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Abstract

This paper presents a numerical study of the gravity-driven motion of single bubbles and bubble
swarms through a vertical channel, using High-Performance Computing (HPC) and Direct
Numerical Simulation (DNS) of the Navier-Stokes equations. A systematic study of the wall
effect on the motion of single deformable bubbles is carried out for confinement ratios CR =
{2, 4, 6} in both circular and square channels, for a broad range of flow conditions. Then, the
rising motion of a swarm of deformable bubbles in a vertical channel is researched, for void
fractions α = {8.3%, 10.4%, 12.5%} and CR = {4, 6}. These simulations are carried out in the
framework of a novel multiple marker interface capturing approach, where a conservative level-
set function is used to represent each bubble. This method avoids the numerical and potentially
unphysical coalescence of the bubbles, allowing for the collision of the fluid particles as well as
long time simulations of bubbly flows. Present simulations are performed in a periodic vertical
domain discretized by 2× 106 control volumes (CVs) up to 16.6× 106 CVs, distributed in 128
up to 2048 processors. The collective and individual behavior of the bubbles are analyzed in
detail.

Keywords: bubble swarm, level-set method, unstructured meshes, DNS, HPC

1 Introduction

Bubbly flows are relevant in both natural and industrial processes. Some examples can be
found in technological applications, which include steam generators in nuclear plants, unit
operations of the chemical engineering, such as bubble reactors and absorption columns, where
the bubbles provide a high interfacial area per unit volume, allowing for high heat and mass
transfer rates. These applications have impulsed a large number of theoretical, computational
and experimental research of bubbly flows, however, although these advances many complex
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problems remain unsolved [9, 12]. Hence, the primary motivation of this study is to contribute
to the understanding of this type of flows.

The physical description of bubbly flows leads to a complex and highly non-linear problem.
Indeed, the use of exact analytical solutions is restricted to the most simple cases, whereas
the design of experiments is difficult due to limitations in optical access. On the other hand,
the development of computers has promoted the combination of High-Performance Computing
(HPC) and Direct Numerical Simulation (DNS) of the Navier-Stokes equations as another
approach to design non-invasive experiments of bubbly flows, with accurate control of the bubble
size distribution, coalescence, deformability, and flow conditions [12]. Many methods have been
introduced for DNS of two-phase flows, for instance: level set (LS) methods [18, 10, 2, 3, 4, 1],
volume-of-fluid (VOF) methods [15], coupled VOF/LS methods [5], and the front tracking (FT)
method [11]. These approaches solve two-phase flow using the so-called one-fluid formulation,
where physical properties are regularized across the dynamic interface, which is captured using
a Eulerian approach (VOF, LS, VOF/LS) or a Lagrangian (FT) framework.

In the context of the methods mentioned above, [13, 5, 4] numerically studied the buoyancy-
driven motion of single bubbles on unconfined domains, whereas further works on the dynamics
of bubble swarms have been reported by [20, 21, 22]. Despite the fact that previous papers
touched upon wall effects on single bubbles [16, 19] in square and axisymmetric ducts, employing
the VOF and FT methods respectively, there are not yet computational studies of the gravity-
driven motion of 3D bubbles and bubble swarms in a circular channel. Moreover, most of the
previous numerical research about the dynamics of bubble swarms has been performed using
the front-tracking method [11], so that the capability and accuracy of new methodologies for
simulation of bubble swarms, are still to be proven. Indeed, this work aims to study the effect
of the wall on the gravity-driven motion of single and multiple bubbles rising in a vertical
channel, using a multiple marker CLS method introduced by [3]. Thus, using the CLS method
[2, 10], the accumulation of mass conservation error inherent to standard LS formulations, is
circumvented. On the other hand, the numerical and potentially unphysical coalescence of the
fluid interfaces, which is inherent to CLS, LS and VOF methods, is also avoided, by means of
the multiple marker CLS methodology [4]. This method can solve the interaction of multiple
bubbles in the same control volume, allowing for long time simulations of bubbly flows, with a
constant number of bubbles, and taken into account the bubble collisions.

The present paper is organized as follows: The mathematical formulation and numerical
methods are presented in section 2. Numerical experiments are presented in section 3. Finally,
concluding remarks are given in section 4.

2 Mathematical formulation and numerical methods

The mathematical model used in this work has been introduced in [3], and here is reviewed for
the sake of completeness. In this formulation, the Navier-Stokes equations for the dispersed
fluid in Ωd and continuous fluid in Ωc are written in a global domain Ω = Ωd ∪ Ωc, using a
singular source term for the surface tension force at the interface Γ [2, 3, 1]:

∂

∂t
(ρv) +∇ · (ρvv) = −∇p+∇ · µ

(

∇v+ (∇v)T
)

+ (ρ− ρ0)g+ fσδΓ (1)

∇ · v = 0 (2)

where p is the pressure field, v is the velocity, ρ is the fluid density, µ is the dynamic viscosity, g is
the gravitational acceleration, fσ is the surface tension force, subscripts d and c are used for the
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problems remain unsolved [9, 12]. Hence, the primary motivation of this study is to contribute
to the understanding of this type of flows.

The physical description of bubbly flows leads to a complex and highly non-linear problem.
Indeed, the use of exact analytical solutions is restricted to the most simple cases, whereas
the design of experiments is difficult due to limitations in optical access. On the other hand,
the development of computers has promoted the combination of High-Performance Computing
(HPC) and Direct Numerical Simulation (DNS) of the Navier-Stokes equations as another
approach to design non-invasive experiments of bubbly flows, with accurate control of the bubble
size distribution, coalescence, deformability, and flow conditions [12]. Many methods have been
introduced for DNS of two-phase flows, for instance: level set (LS) methods [18, 10, 2, 3, 4, 1],
volume-of-fluid (VOF) methods [15], coupled VOF/LS methods [5], and the front tracking (FT)
method [11]. These approaches solve two-phase flow using the so-called one-fluid formulation,
where physical properties are regularized across the dynamic interface, which is captured using
a Eulerian approach (VOF, LS, VOF/LS) or a Lagrangian (FT) framework.

In the context of the methods mentioned above, [13, 5, 4] numerically studied the buoyancy-
driven motion of single bubbles on unconfined domains, whereas further works on the dynamics
of bubble swarms have been reported by [20, 21, 22]. Despite the fact that previous papers
touched upon wall effects on single bubbles [16, 19] in square and axisymmetric ducts, employing
the VOF and FT methods respectively, there are not yet computational studies of the gravity-
driven motion of 3D bubbles and bubble swarms in a circular channel. Moreover, most of the
previous numerical research about the dynamics of bubble swarms has been performed using
the front-tracking method [11], so that the capability and accuracy of new methodologies for
simulation of bubble swarms, are still to be proven. Indeed, this work aims to study the effect
of the wall on the gravity-driven motion of single and multiple bubbles rising in a vertical
channel, using a multiple marker CLS method introduced by [3]. Thus, using the CLS method
[2, 10], the accumulation of mass conservation error inherent to standard LS formulations, is
circumvented. On the other hand, the numerical and potentially unphysical coalescence of the
fluid interfaces, which is inherent to CLS, LS and VOF methods, is also avoided, by means of
the multiple marker CLS methodology [4]. This method can solve the interaction of multiple
bubbles in the same control volume, allowing for long time simulations of bubbly flows, with a
constant number of bubbles, and taken into account the bubble collisions.

The present paper is organized as follows: The mathematical formulation and numerical
methods are presented in section 2. Numerical experiments are presented in section 3. Finally,
concluding remarks are given in section 4.

2 Mathematical formulation and numerical methods

The mathematical model used in this work has been introduced in [3], and here is reviewed for
the sake of completeness. In this formulation, the Navier-Stokes equations for the dispersed
fluid in Ωd and continuous fluid in Ωc are written in a global domain Ω = Ωd ∪ Ωc, using a
singular source term for the surface tension force at the interface Γ [2, 3, 1]:

∂

∂t
(ρv) +∇ · (ρvv) = −∇p+∇ · µ

(

∇v+ (∇v)T
)

+ (ρ− ρ0)g+ fσδΓ (1)

∇ · v = 0 (2)

where p is the pressure field, v is the velocity, ρ is the fluid density, µ is the dynamic viscosity, g is
the gravitational acceleration, fσ is the surface tension force, subscripts d and c are used for the
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dispersed and continuous fluids respectively, and δΓ is the Dirac delta function concentrated
at the interface. Since a periodic domain is used in the y − axis direction, the force −ρ0g
is included in the Navier-Stokes equations [4], with ρ0 = V −1

Ω

∫

Ω
(ρdφd + ρc(1− φd)) dV , to

prevent the acceleration of the flow field in the downward vertical direction by the action of
g [4, 3]. Physical properties are constant at each fluid-phase with a jump discontinuity at the
interface:

ρ = ρdHd + ρc(1 −Hc) µ = µdHd + µc(1 −Hc) (3)

where Hd is the Heaviside step function that is one at fluid d and zero elsewhere. At the
discretized level, a continuous treatment of physical properties is adopted to avoid numerical
instabilities at the interface, according to the multiple marker CLS method [3, 1].

The conservative level-set method (CLS) [10] deployed by [2] is used in present work for
interface capturing on general unstructured grids. Moreover, each fluid particle is represented
by a CLS function in order to avoid their numerical merging [3, 1]. Thus, the interface of the
ith fluid particle is defined as the 0.5 iso-surface of a smoothed indicator function φi, where
i = 1, 2, ..., nd and nd is the total number of bubbles in Ωd. Since the velocity field is solenoidal,
Eq. 2, the ith interface advection equation is written in conservative form:

∂φi

∂t
+∇ · φiv = 0 (4)

Furthermore, an additional re-initialization equation is introduced in order to keep a sharp and
constant interface profile:

∂φi

∂τ
+∇ · φi(1− φi)ni = ∇ · ε∇φi (5)

This equation is advanced in τ up to achieve the steady state. The compressive term, φi(1 −
φi)ni|τ=0, forces the CLS function to be compressed along the normal vector ni, whereas the
diffusion term ∇ · ε∇φi ensure the profile remains of characteristic thickness ε = 0.5h0.9, with
h defined as the grid size [2, 1].

Geometrical information on the interface Γi, such as normal vector ni and curvature κi,
are obtained as follows: ni(φi) = ∇φi/�∇φi� and κi(φi) = −∇ · ni. Surface tension force
is calculated by the continuous surface force model [6], extended to the multiple marker CLS
method in [3, 1], as follows:

fσδΓ =

nd
∑

i=1

σκi(φi)niδΓi
=

nd
∑

i=1

σκi(φi)ni||∇φi|| (6)

Finally, in order to avoid numerical instabilities at the interface, fluid properties in Eq. 3
are regularized using a global level-set function Hd = φd [3, 1], defined as follows: φd(x, t) =
max{φ1(x, t), ..., φnd−1(x, t), φnd

(x, t)}.
The Navier-Stokes equations, Eq. (1-2), and interface capturing equations, Eqs. (4-5), are

solved with a finite-volume discretization of the physical domain on a collocated unstructured
mesh [2], where both scalar and vector variables (p, v, φ, ρ, µ) are stored in the cell centroids.
Following [2], the convective term of momentum Eq. (1), and interface transport Eq. (4) is
explicitly computed approximating the fluxes at cell faces with a Total Variation Diminish-
ing (TVD) Superbee limiter scheme [2]. Diffusive terms are centrally differenced, whereas a
distance-weighted linear interpolation is used to find the cell face values of physical properties
and interface normals. Gradients are computed at cell centroids using the least-squares method
[2]. A central difference scheme is employed to discretize both compressive and diffusive terms
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of the re-initialization Eq. (5). The resolution of the velocity and pressure fields is achieved
using a standard fractional-step projection method originally developed by [14]:

ρv∗ − ρnvn

∆t
= −Cn +Dn + (ρ− ρ0)g+

nd
∑

i=1

σκi(φi)ni||∇hφi||,
ρv− ρv∗

∆t
= −∇h(p) (7)

where super-index n denotes the previous time step, C = ∇h · (ρvv), and D = ∇h ·
µ
(

∇hv+ (∇hv)
T
)

with (∇hv)
T calculated by means of the least-squares method [2]. Im-

posing ∇h · v = 0 to the corrector step in Eq. (7) results in a Poisson equation for pressure
field, which is solved by means of a preconditioned conjugate gradient method:

∇h ·

(

1

ρ
∇hp

)

=
1

∆t
∇h · (v∗) e∂Ω · ∇hp|∂Ω = 0 (8)

Furthermore, a cell-face velocity vf [2, 1] is used to advect momentum and CLS functions, in
order to fulfill the incompressibility constraint in each control volume, Eq. 2, and to avoid
pressure-velocity decoupling when the pressure projection is made on collocated meshes [17]:

vf =
∑

q∈{P,F}

1

2

(

vq +
∆t

ρq
(∇hp)q

)

−
∆t

ρf
(∇hp)f (9)

where P and F are the control volumes with common face f [2, 1]. A TVD Runge-Kutta
method [8] is used for time integration of both advection Eq. (4) and re-initialization Eq.
(5). Solving re-initialization Eq. (5) to steady-state results in a smooth transition of φi at the
interface, proportional to the diffusion coefficient ε = 0.5h0.9, where h is the grid size [2]. One
iteration per physical time step of the re-initialization Eq. (5) is sufficient to keep the profile
of the CLS functions in present simulations [2, 5].

Present numerical algorithms are implemented in the framework of an in-house parallel
C++/MPI code called TermoFluids. The code is run on the supercomputer MareNostrum III
using a range of 128 − 512 cores for 3D simulations of both single and two bubbles, up to
2048 processors for 3D simulations of bubble swarms. The parallelization performance of the
computer code implemented for the CLS method has been presented in [2], using the aforemen-
tioned supercomputer. Furthermore, the scalability of the multiple marker CLS method has
been evaluated using 256 up to 1536 CPU-cores, for a system composed by 12 bubbles. The
results are summarized in Table 1. The reader is referred to [2, 3, 4, 1] for technical details
on the finite-volume discretization of Navier-Stokes equations, energy equation and level-set
equations on collocated unstructured grids.

CPU-cores Strong speedup Control volumes/CPU-cores
256 1 66240
512 2.4 33120
1024 4.6 16560
1536 6.5 11040

Table 1: Parallel scalability of the multiple marker CLS method.

3 Numerical results and discussion

Extensive validations and verifications of the numerical methods are well documented in previ-
ous publications, for instance dam-break problem and buoyancy-driven motion of single bubbles
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ith fluid particle is defined as the 0.5 iso-surface of a smoothed indicator function φi, where
i = 1, 2, ..., nd and nd is the total number of bubbles in Ωd. Since the velocity field is solenoidal,
Eq. 2, the ith interface advection equation is written in conservative form:

∂φi

∂t
+∇ · φiv = 0 (4)

Furthermore, an additional re-initialization equation is introduced in order to keep a sharp and
constant interface profile:

∂φi

∂τ
+∇ · φi(1− φi)ni = ∇ · ε∇φi (5)

This equation is advanced in τ up to achieve the steady state. The compressive term, φi(1 −
φi)ni|τ=0, forces the CLS function to be compressed along the normal vector ni, whereas the
diffusion term ∇ · ε∇φi ensure the profile remains of characteristic thickness ε = 0.5h0.9, with
h defined as the grid size [2, 1].

Geometrical information on the interface Γi, such as normal vector ni and curvature κi,
are obtained as follows: ni(φi) = ∇φi/�∇φi� and κi(φi) = −∇ · ni. Surface tension force
is calculated by the continuous surface force model [6], extended to the multiple marker CLS
method in [3, 1], as follows:

fσδΓ =

nd
∑

i=1

σκi(φi)niδΓi
=

nd
∑

i=1

σκi(φi)ni||∇φi|| (6)

Finally, in order to avoid numerical instabilities at the interface, fluid properties in Eq. 3
are regularized using a global level-set function Hd = φd [3, 1], defined as follows: φd(x, t) =
max{φ1(x, t), ..., φnd−1(x, t), φnd

(x, t)}.
The Navier-Stokes equations, Eq. (1-2), and interface capturing equations, Eqs. (4-5), are

solved with a finite-volume discretization of the physical domain on a collocated unstructured
mesh [2], where both scalar and vector variables (p, v, φ, ρ, µ) are stored in the cell centroids.
Following [2], the convective term of momentum Eq. (1), and interface transport Eq. (4) is
explicitly computed approximating the fluxes at cell faces with a Total Variation Diminish-
ing (TVD) Superbee limiter scheme [2]. Diffusive terms are centrally differenced, whereas a
distance-weighted linear interpolation is used to find the cell face values of physical properties
and interface normals. Gradients are computed at cell centroids using the least-squares method
[2]. A central difference scheme is employed to discretize both compressive and diffusive terms
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of the re-initialization Eq. (5). The resolution of the velocity and pressure fields is achieved
using a standard fractional-step projection method originally developed by [14]:

ρv∗ − ρnvn

∆t
= −Cn +Dn + (ρ− ρ0)g+

nd
∑

i=1

σκi(φi)ni||∇hφi||,
ρv− ρv∗

∆t
= −∇h(p) (7)

where super-index n denotes the previous time step, C = ∇h · (ρvv), and D = ∇h ·
µ
(

∇hv+ (∇hv)
T
)

with (∇hv)
T calculated by means of the least-squares method [2]. Im-

posing ∇h · v = 0 to the corrector step in Eq. (7) results in a Poisson equation for pressure
field, which is solved by means of a preconditioned conjugate gradient method:

∇h ·

(

1

ρ
∇hp

)

=
1

∆t
∇h · (v∗) e∂Ω · ∇hp|∂Ω = 0 (8)

Furthermore, a cell-face velocity vf [2, 1] is used to advect momentum and CLS functions, in
order to fulfill the incompressibility constraint in each control volume, Eq. 2, and to avoid
pressure-velocity decoupling when the pressure projection is made on collocated meshes [17]:

vf =
∑

q∈{P,F}

1

2

(

vq +
∆t

ρq
(∇hp)q

)

−
∆t

ρf
(∇hp)f (9)

where P and F are the control volumes with common face f [2, 1]. A TVD Runge-Kutta
method [8] is used for time integration of both advection Eq. (4) and re-initialization Eq.
(5). Solving re-initialization Eq. (5) to steady-state results in a smooth transition of φi at the
interface, proportional to the diffusion coefficient ε = 0.5h0.9, where h is the grid size [2]. One
iteration per physical time step of the re-initialization Eq. (5) is sufficient to keep the profile
of the CLS functions in present simulations [2, 5].

Present numerical algorithms are implemented in the framework of an in-house parallel
C++/MPI code called TermoFluids. The code is run on the supercomputer MareNostrum III
using a range of 128 − 512 cores for 3D simulations of both single and two bubbles, up to
2048 processors for 3D simulations of bubble swarms. The parallelization performance of the
computer code implemented for the CLS method has been presented in [2], using the aforemen-
tioned supercomputer. Furthermore, the scalability of the multiple marker CLS method has
been evaluated using 256 up to 1536 CPU-cores, for a system composed by 12 bubbles. The
results are summarized in Table 1. The reader is referred to [2, 3, 4, 1] for technical details
on the finite-volume discretization of Navier-Stokes equations, energy equation and level-set
equations on collocated unstructured grids.

CPU-cores Strong speedup Control volumes/CPU-cores
256 1 66240
512 2.4 33120
1024 4.6 16560
1536 6.5 11040

Table 1: Parallel scalability of the multiple marker CLS method.

3 Numerical results and discussion

Extensive validations and verifications of the numerical methods are well documented in previ-
ous publications, for instance dam-break problem and buoyancy-driven motion of single bubbles
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Figure 1: Effect of confinement ratio CR on Re. Single bubbles with ηρ = 100 and ηµ = 100.
Black line for square cylinder, and red line for circular cylinder. Terminal bubble shapes in the
square channel.

on unconfined domains [2, 4], drop collision against a fluid-fluid interface without coalescence
[3], binary droplet collision with bouncing outcome [3], and thermocapillary-driven motion of
deformable droplets [5]. Therefore, this research can be considered a further step in the under-
standing of wall effect on the motion of single and multiple bubbles in a vertical channel, using
a multiple marker CLS approach [3].

The buoyancy-driven motion of bubbles is characterized by the Morton number M ≡
gµ4

c(ρc − ρd)/(ρ
2
cσ

3), Eötvös number Eo ≡ gd2(ρc − ρd)/σ, density ratio ηρ ≡ ρc/ρd, viscosity
ratio ηµ ≡ µc/µd, and Reynolds number Re ≡ ρc(vb · ey)d/µc, where vb is the bubble velocity,
d is the initial bubble diameter, and the subscripts d and c denote the dispersed and continuous
fluid phase respectively. Furthermore, the dimensionless time is given by t∗ = t

√

g/d, whereas
the confinement ratio is defined as CR = d/DΩ, with DΩ the side length of the square section
or diameter of the vertical channel.

First, the effect of confinement ratioCR = {2, 4, 6} on the Reynolds number of single bubbles
is researched, for both circular and square cylinders. Dimensionless parameters are (Eo,M) =
{(3, 10−5), (97.5, 0.971), (10, 10−5), (50, 10−2)}, whereas ηρ = 100 and ηµ = 100 unless otherwise
stated. The domain Ω is a vertical channel of size (DΩ,HΩ) = (CR · d, 10d), where DΩ is the
length side (square section channel) or the diameter (circular section channel), and HΩ is
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the cylinder height. No-slip boundary condition is used on the wall, and periodic boundary
condition along the vertical direction (y− axis). The mesh is conformed by hexahedral control
volumes (square section channel), or triangular-prisms (circular section channel). According to
our previous work [4], the grid size h = d/30 is enough for capturing the dynamics of single
bubbles for the range of dimensionless parameters of this work. Thus, in this research h = d/40
is used unless otherwise stated.

Fig. 1 shows the time evolution of Re, for circular cylinder (red line) and square cylin-
der (black line). The effect of the channel geometry is evident for CR = 2, where it is
observed that Re of the circular channel is less than Re of the square channel, due the
proximity of the wall to the bubble that results in an increment of the drag force. How-
ever, it is observed that the difference in Re is reduced as CR increases. According to
the Grace Diagram [7], experimental Reynolds numbers (Reexp) for an infinite domain are
(Eo,M,Reexp) = {(3, 10−6,∼ 85), (97.5, 0.971,∼ 20), (10, 10−5,∼ 88)}, which are close to the
numerical Reynolds number (Renum) calculated with CR = 6, as illustrated in Fig. 1. For
instance (Eo,M,Renum) = {(3, 10−6, 83.1), (97.5, 0.971, 18.0), (10, 10−5, 84.4)} for the circular
channel. Present results are consistent with numerical findings reported by [19].

3.1 Effect of the wall on the motion of two bubbles

With the aim to report numerical results of bubble swarms, the ith bubble velocity �vi�,
Reynolds number �Rei� of the ith bubble, and the averaged Reynolds number of the bub-
ble swarm �Red� are defined as follows [3]: �vi�(t) =

∫

Ω
vφi(x, t)dV/

∫

Ω
φi(x, t)dV , �Rei�(t) =

ρcd�vi� · ey/µc and �Red� = (1/nd)
∑nd

i=1
�Rei�. Where i = {1, 2, .., nd}, and ey is a unit vector

parallel to +y direction.

The domain Ω is a vertical square cylinder bounded by a rigid wall, with gravity in the −y
direction. The size of Ω is (LΩ, HΩ) = (4d, 10d), where d is the initial bubble diameter, LΩ is
the square side and HΩ is the cylinder height. Ω is discretized by 10.24×106 hexahedral control
volumes distributed on 512 processors, whereas the grid size is h = d/40. As initial condition,
both bubbles and liquid are quiescent. Boundary conditions are non-slip at the rigid wall and
periodic on the streamwise (y-direction). Thus, bubbles go out of Ω on the top boundary, and
they come back in Ω again from the opposite boundary.

Two bubbles are initially released with configuration angles θ0 = {0o, 45o, 90o}, and centroid-
centroid distance 1.5d. Figure 2 shows the time evolution of Reynolds number, configuration
angle θ(t) between ∆x1,2 = x2 − x1 and its projection on the plane x − z, and dimensionless
separation distance between the bubbles, s = ||x2 − x1||/d, for θ0 = {0o, 45o, 90o}. Due to the
buoyancy force, the bubbles move upward, while bubble-bubble interaction produces oscillatory
trajectories, as illustrated in Fig. 2 for s(t) and θ(t). The deformable bubbles tend to move
up to the wall, but they do not collide against the wall, where a bouncing effect is observed.
Furthermore, θ decreases as the time advances for θ0 = {45o, 90o}, indicating that two bubbles
tend to align side-by-side, due to a torque action between their centroids, as shown in Fig. 3.
It is observed that a pair of deformable bubbles repel each other for θ0 = {0o, 45o}, whereas
they reproduce the drafting-kissing-tumbling (DKT) phenomenon for θ0 = 90o (Fig. 3). In the
drafting stage, the trailing bubble moves faster than the leading one, indeed, they approach
closer. Then, in the kissing stage, bubbles almost touch each other and the gap between them
is less than the grid size h. In the tumbling stage, a rotating effect between bubble centroids is
observed, whereas the bubbles begin to separate each other, as illustrated in Fig. 3.
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Figure 1: Effect of confinement ratio CR on Re. Single bubbles with ηρ = 100 and ηµ = 100.
Black line for square cylinder, and red line for circular cylinder. Terminal bubble shapes in the
square channel.

on unconfined domains [2, 4], drop collision against a fluid-fluid interface without coalescence
[3], binary droplet collision with bouncing outcome [3], and thermocapillary-driven motion of
deformable droplets [5]. Therefore, this research can be considered a further step in the under-
standing of wall effect on the motion of single and multiple bubbles in a vertical channel, using
a multiple marker CLS approach [3].

The buoyancy-driven motion of bubbles is characterized by the Morton number M ≡
gµ4

c(ρc − ρd)/(ρ
2
cσ

3), Eötvös number Eo ≡ gd2(ρc − ρd)/σ, density ratio ηρ ≡ ρc/ρd, viscosity
ratio ηµ ≡ µc/µd, and Reynolds number Re ≡ ρc(vb · ey)d/µc, where vb is the bubble velocity,
d is the initial bubble diameter, and the subscripts d and c denote the dispersed and continuous
fluid phase respectively. Furthermore, the dimensionless time is given by t∗ = t

√

g/d, whereas
the confinement ratio is defined as CR = d/DΩ, with DΩ the side length of the square section
or diameter of the vertical channel.

First, the effect of confinement ratioCR = {2, 4, 6} on the Reynolds number of single bubbles
is researched, for both circular and square cylinders. Dimensionless parameters are (Eo,M) =
{(3, 10−5), (97.5, 0.971), (10, 10−5), (50, 10−2)}, whereas ηρ = 100 and ηµ = 100 unless otherwise
stated. The domain Ω is a vertical channel of size (DΩ,HΩ) = (CR · d, 10d), where DΩ is the
length side (square section channel) or the diameter (circular section channel), and HΩ is
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the cylinder height. No-slip boundary condition is used on the wall, and periodic boundary
condition along the vertical direction (y− axis). The mesh is conformed by hexahedral control
volumes (square section channel), or triangular-prisms (circular section channel). According to
our previous work [4], the grid size h = d/30 is enough for capturing the dynamics of single
bubbles for the range of dimensionless parameters of this work. Thus, in this research h = d/40
is used unless otherwise stated.

Fig. 1 shows the time evolution of Re, for circular cylinder (red line) and square cylin-
der (black line). The effect of the channel geometry is evident for CR = 2, where it is
observed that Re of the circular channel is less than Re of the square channel, due the
proximity of the wall to the bubble that results in an increment of the drag force. How-
ever, it is observed that the difference in Re is reduced as CR increases. According to
the Grace Diagram [7], experimental Reynolds numbers (Reexp) for an infinite domain are
(Eo,M,Reexp) = {(3, 10−6,∼ 85), (97.5, 0.971,∼ 20), (10, 10−5,∼ 88)}, which are close to the
numerical Reynolds number (Renum) calculated with CR = 6, as illustrated in Fig. 1. For
instance (Eo,M,Renum) = {(3, 10−6, 83.1), (97.5, 0.971, 18.0), (10, 10−5, 84.4)} for the circular
channel. Present results are consistent with numerical findings reported by [19].

3.1 Effect of the wall on the motion of two bubbles

With the aim to report numerical results of bubble swarms, the ith bubble velocity �vi�,
Reynolds number �Rei� of the ith bubble, and the averaged Reynolds number of the bub-
ble swarm �Red� are defined as follows [3]: �vi�(t) =

∫

Ω
vφi(x, t)dV/

∫

Ω
φi(x, t)dV , �Rei�(t) =

ρcd�vi� · ey/µc and �Red� = (1/nd)
∑nd

i=1
�Rei�. Where i = {1, 2, .., nd}, and ey is a unit vector

parallel to +y direction.

The domain Ω is a vertical square cylinder bounded by a rigid wall, with gravity in the −y
direction. The size of Ω is (LΩ, HΩ) = (4d, 10d), where d is the initial bubble diameter, LΩ is
the square side and HΩ is the cylinder height. Ω is discretized by 10.24×106 hexahedral control
volumes distributed on 512 processors, whereas the grid size is h = d/40. As initial condition,
both bubbles and liquid are quiescent. Boundary conditions are non-slip at the rigid wall and
periodic on the streamwise (y-direction). Thus, bubbles go out of Ω on the top boundary, and
they come back in Ω again from the opposite boundary.

Two bubbles are initially released with configuration angles θ0 = {0o, 45o, 90o}, and centroid-
centroid distance 1.5d. Figure 2 shows the time evolution of Reynolds number, configuration
angle θ(t) between ∆x1,2 = x2 − x1 and its projection on the plane x − z, and dimensionless
separation distance between the bubbles, s = ||x2 − x1||/d, for θ0 = {0o, 45o, 90o}. Due to the
buoyancy force, the bubbles move upward, while bubble-bubble interaction produces oscillatory
trajectories, as illustrated in Fig. 2 for s(t) and θ(t). The deformable bubbles tend to move
up to the wall, but they do not collide against the wall, where a bouncing effect is observed.
Furthermore, θ decreases as the time advances for θ0 = {45o, 90o}, indicating that two bubbles
tend to align side-by-side, due to a torque action between their centroids, as shown in Fig. 3.
It is observed that a pair of deformable bubbles repel each other for θ0 = {0o, 45o}, whereas
they reproduce the drafting-kissing-tumbling (DKT) phenomenon for θ0 = 90o (Fig. 3). In the
drafting stage, the trailing bubble moves faster than the leading one, indeed, they approach
closer. Then, in the kissing stage, bubbles almost touch each other and the gap between them
is less than the grid size h. In the tumbling stage, a rotating effect between bubble centroids is
observed, whereas the bubbles begin to separate each other, as illustrated in Fig. 3.
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Figure 2: Interaction of 2 bubbles, Eo = 3, M = 10−6, ηρ = 100 and ηµ = 100, CR = 4.

Figure 3: Interaction of 2 bubbles, Eo = 3, M = 10−6, ηρ = 100 and ηµ = 100, CR = 4.
t∗ = {3.7, 5.0, 6.2, 7.5, 8.8} for θ0 = 90o, t∗ = {8.8, 10.0, 11.2, 12.5, 13.8} for θ0 = 45o.

3.2 Effect of the wall on the motion of bubble swarms

Ω is defined as a vertical circular cylinder bounded by a rigid wall. The size of Ω is (DΩ, HΩ) =
(CR · d, 4d), where DΩ is the cylinder diameter and HΩ the cylinder height. Ω is divided in
7.307×106 up to 16.592×106 triangular-prisms with grid size h = d/40, for CR = 4 and CR = 6
respectively, distributed on 2048 CPU-cores. Non-slip boundary condition is used on the wall,
and periodic boundary condition on the streamwise (y-direction). The bubbles are initially
placed in Ω following a random pattern, whereas both bubbles and liquid are quiescent. Since
fluid-phases are assumed to be incompressible and coalescence of the bubbles is not allowed,
the void fraction, α = Vbubbles/VΩ, is constant throughout the simulation.

Dimensionless parameters are Eo = 3, M = 10−6, ηρ = 100, ηµ = 100, and (α,CR) =
{(8.33%, 6), (12.5%, 4), (10.4%, 4), (8.3%, 4)}, corresponding to dilute bubbly flows with 18, 12,
10 and 8 bubbles. Thus, present simulations are performed with higher Reynolds numbers, as
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Figure 4: 18 deformable bubbles, Eo = 3, M = 10−6, ηρ = 100 and ηµ = 100, CR = 6,
α = 8.3%. (a) Vertical velocity at z = 0 and t∗ = 50. (b) Vorticity (∇ × v) · ez and velocity
vectors, on z = 0 at t∗ = {80, 103}.

Figure 5: Eo = 3, M = 10−6, ηρ = 100 and ηµ = 100, (a) 18 bubbles, CR = 6, α = 8.3%. (b)
12 bubbles, CR = 4, α = 12.5%. (c) 10 bubbles, CR = 4, α = 10.4%. (d) 8 bubbles, CR = 4,
α = 8.3%.
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Figure 2: Interaction of 2 bubbles, Eo = 3, M = 10−6, ηρ = 100 and ηµ = 100, CR = 4.
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placed in Ω following a random pattern, whereas both bubbles and liquid are quiescent. Since
fluid-phases are assumed to be incompressible and coalescence of the bubbles is not allowed,
the void fraction, α = Vbubbles/VΩ, is constant throughout the simulation.
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Figure 4: 18 deformable bubbles, Eo = 3, M = 10−6, ηρ = 100 and ηµ = 100, CR = 6,
α = 8.3%. (a) Vertical velocity at z = 0 and t∗ = 50. (b) Vorticity (∇ × v) · ez and velocity
vectors, on z = 0 at t∗ = {80, 103}.

Figure 5: Eo = 3, M = 10−6, ηρ = 100 and ηµ = 100, (a) 18 bubbles, CR = 6, α = 8.3%. (b)
12 bubbles, CR = 4, α = 12.5%. (c) 10 bubbles, CR = 4, α = 10.4%. (d) 8 bubbles, CR = 4,
α = 8.3%.
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well as using higher density and viscosity ratios, in comparison with our previous results [3].
Fig. 4a illustrates the motion of a swarm of 18 bubbles in a vertical column, at t∗ = 50. Fig.
4b depicts the vorticity ey · ∇ × v generated by the wake interaction of the wall and bubbles,
on the plane z = 0, for t∗ = {80, 103}. Close to the wall, the vorticity generated by the bubbles
has opposite sign that vorticity produced by the wall, indeed, while the velocity decreases
the pressure increases in this zone, leading to a repulsion effect that avoids the collision of
the bubbles against the wall. Fig. 5 shows the time evolution of Rei for each bubble (black
lines) and the averaged Re of the bubble swarm (red lines). In general, the motion of the
single bubbles presents a transient behavior originated by the continued bubble-bubble and
bubble-wall interactions. However, the bubble swarm achieves a quasi-steady state in all cases.
Fig. 5 also depicts the radial position (r∗ = r/d) for each bubble centroid, which indicates
that bubbles tend to migrate to the wall, whereas they keep aligned at an almost constant
distance without colliding against the wall. Furthermore, the interactions of the bubbles tend
to follow the DKT mechanism or bouncing effect described in the previous section, consistently
with front-tracking simulations reported by [21]. A comparison of Fig. 5a against Figs. 5b-d
illustrate a slightly decrease of the average Reynolds number, which is a consequence of the
reduction in the confinement ratio. On the other hand, Figs. 5b-d also demonstrate that for
the same confinement ratio, the average Re is almost unaltered, given a void fraction α > 8%,
with a number of bubbles above 8.

4 Conclusions

A numerical study of the wall effect on the buoyancy-driven motion of single bubbles and bub-
ble swarms has been performed using a parallel multiple marker CLS method [3, 1]. From a
numerical and computational point of view, these numerical experiments demonstrate the abil-
ity of the present method [3, 1] for the accurate simulation of bubbly flows, including bubble
collisions without numerical merging of the fluid interfaces, as well as bubbly flows with high
density ratio. Furthermore, the inclusion of a TVD Superbee scheme [2] to discretize the con-
vective term of momentum equation has proved to benefit the numerical stability of the solver,
avoiding numerical oscillations at the interface whereas the numerical diffusion is minimized.
From a physical point of view, a repulsion effect arises from the interaction of two-bubbles in
a vertical channel for θ0 = {00, 450}, whereas the bubbles reproduce the DKT mechanism for
θ0 = 900. In addition, deformable bubbles tend to migrate to the wall but they do not collide
with it, moreover, bubble interactions follow also the DKT behaviour in bubble swarms. This
random motion of the bubbles results in a fluctuating velocity field, analogous to that observed
in turbulence. Future work includes the study of pressure-driven laminar/turbulent bubbly
flows, as well as the systematic introduction of variable surface tension [1], phase change, mass
transfer and chemical reactions.
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Secretaŕıa de Estado de Investigación, Desarrollo e Innovación (MINECO), Spain (ENE2015-
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[2] Balcázar, N., Jofre, L., Lehmkhul, O., Castro, J., Rigola, J., 2014. A finite-volume/level-set method
for simulating two-phase flows on unstructured grids. International Journal of Multiphase Flow
64, 55-72
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well as using higher density and viscosity ratios, in comparison with our previous results [3].
Fig. 4a illustrates the motion of a swarm of 18 bubbles in a vertical column, at t∗ = 50. Fig.
4b depicts the vorticity ey · ∇ × v generated by the wake interaction of the wall and bubbles,
on the plane z = 0, for t∗ = {80, 103}. Close to the wall, the vorticity generated by the bubbles
has opposite sign that vorticity produced by the wall, indeed, while the velocity decreases
the pressure increases in this zone, leading to a repulsion effect that avoids the collision of
the bubbles against the wall. Fig. 5 shows the time evolution of Rei for each bubble (black
lines) and the averaged Re of the bubble swarm (red lines). In general, the motion of the
single bubbles presents a transient behavior originated by the continued bubble-bubble and
bubble-wall interactions. However, the bubble swarm achieves a quasi-steady state in all cases.
Fig. 5 also depicts the radial position (r∗ = r/d) for each bubble centroid, which indicates
that bubbles tend to migrate to the wall, whereas they keep aligned at an almost constant
distance without colliding against the wall. Furthermore, the interactions of the bubbles tend
to follow the DKT mechanism or bouncing effect described in the previous section, consistently
with front-tracking simulations reported by [21]. A comparison of Fig. 5a against Figs. 5b-d
illustrate a slightly decrease of the average Reynolds number, which is a consequence of the
reduction in the confinement ratio. On the other hand, Figs. 5b-d also demonstrate that for
the same confinement ratio, the average Re is almost unaltered, given a void fraction α > 8%,
with a number of bubbles above 8.

4 Conclusions

A numerical study of the wall effect on the buoyancy-driven motion of single bubbles and bub-
ble swarms has been performed using a parallel multiple marker CLS method [3, 1]. From a
numerical and computational point of view, these numerical experiments demonstrate the abil-
ity of the present method [3, 1] for the accurate simulation of bubbly flows, including bubble
collisions without numerical merging of the fluid interfaces, as well as bubbly flows with high
density ratio. Furthermore, the inclusion of a TVD Superbee scheme [2] to discretize the con-
vective term of momentum equation has proved to benefit the numerical stability of the solver,
avoiding numerical oscillations at the interface whereas the numerical diffusion is minimized.
From a physical point of view, a repulsion effect arises from the interaction of two-bubbles in
a vertical channel for θ0 = {00, 450}, whereas the bubbles reproduce the DKT mechanism for
θ0 = 900. In addition, deformable bubbles tend to migrate to the wall but they do not collide
with it, moreover, bubble interactions follow also the DKT behaviour in bubble swarms. This
random motion of the bubbles results in a fluctuating velocity field, analogous to that observed
in turbulence. Future work includes the study of pressure-driven laminar/turbulent bubbly
flows, as well as the systematic introduction of variable surface tension [1], phase change, mass
transfer and chemical reactions.
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[5] Balcázar, N., Lehmkhul, O., Jofre, L., Rigola, J., Oliva, A. 2016. A coupled volume-of-fluid/level-
set method for simulation of two-phase flows on unstructured meshes. Computers and Fluids 124,
12-29

[6] Brackbill, J.U., Kothe, D.B., Zemach, C., 1992. A Continuum Method for Modeling Surface Ten-
sion, J. Comput. Phys. 100, 335-354.

[7] Clift, R., Grace, J.R., Weber, M.E., Bubbles, Drops and Particles. Academin Press, New York,
1978.

[8] Gottlieb, S., Shu, C.W., 1998. Total Variation Dimishing Runge-Kutta Schemes, Mathematics of
Computations 67, 73-85.

[9] Mudde, R., 2005. Gravity-Driven bubbly flows, Annu. Rev. Fluid Mech. 37, 393-423.

[10] Olsson, E., Kreiss, G., 2005. A conservative level set method for two phase flow, J. Comput. Phys.
210, 225-246.

[11] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S.,
Jan, Y-J., 2001. A Front-Tracking Method for the Computations of Multiphase Flow, J. Comput.
Phys. 169, 708-759.

[12] Tryggvason, G., Dabiri, S., Abouhasanzadeh, B., Jaicai, L., 2013. Multiscale considerations in
direct numerical simulations of multiphase flows, Phys. Fluids 25, 031302.

[13] Van Sint Annaland, M., Deen, N.G., Kuipers, J.A.M., 2005. Numerical Simulation of gas bubbles
behaviour using a three-dimensional volume-of-fluid method, Chemical Engineering Science 60,
2999-3011.

[14] Chorin, A.J., Numerical solution of the Navier-Stokes equations. 1968. Math. Comput. 22, 745-762.

[15] Hirt, C., Nichols, B., 1981. Volume of fluid (VOF) method for the dynamics of free boundary, J.
Comput. Phys. 39, 201-225

[16] Kumar, P., Vanka, S.P., 2015. Effects of confinement on bubble dynamics in a square duct, Int. J.
Multiphase Flow, 77, 32-47.

[17] Rhie, C.M., Chow, W.L., 1983. Numerical Study of the Turbulent Flow past an Airfoil with
Trailing Edge Separation, AIAA J. 21, 1525-1532.

[18] Sussman, M., Smereka, P., Osher, S., 1994. A Level Set Approach for Computing Solutions to
Incompressible Two-Phase Flow, J. Comput. Phys. 144, 146-159.

[19] Mukundakrishnan, K., Quan, S., Eckmann, D.M., Ayyaswamy, P.S., 2007. Numerical study of
wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder, Phys. Rev. E. 76, 036308-
01036308-15.

[20] Yin, X. and Koch, L., 2008. Lattice-Boltzmann simulation of finite Reynolds number buoyancy-
driven bubbly flows in periodic and wall domains, Physics of fluids 20, 103304.

[21] Bunner, B., Tryggvason, G., 2002. Dynamics of homogeneous bubbly flows Part 1. Rise velocity
and microstructure of the bubbles, J. Fluid Mech. 466, 17-52.

[22] Esmaeeli, A., Tryggvason, G., 2005. A DNS study of the buoyant rise of bubbles at O(100) Reynolds
number, Physics of Fluids 17, 093303.

10


	caratula Elsevier2017.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints
	© 2017. Aquesta versió està disponible sota la llicència CC-BY-NC-ND 4.0 http://creativecommons.org/licenses/by-nc-nd/4.0/
	© 2017. This version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/


