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I González, A Naseri, J Rigola, C D Pérez-Segarra and A Oliva
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Abstract. Suction and discharge processes with self actuated valves have a major influence
in efficiency and reliability of hermetic reciprocating compressors. Understanding the operation
completely in order to enhance compressor’s design needs precise prediction of the fluid-structure
interaction complexities involved in these processes. This paper presents a comprehensive
description of a numerical methodology to account for the coupled behaviour of a reed valve
and a turbulent flow. The method is based on a partitioned semi-implicit scheme that only
strongly couples the fluid pressure term to the structural solver. A three-dimensional CFD
analysis with LES turbulence modelling is used for the flow while a combination of plate theory
and mode summation method is used for the solid. The dynamically changing domains are
tackled by means of lagrangian and arbitrary lagrangian-eulerian approaches for the solid and the
fluid, respectively. The whole model is compared with experimental data at Reynolds number
10, 000, showing good agreement in lift amplitude and deformation fluctuations. Finally, as an
illustrative case, results regarding lift, pressures, force and effective areas are compared with
those of a valve with wider gland.

1. Introduction
Design of reed valves is a challenging task and is of great relevance for the overall performance of
hermetic reciprocating compressors [1, 2]. They are involved in suction and discharge processes,
which are responsible for nearly half of the total thermodynamic losses of the compressor [3].
But besides efficiency, reliability is also influenced, since the repetitive loading of the valves is
the most common cause of failure of the machine [4, 5].

The problem presents different complexities such as high pressure and velocity gradients,
flow detachment, turbulence, collisions and fluid-structure multi-physics coupling. Traditionally
the process has been tackled by means of one-dimensional lumped models [6], which have been
proved to work reasonably well for broad design studies. However, a more detailed approach
needs to be considered in order to fully understand the flow topology and optimise valve design.
In the last years, following an enhance in computational resources, a growing research on 3D
computational fluid dynamics (CFD) simulations for valve flow has been carried out. A verified
fluid-structure interaction (FSI) model, which strongly couples both 3D CFD and finite element
structural solvers, was thoroughly explained and used for reed valves in [7]. Besides, different
CFD analysis considering FSI have been performed which include comparison with experimental
data. Some examples can be found in [8, 9, 10, 11]. They mostly focused on the valve response
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rather than on the description of the numerical methodology or the results regarding the flow
behaviour.

The objective of this work is to provide an insight into a numerical methodology which is able
to perform a complete three-dimensional analysis of the turbulent valve flow. The method is
based on a new strong fluid-structure coupling algorithm which ensures numerical stability with
a moderate increase in computational cost. First, an experimental test is numerically replicated.
Then the case is simulated with a variation in the original design of the valve to evaluate the
sensitivity of the system and to prove the potential of the numerical procedure to optimise valve
designs.

2. Numerical methodology
A partitioned approach is followed to solve the FSI problem, which uses independent solvers for
fluid and structural sub-problems and adopts a coupling scheme to account for their interaction.
The elastic reed motion is modelled using the normal mode summation method, within a
Lagrangian mesh, thus taking the local loads and bending deformations into account with
negligible computational effort. On the other hand, the fluid flow is solved with a parallel
CFD code on a 3D unstructured grid, which will deform according to the dynamic domain
defined by the solid position. Throughout valve opening, a gap will appear between the valve
and the seat, making necessary a new set of fluid elements in that zone. In order to avoid a
remeshing procedure, there will be moving elements which first perform as solid, i.e. the valve
seat, and later as fluid, i.e. the gap in between. This change in the nature of the elements is
achieved using an immersed boundary method (IBM) [12].

Next, the governing equations of both sub-domains as well as the moving mesh technique
and the coupling algorithm are described.

2.1. Governing equations
The flow is governed by the incompressible Navier-Stokes and continuity equations, formulated
within an arbitrary lagrangian-eulerian moving domain framework,

∂�u

∂t
+ (�u− �uw) · ∇�u = − 1

ρf
∇p+

μ

ρf
Δ�u (1)

∇ · �u = 0 (2)

where p and �u are the fluid pressure and velocity, respectively. A fractional step projection
method is adopted to decouple the unknowns and solve equations 1 and 2 [13]. Considering
an explicit time advancement, the projection method yields to a three step solution procedure
which can be written as:

�up = �un −Δt

[
(�un − �uw) · ∇�un − μ

ρf
Δ�un

]
(3)

Δpn+1 =
ρf
Δt
∇ · �up (4)

�un+1 = �up − Δt

ρf
∇pn+1 (5)

with �up denoting the predicted velocity. Fully conservative symmetry-preserving schemes [14]
are used for the spatial discretization, whereas the wall-adapting local-eddy viscosity model
(WALE) is used to describe the turbulent flow.

In regards to the reed structure, the momentum equation for an isotropic plate on (x, y)
under transverse loading, having considered the assumptions of Kirchhoff-Love theory, is:

D∇4dz(x, y, t) + 2ρshd̈z(x, y, t) = σΓ,z(x, y, t) (6)
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where D is the bending stiffness, dz the normal displacement, h the uniform thickness and σΓ,z
the normal component of the traction exerted on the plate surface Γ. According to the mode
superposition method [15, 16], the motion of a vibrating system can be approximated by the
sum of a limited number of normal modes m, weighted by generalised coordinates qm:

dz (x, y, t) ≈
N∑

m=1

qm(t)φm(x, y) (7)

where φm(x, y) are the deformation patterns of the vibration modes, in z direction.
The combination of equations 6 and 7 leads to one generalised momentum equation for each

mode [2],

q̈m(t) + ω2mqm(t) =

∫
Γ φm(x, y)σΓ,z(x, y, t)dΓ

ρsh
∫
Γ φ

2
m(x, y)dΓ

(8)

where ωm are the natural radial frequencies, which can be found, along with the mode shapes,
previously to the simulation with a normal mode analysis. Therefore, once the loads on the
structure are known, the generalised coordinates qm can be calculated with a numerical time
integration scheme, in this case with the Newmark one.

Finally, the impact between valve and seat is estimated as a change in its velocity regulated
by a coefficient of restitution Cr. As soon as contact is detected, the generalised velocities are
corrected as

q̇m(tn+1) = −Cr q̇m(tn) (9)

When Cr is set to one, all the kinetic energy is preserved after impact. Whilst this simple
approach avoids body overlapping and controls the energy dissipation, it can be inaccurate
from a continuum medium perspective, since it does not take into account the effect of local
consecutive impact events.

2.2. Moving mesh technique
The fluid mesh adaptation is governed by the equations of linear elasticity, similarly to [17] but
with a finite-volume discretization. By introducing a volume-based stiffening directly in the
Young modulus of the elements

Ei = V −χi , χ ≥ 0 (10)

the major distortion will be absorbed by the larger elements, hence maintaining a good quality
in the smaller elements which are located near the solid boundaries.

The velocity of the frame of reference �uw is here evaluated in the control volume faces. To
calculate these velocities, the volume swept by a face between two time steps can be exactly
computed while respecting the conditions imposed by the geometric conservation law [18], which
yields:

d

dt

∫
Ω
dV +

∮
∂Ω

�uw · �ndS = 0 (11)

2.3. Fluid-structure coupling scheme
On the fluid-structure interface Γ, there is a Dirichlet boundary condition for the fluid and
a traction (Neumann condition) for the structure. The former as a function of the structure

displacement �uΓ = ∂ �d/∂t, and the latter as a function of fluid velocity and pressure �σΓ (�u, p).

Having updated the boundary velocity �uΓ with �d, the fluid solver is able to find p and �u in
the fluid domain and, in this manner, evaluate the traction distribution on the solid surface:
�σΓ = �F (�d). Likewise, the structural solver will find the appropriate �d derived from the fluid
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load: �d = �S(�σΓ). Therefore, the coupled fluid-structure system of equations reduces into an
interface problem of the form:

�S ◦ �F (�d)− �d = 0 (12)

In most of the previous works, the coupling is treated explicitly for simulating
suction/discharge processes, which means solving each domain by employing the other-domain
data from the previous time step. Nevertheless, it has been shown that explicit schemes may
cause numerical instability when both physics are strongly coupled [19]. In order to overcome
this issue, a novel semi-implicit coupling scheme has been developed [20]. The new approach
leverages the projection method to implicitly couple only the fluid pressure term to the structure,
instead of the whole fluid set of equations. By doing so, the algorithm ensure an accurate and
stable resolution of the coupled problem avoiding excessive computational cost.

Therefore, at the beginning of the time step the fluid mesh is adapted in accordance with
the last deformation found for the solid, and the velocities of the faces �uw are evaluated. With
these updates, the first step of the projection method (Equations 3) can be used to find the fluid
predicted velocities �up. Then, the strong FSI coupling starts by iteratively solving Equations 4
and 8. As soon as the convergence criterion is met, the fluid velocity correction (Equation 5) is
evaluated to finally finish the time step simulation.

To solve the nonlinear FSI iterative system, a fixed-point solver with a block Gauss-Seidel
method and Aitken’s dynamic relaxation has been chosen for this study. Aitken’s dynamic
relaxation mitigates possible convergence problems of the Gauss-Seidel method and reduces the
number of required iterations.

3. Definition of the case
Aiming at validating the numerical methodology, here a comparative study of the experimental
case carried out in [21] is presented. It was focused on the valve motion under the load of a
developed and stationary air flux. The set-up consists of a feeding tube with d = 34.9 mm
in diameter, a plate where the reed valve lies and an empty space downstream. In Figure 1
there are the dimensions of the valve as well as those of the cylindrical domain chosen for the
simulations. The valve diameter D is 1.3 times the orifice diameter d. Apart from the original
valve geometry, a modified version with a wider gland has been considered so as to highlight
the differences regarding the coupled system performance. The former will be called valve A
whereas the latter valve B.

The temperature of the air is 25 oC and ambient pressure is defined at the outlet. The physical
properties of the flexible valve are set to be: ρs = 7850 kg/m3, ν = 0.3 and E = 2 · 1011 Pa.
An average coefficient of restitution of Cr = 0.3 has been fixed for the seat impact dissipation
according to [22]. The inlet velocity of the fluid is determined so that the Reynolds number is
10, 000:

Re =
ρf ūzd

μ
(13)

where ūz is the axial bulk velocity. The inlet boundary condition is implemented as a developed
turbulent pipe flow. The averaged velocity profile has been extracted from [23] and is depicted
in Figure 2. In addition, synthetic inflow conditions are prescribed at the boundary like in [24]
to reproduce the transient turbulent nature of the flow (Figure 3). To do so, the turbulent
statistics for wall flow at Re = 11, 700 found in [25] have been used.

The results presented in this section have been obtained with a computational mesh of around
3 · 105 control volumes. This discretization has been proved to provide a suitable converged
solution for the present flow configuration.
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Figure 1: Section of the computational domain and geometry of the valves (dimensions in mm).
Points 1, 2 and 3 for lift measurements.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

<
u
z
>

/
ū
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Figure 2: Averaged inlet velocity profile.

Figure 3: Instantaneous inlet
velocity map in [m/s].

4. Numerical results
First, a linear modal analysis has been carried out for the reeds with a clamped boundary
condition in their root. The results, obtained with a commercial structural software, are shown
in Figure 4. Only the first four modes have been taken into account for this study. As can be
seen, the first natural frequency of the design A is very close to the value determined in [21], 31.4
Hz. The geometry B evidently has larger mass and stiffness as a result of the gland widening.
Observing the frequencies, the major rise is in the stiffness, since all but the fourth mode vibrate
at higher rates than the original valve.

Under the fluid load, the valve bends and starts fluttering with impacts on the seat. The
system rapidly reaches a periodic steady state of operation with constant amplitude in lift (h)
and pressures (p). This cyclic response is shown in Figure 5, where the displacement of point 1
(see Figure 1) of valve A is plotted along with the experimental measurements. Although the
resultant prominent frequency is pretty similar (fA is 58.6 Hz numerically while it was 57.9 Hz
experimentally) there is a considerable deviation in the oscillation peak. The model over-predicts
the maximum aperture by approximately 16 %. However, the amplitude error falls down to 6
% and the perturbations within a smooth sinusoidal motion agree with the experiment.
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f1 = 31.1 Hz f2 = 128 Hz f3 = 311 Hz f4 = 963 Hz

f1 = 51.3 Hz f2 = 214 Hz f3 = 356 Hz f4 = 910 Hz

Figure 4: Normal modes of vibration of valves A (top) and B (bottom).
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Figure 5: Valve lift with design A in point 1. Numerical results (——) and measures from Dr.
José Luis Gasche (• ).

Observing the displacements of the three valve control points (Figure 6 (a)), one may point
out the impact evaluation as the most plausible cause of the mentioned discrepancies. The graph
shows there is not a flat contact with the seat, because each of the three points would reach
the seat at a different time. This is due to the effect of higher vibration modes on the valve
transient deformation. With the approximation used for the impact (Equation 9), not all valve
points are colliding with the seat and the valve eventually rises earlier than expected. Thus, it
would be worth implementing a more accurate model for this critical event. On the other hand,
the configuration B does not exhibit such an issue regarding the collision. Even though there is
also an influence of other modes of vibration apart from the first –noticeable in the fluctuation
of points 1 and 3 of Figure 6 (b)– all three points hit the seat at the same time, giving rise to
an almost flat contact.

The greater stiffness of option B is responsible for the decrease in lift amplitude (∼ 1.4 times
lower) and the increase in flutter frequency (fB = 90.7 Hz). The momentum carried by the flow
is unable to open valve B as much as valve A, and a greater force is required in order to bend
the former by the same angle as the latter. This fact can be distinctly observed by comparing
the flow pressure exerted on the valve for a common valve height. In Figure 7 this pressure is
depicted at instant t1, when both valves share the same displacement measured in the port axis
(see Figure 6). As expected, the pressure is considerably higher in case B. Besides, the pressure
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Figure 6: Valve lift in points 1 (——), 2 (- - - -) and 3 (· · · · · ·).
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Figure 7: Pressure over the lower face of the valve at time t1 (• A and ◦ B) and t2 ( A and
�� B).

along the longitudinal line shows that this variable is not symmetric with respect to the channel
axis, as a result of the valve geometry and its deformed shape.

The same profiles at instant t2 are presented in Figure 7 as well, which corresponds to the
time when the maximum valve lift is achieved by each geometry. They show the clear effect of
height and flow area on the fluid pressure. Having a higher valve lift, valve A allows the flow to
change its direction sooner and reduce the axial momentum carried when it impinges into the
valve. In addition, the fluid velocity crossing the larger gap between valve and valve seat should
not accelerate as much as with valve B, as can be seen in the velocity field of Figure 9. It can
also be identified the separation bubble which is generated at the outside edge of the valve seat.

In order to check the influence of the wider gland on the outflow area, the effective flow area
defined for incompressible flow as:

(KA)e =
ṁ√

2ρf (pinlet − poutlet)
(14)

is depicted in Figure 10 (a) as a function of valve height. The value has been averaged taking
into account all the periodic oscillations simulated. Due to the incompressibility assumption,
the effective flow area is only geometry dependent and a proportional relation is found with
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(a) Valve A

(b) Valve B

Figure 8: Contour surface for 1000 rad/s
of vorticity at t1.

(a) Valve A

(b) Valve B

Figure 9: Velocity magnitude map and
velocity vectors at t2.

the valve lift. As can be observed, the wider body of valve B does not generate a significant
difference in the effective flow area compared with A. Since the mass flow ṁ does not vary, this
implies that both valves produce almost the same pressure drop for a given displacement. In
fact, the air flow pattern is pretty similar in A and B at the highlighted time instant t1, when
both are equally opened, as can be seen in the vorticity maps of Figure 8.

In the same manner, in Figure 10 (b) the averaged effective force area is presented. It has
been calculated as the fraction between thrust force F and pressure drop:

AF =
F

pinlet − poutlet
(15)

The graph shows how the pressure rises to a different extent as the fluid reaches each valve,
because of their different stiffness. In both cases the effective force area decreases with increasing
valve height. This is explained by the flow detachment and the separation bubble developed
between valve and seat, which create a negative pressure that counteracts the positive pressure
over the port and diminishes the net force. A similar drop in the effective force area has been
previously detected for small displacements of the valve and strong Bernoulli effect in [26, 27, 28]
for example.

It has been stated above that valves A and B cause the same instantaneous pressure drop with
a common valve height. However, this does not imply that the process efficiency is equivalent
for both valves, since they have different oscillation rates and lift peaks. In this case, one can
analyse the total pressure drop per time unit in order to compare the difficulty the air must



9

1234567890

10th International Conference on Compressors and their Systems IOP Publishing

IOP Conf. Series: Materials Science and Engineering 232 (2017) 012032 doi:10.1088/1757-899X/232/1/012032

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

t1

(K
A
) e
/
(π
d
2
)

h2/d

(a) Effective flow area.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

t1

A
F
/
(π
d
2
)

h2/d

(b) Effective force area.

Figure 10: Cycle-averaged parameters of case A (——) and B (- - - -) as a function of
displacement of point 2 during the opening process.
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Figure 11: Cycle-averaged variables of case A (——) and B (- - - -) as a function of
dimensionless time.

withstand to flow out the channel. Pressure drop per oscillation period is presented in Figure
11 (a). The integral of this graph indicates that 573 and 1020 Pa per cycle are needed in cases
A and B, respectively. If this value is multiplied by the cycle frequency, then the total pressure
drop can be obtained: 33, 600 Pa/s with valve A whereas 92, 000 Pa/s with valve B. Therefore,
the outflow efficiency of this steady flow is far better with valve A, basically due to its higher
flexibility.

Finally, in Figure 11 (b) the thrust force on the valve plate is presented. It shows the rise in
the fluid force as soon as the valve closes, i.e. as soon as the outflow area diminishes and the
valve surface and jet velocity become more perpendicular.

5. Conclusions
An in-house numerical methodology to solve the fluid-structure interaction of the turbulent flow
through self actuated reed valves has been presented. The platform strongly couples a three-
dimensional CFD solver with turbulence modeling to a structural model for vibrating plates.
A moving mesh technique along with the arbitrary lagrangian-eulerian formulation deforms the
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fluid domain according to the valve deformation. In order to avoid remeshing, the immersed
boundary method defines the position of the valve seat. Validation of the model is carried out by
comparing the fluttering of a suction valve under a stationary flow at Reynolds number 10, 000.
The results show that the method is able to yield a representative description of the flow field
surrounding the valve. However, a more detailed analysis of the impact between reed and other
bodies is necessary to resolve the discrepancies detected in the valve lift. The same set-up is
used to test a similar valve with a wider gland body in order to showcase the potentiality of
the proposed methodology to optimise valve designs. Although lower stresses are expected with
this modification, its higher stiffness reduces the maximum effective flow area and increases the
pressure drop, hence worsens the process efficiency.
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