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Abstract

In this paper the Generalized Arc Routing Problem (GARP) is focused. The GARP is stated on an
undirected graph in which some clusters are de�ned as pairwise-disjoint connected subgraphs, and a route
is sought that traverses at least one edge of each cluster. Broadly speaking, the GARP is the arc routing
counterpart of the Generalized Traveling Salesman Problem (GTSP) [27, 28]. In the GTSP, the set of
vertices of a given graph is partitioned into clusters and a route is sought that visits at least one vertex
of each cluster. Di�erent versions of the GTSP have been studied by various authors and their properties
have been established. It is well-known that the GTSP can be used to model several node and arc routing
problems [29], like the TSP and the Undirected Rural Postman Problem (RPP).

1 Introduction

The Generalized Arc Routing Problem is de�ned on an undirected graph with disjoint clusters of demand edges.
The problem itself is to �nd the minimum cost tour (closed walk) that visits at least one edge out of each cluster.
The problem might be seen as the arc routing counterpart of the Generalized Traveling Salesman Problem, that
is a well-known node routing problem which extends the Traveling Salesman Problem. In the GTSP the set of
vertices of a given graph is partitioned into clusters and a route is sought that visits at least one vertex of each
cluster. The GTSP can also be used to model several arc routing problems, like the Rural Postman Problem, [1].
However, arc routing problems have received an increasing interest in the last decades, and highly specialized
solution algorithms have been developed in the last years able to solve very e�ciently di�erent classes of arc
routing problems, see [2, 13].

Potential applications of the GARP arise in di�erent contexts, which can be cast within arc routing. For
instance, in meter reading, one of the classical applications of arc routing, current technologies make it possible
to read the requested meters by traversing just a few of the edges where meters have to be read instead of all
of them. Also in quality control for networks maintenance only a small subset of the edges of a network has
to be traversed. Furthermore, the GARP is most appropriate for modeling location/arc-routing problems in
which facilities have to be located at some given areas (clusters) and connected among them by means of a
route. Depending on their characteristics, facilities cannot be located at the vertices of a network (warehouses,
pickup/delivery points, etc.), so they have to be located at di�erent edges of the clusters, and the design of the
connecting route involves arc-routing decisions. The overall location/arc-routing problem is thus a GARP.
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Directed versions of a more general problem, in which the clusters do not necessarily have to be disjoint have
been studied by several authors under di�erent names, as discussed in [8]. M. Drexl studied the Generalized
Directed Rural Postman Problem (GDRPP) in [19, 20], where no depot is assumed, established its NP-hardness
and proposed a branch-and-cut algorithm. Previously in [32] the authors introduced the so-called Close-Enough
Traveling Salesman Problem and proposed heuristics to solve large instances. The same problem has been
studied more recently under the name of Close-Enough Arc Routing Problem in [25, 8], where formulations,
valid inequalities and branch-and-cut algorithms have been proposed. A multi-vehicle version of the GDRPP
has been studied in [16].

Preliminary results of our work on the GARP have been presented in [5, 6, 22, 23]. To the best of our
knowledge, however, the GARP has not been addressed in the literature. In this work we introduce the GARP
as a single vehicle arc routing problem on an undirected graph. This allows us to easily derive optimality
conditions which guarantee that in any optimal solution no edge will be traversed more than twice. Based
on this, we present a �rst linear integer formulation for the GARP, which uses two sets of binary variables,
in the spirit of current formulations for this type of problems. After analyzing some dominance conditions, a
tighter formulation with only one set of binary variables is proposed. The polyhedron associated with the latter
formulation is studied and some facets and families of valid inequalities are given. In particular, we present two
new families of inequalities which are valid for the GARP and extend the well-known co-circuit [9] and matching-
type inequalities for odd subsets of vertices introduced by Edmonds [21], and we establish some relationship
between them. We also study the separation problem for the di�erent families of valid inequalities, and propose a
solution algorithm which iteratively reinforces the current LP relaxation by incorporating separated inequalities.
Finally, we report on the numerical results of a series of computational experiments.

The paper is structured as follows. Section 2 de�nes the problem and presents the �rst formulation with two
sets of binary variables. Section 3 presents the dominance relations, which allow to formulate the GARP using
only one set of binary variables and compares the two formulations. In Section 4 the polyhedron associated
with the second formulation is studied, stating its dimension, and presenting some families of facets, whereas
in Section 5 some families of valid inequalities are presented, including extensions of classical co-circuit and
matching inequalities, which are valid for the GARP. The separation of the di�erent families of inequalities is
addressed in Section 6. The proposed solution algorithm is presented in Section 7 and the numerical results
obtained in the computational experiments are analyzed in Section 8.

2 The Generalized Arc Routing Problem

The GARP is de�ned on an undirected connected graph G = (V,E) with a distinguished vertex vd ∈ V , the
depot. With each edge (u, v) ∈ E is associated a non-negative cost, cuv. A set of subgraphs of G is given,
Ck = (Vk, Dk), k ∈ K with ∅ 6= Vk ⊂ V , ∅ 6= Dk ⊂ E, k ∈ K, and Vk ∩ Vk′ = ∅, k, k′ ∈ K, k 6= k′. Subgraphs
Ck are referred to as clusters and edges in D = ∪k∈KDk as demand edges. Note that clusters are not required
to be connected. Throughout, we denote R = E \D.

We assume no demand edge is incident with the depot. If necessary, a new depot is de�ned, v′d, connected to
the original one with a zero cost non-demand edge, and with every other vertex u ∈ V \{vd} with a non-demand
edge (v′d, u) of cost cvdu. We further assume that G has been simpli�ed so that V is the set of vertices incident
with edges in D plus the depot, and E contains all edges of D plus additional non-demand edges, connecting
every pair of vertices u, v not connected of D, and with cu,v equal to that of the shortest path in the original
graph.

Feasible solutions to the GARP are tours (closed walks) starting and ending at the depot, which traverse at
least one edge of each cluster. The GARP is to �nd a minimum cost feasible tour.

Throughout, the following standard notation will be used: For a given subset of vertices S ⊂ V , E(S) means
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the subset of edges of E with both end-vertices in S, and for a given subset of edges F ⊂ E, V (F ) ⊂ V is the
subset of vertices incident with some edge of F . Also, δ(S) = {e ∈ E | e = (u, v), u ∈ S, v ∈ V \ S} denotes
the cut-set between S and V \ S, although for a singleton we simply write δ(v) = δ({v}). Additionally, for
any F ⊂ E we write EF = E ∩ F and δF (S) = δ(S) ∩ F . If S1 and S2 are two disjoint vertex sets, (S1 : S2)
represents the set of edges with an end-vertex in S1 and another end-vertex in S2. Thus, δ(S) = (S : V \ S).
And �nally, we use the compact notation f(A) =

∑
e∈A fe where A ⊆ E, and f is a vector or function de�ned

on E.

Proposition 2.1 The GARP is NP-hard.

Proof: This proof is based on considering the GARP when all clusters have just one edge. Let start from
the well-known Rural Postman Problem de�ned on an undirected graph G(V,E) where there is a proper subset
R ⊂ E that must be traversed in any feasible solution. Edges in R are called the required edges.

A polynomial reduction from the RPP to the GARP is shown in Algorithm 1. Required edges in G are
interpreted as demand edges in the reduced instance G′. For brevity, the treatment of edge costs has been
omitted. It would simply consist of maintaining original costs for the replacements done into the internal loop,
and zeroing those corresponding to the cliques ending the main one.

procedure RPP_To_GARP(G)
G′ = G
for u ∈ V with |δR(u)| > 1:

S = ∅
for w = (u, v) ∈ δR(u):

uw = new vertex()

S = S ∪ {uw}
V ′ = V ′ ∪ {uw}
E′ = E′ \ {w}
E′ = E′ ∪ {(uw, v)}

endfor

E′ = E′ ∪ clique(S)
endfor

return G′

Algorithm 1 Polynomial Reduction from RPP to GARP.

By using this reduction, an optimal solution for the GARP instance G′ would also be an optimal solution
for the corresponding RPP instance G where demand edges of the �rst would be interpreted as requires edges
of the second. In Figure 1 this graphical transformation is illustrated.

d d

Figure 1: left: RPP Instance; right: Reduced GARP Instance.

Therefore, the GARP is NP-hard. �
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Similarly to other single vehicle arc routing problems on undirected graphs with non-negative costs, it is
easy to see that, for a given GARP instance, an optimal solution exists in which no edge is traversed more than
twice. Otherwise, two copies of the same edge can be removed without a�ecting neither the condition that at
least one demand edge of each cluster is traversed, nor the parity of the vertices or the connectivity with the
depot. It is easy to see that, in contrast to the RPP on an undirected graph [24], the edges that can be traversed
twice in an optimal GARP solution are not limited to the edges of the minimum spanning tree induced by the
clusters plus the edges connecting two D-odd vertices in the same cluster.

It is possible to formulate the GARP using an integer program with two sets of binary variables. For each
e ∈ E, let xe and ye be binary variables associated with the �rst and second traversal of edge e. Speci�cally,
xe = 1 means that edge e is crossed in the solution tour, while ye = 1 would imply that solution tour crossed
twice the edge e. The formulation is as follows:

(Fxy) min
∑
e∈E

ce(xe + ye) (1)

x(Dk) ≥ 1 k ∈ K (2)

(x+ y)(δ(S)) ≥ 2 S = ∪k∈KS
Vk, KS ⊆ K (3)

(x− y)(δ(S) \ F ) + y(F ) ≥ x(F )− |F |+ 1 S ⊂ V, F ⊆ δ(S), |F | odd (4)

ye ≤ xe, e ∈ E (5)

xe, ye ∈ {0, 1}, e ∈ E (6)

Inequalities (2) guarantee that at least one edge of each cluster is traversed, whereas connectivity with the
depot is implied by constraints (3). Constraints (4) are an adaptation to the GARP of co-circuit inequalities
[9], which ensure even degree of the visited vertices with respect to the solution. Broadly speaking, they impose
that if a solution uses an odd number of edges incident with a set of vertices S, the solution uses at least one
additional edge of the cut-set of S. They further exploit the precedence relationship of the x variables with
respect to the y variables, which is captured by inequalities (5). Constraints (4), which were proposed by [15]
for the Maximum Bene�t Chinese Postman Problem, are a reinforcement of those used in [4, 7] for the Clustered
Prize-collecting Arc Routing Problem and the Privatized Rural Postman problem, respectively. Formulation
(1)�(6) involves 2|E| variables and a number of constraints of types (3) and (4) which is exponential on |V |.
Both families of inequalities can be separated in polynomial time [10, 4, 7, 30].

We next prove that in formulation (1)�(6) the integrality condition on the y variables can be relaxed, and
still obtain optimal solutions with binary values for the y variables.

Proposition 2.2 Let (x∗, y∗) be an optimal solution to formulation (1)�(5) where constraints (6) have been
relaxed to x∗e ∈ {0, 1}, 0 ≤ y∗e ≤ 1, ∀e ∈ E.Then, y∗e ∈ {0, 1}, ∀e ∈ E.

Proof: De�ne Gy = (Vy, Ey) where Ey = {e ∈ E : 0 < y∗e < 1}, and suppose that it is not empty. Then, it
must contain no tours, since otherwise, let T ⊆ Ey denote such a tour, and ∆ = min{y∗e : e ∈ T}. The solution
xs = x∗, and yse = y∗e −∆, ∀e ∈ T plus yse = y∗e otherwise, is feasible for (2)�(5) with the integrality conditions
on the x variables, and its value is at least as good as that of (x∗, y∗).

Therefore, if Ey is non-empty there exists u ∈ Vy which is a leaf in Gy. Let f = (u, v) be the only edge of
Ey incident with u, and consider the sets S = {u} and F = {e ∈ δ(u) : x∗e > y∗e}.

By de�nition, f ∈ F ⊆ δ(S). By constraints (5), x∗e = 1 for all e ∈ F , so x∗(F ) = |F |. Since f is the only edge
of Ey incident with u, we have y∗e = 0 for all e ∈ F \{f} and y∗(F ) = y∗f . Furthermore, (x∗−y∗)(δ(S)\F ) = 0,
because x∗e = y∗e for all e ∈ δ(S) \ F .
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Consider the following two cases:

(a) |F | odd. The left hand side of the constraint (4) associated with S and F takes the value (x∗− y∗)(δ(S) \
F )+y∗(F ) = y∗f , whereas the right hand side of the constraint takes the value x

∗(F )−|F |+1 = |F |−|F |+1,
so the constraint is violated.

(b) |F | even. Now |F | ≥ 2, since f ∈ F . Thus, ∅ 6= F ′ = F \{f} ⊂ δ(S) and |F ′| is odd. Hence, the constraint
(4) associated with S and F ′ must hold. Its right hand side takes the value x∗(F ′)−|F ′|+ 1 = 1, whereas
in the left hand we have (x∗−y∗)(δ(S)\F ′) = 1−y∗f < 1, and y∗(F ′) = 0. Thus the constraint is violated.

As a consequence, if (x∗, y∗) is optimal, Ey = ∅. Hence, y∗e ∈ {0, 1}, ∀e ∈ E. �

3 Dominance conditions and improved formulation for the GARP

Recall that E contains the edges inD plus additional non-demand edges connecting every pair u, v of vertices not
connected with an edge of D, with cost cuv equal to that of the shortest path in the original graph. Therefore:

Lemma 3.1 For any non-demand edge (u, v) ∈ R, cuv ≤ cus + csv for all (u, s), (v, s) ∈ E

Proof: Since all costs for non-demand edges (u, v) are de�ned as equal to that of the shortest path between u
and v in the original graph, triangle inequality holds for the costs of such edges by de�nition. �

Lemma 3.2 For any demand edge, (u, v) ∈ D, traversed in an optimal GARP solution it holds that cuv ≤
cus + csv for all (u, s), (v, s) ∈ D

Proof: No optimal GARP solution exists that traverses a demand edge (u, v) ∈ D with cuv > cus + csv, for
some (u, s), (v, s) ∈ D. Otherwise substituting (u, v) by the pair of edges (u, s), (v, s) would give a feasible
solution with a better value. �

Theorem 3.1 An optimal GARP solution exists satisfying the following properties:

(a) Exactly one demand edge of each cluster is traversed.

(b) No consecutive non-demand edges are traversed.

(c) No edge is traversed twice.

Proof: This proof would consist of repeatedly applying the triangle inequality. �

Note that without the vertex-disjoint assumption on the clusters, the above �rst assertion would not necessarily
hold.

Therefore, we can eliminate from G all demand edges whose costs do not satisfy the triangle inequality of
Lemma 3.2. By property (b) we can further simplify G by removing any non-demand edge within a cluster.
Thus, non-demand edges either connect vertices in di�erent clusters or are incident with the depot. That is,
E contains the edges in D whose costs satisfy the property of Lemma 3.2, plus additional non-demand edges
representing shortest paths in the original graph, which connect the depot with any other vertex and every pair
of vertices in di�erent clusters.
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In the simpli�ed graph we denote n = |V |, m = |E|, and p = |K|. Let also R = E \D, and Rd = δ(vd).

Assuming that simple tours are those in which no edge is crossed twice, we call simple alternating tour to
a simple tour through the depot with an odd number of edges alternating between demand and non-demand,
except for the two edges incident with the depot, which are both non-demand. We call alternating tour to the
union of (possibly only one) simple alternating tours which are vertex disjoint for all vertices but the depot.
Any alternating tour which traverses a demand edge of each cluster is a feasible solution to the GARP. A simple
alternating tour traversing a demand edge of each cluster is called alternating circuit. Note that alternating
circuits exist since any set of p demand edges from di�erent clusters, can be completed into such a solution as
non-demand edges exist connecting any pair of vertices in di�erent clusters.

Over the property (c) we can build an improved formulation for the GARP which only uses one set of binary
variables to indicate the edges that are traversed in the alternating tours. This is, let us de�ne variable xe
meaning whether the solution tour uses the edge e. Then, the formulation is as follows:

(Fx) min
∑
e∈E

cexe (7)

x(δD(v)) = x(δR(v)) v ∈ V \ {vd} (8)

x(Dk) = 1 k ∈ K (9)

x(δ(S)) ≥ 2 S = ∪k∈KS
Vk, KS ⊆ K, |KS | ≥ 2 (10)

xe ∈ {0, 1}, e ∈ E (11)

Constraints (8) play a double role. On the one hand, they ensure that feasible tours alternate between
demand and non-demand edges. On the other hand, they guarantee that in any solution all vertices have even
degree: two in the case of visited vertices and zero otherwise. The condition that exactly one demand edge
of each cluster is traversed, is enforced by equalities (9). Connectivity with the depot of solutions is implied
by constraints (10). These constraints are imposed for sets S consisting of at least two clusters, since for each
k ∈ K the equality (9) together with constraints (8) already imply that x(δ(Vk)) = 2. Note that no constraint
on the degree of the depot is imposed. This is, feasible solutions to (7)�(11) are not necessarily alternating
circuits as they may also be alternating tours.

Formulation (7)�(11) involves m variables, n − 1 constraints (8) and p constraints (9). The number of
constraints of types (10) is exponential on n.

Remark 3.1 Inequalities (10) can be written as δR(S) ≥ 2, because δD(S) = ∅ for all S = ∪k∈KS
Vk,KS ⊆ K.

It is clear that if x is feasible for formulation Fx then (x, y) with ye = 0 for all e ∈ E is also feasible for
Fxy. That is, the feasible domain for Fx is contained in the projection of the feasible domain for Fxy onto the
subespace de�ned by equations {ye = 0, e ∈ E}. The same applies to their linear programming (LP) relaxations.
Therefore, we have:

Proposition 3.3 Let XY = {(x, y) ∈ {0, 1}m × {0, 1}m | (x, y) satisfy (2) − (5)} and X = {x ∈ {0, 1}m |
x satis�es (8) − (10)} denote the domains of formulations of Fxy and Fx. Let also XY and X denote the
domains of their respective LP relaxations, and zxy and zx the optimal LP values for Fxy and Fx. Then,

• X ⊆ XY ∩ {ye = 0, e ∈ E}.

• X ⊆ XY ∩ {ye = 0, e ∈ E}.

• zxy = zx.
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4 The polyhedron associated with Fx

Let P be the convex hull of feasible solutions to formulation Fx:

P = conv{x ∈ {0, 1}m | x satis�es (8)− (10)}.

Theorem 4.1 dim(P ) = m− (n− 1)− p, where m = |E|, n = |V | and p = |K|.

Proof: The (n−1)+p equality constraints (8) and (9) are linearly independent. Thus, dim(P ) ≤ m−(n−1)−p.
To see that dim(P ) = m− (n− 1)− p we will �nd m− (n− 1)− p+ 1 a�nely independent points of P .

Let xC be the incidence vector of an alternating circuit C. For ease of notation we suppose that in C the
clusters are visited in the natural order 1, . . . , p. Thus, C can be expressed as vd − u1 − v1 − · · · − uk − vk −
· · · −up− vp− vd with (uk, vk) ∈ Dk, k ∈ K and (vk−1, uk) ∈ R. We will �nd a point associated with each edge
in E \Rd, except for the demand edges of C.

Consider the following cases:

case (a): e ∈ D0 = {e ∈ D | xCe = 0}.

Let us denote such an edge e = (ūk, v̄k) ∈ Dk, for some k ∈ K.

De�ne x∗ as the incidence vector of the alternating tour which di�ers from C in that the chain vk−1 −
uk − vk − uk+1 is substituted by the chain vk−1 − vd − uk+1. De�ne also x′ as the incidence vector of
the simple alternating tour vd − ūk − v̄k − vd. Then, x∗ + x′ ∈ P , as shown in Figure 2. In Figures 2, 3
and 4, edges traversed by C are in black, non-traversed edges in light gray, dashed lines mean paths with
possibly more than one edge, and clusters are represented by thick lines.

vd

uk−1

vk−1

ūk v̄k

uk vk

e uk+1

vk+1

xC

vd

uk−1

vk−1

ūk v̄k

uk vk

e uk+1

vk+1

xe = x∗ + x′

Figure 2: Case (a) in proof of Theorem 4.1.

In order to construct the �nal matrix, we will denote by xe = x∗ + x′ the solutions built this way.

Note that there are d0 = |D0| = |D| − p such points.

case (b): e ∈ R0 = {e ∈ R \Rd | xCe = 0}.

Then, e = (v̄r, ūs) with v̄r ∈ Vr and ūs ∈ Vs for some r, s ∈ K, r < s. De�ne x∗ as the incidence vector of
the alternating tour which di�ers from C in:

(i) The chain vr−1 − ur − vr − ur+1 is replaced by the chain vr−1 − vd − ur+1;

(ii) The chain vs−1 − us − vs − us+1 is replaced by the chain vs−1 − vd − us+1.

7



In addition, select ūr ∈ δD(v̄r), and v̄s ∈ δD(ūs). De�ne x′ as the incidence vector of the simple alternating
tour vd − ūr − v̄r − ūs − v̄s − vd.
We will refer to these solutions by ye = x∗+x′ ∈ P . A generic point of this type might be seen in Figure 3.

vd

ur−1

vr−1

ūr

v̄r

ur

vrur+1

vr+1

vs−1

us−1

vs

us

v̄s

ūs

vs+1

us+1

e

xC

vd

ur−1

vr−1

ūr

v̄r

ur

vrur+1

vr+1

vs−1

us−1

vs

us

v̄s

ūs

vs+1

us+1

e

ye = x∗ + x′

Figure 3: Case (b) in proof of Theorem 4.1.

Note that possibly v̄r is ur or vr, and also that ūs might coincide with us or vs.

The quantity of points in this case is r0 = |R0|.

case (c): e ∈ R1 = {e ∈ R \Rd | xCe = 1}.

In the case of e = (vk−1, uk) for some k ∈ K \ {1}, de�ne x∗ as the incidence vector of the alternating
tour that results from C when edge (vk−1, uk) is substituted by the chain vk−1 − vd − uk.
Let us denote by ze = x∗ ∈ P the solutions built this way. In Figure 4 an example of one of this points is
illustrated.

vd

uk−1

vk−1 uk vk

e

xC

vd

uk−1

vk−1 uk vk

e

ze = x∗ + x′

Figure 4: Case (c) in proof of Theorem 4.1.

The number of points provided by case (c) is r1 = |R1| = p− 1.

There are in total |R \ Rd| = (m− |D|)− (n− 1) points of types (b) plus (c). And thus, the total number
of points is m− (n− 1)− p.

All points considered so far are a�nely independent. To build the corresponding matrix, we �rstly partition
the set of edges in E by the sets E = D0 ∪ D1 ∪ R0 ∪ R1 ∪ Rd with D1 = {e ∈ D | xCe = 1} and d1 = |D1|.
The �rst two column blocks correspond to demand edges in D1 and D0. The next two, to edges in R0 and R1.
And the last, to those of Rd. The �rst row is associated with xC whereas the remaining rows are associated
with points xe, ye and ze. In the following matrices, the blocks denoted by A have 0-1 entries but no particular
structure. Their dimensions are indicated in the subindex while the superindex denotes the kind of points that
compose them. O and 1 denote matrices of appropriate dimensions with all-zero and all-one entries respectively,
and I the identity matrix.
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D1 D0 R0 R1 Rd

xC 11×p O1×d0 O1×r0 11×r1 1 0 . . . 0 1

xe Axd0×p Id0×d0 Od0×r0 Axd0×r1 Axd0×(n−1)

ye Ayr0×p Ayr0×d0 Ir0×r0 Ayr0×r1 Ayr0×(n−1)

ze 1(p−1)×p O(p−1)×d0 O(p−1)×r0 (1- I)
(p−1)×r1

Az(p−1)×(n−1)

Matrix 1

By subtracting the �rst row to each of the rows in the last block associated with ze we obtain

D1 D0 R0 R1 Rd

xC 11×p O1×d0 O1×r0 11×r1 1 0 . . . 0 1

xe Axd0×p Id0×d0 Od0×r0 Axd0×r1 Axd0×(n−1)

ye Ayr0×p Ayr0×d0 Ir0×r0 Ayr0×r1 Ayr0×(n−1)

ze O(p−1)×p O(p−1)×d0 O(p−1)×r0 −I(p−1)×r1 Âz(p−1)×(n−1)

Matrix 2

Now we can use the rows in the block associated with ze to cancel out the elements in Axd0×r1 and Ayr0×r1
and obtain Matrix 3 which is clearly is of full rank.

D1 D0 R0 R1 Rd

xC 11×p O1×d0 O1×r0 11×r1 1 0 . . . 0 1

xe Axd0×p Id0×d0 Od0×r0 Od0×r1 Âxd0×(n−1)

ye Ayr0×p Ayr0×d0 Ir0×r0 Or0×r1 Âyr0×(n−1)

ze O(p−1)×p O(p−1)×d0 O(p−1)×r0 −I(p−1)×r1 Âz(p−1)×(n−1)

Matrix 3

�

Theorem 4.2

• For all e ∈ R xe ≥ 0, is a facet of P .

• For all e ∈ Dk, k ∈ K with |Dk| ≥ 2, xe ≥ 0, is a facet of P .

• For all e = (vd, u) ∈ Rd, with u ∈ Vk, k ∈ K, |Dk| ≥ 2, xe ≥ 0, is a facet of P .

Proof: A slight modi�cation of the above proof can be used to prove that non-negativity inequalities are facets
of P .
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To see that xe ≥ 0 is a facet for e ∈ R \ Rd, the initial solution xC must be chosen in such a way that
xCe = 0, i.e. e is one of the edges of case (b). Then, the additional points are de�ned as above with the only
exception of the point associated with edge e, which is not used, thus obtaining in total m− (n− 1)− p a�nely
independent points satisfying xe = 0. When e ∈ Dk for some k ∈ K, we need the additional assumption that
Dk contains at least one more edge, since otherwise all feasible solutions satisfy xe = 1. Then, to prove that
when |Dk| ≥ 2, xe ≥ 0 with e ∈ Dk is a facet of P we again chose an initial solution with xCe = 0, so e is one
of the edges of case (a). Now, the additional m − n − p a�nely independent points are also de�ned as in the
proof of Theorem 4.1 with the only exception of the point associated with edge e, which is not used. When
e ∈ Rd, with e = (vd, u1) ∈ Rd ∩ δR(V1) and |D1| ≥ 2, the above initial solution and a�nely independent points
for any edge e′ = (u1, v1) ∈ D1 can also be used. Note that any initial solution with xCe′ = 0 also satis�es that
xCe = 0, and any set of m− (n− 1)− p a�nely independent points satisfying xe′ = 0, also satisfy xe = 0. When
e = (vd, u) ∈ δR(Vk) for some k > 1 with |Dk| ≥ 2, we proceed similarly with the only di�erence that the initial
solution xC must be chosen in such a way that cluster k is visited in the �rst place. Therefore, we have the
following result:

Theorem 4.3 Connectivity inequalities x(δ(S)) ≥ 2, with S = ∪k∈KS
Vk,KS ⊆ K, |KS | ≥ 2 are facets of P .

Proof: The proof of this theorem would be similar to that of Theorem 4.2 but we avoid it here for the sake of
brevity.

5 Valid inequalities

In this section we present several families of valid inequalities that can be used to reinforce the LP relaxation of
formulation (7)�(11). These families can be classi�ed in three di�erent types: connectivity, parity and matching.
For each type of inequalities we �rst present an adaptation to the GARP of some well-known family, and then
we introduce a new family, which reinforces and extends the original one. In particular we introduce stronger
connectivity inequalities, parity inequalities which generalize co-circuit inequalities [9], as well as matching-type
inequalities which generalize classical inequalities for odd subsets of vertices [21]. The section closes by relating
the generalized co-circuit inequalities to the generalized matching-type inequalities.

5.1 Connectivity Inequalities

In formulation Fx connectivity of each cluster with the depot is implied by equalities (9) together with constraints
(8), whereas connectivity with the depot of vertex subsets consisting of at least two clusters is implied by
constraints (10). When integrality conditions are relaxed, additional connectivity inequalities can be used to
reinforce the LP relaxation of Fx.

Observe �rst that constraints (10) are valid for a larger family of sets S than that de�ned by the union of
vertex sets of several clusters. In particular, we know that in any feasible solution any set containing all the
vertices of some cluster will be visited. Therefore, its cut-set must be at least 2. That is, when V \{vd} ⊇ S ⊇ Vk
for some k ∈ K the associated constraint (10) is valid for Fx even if S is not necessarily the union of the vertex
sets of several clusters. We call cluster-connectivity constraints to this extended family of inequalities (10).

Other families of connectivity constraints are aso valid for any vertex set, even if it does not fully contain
the set of vertices of any cluster. In particular,

x(δ(S)) ≥ 2xe S ⊆ V \ {vd}, e ∈ E(S) (12)
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are valid for Fx since they impose that the cut-set of any visited set of vertices is traversed at least twice.
Similar inequalities are well-known for other arc routing problems in which the set of vertices to be visited by
a certain route is not known in advance (see, for instance, [10, 4]). We call set-connectivity to the family of
inequalities (12). For sets S that do not fully contain any cluster vertex set, these inequalities are not implied
by the cluster-connectivity constraints. Thus, we will consider set-connectivity constraints associated with sets
S ⊆ V \ {vd} such that Vk \ S 6= ∅ for all k ∈ K.

Observe that the set-connectivity constraint associated with e ∈ E(S) for any set S ⊆ V \ {vd} can be
reinforced because of the alternating condition of optimal tours:

• When e ∈ Dk for some k and xe = 1, no other edge in Dk can be at value one. This has a double e�ect.
First, we can reinforce its right hand side and obtain the strengthened constraint

x(δ(S)) ≥ 2
∑

e∈E(S)∩Dk

xe. (13)

Now, for a given S and k with Vk \ S 6= ∅, all the edges in E(S) ∩ Dk yield the same constraint (13).
Constraints (13) are called D-set-connectivity inequalities.

We can further reinforce constraint (13) by eliminating some terms in the left hand side. When some edge
in E(S) ∩Dk is at value one, then the only edges in δ(Vk ∩ S) that can take value one are non-demand
ones. Thus, inequalities (13) can be reinforced to:

x(δD(S \ Vk)) + x(δR(S)) ≥ 2
∑

e∈E(S)∩Dk

xe. (14)

Constraints (14), the reinforced family of inequalities (13), are called D+-set-connectivity constraints.

• When e ∈ R, i.e. e ∈ δ(Vk : Vl) for some k, l ∈ K, and xe = 1, we can proceed similarly. First, no other
non-demand edge in (Vk : Vl) ∩ E(S) can be used, so the right hand side of (12) can be reinforced to

x(δ(S)) ≥ 2
∑

e∈ER(S)∩(Vk:Vl)

xe. (15)

Constraints (15) are called R-set-connectivity inequalities. Now, when some non-demand edge in (Vk :
Vl) ∩ ER(S) is used, no other non-demand edge in (Vk : Vl) can be used. That is, for S ⊆ V \ {vd} and
k, l ∈ K, with Vk \ S 6= ∅, Vl \ S 6= ∅ and ER(S) ∩ (Vl : Vl) 6= ∅ the inequality (15) can be reinforced to:

x(δD(S) + x(δR(S) \ (Vk : Vl)) ≥ 2
∑

e∈ER(S)∩(Vk:Vl)

xe. (16)

Constraints (16), the reinforced family of inequalities (15), are called R+-set-connectivity constraints.

5.2 Parity inequalities: Generalized Co-circuit Inequalities

For binary solutions, constraints (8) guarantee the parity of each vertex as well as of each vertex set. However,
when integrality is relaxed, even if the parity of each vertex is still guaranteed, the parity of subsets of vertices
may no longer hold. Therefore, co-circuit inequalities,

x(δ(S) \ F ) ≥ 1− |F |+ x(F ) S ⊂ V, F ⊆ δ(S), |F | odd (17)

can be used to cut-o� such solutions. Inequalities (17) can be extended to stronger valid inequalities for the
GARP, as we next see.
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Theorem 5.1 Let S ⊂ V be a given set of vertices and F ⊆ δ(S), F = F1 ∪ · · · ∪ Fr, with Fi ∩ Fj = ∅, i 6= j,
and r odd and such that every feasible GARP solution satis�es x(Fi) ≤ 1, i = 1, . . . , r. Then, the following
Generalized Co-circuit Inequality (GCI) is valid for Fx:

x(δ(S) \ F ) ≥ 1− r + x(F ). (18)

Proof: Let x denote the incidence vector of a feasible solution to Fx. If 1−r+x(F ) ≤ 0 the inequality trivially
holds. Otherwise, 1− r + x(F ) > 0 or, taking into account the integrality of the solution, 1− r + x(F ) ≥ 1, so

x(F ) ≥ r. On the other hand, by hypothesis, x(Fi) ≤ 1, i = 1, . . . , r, so we have x(F ) =
r∑
i=1

x(Fi) ≤ r, where

the �rst equality follows since Fi ∩ Fj = ∅, i 6= j. Thus, x(F ) = r (i.e. x(Fi) = 1, i = 1, . . . , r) and the right
hand side of the inequality takes the value 1. Since r is odd, the tour must traverse at least one additional edge
in the cut-set of S. Given that the solution already traverses one edge of each Fi and the edges in each Fi are
mutually incompatible, the additional traversed edge must belong to δ(S) \ F , and the inequality holds. �

Remark 5.1

• Observe that the hypotheses of Theorem 5.1 are natural in the context of the GARP. For instance, for a
given S ⊂ V if we de�ne Fi = δD(S ∩ Vi), i ∈ K, it holds that Fi ∩ Fj = ∅, for all i 6= j and x(Fi) ≤ 1 in
every feasible GARP solution.

• It is clear that when |Fi| = 1, i = 1, . . . , r, GCIs reduce to co-circuit inequalities (17). However, for
the general case when |Fi| > 1 for some i, the GCI dominates the classical co-circuit inequality. Note
that, in fact, when |Fi| > 1 for some i the classical co-circuit inequality will never be violated, since
1− |F |+ x(F ) ≤ 1− |F |+ r ≤ 0, because r < |F |.

• The GCI (18) is valid even if the Fi's are not pairwise disjoint. In this case, if xe = 1 for some e ∈ Fi∩Fj ,
i 6= j, then x(F ) < r, so the GCI is not tight.

5.3 Matching type inequalities: Generalized Matching Inequalities

Another family of valid inequalities can be derived from the fact that, in alternating circuits, non-demand edges
non-incident with the depot de�ne matchings on the graph induced by the visited vertices excluding the depot.

Theorem 5.2 Let S = {v1, . . . vr} ⊂ V \ {vd}, and r odd. Then the following inequality is valid for P :

x(ER(S)) ≤ |S| − 1

2
. (19)

Proof: Since any feasible solution alternates between demand and non-demand edges, the set of non-demand
edges is a matching on the subgraph induced by the set of visited vertices but the depot. Therefore, (19) is
valid. �

In the following, inequalities (19) will be referred to as Matching Inequalities

The set of demand edges traversed in a feasible tour also de�nes a perfect matching in the graph induced
by visited vertices but the depot. Thus, even though similar inequalities applied to S ⊆ Vk would be also valid
for the GARP, they have not been introduced because inequalities 9 are stronger.

When several vertices of S belong to the same cluster, inequality (19) may be very loose. Thus one may
wonder if valid inequalities of this type can be obtained, in which the right hand side depends on the number
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of clusters involved in set S, say r. Note that when several vertices of S belong to the same cluster, the tighter
inequality x(ER(S)) ≤

⌊
r
2

⌋
need not be valid, as illustrated in Figure 5 for S = {u1, u2, u3, u4}.

C3 u3

u4

C2

u2

u1

C1

Figure 5: Rationale for Generalized Matching Inequalities.

In particular, two non-demand edges may connect clusters C1, C2 an C3. This is posible, because the
depicted solution traverses demand edge (u3, u4) connecting two vertices of S.

Therefore, if S contains a subset of vertices Si, all of them belonging to the same cluster and no demand
edge connecting two vertices of Si is used, then the cut-set x(δ(Si)) may contain at most one non-demand edge.
However, if a demand edge connecting two vertices of Si is used, then the cut-set x(δ(Si)) may contain up to
two non-demand edges. This idea is formalized below.

Theorem 5.3 Let S ⊂ V \ {vd} be a set such that S = S1 ∪ · · · ∪ Sr with Si ⊆ Vi, and r < p odd. Then, the
following Generalized Matching Inequality (GMI) is valid for the GARP:

x(ER(S)) ≤ r − 1

2
+ x(ED(S)). (20)

Proof: Let x denote the incidence vector of a feasible solution to Fx.

When x(ED(S)) = 0 inequality (20) is valid since it must hold that x(δR(Si)) ≤ 1, i = 1, . . . , r.

Let us then assume that x(ED(S)) > 0, and rewrite inequality (20) as

2x(ER(S)) ≤ r − 1 + 2x(ED(S)).

We have ∑
u∈S

x(δR(u)) = 2x(ER(S)) + x(δR(S)),

and ∑
u∈S

x(δD(u)) = 2x(ED(S)) + x(δD(S)).

Therefore, by constraints (8), 2x(ER(S)) + x(δR(S)) = 2x(ED(S)) + x(δD(S)), so

2x(ER(S)) = 2x(ED(S)) + x(δD(S))− x(δR(S)) ≤
≤ 2x(ED(S)) + x(δD(S)). (21)

On the other hand, since Si ⊆ Vi, we have

13



• x(ED(Si)) + x(δD(Si)) ≤ x(Di) = 1, and

• x(δD(Si : Sj)) = 0, i 6= j.

Therefore, x(ED(S)) + x(δD(S)) ≤
r∑
i=1

[x(ED(Si)) + x(δD(Si))] ≤ r.
As a consequence, x(δD(S)) ≤ r − 1 because we are assuming that x(ED(S)) > 0.

Finally, from (21) we have

2x(ER(S)) ≤ 2x(ED(S)) + x(δD(S)) ≤ 2x(ED(S)) + r − 1,

and the result follows. �

C3 u3

u4

C2

u2

u1

C1

2/3

1/3

1/31/3

1/3

1/3

2/3

1/3

1/3

Figure 6: Violated Generalized Matching Inequality. S1 = {u1}, S2 = {u2}, S3 = {u3, u4}

Figure 6 gives an example of a GMI violated by a (fractional) solution to the linear programming relaxation
of Fx.

As a particular case of GMIs, when |S| = r we obtain the matching inequalities (19), since in this case
|Si| = 1, i = 1, . . . , r so ED(S) = ∅ and thus x(ED(S)) = 0.

The following result relates GCIs and GMIs. We see that they are equivalent with respect to the domain of
feasible solutions to the LP relaxation of Fx.

Theorem 5.4 Let S = S1 ∪ · · · ∪ Sr ⊂ V \ {vd} be a given set of vertices with Si ⊆ Vi, i = 1, . . . , r, and r < p
odd. De�ne the set F = F1 ∪ · · · ∪ Fr with Fi = δD(Si). Then, any feasible solution to the relaxed problem, x,
violates the generalized matching inequality if and only if the generalized co-circuit inequality associated with F
is violated by x.

Proof: By de�nition of Fi, x(Fi) ≤ x(Di) ≤ 1.

In addition,

x(F ) =

r∑
i=1

x(Fi) =

r∑
i=1

x(δD(Si)) = x(δD(S)) thus x(δ(S) \ F ) = x(δR(S)).

By constraints (8),
∑
u∈S

x(δR(u)) =
∑
u∈S

x(δD(u)).

14



We also have ∑
u∈S

x(δR(u)) = 2x(ER(S)) + x(δR(S)),

and ∑
u∈S

x(δD(u)) = 2x(ED(S)) + x(δD(S)).

Therefore, 2x(ER(S)) + x(δR(S)) = 2x(ED(S)) + x(δD(S)), so

x(δR(S)) = 2x(ED(S)) + x(δD(S))− 2x(ER(S)).

Thus,
x(δ(S) \ F ) = x(δR(S)) = 2x(ED(S)) + x(δD(S))− 2x(ER(S)). (22)

On the other hand, 1 − r + x(F ) = 1 − r + x(δD(S)), which by adding and subtracting 2x(ED(S)) can be
rewritten as

1− r + x(F ) = 2x(ED(S)) + x(δD(S))− 2

(
r − 1

2
+ x(ED(S))

)
. (23)

By (22) and (23) we have that the GMI associated with S is violated by x, if and only if x(ER(S)) > r−1
2 +

x(ED(S)), and the result follows. �

In the simpler case when all vertices in S belong to di�erent clusters, ED(S) = ∅. So, if we de�ne Fi = δD(vi),
i = 1, . . . , r, we have the following:

Corollary 5.1 The matching inequality associated with S is violated by a feasible solution x if and only if the
generalized co-circuit inequality associated with F is also violated by x.

6 Separation of inequalities

Next we describe separation algorithms for the di�erent families of inequalities presented above. Throughout
this section x ∈ [0, 1]m denotes the vector we want to separate. And from now on, let G = (V,E) denote the
support graph of x. This means that in the following, E are the subset of edges from the original graph with
xe > 0, and V = V (E) the subset of vertices incident with some of those edges.

6.1 Connectivity inequalities

The following separation procedure is exact and similar to the one used by other authors to separate constraints
(12) for other arc routing problems [12, 3, 4, 13]. It all starts by computing a graph Gk(Vk, Ek) with the
depot, and a vertex for each cluster in the original graph. Weighted edges Ek are de�ned with the sum of all x
corresponding to edges connecting each couple of clusters in the original graph, and doing so with the depot.

Each connected component of Gk but the one with the depot de�nes a violated inequality (10).
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When Gk is connected, the process follows by computing a mincut tree to check whether the value of the
mincut is smaller than two minus an ε = 0.05. If found, the set of vertices not containing the depot reveals a
new violated inequality (10).

Once no violated inequality is found with the heuristic procedure tried so far, the process starts again with
G instead of Gk. This leads to �nd out if some inequality of type (13) or (15) is violated by the current x.

6.1.1 D-set-connectivity and R-set-connectivity constraints

The same procedure above can be used to separate D-set-connectivity and R-set-connectivity constraints (13)
and (15) and their reinforced versions (14) and (16). For each edge e ∈ E, in the solution graph, we identify
the minimum cut between the depot and edge e, δ(S), and we consider two di�erent cases.

Firstly, for each cluster with some edge in E(S) we check if the associated D-set-connectivity inequality (13)
is violated. That is, whether

x(δ(S)) < 2
∑

e∈Dk∩E(S)

xe.

If so, the reinforced D+-set-connectivity inequality (14) is also violated. Otherwise, an additional check is
done to see whether it is the reinforced D+-set-connectivity inequality (14) which is violated,

x(δD(S \ Vk)) + x(δR(S)) < 2
∑

e∈Dk∩E(S)

xe.

After that, when none inequality is found so far, for each pair of clusters having vertices in S, say Dk and
Dl, we check if the associated R-set-connectivity constraint is violated,

x(δ(S)) < 2
∑

e∈ER(S)∩(Vk:Vl)

xe.

If it certainly is, the reinforced R+-set-connectivity inequality (16) is also violated. Otherwise, again an
additional check is performed to see whether the reinforced D+-set-connectivity inequality (16) is violated,

x(δD(S)) + x(δR(S) \ (Vk : Vl)) < 2
∑

e∈ER(S)∩(Vk:Vl)

xe.

The procedure presented is exact for D-set-connectivity and R-set-connectivity constraints (13) and (15),
but it is only heuristic for their reinforced versions (14) and (16).

6.2 Parity inequalities

Next, the separation methods for valid inequalities enforcing the parity of all vertices in the solution tour for
the problem are shown. This involves the co-circuit and the matching constrains seen above.
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6.2.1 Co-circuit inequalities

The exact method for separating co-circuit inequalities (17) in polynomial time follows the spirit of other exact
separation procedures proposed for separating blossom inequalities [30].

For separating these inequalities some set S has to be found. As in the previous cases, it can be separated
heuristically by �nding the connected components in the solution graph G induced by edges with values xe > ε,
where ε is a given parameter. This leads to de�ne candidate sets S, that once obtained, we need to �nd the odd
subset of its cut, F . To achieve so, see that for a given set S ⊂ V and a F ⊆ δ(S) with |F | odd, the associated
co-circuit inequality

x(δ(S) \ F )− x(F ) + |F | ≥ 1,

might be rewritten as

∑
e∈δ(S)\F

xe +
∑
e∈F

(1− xe) ≥ 1. (24)

Thus, to solve the separation problem having a possible S, we must �nd some F in its cut that minimize
the left hand side of (24) relative to a given vector x.

Note that the contribution of an edge e ∈ δ(S) to the left hand side of (24) is either xe when e ∈ δ(S) \F or
1− xe when e ∈ F . Then, for a given S, the smallest possible value of the left hand side of (24) is obtained for
the set F = {e ∈ δ(S) | 1− xe ≤ xe} = {e ∈ δ(S) | xe ≥ 0.5}. When F de�ned this way is not odd, the smallest
increment in the left hand side that guarantees that F is odd is obtained either by removing from or adding to
one edge. Therefore, the smallest increase obtained is min{min{xe | e ∈ δ(S) \ F},min{1− xe | e ∈ F}}.

Therefore, the separation method for inequalities (24) consists of identifying the set S such that δ(S) contains
the best possible set F . This is solved by computing the tree of mincuts of G, relative to the capacities vector
given by xe if xe < 0.5 and by 1− xe otherwise.

Once the tree is obtained, we evaluate all its mincuts, since the smallest value of the left hand side of
inequality (24) after making F odd is not necessarily associated with the smallest mincut of the tree.

6.2.2 Generalized co-circuit inequalities

We use a heuristic to separate violated generalized co-circuit inequalities (18), via their associated generalized
matching inequalities (20) as indicated by Theorem 5.4 (see subsection 6.3.2 below).

6.3 Matching type inequalities

Firstly, the separation procedure for the simple matching inequalities (19) is detailed. And after that, we
proceed by describing the method for the generalized ones, (20).
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6.3.1 Separation of matching inequalities

In general, for a given solution x with x(δ(u)) = 1 for all u ∈ V , matching inequalities x(E(S)) ≤ |S|−1
2 are

equivalent to inequalities x(δ(S)) ≥ 1, being S ⊂ V , with |S| odd. It is well-known that the separation problem
for this later expression can be solved with the algorithm of Padberg-Rao [31], which �nds a minimum odd
cut-set with respect to the capacities vector x. Nevertheless, these two inequalities are not equivalent when
exists x(δ(u)) < 1 for some u ∈ V .

In the case of the GARP, matching inequalities (19) only concern non-demand edges, but in GR, the subgraph
of the solution graph G induced by non-demand edges, the condition x(δ(u)) = 1 does not necessarily hold for
all u. An example has been shown in Figure 6, on page 14.

However, we can transform x and GR into an equivalent vector and induced graph where all vertices have
degree 1. Then the violated inequalities (19) are equivalent to violated odd cut-set inequalities, and thus can
be separated with the Padberg-Rao algorithm.

In order to build this transformation, the connected components of GR must be computed �rstly. Let
Ht(Vt, Et) denote these components, for t ∈ T . Observe that without loss of generality we can restrict the
search of violated inequalities (19) to those associated with sets S ⊆ Vt. Then, for each connected component
Ht the following procedure is performed:

1. If x(Et(Vt)) >
|Vt|−1

2 , then the inequality (19) associated with S = Vt is violated.

2. Else, we check whether the condition x(δ(u)) = 1 holds for all u ∈ Vt in Ht. If it does, then odd cut-set
inequalities and inequalities (19) are equivalent in Ht. Thus, the outcome of the Padberg-Rao algorithm
applied to Ht with the capacities vector inherited from x indicates whether a violated inequality (19)
exists for some S ⊂ Vt.
When x(δ(u)) < 1 for some u ∈ Vt, then inequalities x(δ(S)) < 1 and x(ER(S)) > |S|−1

2 are not equivalent
in Ht. In this case we de�ne an �extended� component H ′t where these two inequalities are equivalent for
all S ⊆ Vt. The set of vertices is V ′t = Vt ∪ {wt}, where wt is a new vertex. Then, for all u ∈ Vt with
x(δ(u)) < 1 we de�ne a new edge (u,wt) of capacity xtuwt = 1− x(δ(u)). All other previous edges inherit
their capacity, i.e. xte = xe for all e ∈ Et. Note that xt(E(S)) = x(E(S)), for S ⊆ Vt. The outcome of
the Padberg-Rao algorithm applied to the extended component indicates if xt(δ(S)) < 1 for some S ⊆ Vt.
Observe that if a violated odd cut-set inequality exists for S with wt ∈ S, the inequality is also violated
for S′ = (Vt ∪{wt}). Since xt(δ(u)) = 1 for all u ∈ Vt, the outcome of the Padberg-Rao algorithm applied
to the extended component also indicates if x(ER(S)) = xt(E(S)) > |S|−1

2 for some S ⊆ Vt.

Again, the computational burden of this exact procedure can be reduced by applying it onto the connected
components of the subgraph of GR induced by edges e ∈ ER with values xe > ε where ε is a given parameter.

6.3.2 Generalized matching inequalities

We apply a heuristic which reduces the separation of generalized matching inequalities (20) in the solution graph
G(V,E) to the separation of matching inequalities (19) in a graph of smaller size, G′, in which some vertices
and edges have been merged. Only pairs of vertices in the same component such that (u, v) /∈ E can be merged.
This means that a pair u, v ∈ Vk for some k ∈ K, is candidate for merging if either (u, v) ∈ Dk and xuv = 0, or
no edge connecting u and v exists in the original graph.

A candidate pair or vertices is selected for merging if, either a third vertex i exists such that xui > 0 and
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xvi > 0, or another pair of vertices of the same cluster out of Dk, say i, j ∈ Vl, l 6= k exist such that xui > 0
and xvj > 0.

Merging two vertices i, j consists of replacing vertices i and j by one single vertex l and assigning to it the
union of the cuts, δ(l) = δ(i)∪ δ(j). When merging these cuts, if i belongs to the same cluster as u and v, both
edges (i, u) and (j, u) ∈ Dk. Therefore, the merged edge (l, u) has both end-vertices in the same cluster and is
declared as a demand edge. In contrast, when u belongs to a di�erent cluster from that of i and j, both edges
(i, u) and (j, u) are non-demand. Therefore, the merged edge (l, u) (which connects the same pair of clusters as
both (i, u) and (u, j)) is declared as non-demand.

The heuristic sequentially explores all clusters. Within each cluster it merges all pairs of candidate vertices
satisfying any of the two criteria above. It is repeated again with the resulting shrunk graph, until no more
vertices can be merged. Let x and G = (V ,E) respectively denote the weights vector and shrunk graph at the
end of the process. Let also V k, k ∈ K denote the shrunk vertex sets of the clusters. For S ⊂ V , its shrunk
vertex set is denoted by S ⊂ V . For u ∈ V , its �original� vertex set is denoted by Su ⊂ V .

Observe that x(V k : V k′) = x(Vk : Vk′), for all k, k′ ∈ K, k 6= k′. Note also that, for u ∈ V , it holds that
x(ED(Su)) = 0, since only pairs (i, j) /∈ E(x) can be merged. Therefore, we have

Theorem 6.1 Let S ⊂ V be the vertex set of a matching inequality (19) violated by x in G. Then, the GMI
(20) associated with S is violated by x in G.

Let S = {u1, . . . , ur} ⊂ V with h(ui) 6= h(uj), for i 6= j, i.e. in di�erent original clusters. For i = 1, . . . , r,
let also Fi = δD(Sui). By Theorem 5.4 we also have the following corollary.

Corollary 6.1 If the matching inequality (19) associated with S is violated by x in G, the GCI (18) associated
with F = F1 ∪ · · · ∪ Fr is violated by x in G .

7 A solution algorithm for the GARP

In this section we present a solution algorithm for solving the GARP using formulation Fx. It has two phases: the
�rst one is an iterative LP based cutting plane algorithm, which starting from a relaxed formulation reinforces
at each iteration the current formulation by adding valid inequalities violated by the current LP solution. The
second phase is only applied when a provable optimal solution has not been found in the �rst phase, and
resorts to CPLEX for solving exactly formulation Fx. For the �rst phase initially we consider the relaxation of
formulation Fx which includes constraints (8) and (9), implying thus the connectivity constraints x(δ(Vk)) = 2
for each cluster k ∈ K, but does not include any connectivity constraint (10). This formulation is further
enhanced with the family of inequalities

x(Vk : Vl) ≤ 1 k, l ∈ K, k 6= l (25)

which are valid for any alternating tour.

As before, let G(V,E) denote the support graph associated with the solution x at any iteration of the cutting
plane algorithm. The strategy we use for �nding violated inequalities is the following (using ε ∈ {0, 0.05, 0.1}
in all cases):
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Step 1: Cluster-connectivity inequalities of type (10) for S = ∪k∈KS
Vk, KS ⊆ K (see Section 6.1). We operate

on the graph Gk with its weighted edges as capacities. We �rst identify the connected components in the
graph induced by edges with xe > ε. Then, if no violated inequality (10) has been found, we apply the
exact separation procedure by �nding the tree of min-cuts relative to the capacities vector.

Step 2: General case of cluster-connectivity inequalities (10) and reinforced set-connectivity inequalities (14) and
(16) (see Section 6.1.1). We proceed as in Step 1, with the only di�erence that we work on the graph
G relative to the capacities given by x. For each candidate set S, we check whether Vk ⊆ S for some
k ∈ K to �nd out the type of inequality it may produce: a violated inequality (10) in the former case or
set-connectivity in the latter one.

Step 3: Co-circuit inequalities (17). We proceed as indicated in Section 6.2. We apply the heuristic �rst, and only
if it fails we apply the exact separation.

Step 4: Matching inequalities (19). We proceed as indicated in Section 6.3.1. As before, we apply the heuristic
�rst, and only apply the exact separation when it fails.

Step 5: General matching inequalities (20). We proceed as indicated in Section 6.3.2.

A violated inequality of any kind is added to the current LP only if its violation is greater than or equal to
a given parameter that we have �xed at 0.1.

When violated inequalities are no longer found and the current LP solution is not integer we apply the second
phase in which CPLEX is used for solving exactly formulation Fx reinforced with the violated inequalities found
in the �rst phase. Inequalities (8) guarantee that integer solutions to the current formulation satisfy the parity
constraints. However, it is possible that integer solutions to the current reinforced formulation do not satisfy all
connectivity constraints (10) associated with sets S which are the union of vertex sets. For this reason, in the
second phase we use as callback function for CPLEX a separation routine for such connectivity constraints (the
same that is used in Step 1), which is only applied at the nodes of the search tree where an integer solution is
found. In this way the second phase terminates with an integer solution satisfying all connectivity constraints
(10) which is optimal for formulation Fx.

8 Computational experiments

Next we describe the computational experiments we have run and we report on the results obtained. The
programs were coded in IBMr ILOGr Script and run with the IBM ILOG CPLEX Optimization Studio
Version 12.4. Default parameters were used. All the experiments were run on an Intel(R)Core(TM)2 Quad
CPU Q9400 at 2.66GHz and 8 GB of RAM using a 64-bit Operating System.

Three sets of instances have been used in these computational experiments. The �rst two contain well-known
instances used as benchmarks for numerous arc routing problems. As might be seen in the next section, for all
these instances an optimal solution was already found without the need of the branch and cut algorithm. The
cutting plane was enough to solve these instances in 677 seconds. For this reason a new set of instances was
generated specially for the GARP. Thus, the third set contains some new larger instances. Later in this section,
the steps to build these data will be described.

8.1 Instances already existent in the literature

The �rst two sets are:
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S1 The 118 clustered prize-collecting arc routing problem (CPARP) instances used by [4] for the clustered
prize-collecting arc routing problem and in [13] for the windy prize-collecting arc routing problem.

S2 The 40 general routing problem (GRP) instances of http://www.uv.es/corberan/instancias.htm used in
[13] for the windy prize-collecting arc routing problem.

The 118 instances of the set S1 are divided into �ve groups. The �rst group contains two instances, AL-
BAIDAA and ALBAIDAB, [17]. The second group, instances labeled P, contains the 24 instances from [18].
The last three groups contain instances from [26]: 36 instances with vertices of degree 4 (labeled D), 36 grid
instances (labeled G), and 20 randomly generated instances (labeled R).

The 40 instances of the group S2 are divided into three groups. Sets ALB and MAD contain 15 instances
each, generated from the street networks of the Spanish towns of Albaida and Madrigueras, [11]. The set GRP
contains 10 randomly generated General Routing Problem instances [14].

Like in other works where instances in sets S1 and S2 have been used in a clustered context, the clusters have
been set to be the connected components induced by the required edges of the original RPP or GRP instance.
In all cases, vertex 1 has been taken as depot.

8.2 Instances specially generated for this problem

All instances of the group S3 have 300 vertices. They where generated following the next steps:

1. Start with an Euclidean bidimensional space sizing 10000×10000 points.

2. Set the vertices at randomly chosen locations with minimum distance of 50 points between them.

3. For each vertex, add a random quantity of edges connecting it to others with distance under 500. These
degrees follow a uniform distibution, |δ(v)| ∼ U [6, 30]. As costs, the integral part of their distances are
taken.

4. Add edges to connect the distinct connected components obtained so far. These edges are created from a
random quantity, t, of minimum spanning trees among these connected components. This quantity follows
a uniform distribution t ∼ U [10, 50], too.

5. Purge the graph by deleting all edges uv if cuv < 0.98(cuw + cwz) for some vertex w. This, in order to
avoid almost-parallel edges.

At this point we have already created the graph. Continue to de�ne the clusters.

6. Choose p centroids, one for each new cluster. Each centroid is a randomly selected vertex, but neighbours
of any previously selected as centroid.

7. Assign the rest of vertices to their nearest centroid. This might lead to have more than p clusters since
one node may not be connected to its nearest centroid.

8. De�ne as demand edge, each one already existent with both end-vertices in the same cluster.

9. Once at this point, for each node with δD(v) = ∅ either:

• If there is no edge joining the node with its nearest centroid, add a new edge between it and the
nearest node already belonging to some cluster.
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• If it is an isolated centroid, join it to the nearest cluster without creating new edges, but de�ning the
corresponding edge as demand one. This might reduce the number of clusters.

By this mean, 10 instances with p ' 50 have been created, and 10 more with p ' 30.

In Table 1, information on all is depicted in groups according to their characteristics and sizes. Column
under Instances gives the number of instances in the group, followed by the numbers of vertices n, edges m,
demand edges |D|, and clusters, p. When all values do not coincide, minimum and maximum values in the
group are given.

Instances n m |D| p

ALBAIDA 2 90�102 144�160 88�99 10�11
P 24 7�50 10�184 4�78 2�8
D16 9 16 31�32 3�16 2�5
D36 9 36 72 10�38 5�12
D64 9 64 128 27�75 5�15
D100 9 100 200 50�121 9�23
G16 9 16 24 3�13 4�6
G36 9 36 60 11�35 5�10
G64 9 64 112 24�68 4�15
G100 9 100 180 41�113 4�21
R20 5 20 37-75 3�7 4�5
R30 5 30 70-112 7�11 5�7
R40 5 40 82-203 8�18 6�9
R50 5 50 130-203 13�20 6�12

ALBA_3 5 116 174 44�57 16�24
ALBA_5 5 116 174 88�92 9�18
ALBA_7 5 116 174 113�122 2�9
GRP 10 116 174 52�126 5�35
MADR_3 5 196 316 86�108 34�43
MADR_5 5 196 316 147�163 21�27
MADR_7 5 196 316 211�238 2�7

GARP50 10 300 43000�45000 447�522 46�52
GARP30 10 300 43000�45000 567�613 25�36

Table 1: Summary of instances.

8.3 Numerical results

Throughout, z0 denotes the value of the solution to the initial LP formulation, zr the lower bound obtained
after the cutting plane algorithm, and z∗ denotes the optimal integer value.

In Table 2 results for sets S1 and S2 are depicted. As already said, all instances of these sets where solved
optimally with the cutting plane algorithm only. Thus, in Table 2, zr = z∗. For this reason, columns show
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the deviation from the solution to initial formulation with no inequalities added, to the �nal solution of the
cutting plane algorithm, that is, the integer optimal solution for these instances. These deviations are printed
in absolute, z∗ − z0, and relative terms, (z∗ − z0)/z∗. The average number of iterations and the average time
for each group may be seen in last two columns.

z∗ − z0 (z∗ − z0)/z∗

avg max avg max iterations time (s)

ALBAIDA 1224.00 1592 0.29 0.37 75.50 8.338
P 5.08 32 0.05 0.24 5.13 0.222
D16 6.00 18 0.01 0.03 1.67 0.055
D32 40.56 100.5 0.08 0.19 11.78 0.420
D64 55.06 149 0.08 0.24 11.22 0.831
D100 126.58 209 0.15 0.26 51.33 5.905
G16 0.22 1 0.02 0.08 2.00 0.068
G32 1.00 3 0.05 0.17 5.22 0.237
G64 3.11 7 0.13 0.32 20.67 1.418
G100 4.81 11 0.14 0.32 43.44 4.984
R20 0.00 0 0.00 0.00 1.00 0.060
R30 193.40 967 0.01 0.03 2.00 0.124
R40 1392.70 5662 0.04 0.16 1.80 0.186
R50 2914.20 5439.5 0.08 0.12 9.60 0.451

ALBA3 735.40 606 0.15 0.18 41.40 3.341
ALBA5 936.27 1332 0.22 0.33 104.00 17.005
ALBA7 791.60 1948 0.18 0.43 75.60 7.417
GRP 955.70 1358 0.19 0.29 64.40 7.943
MADR3 411.67 372.5 0.06 0.09 37.60 17.553
MADR5 978.00 1427.5 0.19 0.26 60.40 29.996
MADR7 374.00 950 0.13 0.36 44.20 7.381

Table 2: Summary of results for sets S1 and S2.

Results for the larger instances of set S3 are shown in Table 3. The �rst column, with the X, gives the
number of instances for which an optimal solution was found with the cutting plane algorithm. Next four
columns give the average and maximum deviation of the solution to the initial formulation z0 and the �nal
lower bound zr, from the optimal value z∗ in relative terms. Follow the averages of the number of iterations
carried out and the times in seconds spent in the LP, tzr . After that, averages of nodes explored in the search
tree by the exact algorithm and the total times, tz∗ also in seconds, are shown.

(z∗ − z0)/z∗ (z∗ − zr)/z∗
X avg max avg max iterations tzr (s) nodes tz∗ (s)

GARP50 1 0.1249 0.1744 0.0000 0.0000 245 4196.045 391 4460,388
GARP30 2 0.1957 0.3358 0.0090 0.0247 366 7420.331 790 8673.278

Table 3: Summary of results for set S3.

In group GARP50 just one was solved without the branch and cut procedure. However, all nine other
reached the optimal value as the lower bound. Thus, for these cases the task done by the branch and cut part
was getting the �nal integer values for the variables. On the other hand, note also that the time to solve the
ten instances of GARP30 set required almost one whole day.

Nevertheless, the e�ectiveness of the cuts can be appreciated by comparing the values in the entries of
columns (z∗ − z0)/z∗ and (z∗ − zr)/z∗, which illustrate the reduction in the deviation of the lower bound, with
respect to the optimal value, initially and at termination of the cutting plane algorithm.
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The number of violated inequalities found by the separation procedures are summarized in Table 4.

connectivity co-circuit matching

heuristic exact heuristic exact heuristic extended

ALBAIDA 20 424 � � � �

P 34 115 � � � �

D16 � 8 � � � �

D36 13 122 � 5 � �

D64 14 129 � � � �

D100 58 941 20 80 2 1

G16 1 5 4 2 1 1

G36 5 52 8 2 � �

G64 22 404 � � � �

G100 45 962 16 26 2 1

R20 � � � � � �

R30 1 4 � � � �

R40 2 4 � � � �

R50 5 50 � 8 � 1

ALBA3 37 424 4 � � �

ALBA5 56 1219 � � � �

ALBA7 6 615 � � � �

GRP 79 1105 16 11 � 2

MADR3 32 379 20 2 � �

MADR5 38 1021 � � � �

MADR7 21 332 � � � �

GARP50 283 9894 80 206 � 4

GARP30 409 21194 10 30 � �

Table 4: Total number of di�erent types of inequalities.

Columns under connectivity indicate the number of connectivity inequalities separated with the heuristic and
with the exact algorithm. The next two columns, co-circuit give the number of co-circuit inequalities separated
by heuristic methods and by the exact one. Heuristic methods include the one used in Aráoz, Fernández and
Franquesa [4], and the procedures that work on the shrunk graph induced by the solution. The columns under
matching show matching inequalities separated by the heuristic, and the inequalities separated when considering
the generalized matching inequalities heuristically. As can be seen in Table 3, most of inequalities added during
the iterative procedure were connectivity inequalities, although some of the other types were also used.
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