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ABSTRACT

This paper studies Multi-Depot Rural Postman Problems on an undirected graph.
These problems extend the well-known Undirected Rural Postman Problem to the
case where there are several depots instead of just one. Linear integer program-
ming formulations that only use binary variables are proposed for the problem that
minimizes the overall routing costs and for the model that minimizes the length of
the longest route. An exact branch-and-cut algorithm is presented for each consid-
ered model, where violated constraints of both types are separated in polynomial
time. Despite the difficulty of the problems, the numerical results from a series of
computational experiments with various types of instances illustrate a quite good
behavior of the algorithms. When the overall routing costs are minimized, over 43%
of the instances were optimally solved at the root node, and 95% were solved at
termination, most of them with a small additional computational effort. When the
length of the longest route is minimized, over 25% of the instances were optimally
solved at the root node, and 99% were solved at termination.

1 Introduction

In this paper we present Multi-Depot Rural Postman Problems (MDRPPs) on undi-
rected graphs. Similarly to other arc routing problems, in MDRPPs service demand
is placed at a subset of edges, denoted demand or required edges. The distinguished
feature of MDRPPs is that there are several depots instead of just one. In MDRPPs
feasible solutions are given by sets of routes, each of them starting and ending at
one of the depots, where each demand edge is traversed at least once by some route.
MDRPPs involve two types of decisions: the allocation of the demand edges to the
depots and the construction of the set of routes. We consider two different MDRPP
models, which differ from each other in the objective function. The first model uses
a min-cost objective where the goal is to determine a set of routes of minimum total
cost and will be referred to as MC-MDRPP. The MC-MDRPP extends to several
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depots the well-known undirected Rural Postman Problem (RPP) introduced in [34],
which considers one single depot.

The second model that we study uses a min-max objective where the goal is to
minimize the length of the longest route, and will be referred to as MM-MDRPP.
In contrast to the MC-MDRPP, which minimizes the overall routing costs, but may
produce routes which are unbalanced in terms of their length, the MM-MDRPP
can be suitable when balanced routes are sought. The MM-MDRPP is related to
the min-max K-Rural Postman Problem (MM-K-RPP) that has been studied by
several authors for different types of graphs [8, 9, 10, 11, 12, 36]. The MM-K-RPP
is an uncapacitated arc routing problem, with one single depot and a fixed number
of vehicles, K. Each vehicle must perform a tour starting and ending at the depot.
The objective is to minimize the length of the longest among the K routes. It clear
that the undirected MM-K-RPP is a particular case of the MM-MDRPP, by con-
sidering K depots co-located at the same vertex.

The motivation for studying MDRPPs comes not only from their theoretical
interest, but also from their potential applications. Similarly to other arc routing
problems, such applications appear in a wide variety of practical cases. Mail delivery,
garbage collection, road maintenance or pipelines inspection are typical examples of
real-life applications. When considering large application areas for the above ex-
amples, there is usually more than one depot from which service demand can be
satisfied. Such depots may be vehicle stations, dump sites, replenishment points or
relay boxes. For instance, in urban waste collection companies usually operate from
multiple depots. A possibility for handling such problems is to decompose them in
as many independent problems as depots, first allocating to the different depots de-
mand sectors within smaller operating areas, and then finding optimal routes within
each sector. Such solution strategy is indeed suboptimal, as it can be possible to
obtain better solutions if a global approach is applied in which the allocation and
routing decisions are jointly addressed.

The literature on Multi-Depot Arc Routing Problems (MDARP) is scarce. To
the best of our knowledge, this is the first work where an exact algorithm based
on a mixed integer linear programming (MILP) formulation is proposed to solve
the MDRPP on an undirected graph. A directed MDARP has been considered in
the recent work [20], where an exact branch-and-cut algorithm is proposed for a
collaboration arc routing problem. Other than this, all previous work on MDARPs
we are aware of focuses on capacitated arc routing problems with multiple depots
(MDCARPs). Some theoretical aspects of MDCARPs are considered in [37]. The
asymmetric multi-depot capacitated arc routing problem is studied in [28] where
a new formulation and exact solution algorithm are presented. Heuristic meth-
ods have been proposed for both undirected and directed MDCARPs. Sequential
heuristics for the undirected MDCARP are proposed in [2, 32, 33]: A cluster-first-
route-second strategy, where the assignment of arcs to depots is established before
designing the routes, is applied in [2], and a route-first-cluster-second strategy is
used in [32, 33], where a single route is created first, which is later divided into
smaller routes. Population based heuristics have also been used for solving MD-



CARPs. For the undirected case, two different ant colony strategies are presented
in [27], and a hybrid genetic algorithm with perturbation that incorporates a local
search, a replacement method, and a perturbation mechanism is proposed in [26].
The directed case is addressed in [38], where an evolutionary approach is presented,
which takes advantage of the extensions of the classical heuristics for the Capaci-
tated Arc Routing Problem [23].

Multi depot routing problems are indeed related to districting, where a set of
clusters or districts that suitably partition the demand set is sought. The design
of good districts at an strategic level, where demand points or edges are allocated
to depots, allows finding efficient routes at each district at an operational in a later
phase. There exists a rich districting literature, in relation to arc routing. In fact,
some of the above referenced works stem from this relation. As an example, the
heuristics of [32, 33] are devised as a second phases in districting design problems.
Two recent works on districting for arc routing are [13, 21]. The interested reader
is addressed to [30, 31] for further reading on this topic.

In this work we exploit properties and optimality conditions of MDRPPs, when
stated on undirected graphs. These properties allow us to obtain MILP formulations
where all variables are binary. In its turn, using binary variables only makes it
possible to model parity constraints with an adaptation of the co-circuit inequalities
[6]. The resulting formulations have two families of constraints of exponential size
on the number of vertices of the input graph: one set for the parity of vertices
and the usual set of connectivity constraints. As we will see, the constraints in
each family can be separated exactly in polynomial time with adaptations of well-
known algorithms. We propose an exact branch-and-cut algorithm where the linear
programming (LP) relaxation of the formulation is reinforced with several families
of valid inequalities. To analyze the behavior of the proposed algorithm, we have
run a series of computational experiments for both the MC-MDRPP and the MM-
MDRPP, with a set of benchmark instances adapted from well-known data sets used
for other arc routing problems in the literature. The results of these experiments
are presented and analyzed.

The reminder of this work is structured as follows. In Section 2 we define
MDRPPs whereas in Section 3 we state some properties that will be exploited in
the proposed formulations. The formulations for the MC-MDRPP and the MM-
MDRPP are presented in Section 4, as well as some families of valid inequalities
that we use to reinforce their LP relaxations. Section 5 describes the solution algo-
rithm and discusses the procedures used to separate violated connectivity and parity
inequalities. The computational experiments and the obtained results are described
in Section 6. Section 7 concludes the work with some comments and directions for
future research.



2 Multi-Depot Rural Postman Problems

MDRPPs are defined on an undirected connected graph G = (V, E) with vertex set
V, |[V]| =n, edge set E, |[E| = m, set of depots D C V, and set of demand (required)
edges R C E. Non-demand edges are denoted by F' = E \ R. The connected
components induced by demand edges are denoted by Cy = (Vi, Ry), k € K so
R = e Ri- Let VR = Upcx Vi- We assume that E contains no edge connecting
two depots, and no component has more than one depot, although it is possible that
a component contains no depot, i.e. |VpzND| <1 for all k € K. Let ¢ denote a
non-negative real cost function defined on the edges of G.

Throughout we use the term route to denote a closed path, not necessarily simple,
that starts and ends at the same depot d € D. When the depot of the route needs
to be explicit we say that the route is rooted at depot d. We say that a demand edge
e € R is served by a route, if the route traverses e at least once. As usual, the cost
of a route is the sum of the costs of the edges in the route, where the cost of each
edge is counted as many times as it is traversed in the route.

We will use the following notation. For any non-empty vertex subset S C V,
0(S) ={e € Ele = (u,v),u € S,v € V\S} =06(V)\S9) is the set edges in the cut
between S and V\S and v(S) = {e € Ele = (u,v),u,v € S or vice versa} the set of
edges with both vertices in S. For a singleton S = {v}, with v € V| we do not use
the brackets and just write §(v) = ({v}). For H C E we use 05 (S) = 0(S) () H and
v (S) =v(S) () H. Furthermore, we will say that a vertex v € V' is H-odd if |6 (v)|
is odd; otherwise we will say that v is H-even. Finally, we use the standard compact
notation f(A) = .4 fe where A C E, and f is a vector or a function defined on
E. If f is only defined on subset B C E, we use f(A) = f(ANB) =) cang fe-

In the reminder of this paper we make the following modeling assumption:

(H1) Demand edges in the same component can be served from different depots.
The effect of this assumption is illustrated in Figure 1. Figure 1.a shows the
input graph, which has two demand components and one depot in each of them
(v1 and vg, respectively). Demand edges are represented by black lines while
non demand edges are drawn in light grey. The numbers next to the edges
indicate their costs. Figure 1.b shows the optimal solution when we impose
that all demand edges in the same component are served from the same depot,
whose total cost is 23 units. The route of depot vy (represented with straight
lines), which serves the demand edges of C1, consists of edges (v, A), (A, B),
and (B, v1). The route of depot v (represented with doted lines), which serves
the demand edges of Ca, consists of edges (ve, E), (E, C), (C, D), (D, E), (E,
F), and (F, v1). Figure 1.c shows that a better solution, of value 19 units, can
be obtained if we allow to serve demand edges in the same component from
different depots. Now all demand edges of C; and some demand edges of Cs
are served in the route from depot vy defined by edges (v1, A), (A, C), (C, E),
(E, D), (D, B), and (B, v1). The remaining demand edges of this component
are served in the route from depot vy, which consists of edges (v2, E), (E, F),
and (F, va).



The routes not necessarily have to be vertex-disjoint.

Figure 1: Example that allowing to split the demand components among routes may
produce better solutions

In the following we assume that G has been simplified so that V is the set of
vertices incident with edges in R, and E contains the edges in R plus additional
non-demand edges, connecting every pair of vertices not connected with an edge
of R, representing shortest paths in the original graph. For this, according to [14],
first we add to Ggr = (Vg, R) an edge between every pair of vertices of Vi having
a cost equal to the shortest path length on G. Then we remove all non-demand
edges (i,7) € F for which ¢;; = ¢ + ¢ for some k € V and one of two edges in
parallel whenever they both have the same cost. Hence the costs satisfy the triangle
inequality.

Definition 2.1

o The MC-MDRPP is to find a set of routes that serve all the demand edges of
meinimum total travel cost.

o The MM-MDRPP is to find a set of routes that serve all the demand edges
that minimizes the length of the longest route.

3 Complexity and optimality conditions

The RPP is a particular case of the MC-MDRPP with |D| = 1. Since the RPP is
NP-hard [35], we also have:

Proposition 3.1 The MC-MDRPP is NP-hard.

The RPP is also a particular case of the MM-MDRPP with |D| = 1. Thus, we
also have:



Proposition 3.2 The MM-MDRPP is NP-hard.

As it is usual in other uncapacitated arc routing problems on undirected graphs
the feasibility of MDRPP solutions is basically established via connectivity and par-
ity conditions, in addition to the requirement that all demand edges are served. Thus
it is not surprising that, similarly to other such problems with min-cost objectives,
when non-negative costs satisfy the triangle inequality, optimality conditions hold
for the MC-MDRPP that allow to derive formulations using binary variables (see, for
instance, [19, 22]). These properties extend or can be adapted to the MM-MDRPP
as well as explained below:

(O1)

(02)

(03)

(04)

MC-MDRPP and MM-MDRPP. There is an optimal MDRPP solution
in wich each demand edge is served by exactly one route.

MC-MDRPP and MM-MDRPP. There is an optimal solution in which no
edge is traversed more than twice. Otherwise, two copies of the same edge can
be removed without affecting neither the requirement that all demand edges
are served, nor the parity of the vertices or the connectivity with the depot.

MC-MDRPP and MM-MDRPP. There is an optimal solution where no
non-demand edge with the two end-nodes in the same component (e € yp(Vy))
is traversed more than once. Otherwise, two copies of such an edge can be
removed without affecting the feasibility of the solution. Furthermore, because
of the triangle inequality, the only edges of vr(V)), that are used, are those
connecting two R-odd vertices.

There is an optimal solution in which the only non-demand edges that are
traversed twice are of one of the following types:

(a) MC-MDRPP (see [22] for a similar result for the RPP). Edges
of the Minimum Spanning Tree (MST) of the multigraph graph G¢ =
(Vo, E¢) induced by the connected components. V¢ contains a node
representing each connected component Cy, k € K. For each pair of
distinct components Cy and Cy/, E¢ contains an edge (ke, k) associated
with each original edge e linking C) and Cy/, i.e. each edge e € dp (Vi) N
dr(Vir), which inherits its cost from G.

It is clear that any MST of G¢ will use only least cost edges between pairs
of components. Let T* be an MST of G¢, and suppose an edge e¢* € F
connecting components Cy and Cy is traversed twice in an optimal MC-
MDRPP solution s*, but (kex,k.L.) is not a least cost edge connecting
components Cy and Cy/. Then, adding edge e* to T™* produces a cycle in
G, in which ¢z < ce~, where € denotes a least cost edge in such cycle.
Then, replacing in s* the two copies of edge e* by two copies of € produces
feasible solution: the parity of the vertices of the original graph G does
not change and the connectivity of the new solution is guaranteed by the
two copies of e. It is possible that in the new solution some edges are
served from a different depot than in the original solution s*, but this
does not affect to its feasibility either. The fact that the cost of the new
solution is smaller than that of the original one, contradicts the optimality



of the original solution.

As shown in the example of Figure 2 this optimality condition does not
apply to the MM-MDRPP, where an optimal solution may have two copies
of a non-demand edge connecting two different components, which does
not belong to any MST of G¢. Thus the adaptation of this condition to
the MM-MDRPP must take into account all least cost edges connecting
any pair of components.

(b) MM-MDRPP. Least cost edges connecting pairs of vertices of the multi-
graph graph G¢ = (Vi E¢).
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Figure 2: Optimal MM-MDRP solution using twice an edge not in the MST of G¢.

4 Formulations

Below we present a MILP formulation for the MC-MDRPP that exploits the opti-
mality conditions of the previous section. Condition (O2) implies that we only need
two sets of binary variables, for the first and second traversals of edges, respectively.
We denote by EY C E the set of edges that can be traversed twice in an optimal
MC-MDRPP solution, which consists of all demand edges plus the edges of the MST
of G¢ (see conditions O4(a)). In each set, variables are also associated with the de-
pot of the route that traverses the edges. For each e € E, d € D, let xgl be a binary



variable indicating whether or not edge e is traversed by the route of depot d. For
each e € EY, d € D, let y? be a binary variable that takes the value one if and
only if edge e is traversed twice in the route of depot d. Then, the a MILP for the
MC-MDRPP is as follows:

win 3 (Z = 3 yg> 0

deD \e€E ec kY

(2 +yM)(8(d)) = 2, deD (2)

(2 +y)(8(S)) = 227, deD,SCV\{d}, (3)
e €7(9)

(@ —y")(6(S)\ H) +y*(H) > a"(H) — [H|+1, SCV, HC4(S), (4)
|H| odd,d € D

Z zd =1, e€R (5)

deD

yd <z, ec BV, de D (6)

z2e{0,1},ec E  yle{0,1},ec EY deD (7)

Inequalities (2) and (3) ensure that all depots are used and the connectivity of
each route with its depot, respectively. This later condition is imposed by stating
that if an edge is traversed by the route associated with depot d € D, then at least
two edges must cross the cut-set of any vertex set containing its two end-nodes, if
it does not contain the depot d. Inequalities (4) ensure the parity (even degree) of
every subset of vertices and, in particular, at every vertex. Broadly speaking, they
impose that if a solution uses an odd number of edges, H, incident to a set of vertices
S, then the solution uses at least one additional traversal of some edge in the cut-set
0(S). In our case, we further exploit the precedence relationship of the z variables
with respect to y variables imposed by constraints (6). Thus, the additional edge
will be either a second traversal of some edge of H or a first traversal of some edge
of 6(S)\H. Inequalities (4) are an adaptation to the MDRPP of those proposed
in [3, 4, 5], which were later reinforced in [18] for the Maximum Benefit Chinese
Postman Problem. Inequalities (2)-(4) jointly guarantee that any solution defines
|D| Eulerian circuits. Taking into account optimality condition (O1), equalities (5)
ensure that each demand edge is served by one route. As mentioned, inequalities
(6) impose that a route cannot traverse an edge for the second time unless it also
traverses the edge for the first time. Binary conditions of the variables x and y
derived from their definition are reflected in constraints (7).

The above formulation has |E| x |D| x variables and |EY| x |D| y variables.
There are |D| inequalities of type (2), |R| inequalities (5) and |EY| x |D| inequali-
ties of type (6). The size of the families inequalities (3) and (4) is exponential on |V].

For the formulation for the MM-MDRPP we use the same sets of decision vari-
ables x and y, taking into account that the index set EY for the variables associated



with edges that can be traversed twice in an optimal MM-MDRPP solution must
be defined according to conditions O4(b). The formulation inherits all constraints
(2)-(7), In addition we define a new integer variable z representing the length of
the longest route, so the objective becomes the minimization of z. A new family of
constraints is needed to relate the new variable z to the lengths of the routes. These
inequalities, also ensure that z represents the longest route:

z > Z cerd + Z ceyl veD. (8)

ecE ecEY

4.1 Valid Inequalities

Below we present some families of simple valid inequalities that we will use to re-
inforce the LP relaxations of the above formulations for the MC-MDRPP and the
MM-MDRPP:

1. Aggregated connectivity constraints.
By adding up over all depots the connectivity constraints (3) associated with
subsets of nodes containing no depots, and taking into account that all vertices,
except possibly the depots, are incident with some demand edge, and thus must
be visited, we obtain:

d @ +y)6(8) =2, ScV,SnD=4. (9)
deD

Even if the family (9) is implied by the general family (3) and is also of
exponential size, some small sub-families associated with particular subsets
S can be very useful to reinforce the initial LP relaxation when the general
family (3) is relaxed:

e Singletons S = {v}, with v € V'\ D:
Z(xd + 3N (6(v)) > 2, veV\D. (10)
deD

For the depots d € D the inequalities (10) are also valid, although they
are dominated by the stronger constraints (2).

e End-nodes of demand edges. S¢ = {u, v}, with e = (u,v) € R, S*ND = (:

d @ +yh(6(8) =2, e€R S ND=0. (11)
deD

e Vertex sets of components without depot. S =V, k€ K, V, N D = (:

d @ +yH6(W) =2,  keKVinD=0. (12)
deD



2. Aggregated parity constraints. Aggregate versions of the parity con-
straints (4) are indeed valid for the MC-MDRPP and the MM-MDRPP. Simi-
lar inequalities (but combining binary and general integer variables) have been
used for other ARPs with multiple vehicles, namely the MM-K-RPP [8, 12].
For the MC-MDRPP and the MM-MDRPP, for S C V., H C §(S), |H| odd.
the inequality that we obtain is the following:

D@l —y)GS)\H)+ ) y(H) =Y a%(H) - |H[+1.  (13)
deD deD deD
In particular, when S is R-odd, i.e. [0r(S)| odd, and H = §r(S), the inequality
(13) becomes

Y@ = y)(6r(9) + Y y'(0r(S)) = 1. (14)

deD deD

5 Solution Algorithm

In this section, we present the solution algorithm that we use to solve the MDRPPs,
based on the formulations proposed in Section 4. It is a branch-and-cut algorithm
where an iterative Liner Programming (LP) based cutting plane algorithm is applied
to the nodes of the enumeration tree. For this, the families of constraints of expo-
nential size are relaxed and, at each iteration, inequalities violated by the current LP
solution are separated. Such inequalities are iteratively incorporated to the current
formulation and the reinforced formulation resolved. In our case the two families
of constrains of exponential size are the connectivity and the parity constraints, (3)
and (4), respectively. In the following subsections, the different elements of our al-
gorithm are described: the initial formulation that is considered and the separation
procedures for inequalities (3) and (4).

5.1 Initial relaxation

The algorithm starts with the integrality conditions relaxed and only a subset of
constraints. Initially we include all constraints (2), (5) and (6), plus a small subset
of connectivity and parity constraints. In particular, for each d € D, we consider the
inequalities (3) associated with the vertex subsets defined by the end-nodes of the
edges not incident with any depot, i.e., S¢ = {u,v}, with e = (u,v) € E, such that
u,v ¢ D. This relaxation is reinforced with the aggregated connectivity inequalities
(10), (11) and (12), plus the aggregated parity constraints (14), associated with
R-odd singletons, i.e., S = {v} with v € V and |0g(v)| odd.

5.2 Separation of inequalities

At any iteration of the algorithm the step that solves exactly the separation problem
for the connectivity and parity inequalities consists of two parts. First, we look for
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violated connectivity inequalities (3), and then we look for violated parity inequal-
ities (4). Throughout (Z,y) denotes the current LP solution and, for each depot
d € D, (z%,7%) the partial LP solution associated with the depot d, i.e. the com-
ponents of (Z,7) associated with d. Furthermore, G%@ = (Vd,EEd7yd) denotes the
support graph of the partial solution (z%,7?) for depot d € D, obtained from G by
eliminating all edges in £ with ¢ = 0 and all vertices that are not incident with
any edge of Ea ga.

5.2.1 Separation of connectivity inequalities (3)

To separate the connectivity inequalities (3), for each depot d € D, we first check
if G%? is connected. If it is not, each connected component C with vertex set
V(C) € V\ D defines a violated connectivity constraint (3) for depot d. When
G%@ is connected we build the tree of min-cuts T¢ (see, for instance, [24]) of G%@
with capacities given by Z¢ + 7%. Then, we use an adaptation of the algorithm of
[7]. For each edge e = (u,v) in Era ga with u,v € V'\ D, the minimum cut §(5) such
that e € (9) is easily obtained from the min-cut tree 7¢. If the value of the min
cut is smaller than 2@5 then the inequality (3) associated with S and d is violated by
(Ed,gd). The above separation is exact and similar to the procedure used by other
authors to separate constraints (3) for other arc routing problems [1, 4, 17].

5.2.2 Separation of parity inequalities (4)

For a given vector (Z,y), the separation problem for inequalities (4) is to find d €
D, S cV,H Cd(S), |H| odd such that the associated parity inequality (4) is
violated by (Z,%), or to prove that no such inequality exists. The algorithm that
we use follows the spirit of the separation used by other authors with similar parity
constraints for other arc routing problems with binary variables [4, 5, 17]. For each
d € D, the algorithm starts by building the tree of min-cuts of the support graph
G%’y, T, with capacities vector b defined as follows. Each edge e = (u,v) € Ea ga
is assigned a capacity given by b, = min{(z? —y%),1 — (% — 74)}. This criterion
dictates whether edge e should be assigned to H or to §(S)\ H if the selected cut-set
contains edge e, in order to obtain the smallest possible value of the left hand side
of (4).

When T? has a cut 6(S) of capacity smaller than one, i.e. b(5(S)) < 1, we
consider its vertex set S, and the set of edges H = {e € §(S) | (z¢ — 7?¢) > 0.5},
which, as explained, produces the smallest possible value on the left hand side of
(4). When |H| is odd, H defines, together with S, a violated inequality of type
(4). Otherwise, if |H| is even, since all capacities are non-negative, the smallest
increment in the value of the left hand side of (4) that guarantees that |H| is odd
is obtained by either removing one edge from H (and transferring it to 6(S) \ H)
or by adding to H one edge currently in §(S) \ H. By doing so the variation in |H |
is of just one unit, so the new set H will be odd. The above mentioned smallest
increment can be easily computed as

Azmin{min{f?—gg:eGé(S)\H},min{l—(EZ—yZ):e € H}},
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where the first term represents the minimum increment in the left-hand-side if an
edge of §(S) \ H is transferred to H, and the second term represents the minimum
increment if an edge of H is transferred to §(S) \ H. When b(6(S5)) + A < 1, the
updated set H defines a violated inequality (4) for d and S for the current solution
(@, 7%).

It is possible that the minimum cut-set of 7% does not produce a violated in-
equality (4) even it it exists. This is only possible if the set H associated with the
minimum cut in T? is even. Fortunately, in [29] it is proven that exploring as ex-
plained above all the cut-sets of T defines an exact algorithm for knowing whether
or not a violated inequality (4) exists. The order of such an algorithm is dominated
by that of the algorithm that obtains the min-cut tree T°. In practice, however, this
upper limit on the order of the algorithm is very seldom reached. On the one hand,
each connected component of G%g for the capacities vector b already defines some of
the subsets S of the tree T® and connected components can be obtained with a small
computational burden. On the other hand, when G%’g defines one single connected
component but a violated inequality exists, most often the cut-set producing the
violated inequality will be identified before completing the full cut-tree 7. Thus, in
most cases, only if no violated inequality (4) exists it will be necessary to compute
all the min-cuts that define T°.

Summarizing, for a fixed depot d € D, the exact separation for inequalities (4)
reduces to finding the set S such that §(S) contains the best possible set H, and
indicates that, in the worst case, this problem can be solved by finding the the
complete tree of min-cuts of the support graph G%@, for the capacities vector b
defined above. It is important to recall that the smallest value of the left hand side
of inequality (4) after making H odd is not necessarily associated with the smallest

min-cut of the tree.

6 Computational Experiments

In this section, we describe the computational experiments we have run in order to
evaluate the performance of the proposed algorithm. Programs have been coded in
C++ using CPLEX 12.5 Concert Technology for the solution of the LP relaxations.
The maximum computing time has been set to four hours. Moreover, the cuts
generated by CPLEX have been disabled.

All the instances were run on an Intel Core 2 CPU, 2.67 GHz and 8.00 GB RAM.
Since there were no available MDRPP benchmark instances, we have generated test
instances with two and four depots from 118 well-known RPP benchmark instances.
The original RPP benchmark instances are divided in five groups. The first group
ALB contains two data sets ALBAIDAA and ALBAIDAB, obtained from the Al-
baida, Spain Graph (see [15, 16]). The second group contains the 24 instances,
labeled P, of [14]. The last 3 groups contain instances from [25]: 36 instances with
vertices of degree 4 and disconnected required edges sets (labeled D), 36 grid in-
stances (labeled G), and 20 randomly generated instances (labeled R). In all cases
we inherited the set of required edges and the cost function ¢ from the original RPP
instances.
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finst Vol | Ey| R| K| [VI/Vol  |E]/|Eo|

ALB 2 90-102 144-166 88-99 10-11 1.00 0.99
P 17 7-50 13-184 7-78 2-8 1.00 0.99
D16 6 16 31 3-16 2-5 0.83 0.80
D36 9 36 72 10-38  4-11 0.78 0.79
D64 9 64 128 27-75  5-15 0.82 0.83
D100 9 100 200 50-121  9-22 0.85 0.87
G16 7 16 24 3-13 3-5 0.74 0.67
G36 9 36 60 11-35 5-9 0.79 0.75
G64 9 64 112 24-68 4-14 0.80 0.78
G100 9 100 180 41-113  4-20 0.83 0.83
R20 2 20 47-75 3-7 3-4 0.48 0.36
R30 5 30 70-112 7-11 4-6 0.47 0.41
R40 5 40 82-203 8-18 9-9 0.50 0.50
R50 ) 50 130-203 13-20  6-12 0.50 0.54

Table 1: Instances summary

Table 1 depicts information on these instances, which have been grouped ac-
cording to their characteristics and sizes. The meaning of the columns is as follows:
column under § inst gives the number of instances in the group; columns under |Vj|
and |Ey| give, respectively, the number of vertices and edges of the original graph;
the columns under |R| and |K| give, respectively, the number of required edges and
the number of connected components in the graph induced by those required edges.
In the above columns, when not all the instances of the group had the same value,
the minimum and maximum values of the group are given. The remaining columns
in the table give information on the effect of the graph transformation. In partic-
ular, columns under |V|/|Vy| and |E|/|Ey| respectively correspond to the average
ratios of the number of vertices or edges in the transformed graph related to the
original graph. As it is known, the transformed graph is considerably smaller than
the original graph, in terms of the number of vertices and edges.

For the computational experiments and regarding the set of depots, we have con-
sidered two different cases: two and four depots. Depots have been chosen randomly
from the set of vertices, fulfilling that no connected component has more than one
depot. For this, for each selected number of depots |D| € {2,4} we have proceeded
as follows. First, we randomly generate |D| different numbers, k;, i = 1,...,|D],
from an integer uniform distribution U[1, |K|], which give the indices of the clusters
were the depots are located. Then, for each selected cluster, k; the index of the node
of Vi, that becomes the depot is obtained by randomly generating a number v; from
an integer uniform distribution U[1, |V}, |]. In order to compare the results obtained
with 2 and 4 depots, the instances that have fewer than four connected components
have been removed from the experiment. Finally, the experiments have been run
with two groups of 103 instances each.

13



fopto  gapo cutsCo cutsPp fopt gap cutsC cutsP fNod cpu

ALB 0/2 2.40 3568 153 2/2 0 6889.50 311 10 200.18
P 5/17 297 472.47 33.71 17/17 0 318.06 50.24 1.81 1.87
D16 6/6 0 56.83 8.33 - - - - 0 0.03
D36 1/9 0.92 366.67 39.89 9/9 0 149 32.33 5.67 0.60

D64 0/9 1.59 1635.22 80.56 9/9
D100 0/9 4.11 4392.78 135.56 8/9 0.
G16 5/7 1.52 23.14 12.29 /7
G36 3/9 1.72 313.67 43.22 9/9
G64 2/9 1.75 1474.89 93.89 9/9
G100 0/9 4.59  14368.89  422.44 7/9 2.

1516.33 178.67 20.22 16.24

0  26876.56 1483.89  376.67  2452.42
12.71 7.14 1.43 0.03
189.44 32.67 2.33 0.53
7733.11 662.11 164.11 156.77

0  59850.33 25381.78 337.44 4631.05

w © O O 4 O

R20 2/2 0 7.50 5.50 - - - - - 0.02
R30 4/5 0.23 59.80 11.60 5/5 0 5.60 6.8 3 0.10
R40 4/5 0.09 330.60 23.60 5/5 0 100.40 18 3.4 0.28
R50 4/5 0.35 351.40 32.20 5/5 0 67.6 2.40 0.4 0.17

Table 2: Summary of results for MC-MDRPP for instances with two depots

6.1 Minimizing the overall routing costs: Results for MC-MDRPP

The results for the MC-MDRPP for the instances with two and four depots are
summarized in Tables 2 and 3, respectively. For each group of instances, columns 2-
5 give information about the root node of the enumeration tree, while columns 6-11
give the results of the search tree. Column under fopty shows the number of instances
in the group that have been optimally solved in the root node. Column under gapg
gives the average percentage gap at the root node with respect to the optimal or
best-known solution at termination. The following two columns, under cutsCy and
cutsPy give the average number of connectivity (3), and parity (4) cuts generated
at the root node, respectively. Similarly, the next four columns under fopt, gap,
cutsC and cutsP give the same information at termination: number of instances
that have been optimally solved, the average percentage gap with respect to the
optimal or best-known solution and the average number of connectivity and parity
cuts generated after the root node, respectively. Column under §Nod shows the
average number of nodes that were explored in the search tree. Finally, the column
under cpu gives the overall computing time in seconds. These times do not include
the preprocessing time for the reduction of the graph neither the time for loading
the formulation, which are negligible as compared to the solution times reported in
the tables. Detailed results for each instance can be found in the Appendix.

For 36 2-depot instances, a provable optimal solution was obtained already at
the root node. At termination, optimality of the current solution was proven for 100
of the 103 2-depot instances. The unsolved instances are D35, G33 and G34 with
percentage optimality gaps at termination of 6.34%, 9.88% and 15.36%, respectively.

For the 4-depot instances, optimality was proven at the root node for 53 instances
and at termination for 95 of the 103 benchmark instances. No feasible integer
solution was found within the time limit for any of the eight unsolved instances: two
instances in group D100 (D34 - D35) and six instances in group G100 (G30 - G35).

As for the number of added inequalities, there were considerably more connec-
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fopto gapo cutsCo cutsPy fopt gap cutsC cutsP fNod cpu

ALB 0/2 1.8 18263 429 2/2 0 45754 1325 129 5476.70
P 11/17  0.73 455.94 49.88 17/17 0 2103.06 134.65 1.81 44.77
D16 6/6 0 0.50 1.33 - - - - - 0.01
D36 4/9 0.87 488.89 69.67 9/9 0 219.33 35.22 1.89 0.96
D64 1/9 2.27 4027 196.33 9/9 0 3509.78 1543.33  40.11 108.64
D100 0/9 24.60 17860.11  480.11 7/9 22.22  51504.33 1878.44 130 7085.23
G16 /7 0 1.86 7.8 - - - - - 0.01
G36 5/9 1.56 340.78 69.78 9/9 0 795.22 98.22 45.44 10.50
G64 5/9 0.67 2636.67 196.89 9/9 0 16248.78  931.22 128 1835.31

G100 1/9 67.08 12813.33  548.22 3/9 66.67 56311.78  1341.67 38.33 9640.11

R20 2/2 0 1.5 7.5 - - - - - 0.02
R30 4/5 1.63 21.80 14.40 5/5 0 29.40 7.40 1.20 0.08
R40 4/5 0.13 352.60 42.20 5/5 0 20 4 1.80 0.35
R50 3/5 0.48 533.60 62.60 5/5 0 81.20 13.60 0.80 0.45

Table 3: Summary of results for MC-MDRPP for instances with four depots

tivity cuts than parity cuts, although in some cases the number of added cuts was
not very large.

The computational effort required for solving the instances to optimality, can be
evaluated by the required solving computing times. In this sense, only 5 instances
with two depots and 14 of instances with 4 depots required more than one hour
(including those instances for which no feasible solution was found within the time
limit). Moreover, in 82 2-depot and 76 4-depot instances, respectively, the optimal
solution was found in less than 1 minute. If we compare the difficulty in solving
instances with two and four depots in terms of the required computing times, we
can see that the algorithm is, in general, faster when the instances have fewer depots.

Observe that the proposed algorithm was able to solve at the root node more 4-
depot than 2-depot instances, even if the former involve a larger number of variables.
If we analyze those instances we can find a pattern. In general, the solved instances
belong to groups of small size and, also, they have a small number of connected
components.

The results of the computational experiments also allow us to observe whether in
the optimal solutions, connected components are fully served by the same depot. Our
results indicate that connected components are split in 22 of the 2-depot instances
and in 30 of the 4-depot ones.

6.2 Balancing the length of the routes: Results for MM-MDRPP

The analysis of the solutions structures shows that in some instances the routes
produced by MC-MDRPP are unbalanced in terms of their length. Below we present
the results of a new series of computational experiments have been run with the
formulation for the MM-MDRPP. For these experiments we have considered the 78 2-
depot instances with up to 50 nodes, and the set of 60 4-depot instances that consists
of all instances with up to 40 nodes plus the R50 set. For the excluded instances, in
most cases, it was not possible to solve them to optimality and percentage optimality

15



fopto  gapo cutsCo  cutsPy fopt gap cutsC cutsP fNod cpu

P 1/12 8.31 319.92 27.75 12/12 0 678.58 156.42 35.58 4.43
D16 3/6 3.97 69.50 17.17 6/6 0 35.17 21.67 5.17 0.14
D36 0/9 12.59  448.78 41.78 9/9 0 1310.44 193.11 44.44 4.66
D64 0/9 11.21  2084.78 88.33 8/9 0.11  17340.33  1484.22 1688.44 1866.19
G16 4/7 9.71 38.43 13.86 7/7 0 18.43 13 3.71 0.04
G36 2/9 6.12 379.67 43.78 9/9 0 1279.56 224.56 27.78 5.25
G64 0/9 7.82  2720.33 122.44 9/9 0 25627.78  2532.00  624.56 1665.05
R20 1/2 13.11 18 5 2/2 0 55.50 23.50 7 0.16
R30 1/5 10.00 112.20 16.40 5/5 0 92.40 10.80 3.40 0.15
R40 2/5 3.47 418.20 23.40 5/5 0 650 109.20 59 2.42
R50 0/5 18.49  538.00 25.20 5/5 0 2749.40 197.60 55.80 1.41

Table 4: Summary of results for MM-MDRPP for instances with two depots

fopto  gapo cutsCoy  cutsPy fopt gap cutsC cutsP fNod cpu

P 2/12  14.24  661.83 69.58 12/12 0 4578.58  661.67 1107 1227.46
D16 4/6 5.60 38.83 21.50 6/6 0 0 1.33 1.17 0.08
D36 1/9 20.06 1153.56  122.33 9/9 0 319.56 490.78 176.56 47.03
G16 6/7 3.17 11.86 13.43 /7 0 0 0 0.14 0.02
G36 2/9 15.90  805.78 124.78 9/9 0 3662.22  679.78  295.22  1117.09

R20 2/2 0 19.50 16 - - - - - 0.05
R30 3/5 6.73 144.20 30.20 5/5 0 82 24.20 15.50 0.38
R40 0/5 31.09  638.20 61.80 5/5 0 2370.40  306.40 120 30.25
R50 0/5 36,78  1005.60 92.80 5/5 0 5808.60 1152,60  815.2 113.81

Table 5: Summary of results for MM-MDRPP for instances with four depots

gaps at termination were quite big.

The results of the new experiments are summarized in Tables 4 and 5, where
columns have the same meaning as before. It can be seen that, in general, the gap at
the root node, the number of cuts, the number of explored nodes and the computing
times are worse than with the MC-MDRPP. Still, the proposed algorithm found the
optimal solution for all the tested MM-MDRPP instances but one, the exception
being instance D26.

Comparing the optimal solutions to both models, we observe that, as could be
expected, the overall routing costs are, in general, higher in optimal MM-MDRPP
solutions than in optimal MC-MDRPP solutions. Even if there are 19 2-depot
instances and 20 4-depot instances where the overall length of all routes is the
same in both models, the average overall length increase is 13.09% for the 2-depot
instances and 21.14% for the 4-depot instances. The maximum increases are 52.80%
in instance R17 with two depots, and 73.69% in instance R11 with four depots.

Nevertheless, we can also observe that when using model MM-MDRPP, the
length of the maximum route usually decreases noticeably with respect to the max-
imum length in an optimal MC-MDRPP solution. Even if there are 13 2-depot
instances and 21 4-depot instances where the length of the longest route does not
change, on average the length of the maximum route decreases in 19% for the 2-
depot instances and 27.20% for the 4-depot instances. The maximum decreases are
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fopto  gapo  cutsCo cutsPp fopt gap cutsC cutsP fNod cpu

P 0/12 2429 788.33  39.58  12/12
D16 0/6 30.80 125.00 17.67  6/6
D36 0/9 2149 639.78 4044  9/9
G16  1/7 3043 67.86 1829  7/7
G36  0/9 24.80 69211 4956  9/9
R20 0/2 3348 4750  15.00  2/2
R30 0/5 2235 14760 2140  5/5
R40  0/5 14.74 43200 30.00 5/5

2641.25 369.33  286.00 25.43
317.50 117.83 52.17 0.55
5104.67 703.89 858.00 1685.29
135.43 37.86 27.14 0.23
4032.22  556.00 252.67  368.37
133.50 34.00 18.00 0.31
473.80 77.40 57.80 0.88

0
0
0
0
0
0
0
0 4079.40  441.60 414.80 28.81

Table 6: Summary of results for MM-K-RPP for instances with two routes

fopto  gapo cutsCo  cutsPy fopt gap cutsC cutsP fNod cpu
P 0/12 37.57 1812.50 93.58 10/12  12.22 14981.33  1822.83  3422.25  3682.92
D16 0/6 48.76  236.17 42.50 6/6 0 1013.67 446.83 594.83 15.40
D36 0/9 36.27  2132.33  167.78 7/9 7.10  20157.67 2088.78 11910.89  3871.17
G16 1/7 32.54  153.86 57.57 7/7 0 301 112.86 72.71 2.10
G36 0/9 47.21  2974.44 204 8/9 3.54  14838.67 1694 1127 4502.25
R20 0/2 50.43  257.50 31.50 2/2 0 812.50 625 692.50 20.09
R30 0/5 47.38  448.80 47.40 5/5 0 2249.80 478.80 442.20 44.59

R40 0/5 40.99 1090 75.80 2/5 6.60 19397.40 2650 4209.40  3336.25

Table 7: Summary of results for MM-K-RPP for instances with four routes

46.15% in instance G25 with two depots, and 64.71% in instance G16 with four
depots.

6.3 Balancing the length of the routes from one single depot

In this section we present the results of the last series of experiments we have run.
They correspond to the undirected MM-K-RPP, which considers K vehicles located
at a one single depot and minimizes the length of the longest route. As mentioned
in the introduction the MM-K-RPP is a particular case of the MM-MDRPP, by
considering K depots co-located at the same vertex and performing one single route
from each co-located depot. For our experiments, we have considered all instances
with up to 40 nodes. For each instance, we have randomly selected one of the depots,
which has been replicated K times, and all other previous depots have been ignored.

Tables 6 and 7 give the results obtained for K € {2,4}. Comparing optimal
solutions to the MM-K-RPP and the MM-MDRPP, we observe that the cost of the
longest route in optimal MM-K-RPP solutions increases considerably in comparison
to the MM-MDRPP. Consequently, the total routing cost increases as well. The
average maximum length increases in 26.84% for the 2-depot instances and in 102%
for the 4-depot instances. This represents a total increase of overall length of 31.29
% and 116.50% respectively, on average.

The computational effort required for solving the MM-K-RPP instances to op-
timality is higher than the previous experiments, for instances of the same size and
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characteristics. In comparison with the MM-MDRPP, the computing time of the
MM-K-RPP increases around 1604% for 2-depot instances and 644% for 4-depot in-
stances. Furthermore, eight 4-depots instances could not be optimality solved within
the limit time. We attribute this increase in the difficulty for optimally solving the
instances to the symmetry that now appears for the routes, as they can now be
interchanged.

7 Conclusions

In this work we have introduced Multi-Depot Rural Postman Problems on undirected
graphs and studied some of its properties and dominance relations for two variants
of the problem. In one model the objective is to minimize the overall routing costs,
whereas the second model uses a min-max objective function aiming at minimizing
the length of the longest route. MILP formulations, which only use binary variables,
have been presented for both models where, as usual, the families of constraints
that enforce connectivity and parity of solutions are of exponential size. We have
proposed an exact branch-and-cut algorithm where the separation problem of both
families is solved exactly with adaptations of well-know algorithms. The performance
of the algorithm has been tested for the two proposed models. For this, in each case
we have solved two sets of instances, with two and four depots, respectively, with 103
instances each of them. For the min-cost objective, 35% and 51% of the instances
of the first and second sets, respectively, were optimally solved at the root node. At
termination these percentages raise to 97% and 92% of instances optimally solved,
for the first and second set, respectively. Regardless the difficulty of the problem,
the results produced by the algorithm are quite satisfactory for the model with the
min-cost objective. The numerical experiments with the model where the objective
is the minimization of the longest route, indicate that computationally the new
formulation becomes notably more demanding. Nevertheless, the formulation for
this min-max version is indeed successful in producing balanced routes.

The proposed algorithm produces, in general, quite good results for both models
although that its performance decreases as the number of depots increase. The
reason is that the number of variables of the proposed formulations becomes too high
so as to efficiently solve medium size instances. For both models, the performance
algorithm could be enhanced with the inclusion of some ad-hoc heuristic.
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2 DEPOTS 4 DEPOTS

gapg cutsCo cutsPyp gap cutsC cutsP  f#Nod cpu | gapo cutsCy cutsPy gap cutsC cutsP fNod cpu
D02 0 55 9 - - - 0 0.03 0 0 4 - - - 0 0.02
Do4 0 29 8 - - - 0 0.03 0 0 0 - - - 0 0.00
D05 0 53 7 - - - 0 0.03 0 0 0 - - - 0 0.00
D06 0 33 6 - - - 0 0.02 0 3 4 - - - 0 0.03
Do7 0 10 0 - - - 0 0.02 0 0 0 - - - 0 0.01
D08 0 161 20 - - - 0 0.05 0 0 0 - - - 0 0.00
D09 0.21 119 15 0 0 0 1 0.09 0 111 23 - - - - 0.09
D10 0 86 27 - - - - 0.08 0 64 28 - - - - 0.06
D11 0.55 166 26 0 11 10 1 0.14 | 0.54 899 88 0 6 18 1 0.69
D12 0.36 245 43 0 70 71 12 0.39 | 2.28 106 33 0 32 21 2 0.14
D13 0.58 302 42 0 29 20 1 0.27 | 2.61 413 81 0 109 43 6 0.80
D14  0.05 779 66 0 0 2 1 1.06 0 597 66 - - - - 0.30
D15  1.09 568 46 0 12 24 2 0.41 | 1.20 615 94 0 50 15 1 0.83
D16  4.17 503 52 0 949 130 30 2.20 0 711 114 - - - - 0.42
D17 1.23 532 42 0 270 34 3 0.76 | 1.19 884 100 0 1777 220 7 5.35

Table 9: MC-MDRPP results for instances of the group D16

and D36
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2 DEPOTS 4 DEPOTS

gapo cutsCo cutsPp gap cutsC cutsP  #Nod cpu | gapo cutsCo cutsPp gap cutsC cutsP f#Nod cpu
GO01 0 3 0 - - - - 0.02 0 0 6 - - - - 0.01
G02 0 4 10 - - - - 0.00 0 0 0 - - - - 0.02
G03 0 18 16 - - - - 0.00 0 4 0 - - - - 0.00
G04 0 2 15 - 5 6 2 0.03 0 6 16 - - - - 0.01
G06  7.50 104 19 0 58 34 6 0.09 0 0 0 - - - - 0.00
G0o7 0 14 14 - - - - 0.02 0 4 17 - - - - 0.00
G08  3.13 17 12 0 26 10 2 0.03 0 3 12 - - - - 0.00
G09 0 95 36 - - - 2 0.05 0 49 32 - - - 2 0.06
G10  3.33 155 38 0 2 5 2 0.12 0 195 43 - - - - 0.09
G11  1.56 248 43 0 99 10 2 0.23 0 71 46 - - - - 0.06
G12  2.03 547 44 0 227 28 3 0.69 0 170 46 - - - - 0.14
G13  0.93 277 45 0 60 20 1 0.41 | 4.51 348 54 0 230 39 8 0.78
G14 0 263 42 - - - - 0.11 | 0.83 495 78 0 2 4 1 0.61
G15 3.87 665 81 0 541 123 5 1.79 0 937 154 - - - - 1.09
G16  3.79 456 32 0 776 108 6 1.31 | 8.70 683 121 0 6925 841 400 91.60
G17 0 117 28 0 - - - 0.06 | 0.00 119 54 - - - - 0.10

Table 11: MC-MDRPP results for instances of the group G16 and G36
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2 DEPOTS 4 DEPOTS

gapo cutsCo cutsPy gap cutsC cutsP  #Nod cpu | gapo cutsCo cutsPy gap cutsC cutsP #Nod cpu
RO1 0 0 0 - - - - 0.02 0 0 4 - - - - 0.00
RO3 0 15 11 - - - - 0.02 0 3 11 - - - - 0.03
RO5 0 14 0 - - - - 0.00 0 0 0 - - - - 0.00
RO6 1.16 129 24 0 28 34 15 0.41 8.14 15 21 0 147 37 6 0.20
RO7 0 22 13 - - - - 0.03 0 0 6 - - - - 0.01
RO8 0 56 7 - - - - 0.01 0 42 34 - - - - 0.16
R09 0 78 14 - - - - 0.05 0 52 11 - - - - 0.05
R10 0 229 28 - - - - 0.06 0 66 13 - - - - 0.08
R11 0 176 13 - - - - 0.03 0 90 21 - - - - 0.06
R12 0 54 0 - - - - 0.00 0 9 4 - - - - 0.00
R13 047 460 33 0 502 90 17 0.95 | 0.63 1110 109 0 100 20 9 1.19
R14 0 734 44 - - - - 0.37 0 488 64 - - - - 0.42
R15 0 299 23 - - - - 0.09 0 258 59 - - - - 0.28
R16 0 889 79 - - - - 0.25 0 1212 71 - - - - 0.41
R17 0 78 15 - - - - 0.05 0 44 19 - - - - 0.05
R18 0 250 28 - - - - 0.08 1.17 504 84 0 46 17 2 0.61
R19 1.75 241 16 0 338 12 2 0.37 | 1.26 650 80 0 360 51 2 0.91

Table 13: MC-MDRPP results for instances of the group R20, R30, R40 and R50
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2 DEPOTS 4 DEPOTS

gapo cutsCo cutsPy gap cutsC cutsP  fNod cpu gapo  cutsCo cutsPy gap cutsC cutsP  fNod cpu
D02 0 58 13 - - - 0 0.06 0 35 30 - - - 0 0.08
Do4 0 36 11 - - - 0 0.01 0 29 16 - - - 0 0.03
D05  9.11 41 17 0 141 80 21 0.20 16.03 79 33 0 0 8 5 0.19
D06 0 46 22 - 25 - 0 0.06 17.56 51 30 0 0 0 2 0.12
Do7  8.26 40 11 0 - 23 5 0.14 0 39 20 - - - 0 0.05
D08  6.46 196 29 0 45 27 50 0.27 0 0 0 - - - 0 0.00
D09 15.23 201 25 0 223 32 13 0.44 39.47 271 32 0 207 67 26 1.05
D10 20.11 282 33 0 102 44 6 0.27 0 202 54 - - - - 0.23
D11 19.23 272 19 0 2202 268 60 4.90 30.25 1328 103 0 3648 579 198 30.23
D12 1594 390 34 0 414 96 24 1.11 35.32 602 58 0 1640 331 143 7.78
D13 9.29 388 37 0 1149 205 45 2.14 14.39 650 105 0 288 90 21 3.15
D14 11.85 577 76 0 3379 414 135 18.82 23.90 1669 139 0 7215 1333 445 157.48
D15 9.79 674 47 0 578 117 23 2.03 21.78 1625 183 0 6792 894 433 84.93
D16  8.15 511 52 0 1220 179 38 4.35 5.34 1546 195 0 625 134 13 8.669
D17 3.70 744 53 0 2527 383 56 9.89 10.06 2492 232 0 8111 989 310 129.73
D18 10.23 1404 47 0 5315 337 35 12.53
D19  9.60 2025 7 0 5985 540 64 20.53
D20  28.67 659 29 0 6048 912 678 48.00
D21 7.44 1980 93 0 15120 964 198 136.13
D22 8.32 1947 74 0 19848 1487 273 258.9
D23 11.92 1761 172 0 9470 1126 187 444.13
D24  6.64 3235 92 0 24516 1848 697 580.87
D25 5.79 2953 92 0 17770 1165 221 894.59
D26 12.33 2799 119 1.0 51991 4979 12843 14400

Table 15: MM-MDRPP results for instances of the group D16, D36, and D64
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2 DEPOTS 4 DEPOTS

gapo  cutsCo cutsPy gap cutsC cutsP f#Nod cpu gapo  cutsCo cutsPy gap cutsC cutsP f#Nod cpu
RO1 0 3 2 - - -c - 0.00 0 0 4 - - - - 0.00
RO3 33 8 0 111 47 14 0.31 0 39 28 - - - - 0.09
RO5 0 19 2 - - - - 0.05 0 0 0 - - - - 0.00
R06  22.04 174 21 0 5 8 1 0.12 9.59 253 47 0 6 6 4 0.23
RO7  3.70 45 19 0 28 6 5 0.14 0 36 19 - - - - 0.09
R0O8 2241 195 25 0 429 40 9 0.38 0 276 66 - - - - 0.51
R09  1.87 128 15 0 0 0 2 0.06 | 24.04 156 19 0 404 115 27 1.08
R10  1.05 239 19 0 24 7 2 0.20 | 32.44 624 50 0 1746 244 81 5.87
R11 0 231 17 - - - - 0.08 | 49.30 139 23 0 24 37 6 0.48
R12 0 133 11 - - - - 0.08 | 46.16 96 28 0 80 66 19 0.80
R13  9.76 696 36 0 1639 217 173 5.84 14.50 1209 109 0 8113 952 405 131.82
R14  6.55 792 34 0 1632 322 120 5.88 13.05 1123 99 0 1889 233 89 12.29
R15 12.83 630 22 0 7620 542 165 14.81 14.55 647 65 0 4967 812 619 51.07
R16  9.83 593 46 0 756 59 6 0.67 | 57.87 1596 125 0 9195 2921 2589  361.14
R17  44.08 238 15 0 545 85 30 0.48 | 35.56 162 32 0 176 46 3 0.41
R18 15.91 392 40 0 1184 131 28 1.15 46.89 1108 126 0 8216 1340 705 105.69
R19 9.81 837 3 0 3643 171 50 3.34 | 29.04 1515 116 0 6489 644 160 50.72

Table 17: MM-MDRPP results for instances of the group R20, R30, R40, and R50
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