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ABSTRACT 

Advanced high-strength steels as Twinning Induced Plasticity (TWIP) steels have been developed using microalloying 

elements and subsequent thermo-mechanical processing techniques. Moreover, under hot-working conditions, these steels 

undergo significant microstructural changes as a result of preferred crystallographic orientation (texture) of grains. In 

order to evaluate this behavior, one non-microalloyed and other single Nb-microalloyed TWIP steels were melted in an 

induction furnace and cast into metal and sand molds. Samples with austenitic grain sizes between 400 and 2000 µm were 

deformed at 800 °C and strained at a constant strain rate of 10-3 s-1, and deformation state was examined by means of 

electron backscatter diffraction (EBSD) technique near to the fracture tip. It was found that non-microalloyed TWIP steel 

solidified in both metal and sand mold exhibits dynamically recrystallized grains. On the other hand, Nb microaddition 

has a strong influence in TWIP steel retarding the onset of recrystallization kinetics, showing low angle sub-structured 

grains. Furthermore, it was possible identifying the crystallographic orientation of grains using the inverse pole figures 

(IPF) and the orientation distribution function (ODF). Weak cube {001}<100> recrystallization and E{111}<110> γ-

fiber deformation textures components were detected. 
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INTRODUCTION 

High-Mn austenitic steels with up to 30 wt.% Mn and more than 0.4 wt.% C have one of the best 

combination of the strength and plasticity among the currently available steels. This is due to the twinning-induced 

plasticity (TWIP) effect that occurs at room temperature but progressively transforms to dislocation glide when 

deformation temperature increases [1]. However, it has been shown that TWIP alloys have naturally low yield 

strength (YS) [2]. Accordingly, there is a clear benefit in increasing the yield strength through Nb, Ti, or V 

microalloying elements, operation that can be an ideal hardening mechanism to improve strength [3]. These 

microalloying elements can precipitate during the different stages of the steel production. During hot deformation, 

careful control of the processing parameters such as strain rate, temperature and strain is of great importance since 

they have significant influence on the deformation mechanisms, microstructural evolution and consequently 

mechanical properties of the deformed materials [4]. Thus, in order to achieve good final product properties, 

understanding texture formation during the hot rolling stage is an important topic. 

In this way, a detailed knowledge of the austenite grain/subgrain structure and texture characteristics 

obtained during hot deformation is very important for the steel microstructure control during hot working. With 

Electron backscatter Diffraction (EBSD) individual grain orientations, local texture, and point-to-point orientation 
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relationships can be determined routinely on the surface of bulk samples [5]. Furthermore, understanding the 

microstructural distribution of strain in TWIP steels is fundamental to controlling the overall deformation at the 

macroscale. Particularly, most research work on texture development of TWIP steels has mainly focused on the 

behavior during cold rolling and annealing treatment. So, there is a lack of scientific information about their hot 

deformation behavior, which allows controlling microstructure and mechanical properties during hot rolling. Thus, 

the aim of this study is to determine the effect of single Nb-microaddition and solidification condition on the 

microstructure and texture evolution in TWIP steel under hot-tensile conditions. 

EXPERIMENTAL PROCEDURE 

The TWIP steel used in this study had the nominal chemical composition Fe-21wt.% Mn-1.3 wt.% Al-

1.5wt.% Si-0.5wt.% C and 0.083wt.% Nb microaddition. Thus, two 70 mm x 60 mm cross section ingots were 

obtained from a 25 kg induction furnace, using high-pure raw materials for each composition. Additionally, these 

steel ingots were solidified into metal (MM) and sand molds (SM) and identified as non-microalloyed steel (TW-

NM) and single Nb-microalloyed steel (TW-Nb). In order to be sure of the single austenite phase stabilization at 

room temperature, crystalline structure in the as-cast condition was determined in a Siemens D5000 X-ray 

diffractometer, using CuKα radiation and a 2θ diffraction angle ranging from 30° to 120°. On the other hand, hot 

tensile test were performed at 800 °C and strained at constant true strain rate of 10
-3

 s
-1

, using cylindrical tensile 

specimens of 6 mm diameter and 30 mm gauge length. For this purpose, an Instron tensile machine equipped with a 

radiant cylindrical furnace was used.  

First, the specimens were heated at 1100 °C and held for 900 s for microstructural homogenization 

purposes obtaining a similar austenite grain size. Then, the specimens were cooled down to the testing temperature 

(800 °C) at a cooling rate of 1.66 °C/s, and held again for 300 s. Finally, specimens were strained until failure and 

cooled down immediately after rupture into argon atmosphere in order to prevent samples oxidation. At this stage, 

the samples were cut along the loading direction close to fracture surface tip. EBSD specimens were mechanically 

ground, then prepolished using diamond pastes and finally carefully polished using colloidal silica solution. Every 

EBSD scan was carried out in the loading direction and the SEM magnification was 20x with a step size of 7 µm. 

The local austenite crystal lattice orientations and misorientations were determined using Kikuchi patterns produced 

in SEM by changing the direction of incident beam in a selected area channeling (SAC) [6]. Thus, the 

corresponding data acquisition and processing (crystallographic texture and deformation substructure) were carried 

out using the HKL Channel 5 software. 

 

RESULTS AND DISCUSSION 

Figure 1 (a-b) show typical X-ray diffraction patterns of the studied TWIP steels, in both solidification 

conditions, MM and SM. It can be seen that the chemical composition used in the fabrication of TWIP steels had 

allowed obtaining a stable austenitic (FCC) phase. However, it is also important to note that alloying elements 

affect many material properties such as lattice parameter, etc. Thus, during hot deformation of TWIP steel, the 

deformation mechanisms are strongly affected by the interaction of dislocations with crystal defects. In this way, 

the thermodynamic mechanism of dislocation movement is a thermally activated process [7] that greatly influences 

preferred orientations of crystals and microstructure [8]. Typical as-deformed microstructures of studied TWIP 

steels are shown in the EBSD quality maps in Figure 2 (a-d). The dark lines represent high angle boundaries (>15°) 

and white lines indicate low angle boundaries (limited to misorientations angles from 2° to 15°), which refer to the 

substructure into the deformed grains. During hot deformation, dislocation density is high and therefore these 

dislocations are arranged in dislocation structures, which results in local misorientations of several degrees within 

the grains [9]. Moreover, it can be seen that TWIP steels solidified into metallic mold have a finer austenitic grain 

size than those solidified into sand mold. TW-NM/MM steel has approximately 400 µm grain size, while TW-

Nb/SM steel has nearly 2000 µm in grain size. 

In the case of TW-NM steel, some dynamic recrystallized grains are observed around high angle 

boundaries, with distinctive necklace structures; see Figure 2 (a-b). This dynamically restoration mechanism plays 

an important role in controlling the microstructure and texture developed during hot working. Internal 

misorientations measurements allow separating dynamically recrystallized grains from deformed ones. If the 

internal grain misorientation is less than 1.55°, then grains are considered recrystallized grains, as indicate the blue 

color in the Kernel’s maps that intentionally were superimposed in Figure 2. On the other hand, Nb-microaddition 

to TWIP steel has a strong effect in the substructure evolution during hot deformation. In this case, non-

dynamically recrystallized grains were observed. So, a deformed condition is remaining after hot tensile tests, as 
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shown yellow and red colors in Kernel’s maps in Figure 2 (c-d). It has been revealed that Nb retards the onset of 

dynamic recrystallization by solute drag phenomenon and forming particles during hot deformation [10].  

 

 

Figure 1. Typical X-ray diffraction patterns of studied TWIP steels: a) Metallic mold condition (MM) and b) Sand mold condition (SM). 

 

Taking into account the above explanation for TW-NM and TW-Nb steels, Figure 3 (a-d) shows their 

pole figure and orientation distribution function (ODF) at ϕ2=45° in the Euler space. In both solidification 

conditions, TW-NM steel displays intensity near to square corners. This behavior indicates a cube recrystallization 

component with grains oriented in the [012] preferred direction. It is worth noting that a very weak γ-fiber 

component is observed. Once recrystallization takes place, the deformation components are largely replaced by the 

recrystallization or cube components, being this behavior identified with the {001}<100> notation. In the case of 

TW-Nb steel, it is indicated the tendency to form the deformation γ-fiber texture due to low angle sub-structured 

grains, identified as E{111}<110> crystallographic components. In this case, it is important to note that niobium 

fine precipitates play an affective role in retarding austenite recrystallization due to pining force to inhibit grain 

boundary movement. So, accumulated strain and deformed structures are retained in austenite grains [11]. Figure 

4a shows the inverse pole figure (IPF) map of TW-Nb/SM steel after hot-tensile test. It can be seen that a possible 

transition zone may be formed in the [101] crystallographic direction with a deformed condition from [122]/[233] 

to [215] crystallographic preferred orientations. 

Additionally, the point-to-point misorientation of crystal lattices across high angle boundaries along the 

line A-B was measured, see Figure 4b. It is corroborated that sub-structured condition is present into grains, 

containing low angle boundaries with a misorientation values between 2 and 12 degrees along line A-B, as shown 

in Figure 2 (c-d). It is also worth mentioning that high angle boundaries are indicated in the same line. These 

misorientation measurements help to explain why at current testing temperature relatively weak textures are formed 

under the applied strain rate. 
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Figure 2. EBSD band contrast map for: a-b) Non-microalloyed TWIP steel solidified in MM and SM condition, and c-d) Nb-microalloyed TWIP steel 

solidified in MM and SM condition. Note that Kernel’s maps were superimposed for each studied condition. 
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Figure 3. {001} Pole figures and orientation distribution function (ODF) at ϕ2=45° in the Euler space for studied TWIP steels in both solidification 

conditions: a) TW-NM/MM, b) TW-NM/SM, c) TW-Nb/MM and d) TW-Nb/SM. 

 

 

Figure 4. a) IPF map of Nb-microalloyed TWIP steel solidified in sand mold and b) Point-to-point misorientation measurement in line A-B. 

CONCLUSIONS 

The crystallographic and microstructure evolution of studied TWIP steels has been characterized by SEM-

EBSD technique. The main conclusions are as follow:  

 

1. For the chemical compositions and solidification conditions used in this study, the crystalline structure 

in the as-cast condition is composed of single austenite phase (FCC). 

2. SEM-EBSD microstructure evolution indicates that these steels developed partial textures during hot 

deformation. 

3. In general, weak Cube {001}<100> recrystallization and E{111}<110> γ-fiber deformation textures 

components were detected. 
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