to other fog devices
in the same level of the hierarchy and to cloud resources when more com-
putational power is required. The framework has been tested executing
a sample application on a mobile phone offloading task to a laptop and
a private cloud.

Keywords: distributed computing, mobile computing, fog computing,
programming model, computation offloading, fault tolerance, security

1 Introduction

The traditional cloud computing model, based on a centralized control of com-
puting and data resources, does not provide the proper support to the require-
ments of big data applications that produce and consume volumes of data
through IoT devices, fast mobile networks, AI applications, etc. Fog comput-
ing has emerged as a complementary solution to overcome the issues related to
real time processing, security, latency and transparent management of a decen-
tralized, heterogeneous and dynamic set of resources.

This paper proposes a Fog-to-Cloud (F2C) ready programming framework to
develop applications that involve the use of traditional cloud systems, smart end-
user devices, and IoT sensors. The framework transparently offloads parts of the
computation to fog and cloud resources and optimizes the execution considering
time, energy consumption and monetary cost. The proposed solution builds on
COMPSs [8], a programming model for distributed computing and its associated
run-time. On the one hand, COMPSs distributes the computational load of the

© Copyright (2018): The final publication is available at Springer via
https://link.springer.com/chapter/10.1007/978-3-319-75178-8_27

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/157810535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

application transparently to the user and exploits its inherent parallelism and the
heterogeneity of the underlying infrastructure. On the other hand, it also handles
the distribution of data to provide a seamless offloading and schedules the data
processing in larger nodes considering its locality to optimize the execution.
COMPSs applications are completely agnostic to the underlying infrastructure
and their code runs, with no changes, in all the backends supported by the
runtime: HPC systems and private and public cloud. Recently, COMPSs has
been integrated with container solutions based on Docker [9] and Mesos [1]. To
support the execution of COMPSs applications from mobile devices, the runtime
has been refactored to include the support to Android devices and to improve
the data management via a Peer-to-Peer (P2P) mechanism. These new features
are basic pillars to develop the proposed framework.

A key feature of COMPSs is the ability to distribute the tasks that compose
the application on the available nodes of the computing platform. In the case of
traditional cloud environments, the decision where to execute a task considers
historical data of previous executions and the locality of the data to process.
Moreover, the cloud gives the illusion of having access to infinite computing
resources; COMPSs can instantiate additional VMs on cloud providers from a
settable list. In contexts more dynamic than traditional cloud computing, such as
the ones considered in this work, resources might spontaneously disappear from
the pool. Handling this volatility is an additional requirement either for data
management and proper work balancing between fog nodes. Another relevant
issue addressed in the proposed framework is the security since usually edge
devices are located in non-controlled environments.

The paper is structured as follows: Section 2 includes an overview of the
related work in the field of F2C computing framework; Section 3 describes the
architecture of the proposed solution while Section 4 provides the details of
how the COMPSs framework has been extended to support F2C environments.
Section 5 presents the results of the tests and Section 6 concludes the paper and
provides ideas for future work.

2 Related Work

Application partitioning, task scheduling, and offloading mechanisms are all
problems widely explored in the field of distributed computing. The main dif-
ferences between previous work on cloud computing and mobile computing are
due to issues related to the high mobility of the device, the limited availability
of energy of the devices and the impact of the network (latency, monetary cost,
bandwidth) on the performance of the entire framework. This analysis of the
related work in the field of fog to cloud computing, takes into account capabil-
ities such as how to fragment the applications in order to offload the parts of
the computation to the resources, the scheduling model and the management of
parallelism.

CloneCloud [4] offers the developer a thread level granularity mechanism.
The strong point of CloneCloud is its partitioning mechanism that combines a

static analysis of the code with a dynamic profiling of the application to pick the
optimal migration and re-integration points. When a thread reaches a migra-
tion point, it suspends, and its state (including virtual state, program counter,
registers, and stack) is shipped to a synchronized clone. When the migrated
thread reaches a re-integration point, it is similarly suspended and shipped back
to the mobile device. The drawback of this system is that it still requires the
developer to manage threads and application parallelism. Cuckoo [6] hides the
partitioning problem by exploiting the service component of Android operating
systems. During the build process, the stubs generated to access service compo-
nents are replaced by invocations to the Cuckoo framework that decides, at run-
time, whether to run the service on the local device or a remote implementation.
Since the framework only replaces calls, all the parallelism must be managed by
the programmer on the service invocations. ThinkAir [7] provides a mechanism
to automatically parallelize the execution of an offloaded method considering
intervals of input variables. The main drawback of ThinkAir is that the offload-
ing mechanism works synchronously: the executing thread is suspended until the
method invocation is performed and its result collected. Thus, any subsequent
method invocation is not executed until previous ones are executed even when
they could run concurrently. Mobile Fog [5] is a high level programming model
for the future Internet applications that are geospatially distributed, large-scale,
and latency-sensitive. The goal is to allow applications to dynamically scale
based on their workload using ondemand resources in the fog and in the cloud.
In Mobile Fog, an application consists of distributed Mobile Fog processes that
are mapped onto distributed computing instances in the fog and cloud, as well
as various edge devices. Mobile Fog API is not hiding the distribution of the
infrastructure to the application, requiring a large programming effort to the
application developer.

3 Architecture Overview

Figure 1 depicts the layered-based architecture of a Fog-to-Cloud platform where
the proposed framework can be instantiated; the architecture is designed follow-
ing the OpenFog Reference Architecture [3]. The lowest layer represents the low
processing capability devices, such as sensors or embedded devices that pro-
duce data, while the middle layer contains fog devices that have more processing
power (as a smartphone or a tablet) and are able to deploy and orchestrate the
execution of a distributed application using other fog devices as workers (fog-
to-fog). Clouds are at the top layer, hosting services for the control of the entire
stack or used for the execution of computing intensive applications started both
from the same layer and from a fog device. It is worth noting, indeed, that the
framework can be used to instantiate applications on smart devices on the fog
layer and to offload part of the computation to the cloud (fog-to-cloud) or use
the fog devices as workers for a cloud application.

The main contribution of this work is represented as a programming compo-
nent in the Fog Node together with the capabilities it offers and the interfaces

Fig. 1. F2C architecture

needed to interact with other elements of the platform. The application support
has to be implemented through a high level programming model that enables
the development of applications to be executed in distributed, heterogeneous,
volatile, data and processing infrastructures. However, these complex infrastruc-
tures will remain hidden to the application in such a way that the application can
focus on the logic. The aim of this programming model is to keep the code almost
untouched avoiding the need for APIs to implement the required functionalities.
The application interacts with a runtime that takes care of the coordination of
the distributed execution of the applications in a parallel way when possible. The
interaction with different computing backends is delegated to a specific compo-
nent for resource management. Data management is required to let the runtime
access to the data produced on the working nodes as well as to synchronize the
information on data location in order to proper schedule the tasks on the nodes.
The Node Discovery component enables resource discovery and registration. For
example, an IoT device coming online ”close” to the coordination node can no-
tify its availability to the controller and then this information has to come to the
node. Security is a transversal issue common to all the components that have to
fulfill a common base set of security and privacy requirements in an environment
by nature unsecure and dynamic. Interfaces are needed to ensure communica-
tion between nodes and realizes the data channels. Eastbound interface connects
the runtime with other nodes in the same level and allows the sharing of data;
Northbound allows to implement the connection with cloud nodes while South-
bound interface realizes the connection between a fog node and a sensor or from
a cloud application down to the Fog layer.

4 Programming Framework Overview

COMP Superscalar (COMPSs) is a programming model that aims to ease the
development of parallel applications to run atop distributed infrastructures. For
that purpose, it offers a sequential, infrastructure-agnostic way of program-
ming that abstracts coders from the parallelization and distribution concerns.
COMPSs considers applications as composites of invocations to pieces of software
encapsulated as methods called Core Elements (CE). To manage the parallelism
inherent in the application, the framework instruments the application and re-
places CE invocations by calls to a runtime system to execute them atop the
infrastructure. Also, accesses to data generated on remote nodes need to syn-
chronize their value before being used. The following subsections introduce the
programming model and the architecture of the runtime system, highlighting
those aspects relevant to support executions on Fog-to-Cloud environments.

4.1 Programming model

For developing applications, programmers write their code in a sequential fash-
ion with no references to any COMPSs-specific API or the underlying infras-
tructure. At execution time, calls to CE methods are transparently replaced
by asynchronous tasks whose execution is to be orchestrated by the runtime
system. To select which methods become a CE developers define an interface,
called Core Element Interface (CEI), where they declare those methods along
with some meta-data in the form of annotations. To pick a method as a CE,
the programmer annotates the method declaration on the CEI with @Method
indicating the class containing the method implementation. The code snippet in
Figure 2 contains a simple COMPSs application example. Subfigure 2(a) shows
the sequential code of the application which runs N simulations and selects the
best one. As shown in the CEI presented in Subfigure 2(b), only two methods
are chosen as CE: simulate and getBest. For the runtime system to determine
the dependencies between CE invocations, developers specify how each CE oper-
ates on the accessed data (its parameters) by adding (@Parameter) annotations
indicating the parameter type and directionality (in, out, in-out).

4.2 Runtime Library

The main purpose of the runtime toolkit is to orchestrate the execution of CE in-
vocations (tasks) fully exploiting the available computing resources (local devices
or remote nodes) guaranteeing the sequential consistency. Applications share
computing resources and, potentially, data values; therefore, the runtime library
is twofold. The front-end of the runtime, instantiated in every application, man-
ages the private aspects of the applications: monitors accesses to private pieces
of data, such as objects, and detects the CE invocations. The back-end manages
all the aspects that the application can share from computing resources (CPU,
GPU, nearby nodes or VM instances on the cloud) to data (currently only files,
but we envisage to manage accesses to databases and Content Providers). Since

public Sim checkSimulation(int N) {
Sim best = null;
for (int i=0; i < N; i++) {

Sim s = new Sim(...);
s.simulate();
best = Sim.getBest(best, s);

}
return best;

}

(a) Application main code

public interface SampleCEI {
@Method(declaringClass=”Sim”)
void simulate();

@Method(declaringClass = ”Sim”)
Sim getBest(

@Parameter(direction = IN)
Sim s1,
@Parameter(direction = IN)
Sim s2

);
}

(b) Core Element Interface

Fig. 2. Sample application code written in Java

all front-ends contact the same instance of the back-end, it is deployed as an
Android service running in an independent process. Figure 3 contains a detailed
diagram of the runtime architecture.

Fig. 3. Runtime system architecture

To monitor the data accessed from each task and the data dependences
among task, the runtime processes the parameters of each task upon its de-
tection on the Analyzer component. The Private and Public Data Registers,
respectively located on the front-end and back-end of the runtime, record the
accessed data values and assign a unique identifier for each version of the value.
Once all the accessed values are registered, the Analyzer submits the task to the
Executor, the component of the runtime that manages the resources.

To decide which resources host the execution of a task, the runtime is based
on the concept of Computing Platform: a logical grouping of computing resources
capable of running tasks. The decision is made on the Decision Engine (DE),
which is agnostic to the actual computing devices supporting the platform and
the details to interact with them. The DE requests to each of the available plat-
forms –configured by the user beforehand– a forecast of the expected end time,

energy consumption and economic cost of the execution. According to a config-
urable heuristic, the DE picks the best platform to run the task and requests
its execution; the selected platform is responsible for monitoring the data de-
pendencies of the task and scheduling the execution of the task on its resources.
Currently, there exist three different implementations of Computing Platform
according to the nature of the computing devices composing it. CPU Platform
manages the execution of tasks implemented as regular Android methods on the
multiple cores of the mobile device CPU. GPU Platform executes tasks imple-
mented as OpenCL code on the embedded GPU. Finally, the third implementa-
tion, Remote Platform, offloads the execution of methods to remote resources.
For the runtime to properly exploit Fog-Cloud environments, users can instanti-
ate four platforms: a CPU Platform, a GPU Platform and two Remote Platforms:
the Fog Platform encapsulating the low-latency remote resources (West-bound)
and the Cloud Platform representing those VM instances deployed on Cloud
Providers (North-bound).

For sharing data across platforms, the runtime hosts a data repository: the
Data Manager (DM). Through a publish-subscribe mechanism, the DM asyn-
chronously provides information and values of the accessed datums using the
unique IDs assigned by the Analyzer. Computing Platforms lean on the DM for
monitoring the data dependencies. When the Executor designates a platform to
run a task, the platform subscribes for the existence of all the input datums;
upon the publication of the creation of any of them, the DM forwards the no-
tification to the platform. Once the platform realizes that all of them exist, it
plans the execution of the task on its resources and queries the DM for the
value of each datum. At the end of the task execution, the platform publishes
the existence of the output datums and stores their value on the DM.

To uncharge the mobile device from the computational load of orchestrat-
ing the remote resources, Remote Platforms organize them as a peer-to-peer
network. Each node of the network runs a worker process persistently listening
to the network for task submissions; these processes are able to autonomously
handle the execution of the task on the local computing devices. To ease the
management of data dependencies, worker nodes subscribe for and publish in-
formation and values of the datums accessed by the tasks on the DM, whose con-
tent –either information or values– is consistently distributed across the whole
infrastructure. The local instance of the DM is responsible for fetching the value
from any hosting remote node.

The following subsections delve into detail in other features of the runtime
specially significant for F2C environments: security on network communications
and network-disruption tolerance.

Securing Communications Data used on Fog applications is likely to be
privacy-sensitive (pictures, videos, geolocation, etc.) and networks interconnect-
ing the mobile device with other resources –either on the same layer or the Cloud
– tend towards untrustworthiness.

To protect applications from eavesdroppers, the runtime has a security mech-
anism that provides communications with confidentiality, integrity and authen-
tication. For its implementation the runtime leverages on the Generic Security
Services API (GSSAPI) [2], an IETF standard API to access security services,
so developers create secure applications while avoiding security-vendor lock-in.

Besides defining a common interface, GSSAPI also settles an operating model
where both ends negotiate a secure context –authenticate themselves and agree
on the mechanisms for data ciphering and integrity – before transferring any
information. Upon the establishment of the context, GSSAPI processes (wraps)
the messages and opaques their content returning token thats can be securely
shipped to the other end. Although GSSAPI defines the format of the exchanged
tokens and its content – actually, the security framework does–, it does not es-
tablish nor provide any transmission mechanism. Therefore, applications invoke
GSSAPI to wrap a value and obtain a token to ship to the other end. Upon
the reception of a token, the receiver invokes GSSAPI to unwrap the token and
obtain the original content of the message. In our case, COMPSs uses the Java
NIO library to transfer tokens over TCP sockets.

Although GSSAPI provides the infrastructure with an interoperable ap-
proach to secure communications, currently there is no generic mechanism to
get the required credentials from the Authentication Server automatically. Ap-
plication users need to manually set up the Authentication Infrastructure and
authenticate all the nodes to obtain their credential beforehand. However, we
consider this to be the foundational stone to build a platform with Authenti-
cation, Authorization and Accounting based on Federated Identity and Single
Sign-On. Our ultimate goal is to build a global service where local institutions
offer nearby computing resources (Fog nodes) where to offload computation se-
curely from mobile devices belonging to users from other organizations within
their federation. Using the same credential, users could always turn to VM in-
stances deployed on the Cloud to obtain additional computing power.

Network Disruption Tolerance A consequence of the high mobility of Fog
devices is instability on the network conditions. Fog devices are likely to face Wi-
Fi network handovers, changing the used network interface between Wi-Fi and
mobile data, switching to different mobile network protocols (GPRS, EDGE,
UMTS, HSPA, LTE, etc.) and eventually the device can disconnect from the
network. Controlling all the possibilities is main challange to tackle not only for
Fog Computing but also for IoT and MANET frameworks.

As a first approach to solve the problem, we focused on the device running the
application (master) and considered a network disruption that isolates it while
the rest of the infrastructure stays up and online. Eventually, the device might
reconnect to the same network recovering access to the same pool of workers,
but using a different IP address.

To tolerate short, sporadic network disruptions, the master sends a message
to every worker node upon the reconnection indicating its new address. Upon its
reception, worker nodes update every reference to the master node with the new

IP and re-start any interrupted transaction – transfer of a value or submission
of internal COMPSs command.

On long-lasting disruptions, worker nodes should keep progressing on the
computation despite the isolation. In the case of reconnection, workers autonomy
reduces the impact of the network failure on the performance of the application.
Upon the broadcast reconnection notification, DM instances synchronize their
content, thereby all the components of the infrastructure become aware of the
progress done by the other part.

On the other end, the master device should produce the expected result even
if the network connection is never re-established. Therefore, the master may
need to run all the pending tasks, even those already offloaded. Probably, some
input values for a pending task are the output of an offloaded one and they are
not likely to be on the master; hence, the value must be computed locally by
running the producing task. This mechanism results in a backtracking process
that only stops when all the input data required by a task exists in the device.
So the runtime can go back in the execution, it keeps track of all the detected
tasks and builds a data-dependency graph. Tasks can not be removed from the
graph until the master never needs to re-execute them again – i.e., all its output
values have a replica on the master or neither the main application nor any task
use them.

Upon the detection of a network breakdown, the Executor prioritizes the ex-
ecution of the not offloaded tasks whose input values are already on the mobile.
When there are not enough tasks to use all the computing devices within the
mobile, the Executor picks one of the not offloaded tasks and triggers the back-
tracking process to generate the missing input values for the task. Finally, once
all the not offloaded tasks have started their execution, it runs pending offloaded
tasks (if necessary, re-computing the input data values).

To prevent this backtracking process from re-running tasks already executed
on the workers, the runtime transfers the output values back to the mobile
to establish checkpoints. To avoid transferring every remotely generated value,
the runtime picks some strategic values splitting the graph –currently, fixed-size
partitions according to the chronological order of task generation– and analyzing
each partition for all the output values of the block that succeeding partitions
might use. The master fetches these values upon their creation;once the master
has all the output values from a block, it removes the whole block from the
graph.

5 Experiments

As a proof of concept that validates the feasibility of the described architecture
and the proper behavior of the runtime system, we have ported the HeatSweeper
application and executed it on a smartphone that offloads parts of the compu-
tation to nearby and remote devices. The following subsections introduce the
application, describe the testbed used to conduct the tests, and present the ob-
tained results in terms of execution time and energy consumption.

5.1 Application: HeatSweeper

HeatSweeper is an application to find the optimal placement of 1-to-N heat
sources on the surface of a solid body to reduce the time to heat up its whole
surface to a certain temperature. Its algorithm consists on an intensive search
looking for the best combination of 1-to-N locations for the heat sources, and
relies on two different solvers to simulate the heat diffusion based on the Jacobi
(used on the tests) and Gauss-Seidel equations.

On the COMPSs version, the application defines two CEs. Simulate encapsu-
lates within a task the simulation of the heat transfer over a surface for a specific
combination of locations and generates a report summarizing the simulation. In
a second phase, the application compares all the simulation reports to select the
best combination. To compare two reports the application defines the second
CE: getBest. On the conducted tests, the application considers 25 different spots
of the surface where to locate the heat sources; simulations stop after 10,000
steps if the surface has not reached the desired temperature before. With this
configuration, the application generates 325 simulate tasks and 323 getBest.

5.2 Testbed

HeatSweeper runs on a OnePlus One (OPO) smartphone, equipped with a Krait
400 quad-core processor at 2.5GHz and 3GB of RAM memory. As mentioned
above, the defined tests consider two different infrastructures where to offload
task. For the fog case, the smartphone offloads the computation to a laptop
equipped with an Intel i7-2760QM quad-core processor at 2.40GhZ and 8 GB of
RAM memory. The mobile device connects to the laptop via an 802.11g wire-
less network. On the Cloud scenario, the phone uses as surrogates up to eight
quad-core VM instances deployed on an OpenNebula cloud. The physical nodes
supporting the Cloud have six-core Intel Xeon X5650 at 2.67 GHz processors
and 24 GB of memory each. Cloud nodes are interconnected through a Giga-
bit Ethernet network, while the connection between the mobile device and the
surrogates goes through the Internet and has an 85.5 ms RTT.

5.3 Results

Measurements of the elapsed time to execute a simulate task highlight the per-
formance differences among the devices composing the infrastructure. Running
a task on the smartphone takes around 288 seconds. When the screen of the
device is Off, Android reduces the frequency of the processor to a 10% of its
regular value. This increases the execution time to 6,794 seconds; however, it
also reduces the power consumption of the processor from 1.4W to 0.16W. Ex-
ecuting the same simulation on the laptop and on a Cloud instance takes 16
and 29 seconds, respectively. The execution time of running a getBest task is
negligible. Overall, running the application on the phone – with its screen on –
takes 99,641 seconds (more than 27 hours), and it forces the smartphone to stay
plugged in and drawning power.

 0

 500

 1000

 1500

 2000

 2500

Laptop 1 VM 2 VM 4 VM 8 VM

Time (s)

screen On
screen Off

 0

 200

 400

 600

 800

 1000

 1200

Laptop 1 VM 2 VM 4 VM 8 VM

Energy Consumption (J)

screen On
screen Off

Fig. 4. Elapsed time and energy consumption of executing HeatSweeper according to
the surrogate platform

Charts in Figure 4 illustrate the elapsed time and the energy consumption
measured when executing HeatSweeper in the different platforms. Offloading
parts of the computation to resources with higher computing capabilities allows
a significant reduction of either the execution time and the energy consumed
by the smartphone. The laptop is the most powerful resource, and offloading
tasks to it reduces the execution time to 1368 seconds. Although the execution
using a single VM instance achieves a worse execution time than the laptop, the
cloud provides the runtime with higher amount of resources. The more VMs the
application uses, the lower the execution time is; using all eight instances, the
application only takes 321 seconds to finish. Obviously, offloading tasks saves to
the master the energy spend on the processor to compute them; however, keeping
the mobile on and transferring data through the network maintains part of this
consumption. For the 8-VM case, the smartphone consumes up to 146 joules.
The screen of the devices is responsible for a significant part of this energy;
with the screen Off, the application reaches a consumption of less than 55J. The
impact of switching the screen Off on the execution time is not significant. The
frequency reduction only affects to the communications and task management
performed by the runtime; it does not affect the actual computation of the tasks
since remote resources keep their performance.

6 Conclusions and Future Work

This paper presents the preliminary design of an architecture for a programming
framework that enables distributed computing on Fog-to-Cloud environments.
The baseline of this architecture is COMPSs, a programming tool that has been
successfully applied to port applications and parallelize their execution on clus-
ters, grids and clouds. The COMPSs runtime, as explained in this work, has
been extended to be executed on Android devices equipped with CPUs and
GPUs and to offload tasks to clouds backends or other fog devices available in
the same network. An important improvement and contribution is the design of
a new distributed data management mechanism that allows to efficiently share
information about data across the different platforms. A checkpointing strategy

has been also implemented to make the runtime resilient to network fluctuations
and disruptions, allowing to resume the computation after a working node fail-
ure. Finally, security mechanisms have been added to secure the communications
between the main runtime process and the worker nodes. The results of the tests
demonstrate that the refactoring and extensions to the runtime, do not affect
the performance of the execution when offloading the tasks to remote nodes.

Future work includes several optimizations as the implementation of a dis-
tributed scheduling policy, the improvements on the security mechanisms in
order to add authentication at application level, extensions to the resource man-
agement to allow elasticity on the Cloud and to use dynamically appearing re-
sources as workers.

Acknowledgment This work is partly supported by the Spanish Ministry of
Science and Technology through project TIN2015-65316-P and grant BES-2013-
067167, by the Generalitat de Catalunya under contracts 2014-SGR-1051 and
2014-SGR-1272, and by the European Union through the Horizon 2020 research
and innovation programme under grant 730929 (mF2C Project).

References

1. Apache Mesos. Web page at http://mesos.apache.org/ ((Date of last access: 12th
May, 2017))

2. Apache Mesos. Web page at https://web.mit.edu/kerberos/krb5-
devel/doc/appdev/gssapi.html ((Date of last access: 12th May, 2017))

3. OpenFog Reference Architecture. Web page at https://www.openfogconsortium.org
((Date of last access: 12th May, 2017))

4. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: Elastic execu-
tion between mobile device and cloud. In: Proceedings of the Sixth Conference on
Computer Systems. pp. 301–314. EuroSys ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/1966445.1966473

5. Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B.: Mo-
bile fog: A programming model for large-scale applications on the internet of
things. In: Proceedings of the Second ACM SIGCOMM Workshop on Mobile
Cloud Computing. pp. 15–20. MCC ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2491266.2491270

6. Kemp, R., Palmer, N., Kielmann, T., Bal, H.: Cuckoo: A Computation Offloading
Framework for Smartphones, pp. 59–79. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2012), http://dx.doi.org/10.1007/978-3-642-29336-8 4

7. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: Dynamic resource
allocation and parallel execution in the cloud for mobile code offloading. In: 2012
Proceedings IEEE INFOCOM. pp. 945–953 (March 2012)

8. Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Alvarez, J., Marozzo, F., Lezzi,
D., Sirvent, R., Talia, D., Badia, R.M.: Servicess: An interoperable programming
framework for the cloud. Journal of grid computing 12(1), 67–91 (2014)

9. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux Journal 2014(239), 2 (2014)

