
1 3

DOI 10.1007/s00382-016-3373-3
Clim Dyn

Comparison of full field and anomaly initialisation for decadal 
climate prediction: towards an optimal consistency between  
the ocean and sea‑ice anomaly initialisation state

Danila Volpi1,2 · Virginie Guemas1,3 · Francisco J. Doblas‑Reyes1,4 

Received: 18 April 2015 / Accepted: 23 September 2016 
© Springer-Verlag Berlin Heidelberg 2016

skill than historical simulations for the ocean heat content 
and AMOC along the first two forecast years, for sea ice 
and PDO along the first forecast year, while for AMO the 
improvements are statistically significant for the first two 
forecast years. The AI in the ocean and sea ice components 
significantly improves the skill of the Arctic sea surface 
temperature over the FFI.
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1  Introduction

Society needs suitable strategies for adaptation to climate 
change in the short to medium term (Trenberth 2008). Dec-
adal prediction aims at responding to such a need by pro-
viding interannual climate information. It bridges seasonal 
forecasts and climate change projections as it focuses on 
intermediate time scales of several years to a few decades 
(e.g. Oldenborgh et al. 2011). The added value of decadal 
climate forecasts over climate-change projections is that 
the former are initialised to take into account the best 
knowledge of the state of the climate system at the start of 
the prediction (Doblas-Reyes et al. 2013a). This allows to 
exploit the climate predictability arising from internal vari-
ability. Due to the relative novelty of the climate prediction 
field and the lack of knowledge about the best method to 
initialise the decadal predictions, several alternatives are 
currently being explored. In broad terms, the initialisation 
is performed using either the best estimate of the observed 
climate system (full field initialisation, FFI (Pohlmann 
et al. 2009)) or using the assimilation of observed anomaly 
variables onto an estimate of the model mean climate 

Abstract  Decadal prediction exploits sources of predict-
ability from both the internal variability through the ini-
tialisation of the climate model from observational esti-
mates, and the external radiative forcings. When a model 
is initialised with the observed state at the initial time step 
(Full Field Initialisation—FFI), the forecast run drifts 
towards the biased model climate. Distinguishing between 
the climate signal to be predicted and the model drift is a 
challenging task, because the application of a-posteriori 
bias correction has the risk of removing part of the vari-
ability signal. The anomaly initialisation (AI) technique 
aims at addressing the drift issue by answering the fol-
lowing question: if the model is allowed to start close to 
its own attractor (i.e. its biased world), but the phase of the 
simulated variability is constrained toward the contempo-
raneous observed one at the initialisation time, does the 
prediction skill improve? The relative merits of the FFI 
and AI techniques applied respectively to the ocean com-
ponent and the ocean and sea ice components simultane-
ously in the EC-Earth global coupled model are assessed. 
For both strategies the initialised hindcasts show better 
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(anomaly initialisation, AI (Smith et  al. 2007)). Each of 
these initial states has its respective benefits and draw-
backs: on one hand, when the model is initialised with FFI 
the forecast run drifts towards the model climate because of 
its climate biases which develop on various timescales 
(Magnusson et  al. 2012; Doblas-Reyes et  al. 2010). The 
FFI is commonly performed also for seasonal climate pre-
dictions as has the advantages of starting direclty from the 
observed state, beeing easy to implement and does not have 
issues of consistency with the climate of the model, as it 
could happen with AI. However, at such timescales the cli-
mate prediction drift, defined as the evolution of the differ-
ence between the model and the observed climatology,1 
does not stand as a major issue, whereas it does for decadal 
forecasts. Sanchez-Gomez et al. (2015) provide a physical 
and dynamical description of the drifts in the CNRM-CM5 
coupled model in decadal hindcasts. They found an initial 
shock in the Pacific that causes an excitation of ENSO 
warm events. This also affects the atmospheric drift over a 
large part of the planet through teleconnection.

Thus at decadal time scale, the climate signal may be 
polluted by the drift and making a distiction between the 
two is a challenging task; the application of a-posteriori 
bias correction has the risk of removing part of the vari-
ability signal. On the other hand, AI relies on the hypoth-
esis that the model variability is independent of the model 
mean state, and therefore only the phase of the simulated 
variability is constrained towards the contemporaneous 
observed one. If such hypothesis is valid, it follows that 
even with its biases, a model could predict correctly the 
superimposed observed variability. Beyond the fact that 
this hypothesis has not been proven, its limitation is that if 
the biases include a spatial shift, the anomalies will indeed 
not be located at the correct place with respect to the clima-
tology and therefore the amplitude of the variability would 
differ when the mean state differs. Moreover, since the ini-
tial state of AI is an artificial state, there is the risk of gen-
erating inconsistency between the different variables and 
model components.

Hazeleger et  al. (2013) compared the two initialisation 
techniques in the context of the CMIP52 exercise, using 
EC-Earth v2.3 (Hazeleger et al. 2010). The FFI was applied 
by replacing the model state at the initialisation time with 
an estimate of the full field observed initial state (from rea-
nalysis). Analogously, the AI was performed by replacing 
the model state of ocean horizontal velocities, temperature 
and salinity with a state composed by their respective 

1  We compute the climatology as the average of the predictions over 
the start dates and it evolves with the forecast time.
2  Coupled Model Intercomparison Project Phase 5 sponsored by 
WCRP: http://cmip-pcmdi.llnl.gov/cmip5/index.html.

observed anomalies at the initial time added to the model 
climatology. The same technique was applied to the sea ice 
component. The results showed that even though the hind-
casts initialised from AI had a smaller drift than FFI, a drift 
was still present and the AI did not lead to any robust 
increase in skill. The FFI improved the skill in the North 
Atlantic over both AI and the historical run, but for the 
global two metres temperature and for the sea surface tem-
perature in the Pacific the historical run performed the best. 
However, the fact that only some of the ocean variables 
were anomaly initialised (and not the full ocean state) 
could have lead to some inconsistencies because some vari-
ables were starting from the model attractor and others 
from the observed attractor.

Smith et  al. (2013) made a similar comparison using 
the HadCM3 (Gordon et  al. 2000) model, and a different 
assimilation approach called nudging: two sets of hind-
casts were initialised from two different assimilation runs. 
One of these assimilation runs consisted in relaxing the 
atmosphere winds, potential temperature and surface pres-
sure, plus the ocean temperature and salinity towards their 
respective observational values. In the second assimilation 
run the same variables as above were relaxed towards the 
respective observed anomalies, added to the model clima-
tologies. The added value brought by the nudging is the 
consistency between the variables within a single model 
component and between model components. However, the 
model is initialised with a state which is close to the ideal 
one (i.e. the observed phase of climate variability), but it is 
not exactly the observed one. The results for multi-annual 
predictions did not show any statistically significant differ-
ence between the two methods. On seasonal timescales the 
FFI provides more skilful regional predictions than the AI, 
for both temperature and precipitation.

In this work, we assess the multi-year prediction skill of 
hindcasts initialised with the same assimilation techniques 
as in Hazeleger et  al. (2013), namely the FFI and the AI 
replacement. In addition, we attempt at having an ocean 
and sea ice states as consistent as possible, by initialising 
all the prognostic variables in the ocean and sea ice compo-
nents and applying thorough corrections at their interface. 
We address the following questions:

1.	 Does this AI method applied to all the prognostic vari-
ables prevent the initial drift? How does this translate 
into a potentially better prediction skill than FFI?

2.	 What is the added-value of using a sea ice initial state 
consistent with the ocean initial state?

Section  2 describes the initialisation procedures, the 
model in use and the hindcasts set-up. The skill compari-
son between the FFI and the AI hindcasts are presented in 

http://cmip-pcmdi.llnl.gov/cmip5/index.html
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Sect. 3, while the discussion and the conclusions are drawn 
in Sect. 4.

2 � Methodology

2.1 � Climate model

The model in use is the coupled general circulation model 
EC-Earth version 2.3 (Hazeleger et  al. 2010). The atmos-
pheric component is based on the European Centre for 
Medium-Range Weather Forecasts integrated forecasting 
system (IFS), with 62 vertical levels and a TL159 horizon-
tal resolution. The ocean component is the NEMO model 
(Madec 2008; Ethe et al. 2006), with ORCA1 configuration 
(about 1 degree with enhanced tropical resolution) and 42 
vertical levels. The sea-ice component is LIM2 (Fichefet 
and Maqueda 1997; Goosse and Fichefet 1999) directly 
embedded into NEMO. The atmospheric and ocean compo-
nents are coupled via OASIS3 (Valcke 2006). Information 
on the atmospheric chemistry and the dynamic vegetation 
are prescribed from observations. The atmospheric top is 
at 5  hPa, so only the lower stratosphere is resolved. EC-
Earth v2.3 develops a cold sea surface temperature bias in 
the Tropical Pacific and the North Atlantic, with peaks of 
−4 to −8 ◦C, and a warm bias in the Southern Ocean with 
peaks of 2–4 ◦C. The biases maps of figure S1 of the Sup-
plementary Material support the results found in Hazeleger 
et al. (2013): the regional pattern is similar, with the strong-
est cold bias in the tropical regions and in the North Atlan-
tic subpolar gyre, that for its slow evolution is attributed to 
oceanic processes. A warm bias is found in the Southern 
Ocean, that is associated with atmospheric processes for its 
quick development. Moreover, Du et al. (2012) showed that 
the model underestimates precipitation and drifts towards 
a less dry condition after the first forecast year. In terms of 
ocean heat content, they also show that the model develops 
a warm bias in the mixed layer during the boreal winter and 
a cold bias in the boreal summer. A substantial bias is also 
seen in the AMOC, consistently with the findings of this 
study.

2.2 � Reference simulations: the NOINI and the FFI 
hindcasts

The benchmark hindcasts of this work are the FFI experi-
ment of Du et al. (2012) that is part of the CMIP5 exercise, 
and an uninitialised model experiment. In the FFI experi-
ment, all the variables from each model component are ini-
tialised. The atmosphere and land surface initial conditions 
are taken from the ERA-40 reanalysis (Uppala et al. 2005) 
for start dates before 1989 and ERA-Interim (Dee et  al. 
2011) afterwards. The ocean initial conditions are taken 

from NEMOVAR-ORAS4 (Mogensen et  al. 2012) which 
is forced with ERA40 and ERA-Interim, while the sea-
ice initial conditions are produced with a simulation using 
NEMO v2.0 coupled to LIM2 driven by DFS4.3 ocean 
forcing data (Brodeau et  al. 2009). The DFS4.3 forcing 
data are derived from ERA40 data with tropical surface air 
humidity, Arctic sea surface temperature and global wind 
field corrections based on high-quality observations. Thus, 
we consider that the oceanic and sea-ice initial conditions 
are fairly coherent.

The observed volcanic and anthropogenic aerosol load 
and greenhouse gas concentration are prescribed using 
observed values up to 2005. After that date the RCP4.5 
scenario was used, as well as a background solar irradi-
ance level and a constant background volcanic aerosol 
load. Every 2 years between 1960 and 2004, on the 1st of 
November, a set of 5 simulations (referred to as members 
here) were started and run for 5 years. The choice of having 
one start date every 2 years is a good compromise between 
the computational cost and having enough data to compute 
robust statistics. These 5 members start from atmosphere 
initial perturbations based on singular vectors (Magnusson 
et  al. 2008), which are added at the initial time to all the 
prognostic variables except for humidity (Du et al. 2012).

Each of the ocean member is initialised from a different 
3D-Var ensemble member of NEMOVAR-ORA_S4 ocean 
re-analysis.

The uninitialised experiment, called NOINI, is a 3-mem-
ber hindcast derived from long historical simulations up to 
2005, and simulations following the representative concen-
tration pathways 4.5 (RCP4.5) after 2006 produced in the 
framework of CMIP5. In the NOINI experiment, the inter-
nal variability is not in phase with the observed variability 
since each member has been initialised in 1850 from a dif-
ferent date of a pre-industrial control simulation. However, 
based on recent literature (Otterȧ et al. 2010; Swingedouw 
et al. 2015), part of the internal variability could be phased 
through their response to volcanic eruptions. Anthropo-
genic aerosols have also been proposed to influence dec-
adal variability (Booth et al. 2013). The NOINI experiment 
as well as all the experiments implemented in this study, 
employs the same external radiative forcings as described 
for the FFI.

2.3 � The anomaly initialised simulations

To answer the questions listed in the Introduction, two 
experiments with AI have been implemented:

•	 assuming that most of the memory is held by the 
ocean initial states (Old and Haines 2006), an ocean 
AI (referred as O-AI thereafter) configuration has been 
implemented. In this case the ocean model component 
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has been anomaly initialised and the atmosphere and 
sea ice components have been full field initialised

•	 to account for the importance of a consistent ocean and 
sea ice initial state, an ocean and sea ice AI (referred to 
as OSI-AI thereafter) configuration has also been imple-
mented. The ocean and sea ice model components have 
been anomaly initialised and the atmosphere component 
has been full field initialised.

The initial state is obtained by replacing the model anoma-
lies with the observed ones. The term “model anomalies“ 
refers to the difference between the contemporaneous state 
and its long-term average, defined over a predefined period 
of time, that in this study has been chosen to be 1971–2000.

The O-AI experiment has the atmosphere and the sea 
ice components initialised as in the FFI experiment, while 
the ocean is anomaly initialised. The reference data for ini-
tialising the ocean is the five-member NEMOVAR-ORAS4 
ocean reanalysis (Mogensen et  al. 2012; Balmaseda et  al. 
2012).

In the OSI-AI experiment the AI is implemented for the 
ocean and sea ice model components. The reference data 
used for the sea ice initialisation is the 5-member sea ice 
reconstruction proposed by Guemas et  al. (2014), that 
covers the period 1958–2006. This reconstruction, called 
HistDfsNudg, has been produced with LIM2, the sea ice 
model included in EC-Earth 2.3, forced with ERA-Interim 
and nudged toward NEMOVAR-ORAS4. It is biased with 
respect to the HadISST sea-ice extent, but it is still the best 
estimate of sea-ice cover (in particular is the best estimate 
of sea-ice thickness available) that could be used to initial-
ise LIM2, as it has the same grid resolution and it provides 
estimates for all the sea-ice model variables. The OSI-AI 
experiment makes use of sea ice initial perturbations, by 
using different members for the sea ice initial conditions. 
The hindcasts of the O-AI and OSI-AI experiments are 
respectively composed by a set of 5-member, 5-year long 
simulations, starting every 2 years on the 1st of November 
as the FFI experiment.

2.4 � Ensuring the physical consistency

The sea-ice variables are sensitive to the geographical posi-
tion where the anomalies are placed, especially because 
most of them are bounded. Moreover, the variables from 
the sea-ice model component and the ocean need to be 
consistent in the OSI-AI initialisation. The sea-ice and the 
snow thickness cannot be negative nor the ice concentra-
tion; the SST must be at the freezing point (−1.865 ◦C) in 
presence of sea ice. However, correcting the SST by cool-
ing it down could result in having a column of water with 
temperature cooler at the surface than the levels below. This 
would trigger ocean convection and cause the formation of 

deep water mass. The consequence would be a potential 
strong alteration of the thermohaline circulation. In order to 
avoid this the aim has been to create a quasi-stable profile. 
The simplest way for that would have been to cool down 
also all the levels below the SST which are warmer than the 
first level. However, this assumes that the temperature cools 
down with depth which is the case in most places of the 
ocean, but not in the Arctic, where the temperature cools 
down with depth close to the surface and it warms up in the 
bottom layers (and its salinity increases). To minimise the 
alteration of the temperature profile but at the same time 
avoid the creation of ocean convection, only the subsurface 
water (arbitrary chosen down to 25 metres) has been cooled 
down to the freezing temperature in the presence of sea ice. 
Finally, where the ice thickness and the ice concentration 
are zero, when the temperature at the surface was below the 
freezing point, it has been warmed up to 0.01 °C above the 
freezing point.

2.5 � Skill assessment

The metrics that we used to evaluate the skill of the hind-
casts experiments are the anomaly correlation (AC) and the 
Root Mean Square Error (RMSE) as a function of the fore-
cast time f applied to the ensemble mean forecast anoma-
lies. The forecast anomalies (not to be confused with the 
model anomalies defined in Sect.  2.3) are calculated by 
subtracting the forecast climatology to each hindcast. The 
forecast climatology at each grid point depends on the fore-
cast time. It is estimated by averaging the hindcast variable 
across the starting dates and the members using only hind-
cast values for which observations are available at the cor-
responding dates. This data selection process is referred to 
as per-pair (García-Serrano and Doblas-Reyes 2012). The 
implementation of the per-pair method guarantees the use 
of all the observational data available and at the same time 
a consistent estimation of the model and reference clima-
tologies. Since the climatology is calculated as a function 
of the forecast time, the anomalies vary depending on the 
forecast time they are associated with, as there is a slid-
ing verification window. The anomaly correlation is then 
defined as:

The root mean square error is given by:

In Eq.  1, [xd,f ]′ indicates the hindcast per-pair ensemble 
mean anomalies (for example ensemble mean anomalies of 

(1)AC(f ) =

∑n
d=1[xd,f ]

′[od,f ]
′

√

∑n
d=1[xd,f ]

′2
∑n

d=1[od,f ]
′2

(2)RMSE(f ) =

√

∑n
d=1[[xd,f ]

′ − [od,f ]
′]2

n
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global mean temperature) as a function of the forecast time 
f and the start date d, and n is the number of start dates. 
Similarly [od,f ]′ indicates the observed anomalies as a func-
tion of f and d. Note that ′ indicates the forecast or observed 
per-pair anomalies.

The confidence interval is calculated with a t-distribu-
tion for the AC, and with a χ2 distribution for the RMSE. 
The dependence between the hindcasts is accounted for 
in the computation of the confidence interval using Von 
Storch and Zwiers (2001) formula to estimate an effective 
number of independent data as a function of the autocorre-
lation (Trenberth 1984). The skill scores are computed after 
applying a one-year running mean on the forecast months 
in order to filter out seasonal climate variability and focus 
on interannual prediction skill.

3 � Results

3.1 � Forecast biases and drift

Figure 1 shows the bias of the experiments along the fore-
cast time for global SST (60 ◦S–65 ◦N), tropical SST (30 ◦S
–30 ◦N) and sea-ice volume in the Arctic. The evolution of 
the bias along the forecast time defines the drift. Regional 
maps of the bias for the different experiments are shown in 
figure S1 of the Supplementary Material. While for temper-
ature the reference3 data is ERSST (Smith et al. 2008), for 

3  With “reference” state we mean what is known as the truth state, 
which includes either an observational dataset, or a reanalysis.

sea-ice volume the HistDfsNudg reconstruction was used, 
which was also used as a source of sea ice initial conditions 
in the AI technique. The model drifts until it reaches a sta-
bilized state, i.e. stable biases, which we can see in NOINI. 
NOINI does not drift and stands as the reference that the 
other experiments will reach sooner or later depending on 
the variable and region. The FFI global SST climatology 
(red line in Fig. 1a) is in a warmer than observed state at 
the beginning of the forecast, and then it drifts towards a 
cooler than observed climate from the second forecast year. 
This is known as an overshoot (Hazeleger et al. 2013). The 
warm bias during half of the first forecast year is due to the 
warm bias in the Antarctic Circumpolar Current which is 
already settled during forecast months 2–4 (figure S1 of the 
Supplementary Material). The cold biases in the tropical 
regions and in the North Atlantic subpolar gyre take longer 
to develop (figure S1 of the Supplementary Material). The 
NOINI experiment (orange line) does not drift, it oscillates 
within its annual cycle. The two AI experiments (blue line 
O-AI, purple line OSI-AI) also have a warm overshoot fol-
lowed by a drift toward a cold bias, but it is reduced with 
respect to FFI. The drift of the FFI experiment (red line in 
Fig. 1b) in the tropical SST is even more pronounced than 
the global SST drift, although no overshoot is seen in this 
case. The two AI experiments have similar behaviour with 
a drift which is smaller compared to FFI (blue line O-AI, 
purple line OSI-AI). The AI techniques allow for reducing 
the SST drift but this reduction is not entirely successful 
since some drift is still present. Figure  1c shows that 
regarding the sea-ice component the FFI (in red) and the 
O-AI (in blue) experiments have the same drift since they 

Bias and drift
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Fig. 1   Drift of a global mean SST averaged between 60 ◦S and 65 ◦N, 
b tropical SST averaged between 30 ◦S and 30 ◦N and c Arctic sea-ice 
volume respectively, as a function of the forecast time. FFI is repre-
sented in red, O-AI in blue, OSI-AI in purple and NOINI in orange. 

See more details about these experiments in Sect. 2. The temperatures 
drift (a, b) are computed against ERSST data, while the sea-ice vol-
ume against the HistDfsNudg reconstruction which was also used to 
implement the AI technique



D. Volpi et al.

1 3

are initialised with the same technique. The OSI-AI (in pur-
ple) seems very efficient in suppressing the forecast drift. 
When using PIOMAS (Zhang and Rothrock 2003) as a val-
idation dataset the amplitude of the bias is larger (not 
shown).

The following sections will assess whether the reduction 
of the drift with the AI technique allows for a better predic-
tion skill.

3.2 � Predicting the thermohaline circulation

The PREDICATE project4 aimed at assessing the level of 
predictability of decadal fluctuations in the Atlantic-Euro-
pean climate and concluded that there was a substantial 
influence of the ocean on the climate predictability at inter-
annual to multidecadal timescales. Several studies illus-
trated the crucial role of the thermohaline circulation and 
the variations in Atlantic SST on the European climate 
(Gastineau and Frankignoul 2014; Msadek et al. 2011; Sut-
ton and Hodson 2003; Mignot and Frankignoul 2004). 
Yeager et  al. (2012) and Robson et  al. (2012) linked 
changes in the North Atlantic subolar gyre heat content 
with changes in the AMOC. Predictability studies con-
cluded that the Atlantic Meridional Overturning Circulation 
(AMOC) is sensitive to changes in the oceanic initial con-
ditions (Msadek et al. 2013; Persechino et al. 2012; Collins 
et al. 2006) and the thermohaline circulation is potentially 

4  PREDICATE: http://www.ugamp.nerc.ac.uk/predicate/.

predictable at least a decade in advance for the Atlantic. 
Other works as the one from Matei et al. (2012) also show 
skilful predictions of the sea surface temperature in the 
Atlantic that can be attributed to the initialisation of the 
AMOC.

We focus first on the global ocean heat content and the 
AMOC, the latter measured in terms of averaged northward 
transport of mass at the surface and southward transport 
in depth in the 40− 55 ◦N band of the Atlantic, vertically 
integrated in the top 1–2  km depth (Atlantic Meridional 
overturning stream function).

Figure  2a shows the anomaly correlation (calculated 
as in Eq. 1) of the global ocean heat content plotted along 
the forecast time. The thin lines in the plot represent the 
95  % confidence interval obtained with a t-distribution. 
If, for example, the confidence intervals of the O-AI and 
NOINI experiments were not overlapping, the correlations 
of these two experiments would be significantly different. 
Moreover, if the confidence interval of the correlation of 
a specific experiment crosses the 0 line, then the correla-
tion of this experiment is not significant. In general, in this 
work it is challenging to obtain significant results due to the 
low number of start dates available (23) associated with the 
short length of the verification period (from 1960 to 2004 
i.e. when we have reliable observations for validation), and 
due to the small ensemble size. Figure 2a shows no obvi-
ous difference in correlation between the three initialised 
experiments (FFI -red-, O-AI -blue- and OSI-AI -purple-): 
the three of them perform better than NOINI (orange) for 
the first three forecast years. However, this difference is 

(a) (b)

Fig. 2   Correlation and root mean square error for the total global 
ocean heat content with respect to NEMOVAR-ORAS4. Red for FFI, 
blue for O-AI, purple for OSI-AI and orange for NOINI. The thin 
lines represent the 95 % confidence interval obtained with a t-distri-

bution for the correlation and a χ2 distribution for the RMSE. The 
dependence between the hindcasts is accounted for in the computa-
tion of the confidence interval using Von Storch and Zwiers (2001) 
formula

http://www.ugamp.nerc.ac.uk/predicate/


Comparison of full field and anomaly initialisation for decadal climate prediction: towards an optimal...

1 3

not significant for the correlation score. The reduction in 
RMSE with initialisation is significant for the first 2 fore-
cast years (Fig. 2b). The skill of the three initialised experi-
ments degrades with the forecast time toward the skill of 
NOINI which is nearly constant. Figure 3 shows the ocean 
heat content correlation maps averaged in the top 300  m 
depth respectively for NOINI, FFI and OSI-AI experi-
ments. The initialised experiments improve the regions of 
negative skill shown in NOINI in the Arctic, Indian Ocean, 
part of the tropical and North Pacific. As it will be shown 
also for SST, the major difference between FFI and OSI-AI 
is seen in the tropical Pacific, where FFI performs better. 

In the North Atlantic subpolar gyre there is a relatively low 
skill in the region corresponding to the Gulf stream, where 
NOINI performs better.

The skill of the initialised experiments (O-AI, OSI-AI 
and FFI) for the AMOC (Fig. 4a) drops below the NOINI 
skill after the first forecast year and correlations become 
non significantly different from 0 in the second forecast 
year. The RMSE and ACC show consistent skill results 
for the comparison between the NOINI and the 3 initial-
ized experiments (Fig. 4b). Figure S2 of the Supplementary 
Material shows that the drift of AMOC is reduced in the 
AI experiments. Thus the initialised experiments show a 
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similar loss of skill but a different magnitude of drift and 
therefore the latter is likely not to be the cause of such loss 
of skill.

3.3 � Predicting the Arctic sea ice

Figure 5 illustrates the skill of the four experiments in pre-
dicting the Arctic sea-ice conditions. The variables shown 
are the area (first row in Fig. 5), and volume (second row 
in Fig. 5). When looking at these results one should keep 
in mind that the sea ice product used to initialise FFI is 
less coherent with the ocean state than the one used to ini-
tialise the AI experiment. The correlation of the sea-ice 
area (Fig. 5a) shows that the three initialised experiments 
improve their skill over NOINI during the first and a half 
forecast year. However, none of the differences are statisti-
cally significant, and the confidence intervals of the initial-
ised experiments overlap the 0 line after the first and a half 
forecast year. There is a recovery of skill in Fig. 5a after the 

second forecast year that could possibly come from the re-
emergence of the SST signal that could have been stored in 
the ocean heat content (Chevallier and Salas-Mélia 2012) 
or the sea-ice thickness (Blanchard-Wrigglesworth et  al. 
2011). A similar behaviour was found in the study of Du 
et al. (2012). The OSI-AI clearly improves the skill in Arc-
tic sea-ice volume (purple line Fig. 5c) with respect to the 
other experiments for approximately the first 3 forecast 
years. This improvement are partly explained by sea ice 
thickness and partly by sea ice extent (related to the SST 
shown in Sect.  3.5) improvements. The improvements in 
sea ice volume may be linked to the suppression of the 
drift shown in Fig. 1c. O-AI (blue line in Fig. 5c) and FFI 
(red line in Fig. 5c) also exhibit a slightly better skill than 
NOINI respectively during the first two and a half years 
and during the first forecast year.

A good prediction of the thickness/volume needs a good 
initialisation of the energy content in the sea ice system, 
for which a proper initialisation of the sea-ice component 
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and the improved consistency between the ocean and sea-
ice variables given by the OSI-AI seems to play a key role. 
Analogous results are found in the RMSE (Fig.  5d): the 
OSI-AI experiment has the lowest error for the first 3 fore-
cast years, followed by the O-AI, the FFI and the NOINI 
experiments. The results of the RMSE (Fig. 5b, d) are con-
sistent with what is seen for the AC. The positive impact of 
the initialisation is more obvious in terms of RMSE than 
with AC, because the AC is a measure of skill that is not 
sensitive to errors in the linear trend along the start dates as 
a simple estimate of the response to climate change (God-
dard et al. 2012). The results of the difference between the 
initialised experiments are qualitatively similar when using 
PIOMAS as validation data (not shown), although the dif-
ferences between the experiments are reduced.

3.4 � Impact on the main modes of climate variability

The Atlantic multidecadal oscillation (AMO, also called 
Atantic multidecadal variability -AMV-) is a pattern of 
multidecadal climate variability consisting in alternating 
phases of warm and cold sea surface temperature (SST) 
over the North Atlantic (Deser et  al. 2010). It is thought 
to be the surface fingerprint of the thermohaline circula-
tion (Kerr 2000; Knight et al. 2005). Its oscillation period 
ranges between 60 and 80 years (Schlesinger and Raman-
kutty 1994; Kushnir 1994). The AMO index is calculated 
as the difference between the mean SST anomalies in the 
North Atlantic and the global mean SST anomalies between 
60 ◦S and 60 ◦N following the definition of Trenberth and 
Shea (2006). When looking at the AMO skill (Fig.  6a), 
the added value of the initialisation is clear. Consistenly 

to what shown in the multi-model ensemble study of Dob-
las-Reyes et  al. (2013a) NOINI is not able to predict the 
AMO (the correlation with the ERSST is negative but not-
significant). The three initialised experiments have a posi-
tive and significant skill, with a correlation with the ref-
erence data of around 0.8 at the beginning of the forecast 
period. A similar impact of initialisation is also shown in 
Doblas-Reyes et  al. (2013a). The correlation of the O-AI 
and OSI-AI experiments remains above 0.5 until the end 
of the third year, while the beneficial effect of initialisation 
lasts only for the first forecast year in the FFI experiment. 
The improvements in the O-AI and OSI-AI experiments 
compared to the NOINI one are significant for the first 2 
forecast years (the confidence intervals do not overlap the 
NOINI one), while the improvements of FFI are significant 
only for the first forecast year. The positive impact of the 
initialisation is confirmed by the RMSE plot (Fig. 6b).

To further explore the performance of the different AMO 
predictions of the FFI and the OSI-AI experiments, Fig. 7 
shows the AMO time series for the two experiments, both 
plotted against the ERSST data. The most interesting fea-
ture in this comparison is the increasing trend of the last 
20 years. Both experiments tend to underestimate the mini-
mum in the first half of the 90s, especially with the hind-
casts started in 1990 (light blue). However, the OSI-AI 
experiment captures properly the maximum in 1995 (dark 
pink Fig. 7b), which is overestimated and shifted in time in 
the FFI hindcast (Fig.  7a). Also the increasing trend hap-
pening between the year 2002 and 2008 is not captured 
by FFI, while is partly captured by OSI-AI (start dates in 
red, orange and yellow). While the minimum in the 60 s is 
shifted in time, the maximum in 1965 is well captured by 
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both experiments (orange hindcasts). Finally in the 70s, the 
light and dark blue hindcasts fit better the observation with 
OSI-AI. However these results are limited by the small 
ensemble size (5 members).

We focus next on the most long-lived sea surface tem-
perature mode in the Pacific, the Pacific Decadal Oscilla-
tion (PDO). The PDO is defined as the leading principal 
component of the Pacific annual SST variability calculated 
in the domain 20− 65 ◦N. The PDO substantially impacts 
the North Pacific and North American climates, with phases 
persisting for 20–30  years (Anderson et  al. 2009). It has 
also been linked to variations in surface air temperature, 
snowpack, precipitation and marine ecosystems (Mantua 

et  al. 1997). Previous studies have shown that the PDO 
interannual predictability is low (Newman 2007) and that 
the prediction skill is limited to about one year (Lienert and 
Doblas-Reyes 2013). The three initialisation methods tend 
to improve the skill of the PDO over NOINI, for the first 
forecast year (Fig. 8a). Such improvement is also shown in 
the RMSE plot (Fig. 8b) for the first year of forecast. None 
of the differences in forecast skill are significant though.

3.5 � Temperature and precipitation

To have an overall view of the regional improvements and 
degradations of the OSI-AI experiment over the FFI and 
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O-AI ones, Fig.  9 shows the ratio between the RMSE of 
SST during the first forecast year, respectively for the OSI-
AI over the FFI experiment in the first panel, and the OSI-
AI over the O-AI experiment in the second panel. When the 
RMSE ratio is smaller than 1 the OSI-AI has a better SST 
skill over the other experiments, vice versa it degrades the 
skill when the RMSE ratio is larger than 1. The SST skill 
is improved by OSI-AI over FFI (first panel Fig.  9) at the 
sea-ice in the Arctic region, the Labrador Sea and the Wed-
dell Sea. To better illustrate the skill in the Arctic region fig-
ure S4 of the Supplementary Material shows the polar ste-
reographic version of Fig. 9. However the skill is degraded 

in the Bering Sea, part of the North and the Tropical Pacific 
and the Ross Sea in the Antarctic. The regions of statistically 
significant improvements represent less than the 5 % of the 
total grid boxes. The second panel of Fig. 9 shows that OSI-
AI improves the SST prediction over the O-AI experiment 
in some regions of the Arctic and in the Weddell Sea. Some 
degradations in skill occur in some regions of the Antarctic 
(Fig. 9 second panel) and the North Atlantic.

The most societally relevant climate variables over land 
are the near surface temperature and precipitation. Figure 10 
shows the RMSE ratio for near surface temperature between 
OSI-AI and NOINI (first column), OSI-AI and FFI (second 
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Fig. 9   Ratio of sea surface temperature RMSE maps for the first 
forecast year, calculated against ERSST data: the first panel is 
the ratio between OSI-AI/FFI, second panel between OSI-AI/O-
AI. When the ratio is smaller than 1 (red, yellow areas) the OSI-AI 
experiment has smaller RMSE, i.e. a better skill of the prediction. 

Vice versa, when the ratio is larger than 1 (regions in blue) the skill is 
degraded. The black dots over the colours indicate where the RMSE 
ratio is 95  % significantly higher or smaller than 1 according to a 
Fisher test. Maps show less than 5 % of the areas found as significant
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column), OSI-AI and O-AI (third column), for the first forecast 
year, calculated against a combination of land surface tempera-
tures from the National Centres for Environmental Prediction 
(NCEP) GHCN/CAMS dataset (Fan and Dool 2008), SST 
from the National Climatic Data Center (NCDC) ERSST v3b 
dataset (Smith et al. 2008) and, north of 60 ◦N, the GISTEMP 
dataset with 1200 km decorrelation scale (Hansen et al. 2010). 
The first panel of Fig. 10 shows a gain in skill of the OSI-AI 
experiment over NOINI in the Pacific, the Central America and 
Greenland. The corresponding maps of correlation difference 
show that such improvements are statistically significant in 
terms of correlation (Figure S5 of the Supplementary Material). 
The differences with the other initialised experiments (second 
and third panels of Fig. 10 ) are not statistically significant.

The skill maps of precipitation (Fig. 11) are very patchy 
and not significant improvements are shown. The AI seems 
not to be efficient in the ENSO region and the correspond-
ent teleconnections; this could be caused by a possible 
spatial shift of the observed anomalies with respect to the 
position where the model would simulate the correspond-
ing anomalies. Bellucci et  al. (2014) found a similar loss 
of skill of the AI multi-model ensemble in the tropical 
Pacific. They suggested the inconsistency between the 
observed anomalies with the underlying background state 
of the model as a possible cause. Similarly in the compari-
son between OSI-AI and O-AI (Fig. 11 third panel) there 
are some losses of skill over North America, Australia and 
Asia. No significant improvements are detected.

4 � Summary and conclusions

In this work, two anomaly initialisation (AI) techniques 
have been implemented and compared with the full field 
initialisation (FFI) method and a reference simulation for 

which no effort has been put into initialising the model var-
iability with the phase of the observed variability referred 
to as an ’uninitialized experiment’ in what follows. One 
anomaly initialised experiment is performed initialising the 
ocean with AI of all the oceanic prognostic variables. The 
other consists in an ocean and sea ice AI of all prognostic 
variables with consistency corrections between the ocean 
and sea ice components. The full field initialised experi-
ment has the three model components initialised with the 
observed full fields. Such comparison aimed at investigat-
ing whether removing the drift through AI and optimizing 
the consistency between the ocean and the sea-ice state has 
a positive impact on the prediction skill.

Previous studies such as Bellucci et  al. (2014), Smith 
et al. (2013), Hazeleger et al. (2013) have found small dif-
ferences in the comparison between AI and FFI. Although 
differences in skill between our various experiments are 
rather weak, they are of the same order of magnitude as 
the progress in seasonal forecast skill over the last 10 years 
(Doblas-Reyes et  al. 2013b; Vitart 2014). In general, in 
this work it is challenging to obtain statistically significant 
results due to the low number of start dates available and 
the small ensemble size. In the full field initialised experi-
ment, the climate state drifts toward the state of the unini-
tialised experiment, reaching the equilibrium with different 
timescales depending on the location and variable. The AI 
technique allows for a strong reduction of such drift. All 
the variables considered in this study have shown improve-
ments in forecast skill in the initialised hindcasts compared 
to the uninitialised ones. In particular the ocean heat con-
tent shows a better skill up to 3 years ahead and the Atlan-
tic Meridional Overturning stream function up to 2  years 
ahead, but the difference between the various initialisation 
techniques are minor. Initialising the ocean and sea ice 
components in a consistent way through the AI technique 

0 20E 60E 100E 140E 180E 220E 260E 300E 340E 0 20E 60E 100E 140E 180E 220E 260E 300E 340E 0 20E 60E 100E 140E 180E 220E 260E 300E 340E

45
S

0
45

N

45
S

0
45

N

45
S

0
45

N

Fig. 11   Land precipitation RMSE ratio maps for the first forecast year, calculated against the GPCC data (Rudolf et al. 2010): a OSI-AI/NOINI, 
b OSI-AI/FFI and c OSI-AI/O-AI
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improves the skill of Arctic sea-ice volume from 45 to 10 % 
(respectively at the beginning and at the end of the forecast) 
with respect to the full field initialised predictions. The 
improvement with respect to the ocean only AI experiment 
varies between 30 to 8 %, and the improvements over the 
uninitialised experiment varies between 72 % to a degrada-
tion of the 10 % at the end of the forecast. The ocean and 
sea ice AI implies a better initialisation of the sea-ice vol-
ume that also translate into near surface temperature skill in 
the Arctic. All the initialised experiments have a better skill 
in predicting the Arctic sea-ice area over the uninitialised 
experiment, but the skill difference between the initialised 
experiments are small.

The skill in the Atlantic Multidecadal Oscillation (AMO) 
using the AI technique is significantly better than in the 
uninitialised experiment along the first 2 forecast years, and 
it is better also than the full field hindcast skill, although the 
difference in skill is not significant. Although the improve-
ments are not statistically significant, the skill of the anom-
aly initialised experiments in hindcasting the Pacific Dec-
adal Oscillation (PDO) index seems to be better when using 
the AI than the FFI technique during the first forecast year, 
the latter being already better than the uninitialised experi-
ment for the first forecast year. In a nutshell, removing the 
drift through AI and improving the consistency between the 
ocean and the sea-ice state increase the skill compared to 
the full field or the ocean only anomaly initialised experi-
ments. On the other hand, an important area where the skill 
is degraded by AI is the tropical Pacific, supporting the find-
ings of previous studies (Bellucci et  al. 2014; Smith et  al. 
2013). This degradation also affects the skill of precipita-
tion in some of the ENSO teleconnection regions (North 
America, Western Asia and Australia). Such result might be 
related to the limitation of the AI hypothesis mentioned in 
the Introduction: the model bias in the tropical Pacific could 
include a spatial shift that would cause the initial observed 
anomalies no to be placed where the model would simulate 
the corresponding anomalies. Some additional work has 
explored the possibility of refining further the AI technique 
to aim at a larger skill. The ideas that has been implemented 
aim, on one hand, at providing the most suitable initialisa-
tion for the density variable which plays a crucial role in 
the ocean circulation (Volpi et al. 2016). On the other hand, 
the observed anomaly has been scaled in order to take into 
account the different amplitudes of the observed versus the 
model variability. Further investigation should focus on 
overcoming the issue of the spatial shift and implementing 
the AI in the ocean, sea ice and atmosphere components to 
suppress the remaining drift and optimize the consistency 
between the different model components.
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