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Abstract: This paper is devoted to the strain gradient theory of thermoe-
lastic materials whose microelements possess microtemperatures. The work
is motivated by increasing use of materials which possess thermal variation
at a microstructure level. In the first part of the paper we deduce the system
of basic equations of the linear theory and formulate the boundary-initial-
value problem. We establish existence, uniqueness and continuous depen-
dence results by means of the semigroup theory. Then, we study the one-
dimensional problem and establish the analyticity of solutions. Exponential
stability and impossibility of localization are consequences of this result. In
the case of anti-plane problem we derive uniqueness and instability results
without assuming the positivity of the mechanical energy. Finally, we study
the equilibrium theory and investigate the effects of a concentrated heat
source in an unbounded body.
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QUALITATIVE PROPERTIES IN STRAIN GRADIENT THER-
MOELASTICITY WITH MICROTEMPERATURES

1 Introduction

The linear theories of thermoelastic bodies with inner structure have been
intensively studied. The origin of the theories of continua with microstruc-
ture goes back to the papers of Ericksen and Truesdell (1958), Toupin (1962,
1964), Mindlin (1964), Eringen and Suhubi (1964) and Green and Rivlin
(1964). Toupin (1962, 1964) and Mindlin (1964) have established the theory
of nonsimple elastic media, which is characterized by the inclusion of higher
gradients of displacement in the basic postulates. The equations and the
boundary conditions of the nonlinear strain gradient theory of elastic solids
were first established by Toupin (1962, 1964). The linear theory has been
developed by Mindlin (1964) and Mindlin and Eshel (1968)). The strain
gradient theory of elasticity is adequate to investigate important problems
related to size effects and to describe the deformation of chiral elastic solids
(Papanicolopulos, 2011 and references therein). Examples of chiral materials
include auxetic materials, bones, carbon nanotubes, honeycomb structures,
as well as some porous composites. The gradient theories of thermomechan-
ics have been studied in various papers (Ahmadi and Firoozbakhsh, 1975;
Ieşan, 1983; Ieşan and Quintanilla, 1992; Forest et al., 2000, 2002; Ieşan,
2004; Forest and Amestoy, 2008). Mindlin (1964) formulated a theory of
a continuum which has some properties of a crystal lattice as a result of
inclusion of the idea of a unit cell. Mindlin begins with the general concept
of a continuum, each material particle of which is a deformable medium.
In this theory, each microelement is constrained to deform homogeneously.
The spatial coordinates x′i of the point X ′ of the microelement Ω are repre-
sented in the form x′i = xi + ψikξk, where xi are the spatial coordinates of
the centroid X of Ω, X ′k and Xk are the material coordinates of X ′ and X,
and ξk = X ′k − Xk. The functions ψik are called microdeformations. The
theory of continua with microstructure has been studied extensively and an
account of the basic results can be found in the works of Ciarletta and Iesan
(1993), Eringen (1999) and Mariano (2001). Grot (1969) established a lin-
ear theory of thermodynamics of elastic solids with microstructure whose
microelements possess microtemperatures. The Clausius-Duhem inequality
is modified to include microtemperatures, and the first-order moment of the
energy equations are added to the usual balance laws. In this theory the
absolute temperature T ′ at the point X ′ of the microelement is a linear
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function of the microcoordinates ξk, of the form T ′ = T + τkξk, where T
is the temperature at the centroid X. The vector with the components Tk
defined by Tk = −τk/T0 is called the microtemperature vector. Here, T0 is
the absolute temperature in the natural state. The theory of continua with
microtemperatures has been studied in various papers (see, e.g., Riha, 1975,
1976; Verma et al., 1979; Svanadze, 2004; Casas and Quintanilla , 2005; Iesan
and Quintanilla, 2009). Riha (1976) presented a study of heat conduction
in materials with microtemperatures. Experimental data for the silicone
rubber containing spherical aluminium particles and for human blood were
found to conform closely to predicted theoretical thermal conductivity.

This paper is structured as follows. In Section 2 we establish the basic
equations of the linear strain gradient theory of thermoelastic materials
whose microelements possess microtemperatures. Section 3 is devoted to a
uniqueness theorem in the dynamic theory of anisotropic solids. In Section
4 we present an existence theorem by means of the linear semigroup theory.
The one-dimensional dynamic theory of homogeneous and isotropic solids
is investigated in Section 5. In this case we establish the analyticity of
solution. This result implies the exponential stability of solutions and the
impossibility of localization of solutions. In Section 6 we consider the anti-
plane problem and prove an uniqueness result by means of the logarithmic
convexity argument. The last section is concerned with the equilibrium
theory of thermoelastic materials with microtemperatures. We present a
uniqueness result and investigate the effects of a concentrated heat source
in an unbounded body.

2 Basic equations

In this section we use the results of Toupin (1964), Eringen and Suhubi
(1964), Grot (1969) and Eringen (1999) to establish the basic equations of
a strain gradient theory of thermoelasticity with microtemperatures. We
restrict our attention to the linear theory of thermoelasticity.

We consider a body that at some instant occupies the properly regular
region B of Euclidean three-dimensional space and is bounded by the surface
∂B. The motion of the body is referred to a fixed system of rectangular
cartesian axes Oxi (i = 1; 2; 3). We denote by nk the outward unit normal of
∂B. We shall employ the usual summation and differentiation conventions:
Latin subscripts, unless otherwise specified, are understood to range over
the integers (1, 2, 3), summation over repeated subscripts is implied, and
subscripts preceded by a comma denote partial differentiation with respect
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to the corresponding cartesian coordinate. We use a superposed dot to
denote partial differentiation with respect to the time.

Let P be an arbitrary material volume in the continuum, bounded by a
surface ∂P at time t. We suppose that P is the corresponding region in the
reference configuration, bounded by a surface ∂P. Let uk be a displacement
vector field on B.

Following Toupin (1964) we postulate an energy balance in the form∫
P

(ρüj u̇j + ρė)dv =

∫
P
ρ(fiu̇i + S)dv+

+

∫
∂P

(tiu̇i + µjiu̇i,j + q)da, (1)

for all regions P of B and every time, where ρ is the mass density in the
reference configuration, e is the internal energy per unit mass, fi is the body
force per unit mass, S is is the heat supply per unit mass, ti is a part of
the stress vector associated with the surface ∂P but measured per unit area
of ∂P, µij is the dipolar surface force associated with the surface ∂P and
measured per unit area of ∂P and q is the heat flux associated with surface
∂P and measured per unit area of ∂P . Following Toupin (1964) we assume
that the dipolar body force and the spin inertia per unit mass are absent.
As in the paper of Green and Rivlin (1964), we consider a motion of the
body which differs from the given motion only by a superposed translation,
the body occupying the same position at time t. From (1) we obtain∫

P
ρüjdv =

∫
P
ρfjdv +

∫
∂P
tjda, (2)

for all regions P of B. Using the well-known method, from (2) we get

ti = tjinj , (3)

where tij is the stress tensor. The local form of the relation (2) is given by

tji,j + ρfi = ρüi. (4)

In view of (3) and (4), the relation (1) reduces to∫
P
ρėdv =

∫
P

(tjiu̇i,j + S)dv +

∫
∂P

(µjiu̇i,j + q)da, (5)

for all regions P of B and every time. With an argument similar to that
used to derive the relation (3), from (5) we obtain

(µji − µkjink)u̇i,j + q − qjnj = 0, (6)
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where µijk is the double stress tensor and qj is the heat flux vector.
If we use the relation (6) and the divergence theorem, then we find that

the equation (5) can be written in the following local form

ρė = (tji + µkji,k)u̇i,j + µkjiu̇i,jk + qj,j + ρS. (7)

In this theory the balance of first stress moments presented by Grot
(1969) reduces to

µkji,k + tji − τji = 0, (8)

where τji is the microstress tensor. By using (8), the equation (7) can be
written in the following local form

ρė = τij u̇i,j + µijku̇i,jk + qj,j + ρS. (9)

Following the method of Green and Rivlin (1964) we consider a motion of
the body which differs from the given motion by a superposed uniform rigid
body angular velocity, the body occupying the same position at time t, and
let us assume that ė, τij , µkji, qj and S are unaltered by such motion. From
(9) we find that

τij = τji. (10)

If we use the relation (10) then the balance of energy (9) can be written in
the form

ρė = τij ėij + µijkκ̇ijk + qj,j + ρS, (11)

where we have used the notations

eij =
1

2
(ui,j + uj,i), κijk = uk,ij . (12)

The balance of first moment of energy can be expressed as (Grot, 1969)

ρε̇i = qji,j + qi −Qi + ρGi, (13)

where qij is the first heat flux moment tensor, Qij is the microheat flux
average and Gi is the first heat supply moment tensor. The local form for
the second law of thermodynamics is given by (Grot, 1969)

ρη̇ − (
1

T
qk +

1

T
qkmTm),k −

1

T
(S +GiTi) ≥ 0, (14)

where η is the entropy density per unit mass, T is the absolute temperature
and Tj is the microtemperature vector. In this theory the temperature T ′ at
the point X ′ of a microelement is a linear function of the microcoordinates
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ξk = X ′k − Xk of the form T ′ = T + τkξk, where T is the temperature
at the centroid X. The vector Tk defined by Tk = −τk/T is called the
microtemperature vector. With the help of (11) and (13), the inequality
(14) can be written in the form

ρ(T η̇−ė−Tiε̇i)+τij ėij+µijkκ̇ijk+
1

T
qiTi+

1

T
qijT,iT,j−qijTj,i+(qj−Qj)Tj ≥ 0.

(15)
We introduce the function ψ by

ψ = e− ηT + εjTj . (16)

The inequality (15) can be expressed as

−ρ(ψ̇+Ṫ η−Ṫiεi)+τij ėij+µijkκ̇ijk+
1

T
qiTi+

1

T
qijT,iT,j−qijTj,i+(qj−Qj)Tj ≥ 0.

(17)
Let us introduce the notation

θ = T − T0, (18)

where T0 is the absolute temperature in the reference configuration. In what
follows we assume that T0 is a positive constant. In the linear theory we
assume that ui = εu′i, θ = εθ′ and Ti = εT ′i where ε is a constant small
enough for squares and higher powers to be neglected and u′i, θ

′ and T ′i
are independent of ε. We suppose that in the reference configuration the
functions τij , µijk, η, εi, qi, qij and Qj all vanish. In the context of the linear
theory the inequality (17) becomes

−ρ(ψ̇+ θ̇η− Ṫiεi)+τij ėij+µijkκ̇ijk+
1

T0
qiθ,i−qijTj,i+(qj−Qj)Tj ≥ 0. (19)

We require constitutive equations for ψ, τij , µijk, η, εi, qi, qij and Qj and as-
sume that these are functions of the set of variables Π = (eij , κijk, θ, θ,i, Ti, Ti,j).
We assume that there is no kinematical constraint. Introduction of the con-
stitutive equations of the form

ψ = ψ̃(Π), τij = τ̃ij(Π), . . . , Qi = Q̃i(Π), (20)

into the equation (19), yields

(τij −
∂σ

∂eij
)ėij + (µijk −

∂σ

∂κijk
)κ̇ijk − θ̇(ρη +

∂σ

∂θ
)

+ Ṫi(ρεi −
∂σ

∂Ti
)− ∂σ

∂Ti,j
Ṫi,j +

1

T
qiθ,i − qijTj,i + (qi −Qi)Ti ≥ 0. (21)
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Here we have used the notation σ = ρψ. For simplicity we regard the
material to be homogeneous. From (21) we obtain

σ = σ̃(eij , κijk, θ, Ti),

τij =
∂σ

∂eij
, µijk =

∂σ

∂κijk
, ρη = −∂σ

∂θ
, ρεi =

∂σ

∂Ti
, (22)

and
qiθ,i − T0qijTj,i + T0(qi −Qi)Ti ≥ 0. (23)

In the context of the linear theory we have

σ =
1

2
Aijrseijers +Bijpqreijκpqr +

1

2
Cijkpqrκijkκpqr − aijeijθ + LijkeijTk

− cijkκijkθ +NijrsκijrTs −
1

2
aθ2 − biθTi −

1

2
DijTiTj , (24)

where the constitutive coefficients have the following symmetries

Aijmn = Ajimn = Amnij , Bijpqr = Bjipqr = Bijqpr, Cijkpqr = Cpqrijk = Cjikpqr,

aij = aji, Lijk = Ljik, cijk = cjik, Nijks = Njiks, Dij = Dji. (25)

In view of (22), (24) and (25) we get

τij = Aijmnemn +Bijpqrκpqr + LijkTk − aijθ,
µijk = Brsijkers + Cijkpqrκpqr +NijksTs − cijkθ,
ρη = aijeij + cijkκijk + aθ + biTi,

ρεi = Lrsiers +Npqriκpqr −DijTj − biθ. (26)

On the basis of (23), the linear approximations for qj , Qj and qij are given
by

qi = kijθ,j +HijTj , qij = −PijrsTs,r, Qi = (kij −Kij)θ,j + (Hij − Λij)Tj .
(27)

It follows from (23) that the constitutive coefficients kij ,Kij , Hij ,Λij and
Pijrs satisfy the inequality

kijθ,iθ,j + (Hji + T0Kij)θ,jTi + T0ΛijTiTj + T0PijrsTs,rTj,i ≥ 0. (28)

With the help of (8), the equations of motion (4) become

τji,j − µkji,kj + ρfi = ρüi. (29)
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By (16), (18), (22) and (26) we find that in the linear theory the balance of
energy (9) becomes

ρT0η̇ = qj,j + ρS. (30)

We conclude that the basic equations of the linear theory are the equations
of motion (29), the energy equation (30), the balance of the first moment of
energy (13), the constitutive equations (26) and (27), and the geometrical
equations (12).

For a given deformation, u̇i,j in (6) may be chosen in an arbitrary way
so that, on the basis of the constitutive equations (20) we get

µji = µkjink, q = qjnj . (31)

It is known (Grot, 1969) that the heat flux moment vector Λj at regular
points of the boundary are given by

Λi = qjinj . (32)

Let us assume that the boundary of B consists in the union of a finite number
of smooth surfaces, smooth curves (edges) and points (corners). Let C be
the union of the edges. Following Toupin (1964) and Mindlin (1964) we
obtain ∫

∂B
(tiu̇i + µjiu̇i,j)da =

∫
∂B

(Piu̇i +RiDu̇i)da+

∫
C

Ωiu̇idl, (33)

where

Pi = (τki − µrki,r)nk −Dj(nsµsji) + (Djnj)nsnpµspi, Ri = µrsinrns,

Ωi =< µpjinpnq > εjrqsr, Df = f,jnj . (34)

In (34), Di are the components of the surface gradients, Di = (δij−ninj)∂/∂xj ,
sk are the components of the unit vector tangent to C, and < f > denotes
the difference of limits of f from the both sides of C.

Let Sr, (r = 1, 2, ..., 8), be subsets of ∂B such that S̄1 ∪ S2 = S̄3 ∪ S4 =
S̄5 ∪ S6 = S̄7 ∪ S8 = ∂B, and S1 ∩ S2 = S3 ∩ S4 = S5 ∩ S6 = S7 ∩ S8 = ∅.
We consider the mixed problem characterized by the following boundary
conditions

ui = ũi on S̄1 × I, Pi = P̃i on S2 × I, Dui = d̃i on S̄3 × I,
Ri = R̃i on S4 × I, θ = θ̃ on S̄5 × I, qjnj = q̃ on S6 × I,

Ti = T̃i on S̄7 × I, qjinj = Λ̃i on S8 × I,Ωi = Ω̃i on C × I, (35)
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where ũi, P̃i, d̃i, R̃i, θ̃, q̃, T̃i, Λ̃i and Ω̃i are prescribed functions and I =
(0,∞). The initial conditions have the form

ui(x, 0) = u0i (x), u̇i(x, 0) = v0i (x), θ(x, 0) = θ0(x), Ti(x, 0) = T 0
i (x), x ∈ B,

(36)
where u0i , v

0
i , θ

0 and T 0
i are given.

We note that in the case of isotropic and homogeneous bodies, the con-
stitutive equations become

τij = λerrδij + 2µeij − βθδij ,

µijk =
1

2
α1(κrriδjk + 2κkrrδij + κrrjδik) + α2(κirrδjk + κjrrδik)

+ 2α3κrrkδij + 2α4κijk + α5(κkji + κkij) + ξ1δijTk + ξ2(δikTj + δjkTi),

ρη = βerr + aθ, (37)

ρεi = ξ1κmmi + 2ξ2κirr − bTi, qi = kθ,i + k1Ti,

Qi = (k1 − k2)Ti + (k − k3)θ,i, qij = −k4Tr,rδij − k5Ti,j − k6Tj,i,

where δij is the Kronecker delta and λ, µ, αs, (s = 1, 2, ..., 5), β, ξ1, ξ2, a, b, k
and kr, (r = 1, 2, ..., 6), are prescribed constants.

The basic equations can be expressed in terms of the functions uj , θ and
Tk. Thus in the case of isotropic and homogeneous bodies we obtain

(µ− ν14)4ui + (λ+ µ− ν24)uj,ji − ξ14Ti − 2ξ2Tj,ji − βθ,i + ρfi = ρüi,

k4θ + k1Tj,j − βT0u̇r,r − aT0θ̇ = −ρS, (38)

k64Ti + (k4 + k5)Tj,ji + ξ14u̇i + 2ξ2u̇j,ji − bṪi − k2Ti − k3θ,i = ρGi,

where 4 is the Laplacian operator and we have introduced the notations

ν1 = 2(α3 + α4), ν2 = 2(α1 + α2 + α5). (39)

The inequality (28) implies the following relations (Grot,1969)

k ≥ 0, 3k4 + k5 + k6 ≥ 0, k5 + k6 ≥ 0, k5− k6 ≥ 0, (k1 +T0k3)
2 ≤ 4T0kk2.

(40)
We assume that: (i) fi, S and Gi are continuous on B × [0,∞); (ii)

ρ, u0i , v
0
i , θ

0 and T 0
i are continuous on B; (iii) the constitutive coefficients are

continuous differentiable on B; (iv) ũi, θ̃ and T̃i are continuous on S1 × I,
S5× I and S7× I, respectively, and d̃i are continuous in time and piecewise
regular on S3 × I; (v) P̃i, R̃i, q̃ and Λ̃i are continuous in time and piecewise
regular on S2 × I, S4 × I, S6 × I, and S8 × I, respectively; (vi) Ω̃i are
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continuous in time and piecewise regular on C × I. Let P and Q be non-
negative integers. We say that f is of class CP,Q on B× I if f is continuous
on B × I and the functions

∂m

∂xi∂xj . . . ∂xs

(
∂nf

∂tn

)
,m ∈ {0, 1, 2, . . . , P}, n ∈ {0, 1, 2, . . . , Q},

m+n ≤ max{P,Q}, exist and are continuous on B×I.We write CL for CL,L.
By an admissible process ζ = {ui, θ, Ti, eij , κijk, τij , µijk, η, εj , qi, qij , Qi} we
mean an ordered array of functions ui, θ, Ti, eij , κijk, τij , µijk, η, εj , qi, qij and
Qi defined on B× [0,∞) with the following properties: (i) ui ∈ C4,2; θ, Ti ∈
C2,1; eij , κijk ∈ C2,0; τij , qj , qij ∈ C1,0; µijk ∈ C2,0; Qi ∈ C0; η, εi ∈ C0,1 on
B×I; (ii) ui, u̇i, üi, ui,j , ui,jk, θ, θ,i, Ti, Ti,j , eij , κijk, τij , µijk, η, η̇, εi, ε̇i, qi, qji, Qi,
qj,j and qij,i are continuous on B× [0,∞). By a solution of the mixed prob-
lem we mean an admissible process which satisfies the equations (12), (13),
(26), (27), (29) and (30) on B × I, the boundary conditions (35) and the
initial conditions (36).

3 Uniqueness

In this section we establish a uniqueness result in the strain gradient the-
ory of thermoelasticity with microtemperatures. We consider the admissi-
ble process ζ = {ui, θ, Ti, eij , κijk, τij , µijk, η, εj , qi, qij , Qi} and introduce the
functions Wζ ,Kζ and Dζ on B × I, defined by

2Wζ = Aijrseijers + 2Bijpqreijκpqr + Cijkpqrκijkκpqr,

2Kζ = aθ2 + 2biTiθ +DijTiTj , (41)

Πζ = kijθ,iθ,j + (Hji + T0Kij)θ,jTi + T0ΛijTiTj + T0PijrsTj,iTs,r.

The entropy inequality implies that Πζ is positive semidefinite,

Πζ ≥ 0, (42)

for any admissible process ζ.

Theorem 3.1. Assume that
(i) Wζ is a positive semidefinite quadratic form;
(ii) ρ is strictly positive;
(iii) Kζ is a positive definite quadratic form for any admissible process

ζ;
(iv) the symmetry relations (25) hold.
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Then, the mixed problem of thermoelasticity has at most one solution.

Proof. By using the constitutive equations (26) and the notations (41) we
get

τij ėij + µijkκ̇ijk + ρη̇θ − ρε̇iTi = Ẇζ + K̇ζ . (43)

On the other hand, with the help of relations (12), (13) and (29) we find
that

τij ėij + µijkκ̇ijk + ρη̇θ − ρε̇iTi =

= [(τji − µkji,k)u̇i + µjiku̇k,i +
1

T0
qjθ − Tiqji],j−

− (τji,j − µkji,kj)u̇i +
1

T0
ρSθ − ρGiTi −

1

T0
qjθ,j + +Ti,jqji − Ti(qi −Qi).

In view of (27), (30) and (41) we obtain

τij ėij + µijkκ̇ijk + ρη̇θ − ρε̇iTi =

= (tjiu̇i + µjiku̇k,i +
1

T0
qjθ − Tiqji),j − ρüiu̇i + ρfiu̇i+ (44)

+
1

T0
ρSθ − ρGiTi −

1

T0
Πζ .

From (43) and (44) we get

1

2

∂

∂t
(ρu̇iu̇i + 2Wζ + 2Kζ) = (tjiu̇i + µjiku̇k,i +

1

T0
qjθ − Tiqji),j+

+ ρ(fiu̇i +
1

T0
Sθ − ρGiTi)−

1

T0
Πζ . (45)

Let us introduce the function Uζ defined on [0,∞) by

Uζ =

∫
B

(
1

2
ρu̇iu̇i +Wζ +Kζ)dv. (46)

If we integrate the relation (45) over B and use the divergence theorem and
relations (3), (31)-(33), then we obtain

U̇ζ =

∫
∂B

(Piu̇i +RiDu̇i +
1

T0
qθ − ΛiTi)da

+

∫
C

Ωiu̇idl +

∫
B
ρ(fiu̇i +

1

T0
Sθ −GiTi)dv −

1

T0

∫
B

Πζdv. (47)
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Suppose that there are two solutions of the mixed problem, ζ(α) = {u(α)i , θ(α),

T
(α)
i , e

(α)
ij , κ

(α)
ijk , τ

(α)
ij , µ

(α)
ijk , η

(α), ε
(α)
j , q

(α)
i , q

(α)
ij , Q

(α)
i }, (α = 1, 2). We denote

u∗i = u
(1)
i − u

(2)
i , θ∗ = θ(1) − θ(2), T ∗i = T

(1)
i − T

(2)
i , e∗ij = e

(1)
ij − e

(2)
ij ,

κ∗ijk = κ
(1)
ijk − κ

(2)
ijk, τ

∗
ij = τ

(1)
ij − τ

(2)
ij , µ∗ijk = µ

(1)
ijk − µ

(2)
ijk, η

∗ = η(1) − η(2),
ε∗ij = ε

(1)
ij − ε

(2)
ij , q∗i = q

(1)
i − q

(2)
i , q∗ij = q

(1)
ij − q

(2)
ij , Q∗i = Q

(1)
i −Q

(2)
i . Then,

the process ϑ = {u∗i , θ∗, T ∗i , e∗ij , κ∗ijk, τ∗ij , µ∗ijk, η∗, ε∗j , q∗i , q∗ij , Q∗i } corresponds
to null data. From (42) and (47) we conclude that

U̇ζ ≤ 0 on [0,∞). (48)

With the help of initial data we find that Uϑ ≤ 0 on I. In view of hypotheses
of the theorem, from (48), we obtain u̇∗i = 0, θ∗ = 0 and T ∗i = 0 on I. By
using the initial data we get u∗i = 0, θ∗ = 0 and T ∗i = 0 on I, and the proof
is complete.�

Uniqueness results in thermoelastodynamics have been established in
various works (see, e.g., Ieşan, 2004).

4 An existence theorem

In this section we consider the case of isotropic and homogeneous bodies
and use a semigroup approach (see Goldstein, 1985) to obtain an existence
result in the dynamical theory.

We assume that the boundary ∂B is smooth and consider the following
homogeneous boundary conditions

ui = Dui = Ti = θ = 0 on ∂B. (49)

We assume that the initial conditions (36) hold.
We introduce the mechanical internal energy by

σ̂ =
1

2
λerress + µeijeij + α1κiikκkjj + α2κijjκikk

+ α3κiikκjjk + α4κijkκijk + α5κijkκkji. (50)

In this section we assume that:

(i) ρ, a and b are positive constants;

(ii) the following inequalities

k > 0, 3k4+k5+k6 > 0, k5+k6 > 0, k5−k6 > 0, (k1+T0k3)
2 < 4T0kk2,

(51)
are satisfied.
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(iii) the function σ̂ is a positive definite quadratic form.

Let W 2,2
0 , W 4,2 and L2 be the usual Hilbert spaces and denote

Z = {(u,v, θ,T),u ∈W2,2
0 (B), v,T ∈ L2(B), θ ∈ L2(B)},

where W2,2
0 = [W 2,2

0 ]3 and L2 = [L2]3.
We introduce the operators

Miu = ρ−1[(µ− ν14)4ui + (λ+ µ− ν24)uj,ji],

NiT = ρ−1(−ξ14Ti − 2ξ2Tj,ji), P̂iθ = ρ−1βθ,i,

Rv = −a−1βvr,r, Xθ = (aT0)
−1k4θ,

UT = (aT0)
−1k1Tj,j , Viv = b−1(ξ14vi + 2ξ2vj,ji,

Wiθ = −b−1k3θ,i,
ZiT = b−1(k64Ti + (k4 + k5)Tj,ji − k2Ti).

Let us consider the matrix operator A defined on Z by
0 Id 0 0

M 0 P̂ N
0 R X U
0 V W Z

 , (52)

where Id is the identity operator , M = (Mi),N = (Ni), P̂ = (P̂i), V = (Vi),
W = (Wi) and Z = (Zi).

The domain D of the operator A is the set

{(u,v, θ,T ), such that A


u
v
θ
T

 ∈ Z, θ = Ti = 0 on ∂B}.

We note that

W2,2
0 ∩W4,2 ×W2,2

0 ×W
1,2
0 ∩W 2,2 ×W1,2

0 ∩W2,2

is a dense subspace of the Hilbert space Z which is contained in D. Therefore
the domain of the operator is dense.

The boundary-initial-value problem can be transformed into the follow-
ing abstract equation in the space Z

dω

dt
= Aω + F (t), ω(0) = ω0, (53)
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where F (t) = (0, f , (aT0)
−1ρS,−b−1ρG), ω0 = (u0,v0, θ0,T 0).

We introduce in the Hilbert space the following inner product

< (u,v, θ,T ), (u∗,v∗, θ∗,T ∗) >=

∫
B

(ρviv
∗
i + aθθ∗ + bTiT

∗
i + 2W ∗) dv,

(54)
where

2W ∗ =λur,ru
∗
j,j + 2µu(i,j)u

∗
(i,j) + α1(uj,rru

∗
k,jk + uk,jku

∗
j,rr)

+ 2α2uj,iju
∗
k,ik + 2α3uk,iiu

∗
k,jj + 2α4uk,iju

∗
k,ij+

+ 2α5uj,iku
∗
k,jk,

u(i,j) = (ui,j + uj,i)/2.
It is worth noting that this inner product is equivalent to the usual one

in the Hilbert space. It defines the norm

||ω||2 =

∫
B

(ρvivi + aθθ + bTiTi + 2σ̂) dv. (55)

We also note that for every ω ∈ D, we have

< Aω, ω >= −
∫
B
D∗dv, (56)

where

D∗ =
k

T0
θ,iθ,i+(

k1
T0

+k3)Tiθ,i+k5Ti,jTj,i+k4Ti,iTj,j+k6Ti,jTi,j+k2TiTi. (57)

In view of the conditions (ii) we see that

< Aω, ω >≤ 0, (58)

for every ω ∈ D.
Lemma 4.1. Suppose that hypotheses (i)-(iii) hold. Let ρ(A) be the resol-
vent of A. Then, 0 ∈ ρ(A).

Proof. Let us show that we can find ω = (u,v, θ,T ) ∈ D such that

Aω = F , (59)

for any F = (f1, f2, f3, f4) ∈ Z. In terms of the components we get

v = f1, Mu + P̂θ + NT = f2, Rv +Xθ + UT = f3 (60)
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Vv + Wθ + ZT = f4. (61)

From these equation we see that v ∈W2,2
0 and we can write the system

Mu + P̂θ + NT = f2, Xθ + UT = f3 −Rf1,Wθ + ZT = f4 −Vv. (62)

To study last two equations of this system we define the bilinear form:

B[(θ,T ), (θ∗,T ∗)] =

∫
B
Idv,

where
I = a(Xθ + UT)θ∗ + b(Wiθ + ZiT )T ∗i .

After the use of the divergence theorem we see that this is a bounded bilinear
form defined in W 1,2

0 ×W1,2
0 which is coercive. The right-hand side belongs

to W−1,2 ×W−1,2. The solution of this system is guarantee on the basis of
the Lax-Milgram theorem (see Gilbarg and Trudinger, 1983). Consequently,
there exists (θ,T) ∈ W 1,2

0 ×W1,2
0 satisfying the last two equations of the

system (62). Then, we can solve the first equation

Mu = f2 − (P̂θ + NT). (63)

Thus, we conclude that the equation (59) has a solution in the domain of
the operator and the lemma is proved. �
Theorem 4.1. Suppose that hypotheses (i)-(iii) hold. Then the operator A
is the generator of a C0-semigroup of contractions in the Hilbert space Z.

Proof. The proof is a direct consequence of the Lumer-Phillips theorem,
since the operator A is dissipative, with a dense domain and 0 ∈ ρ(A) (see
Liu and Zheng, 1999).

Now, we can state the main result of this section.

Theorem 4.2. Suppose that hypotheses (i)-(iii) hold. Let F (t) ∈ C1(R+,Z)∩
C0(R+,D) and ω0 ∈ D. Then, there exists a unique solution ω(t) ∈ C1(R+,Z)∩
C0(R+,D) to the problem (53).

5 Analyticity of solutions

In this section we consider an isotropic and homogeneous body which occu-
pies the layer defined by

B = {(x1, x2, x3) : 0 < x1 < L, |x2| <∞, |x3| <∞}.
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We suppose that the body loads are absent, so that fi = 0, S = 0 andGi = 0.
Moreover, we assume that the initial data are independent of coordinates
x2 and x3. We consider the following boundary conditions

ui = 0, Ri = 0, θ = 0, Ti = 0 for x1 = 0 and x1 = L. (64)

We say that the layer is subjected to a one-dimensional deformation if
the functions ui, θ and Ti are independent of x2 and x3, and u2 = u3 = 0,
T2 = T3 = 0. Thus, we have

u1 = u(x1, t), θ = θ(x1, t), T1 = T̂ (x1, t). (65)

In the one-dimensional theory the equations (38) become

− ν̂u,1111 + µ̂u,11 − ξ̂T̂,11 − βθ,1 = ρü,

kθ,11 + k1T̂,1 − βT0u̇,1 = aT0θ̇, (66)

k∗T̂,11 + ξ̂u̇,11 − k2T̂ − k3θ,1 = b∂T̂ /∂t,

where

ν̂ = ν1 + ν2, µ̂ = λ+ 2µ, k∗ = k4 + k5 + k6, ξ̂ = ξ1 + 2ξ2.

In this section we assume that ν̂, µ̂ and k∗ are positive and ξ̂ is different
from zero. The conditions (64) reduce to

u = 0, u,11 = 0, θ = 0, T̂ = 0 for x1 = 0 and x1 = L. (67)

The aim of this section is to prove the analyticity of the solutions for
the one-dimensional homogeneous version of the system (38). To do that we
will use the result (see Liu and Zheng, 1999).

Theorem 5.1. Let S(t) = eA(t) be a C0-semigroup of contraction in a
Hilbert space. Suppose that

iR ⊆ ρ(A), (68)

where ρ(A) is the resolvent of A. Then, S(t) is analytic if and only if

lim sup
|β̃|→∞

||β̃(iβ̃I − A)|| <∞ (69)

holds.
It is worth noting that the existence of semigroup obtained in the pre-

vious section can be adapted directly to this system with initial conditions

u(x, 0) = u0(x), u̇(x, 0) = v0(x), θ(x, 0) = θ0(x), T̂ (x, 0) = T 0(x), x ∈ (0, L).
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In fact, the existence theorem can be established for an associated system
formulated in terms of complex valued functions. This is similar to the argu-
ments proposed by Liu and Zheng (1999) for several thermoelastic problems.
In this context, we will study now the spectrum of the operator.

We note that in this case the corresponding Hilbert space is

Z = W 2,2 ∩W 1,2
0 × L2 × L2 × L2

and the domain is

D(A) = {(u, v, θ, T̂ ) ∈ Z, v, θ, T̂ ∈W 2,2∩W 1,2
0 , u,11 = 0 for x1 = 0 and x1 = L}.

Before to state our theorem we need a couple of lemmas
Lemma 5.1. The one-dimensional version of the operator A defined by
(52) satisfies the condition (68).

Proof. The proof consists in three steps
(a) We now suppose that 0 is in the resolvent of A. The contraction

mapping theorem shows that for any real number γ with γ < ||A−1||−1, the
operator iγI − A = A(iγA−1 − I) is invertible. Moreover, ||(iγI − A)−1||
is a continuous function of γ in the interval (−||A−1||−1, ||A−1||−1).

(b) If sup{||(iγI − A)−1||, |γ| < ||A−1||−1} = M < ∞, then by the
contraction theorem, the operator

iγI − A = (iγ0I − A)(I + i(γ − γ0)(iγ0I − A)−1),

with |γ0| < ||A−1||−1 is invertible for |γ − γ0| < M−1. It turns out that by
choosing |γ0| as close to ||A−1||−1 as we can, the set {γ, |γ| < ||A−1||−1 +
M−1} is contained in the resolvent of A and ||(iγI −A)−1|| is a continuous
function of γ in the interval (−||A−1||−1 −M−1, ||A−1||−1 +M−1).

(c) Thus, it follows from the argument in (b) that if the imaginary axis is
not contained in the resolvent, then there is a real number τ with ||A−1||−1 ≤
|τ | < ∞ such that the set {iγ, |γ| < |τ | } is in the resolvent of A and
sup{||(iγI − A)−1||, |γ| < |τ |} = ∞. Therefore, there exists a sequence of
real numbers γn with γn → τ, |γn| < |τ | and a sequence of vectors ωn =
(un, vn, θn, T̂n) in the domain of the operator A and with unit norm such
that

||(iγnI − A)ωn||Z → 0 as n→∞. (70)

This is
iγnun − vn → 0 in W 2,2, (71)

iγnvn −Mun − Pθn −NT̂n → 0 in L2, (72)
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iγnθn −Rvn −Xθn − UT̂n → 0 in L2, (73)

iγnT̂n − V vn −Wθn − ZT̂n → 0 in L2, (74)

By (56) we see that θn,1 and T̂n,1 tend to zero in L2. From (70) we see that

V vn +Wθn + ZT̂n → 0 in L2, (75)

As the spatial derivative of un is bounded in L2 we obtain that

ξ̂ < un,1, vn,1 >L2→ 0. (76)

In view of (71) we also have that un,1 tends to zero and then vn,1 also tends
to zero. The multiplication of (72) by un implies that un tends to zero in
W 2,2 which contradicts the assumption that ωn has unit norm.�

Lemma 5.2. The one-dimensional version of the operator A defined by
(52) satisfies the condition (69).

Proof. Let us to assume that (59) does not hold. Then there exists a
sequence γn > 0 and γn →∞; and a sequence of vectors ωn = (un, vn, θn, Tn)
in the domain of the operator A and with unit norm such that

lim
n→∞

γ−1n ||(iγnI − A)ωn||Z = 0. (77)

This is
γ−1n (iγnun − vn)→ 0 in W 2,2, (78)

γ−1n (iγnvn −Mun − Pθn −NT̂n)→ 0 in L2, (79)

γ−1n (iγnθn −Rvn −Xθn − UT̂n)→ 0 in L2, (80)

γ−1n (iγnTn − V vn −Wθn − ZT̂n)→ 0 in L2. (81)

From the dissipation properties of the operator A and the condition (67) we
have that

γ−1/2n (||θn,1||+ ||T̂n||+ ||T̂n,1||)→ 0. (82)

We can write (81) as

γ−1n (iγnT̂n − ξ̂vn,11 − k∗T̂n,11)→ 0 in L2. (83)

If we take the inner product by Tn in L2, after integration by parts, we
obtain that

i||T̂n||2 + ξ̂ < γ−1/2n vn,1, γ
−1/2
n T̂n,1 >→ 0. (84)
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We now that γ−1n ||vn||W 2,2 is uniformly bounded. On the other hand ||vn|| ≤
1. Then by the Gagliardo-Niremberg interpolation inequality we see that

γ
−1/2
n ||vn||W 1,2 is also bounded. Following (82) we obtain that ||T̂n|| → 0.

Working in a similar way with the equation (80) we see that ||θn|| → 0.
If we replace γ−1n ξ̂vn,11 by iξ̂un,11, we can rewrite (71) as

γ−1n (k∗T̂n,11 + iξ̂un,11)→ 0 in L2. (85)

Taking the inner product by un,11 and after integration by parts we obtain

k∗ < γ−1/2n T̂n,1, γ
−1/2
n un,111 > +iξ̂||u,11||2 → 0.

To prove that ||u,11|| tends to zero it is sufficient to show that γ
−1/2
n un,111

is bounded in L2. To this end we multiply (79) by un,11, to get

< ivn, un,11 > −ν̂γ−1n ||un,111||2 − ξ̂ < γ−1/2n T̂n,1, γ
−1/2
n un,111 >→ 0. (86)

As vn, un,11 and γ
−1/2
n Tn,1 are bounded, it follows that γ

−1/2
n un,111 is bounded

in L2. We see that un,11 tends to zero in L2. Finally , from (71) we also
obtain that vn tends to zero in L2 which contradicts that the sequence has
unit norm.
Remark. The proposed arguments can be adapted to the case that we
assume that the boundary conditions are

u = u,1 = θ = T̂ = 0 on x1 = 0, and x1 = L.

The interested reader can find the main ideas in the paper by Liu and
Quintanilla(2010). Therefore we can obtain the following result:
Theorem 5.2. The semigroup is analytic.

We note that a consequence of this result is the exponential stability of
solutions. That is, there exists two positive constant C and τ such that

E(t) ≤ CE(0) exp(−τt), (87)

for every t ≥ 0, where

E(t) = ||(u, v, θ, T̂ )(t)||2.

As the solutions are analytic functions, we have that the only solution
which can be identically zero after a finite time is the null solution.
Corollary 5.1. Let (u, θ, T̂ ) be a solution to the boundary-initial value
problem that vanishes for every t ≥ t0 where t0 < ∞. Then (u, θ, T̂ ) is the
null solution.

The importance of the three-dimensional counterpart of this result is
clear, but this question remains open.
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6 Anti-plane shear deformations

In this section we consider another particular class of solutions for the system
(38). These are solutions of the form u1 = u2 = θ = T1 = T2 = 0 and
u3 = u(x1, x2, t), T3 = T (x1, x2, t). Assuming that the supply terms vanish,
the equations (38) reduce to

(µ− ν14)4u− ξ14T = ρü, k64T + ξ14u̇− bṪ − k2T = 0. (88)

The equations (88) are defined on a two dimensional domain P ∗ smooth
enough to apply the divergence theorem. To the equations (88) we add
initial and boundary conditions. We assume that

u(x, 0) = u0(x), u̇(x, 0) = v0(x), T (x, 0) = T 0(x), x ∈ P ∗, (89)

and that
u = Du = T = 0 on ∂P ∗. (90)

We now present a uniqueness result. We assume that: (α) the mass density
ρ and the parameter b are strictly positive; (β) the parameters k2 and k6
are strictly positive. It is worth remarking that we do not impose any
assumption on the parameters µ and ν1.

First, we note that the energy

E(t) =

∫
P ∗

(ρ|u̇|2 + µ|∇u|2 + ν1|4u|2 + bT 2)da (91)

+2

∫ t

0

∫
P ∗

(k2T 2 + k6|∇T |2)dads = E(0),

is conserved.
Logarithmic convexity argument is based on the choice of a good function

which satisfies some requirements. We consider several relations to define
this function. First we integrate with respect to time the second equation
of (88). We have∫ t

0
(k64T − k2T )ds+ ξ14u = bT + ξ14u0 − bT 0. (92)

Now, we define Q as the solution to the Poisson equation

k64Q− k2Q = bT 0 − ξ14u0, (93)
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subject to the boundary condition Q = 0 on ∂P ∗. We note that the exis-
tence of such function is guaranteed by the classical results for the elliptic
equations (see Gilbarg and Trudinger 1983). If we denote

β̂ = ψ +Q, where ψ =

∫ t

0
T (s)ds, (94)

then we obtain that the second equation on (88) can be written as

k64β̂ − k2β̂ + ξ14u = bT . (95)

We now define the function

Fω,t1 =

∫
P

(
ρ|u|2 +

∫ t

0
(k6|∇β̂|2 + k2β̂

2)ds

)
da+ ω(t+ t1)

2, (96)

where ω and t1 are two constants to select later. In what follows, for the sake
of simplicity, we shall use the notation Fω,t1 = f . We proceed to compute
the first two derivatives of f(t). Thus

ḟ = 2

∫
P ∗
ρuu̇ da+

∫ ∗
P

(k6|∇β̂|2 + k2β̂
2)dv + 2ω(t+ t1). (97)

f̈ = 2

∫
P ∗

(ρ|u̇|2 + ρuü)da+ 2

∫
P ∗

(k6β̂,iT,i + k2β̂T )da+ 2ω. (98)

If we substitute into the first equation of (88) and (95) and apply the diver-
gence theorem we obtain that

f̈ = 2

∫
P ∗

(ρ|u̇|2 − µ|∇u|2 − ν1|4u|2 − bT 2)da+ 2ω (99)

In view of the energy equation (91), we get

f̈ = 4

∫
P ∗

(ρ|u̇|2 +

∫ t

0
(k6|∇T |2 + k2T 2)dsda+ 2(ω − E(0)). (100)

It is also worth noting that (97) can be also written as

ḟ = 2

∫
P ∗
ρuu̇da+ 2

∫ t

0

∫
P ∗

(k6β̂,iT,i + k2β̂T )dads (101)

+

∫
P

(k6Q,iQ,i + k2|Q|2)da+ 2ω(t+ t1).
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From (96), (101) and (100) we obtain that

ff̈ − (ḟ − Γ

2
)2 ≥ −2(E(0) + ω)f, (102)

where

Γ = 2

∫
P ∗

(k6Q,iQ,i + k2|Q|2)da. (103)

Inequality (102) is fundamental in our analysis. In the case of null initial
data we get E(0) = 0 and Γ = 0. If we takes ω = t1 = 0 the inequality (102)
becomes

FF̈ − (Ḟ )2 ≥ 0, (104)

where we have used the notation and we use F (t) for the function F0,0(t).
From (104) we obtain the estimate

F (t) ≤ F (0)1−
t
t∗ F (T )

t
t∗ , 0 ≤ t ≤ t∗. (105)

We then conclude that F (t) vanishes for 0 ≤ t ≤ t∗ and we get a uniqueness
result. In the general case we obtain that

ff̈ − (ḟ)2 ≥ −Γḟ , (106)

where we have selected ω = −E(0). The inequality (106) implies that

d

dt

(
ḟ

f

)
≥ −Γ

ḟ

f2
.

Therefore, we see that the function

ḟ − Γ

f

is increasing in time. In particular we see that

ḟ(t)− Γ

f(t)
≥ ḟ(0)− Γ

f(0)
.

Now, we select the arbitrary positive constant t1 to be large enough to satisfy
ḟ(0)− Γ > 0. After a quadrature we obtain

f(t) ≥ f(0)ḟ(0)

ḟ(0)− Γ
exp

(
ḟ(0)− Γ

f(0)

)
t− Γf(0)

ḟ(0)− Γ
.

Thus, we have established that F (t) grows exponentially for large time. We
have proved the following result:

Theorem 6.1. Under the assumptions made at begining of this section,
we have:
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(i) The first boundary value problem has at most one solution;

(ii) If E(0) < 0, then the solutions becomes unbounded in an exponential
way.

7 Thermoelastostatics. Concentrated heat source

The fundamental system of field equations for the time-independent be-
haviour of a thermoelastic solid consists of the equations of equilibrium

τji,j − µkji,kj + ρfi = 0, (107)

the balance of energy
qj,j + ρS = 0, (108)

the balance of the first moment of energy

qji,j + qi −Qi + ρGi = 0, (109)

the constitutive equations (26) and (27), and the geometrical equations (12).
To the basic equations we have to add boundary conditions. Let us assume
that the boundary ∂B is smooth. The first boundary-value problem of
thermoelastostatics is characterized by the following boundary conditions

ui = ũi, Dui = d̃i, θ = θ̃, Ti = T̃i on ∂B, (110)

where ũi, d̃i, θ̃ and T̃i are prescribed functions. In the second boundary-value
problem the boundary conditions are

Pi = P̃i, Ri = R̃i, qini = q̃, qjinj = Λ̃i on ∂B, (111)

where the functions P̃i, R̃i, q̃ and Λ̃i are given. We note that the uniqueness
theorems presented by Mindlin and Tiersten (1968) and Ieşan (2007) can be
used to obtain uniqueness results in thermoelastostatics. By a rigid state
we mean an ordered array of functions {u∗i , θ∗, T ∗i } of the form

u∗i = a
(1)
i + εijka

(2)
j xk, θ∗ = a(3), T ∗i = 0,

where a
(1)
i , a

(2)
i and a(3) are arbitrary constants. As in Section 3 we can

prove the following result.

Theorem 7.1. Assume that Wζ and Πζ are positive definite quadratic
forms. Then,
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(i) the first boundary-value problem has at most one solution;
(ii) any two solutions of the second boundary-value problem are equal

modulo a rigid state.
In the equilibrium theory of homogeneous and isotropic solids the equa-

tions (38) become

(µ− ν1∆)∆ui + (λ+ µ− ν2∆)uj,ji − ξ1∆Ti − 2ξ2Tj,ji − βθ,i = −ρfi,
k∆θ + k1Tj,j = −ρS, (112)

k6∆Ti + (k4 + k5)Tj,ji − k2Ti − k3θ,i = ρGi.

We note that in the equilibrium theory we can first study the problem of
finding the functions θ and Ti, and then the problem of finding the displace-
ments uj .

Mindlin (1964) established a general solution of the displacement equa-
tions in gradient elastostatics and used it to derive the solution to the prob-
lem of a concentrated force acting in an infinite region.

In what follows we study a special problem of thermoelastostatics. We
investigate the effects of a concentrated heat source acting in an isotropic
and homogeneous body that occupies the entire three-dimensional space.
First, we assume that

fi = 0, ρS = Λ(r), Gi = 0, (113)

where Λ is a prescribed function, r = [(xi − yi)(xi − yi)]1/2, and (y1, y2, y3)
is a fixed point. The conditions at infinity are

ui = O(1), θ = O(r−1), Ti = O(r−1), (114)

ui,j = O(r−1), ui,jk = O(r−2), θ,i = O(r−2), Ti,j = O(r−2).

We seek the solution of the system (114), in the form

ui = Φ,i, θ = χ, Ti = Ψ,i, (115)

where Φ, χ and Ψ are unknown functions which depend only on the variable
r. The equations are satisfied if the functions Φ, χ and ψ satisfy the following
equations

[λ+ 2µ− (ν1 + ν2)∆]∆Φ− (ξ1 + 2ξ2)∆Ψ− βχ = 0,

k∆χ+ k1∆Ψ = −M, (116)

(k4 + k5 + k6)∆ψ − k2Ψ− k3χ = 0.
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We introduce the notations

S1 = λ+ 2µ− (ν + ν)∆ = −(ν1 + ν2)(∆− p2),
S2 = k(k4 + k5 + k6)(∆− s2), S3 = (S2 − k1k3)/k, (117)

p =

(
λ+ 2µ

ν1 + ν2

)1/2

, s =

[
kk2 − k1k3

k(k4 + k5 + k6)

]1/2
.

Let

Φ = −[βS3 + k3(ξ1 + 2ξ2)∆]Ω,

χ = −S1S3∆Ω, (118)

Ψ = −k3S1∆Ω,

where Ω is a function of class C8 which satisfies the equation

S1S2∆∆Ω = M. (119)

It is easy to see that the functions Φ, χ and Ψ satisfy the equations (116).
The equation (119) can be written in the form

(∆− p2)(∆− s2)∆∆Ω = −M0, (120)

where M0 = M/[k(ν1 + ν2)(k4 + k5 + k6)]. Let us consider the functions Ωk,
(k = 1, 2, 3, 4), that satisfy the equations

(∆− p2)Ω1 = −M0, (∆− s2)Ω2 = −M0, ∆∆Ω3 = −M0, ∆Ω4 = −M0.
(121)

We can see that the solution of the equation (120) can be expressed in the
form

Ω =
4∑
j=1

cjΩj , (122)

where

c1 =
1

p2(2−s2)
, c2 =

1

s(s2 − p2)
, c3 =

1

p2s2
, c4 =

p2 + s2

p4s4
. (123)

We now investigate the effect of a concentrated heat source. Let us assume
that M = δ(x − y) where δ(·) is the Dirac delta and y is a fixed point. In
this case we get

Ω1 =
q0

4πr
exp(−pr), Ω2 =

q0
4πr

exp(−sr), Ω3 =
q0r

8π
, Ω4 =

q0
4πr

, (124)
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where q0 = [k(ν1 + ν2)(k + k5 + k6)]
−1. Thus, from (122) we obtain

Ω =
q0

4πp4s4(p2 − s2)r
[s4 exp(−pr)−p4 exp(−sr)]+ q0

8πp4s4r
[p2s2r2+2(p2+s2)].

(125)
It follows from (118) and (125) that

Φ =
q0

4πr
[c11 exp(−pr) + c12 exp(−sr) + c13r + c14],

χ =
(ν1 + ν2)q0

4πr
[c21 exp(−sr) + c22], (126)

Ψ = −(ν1 + ν2)q0k3
4πs2r

[p−2 exp(−sr)− 1],

where

c11 =
A

p2s2(s2 + p2)
+

k2β

p4(p2 − s2)
, A = β(k4 + k5 + k6) + k3(ξ1 + 2ξ2),

c12 =
A

s2(p2 − s2)
− k2β

s4(p2 − s2)
, c13 =

k2β

2p2s2
, c14 =

k2β(p2 + s2)

p4s4
,

c21 = k4 + k5 + k6 − k2s−2, c22 = k2s
−2.

The displacement vector, thermal field and the microtemperatures corre-
sponding to the concentrated heat source are given by (115) and (126).

8 Conclusions

The original results established in this paper can be summarized as follows:
(a) We establish the basic equations of the strain gradient theory of

thermoelastic materials whose microelements possess microtemperatures.
(b) In the dynamic theory we establish existence, uniqueness and con-

tinuous dependence results by means of the semigroup theory.
(c) We study the one-dimensional theory and establish the analyticity of

solutions. Exponential stability and impossibility of localization are conse-
quences of this result.

(d) We study the anti-plane problem and derive uniqueness and insta-
bility results without assuming the positivity of the mechanical energy.

(e) We study the equilibrium theory and investigate the effects of a
concentrated heat source in an unbounded body.

26



References

References

Ahmadi, G., Firoozbaksh, K., 1975. First strain-gradient theory of thermoe-
lasticity. Int. J. Solids Struct. 11, 339-345.

Casas, P., Quintanilla, R., 2005. Exponential stability in thermoelasticity
with microtemperatures. Int. J. Eng. Sci. 43, 33-47.
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