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Resumen/Abstract English 
 

The understanding of the driving forces involved in the abundance fluctuation of fish populations is an 

important requirement for conservation and management, especially in the context of environmental 

changes. In the North Western Mediterranean Sea the catches of sardine (Sardina pilchardus) and anchovy 

(Engraulis encrasicolus) during the period 1990-2014 have severely decreased. Although neither of the 

two populations is considered underexploited, it seems unlikely that overexploitation alone has caused 

the recent decrease. Furthermore, it is even truer considering that changes in the marine environment 

have occurred in the studied area during the last 40 years. The general objective of this PhD thesis is to 

detect the main environmental factors involved in the fluctuations of the abundance of the two small 

pelagic species in the Catalan Sea.  

Before focusing on the environmental influences, the spatiotemporal distribution of the purse seine 

fishery operations was analyzed. The results revealed that the distribution of the fleet captured the 

features of the distributions of small pelagic populations. These findings contributed to a better 

understanding and visualization of the spatial distribution of catches, which form the basis of the landings 

data series studied in the rest of the PhD thesis. We then investigated the local environmental factors and 

climate index (Western Mediterranean oscillation index; WeMOI) that were strictly linked with landings of 

both species. We concluded that temperature, salinity, and currents were important drivers for both 

species, and the WeMOI index favored sardine abundance when it was in positive phase. We highlighted 

that the relationships between the availability of these small pelagic fishes and these factors were better 

described by non-linearity. Finally, we provided evidence, independent from the studies directly targeted 

on early life stages, that the temperature and sea surface height (used as a proxy of mesoscale processes) 

play an important role in the recruitment variability of these species. Even more importantly we showed 

that the effects of these drivers were not stationary but transient over time.   

Although this work is one step forward in the understanding of the abundance variability of the small 

pelagic fish in the Catalan Sea further investigation focused especially on the synergic effects of fishing 

combined with environmental factors will still be needed.    

 

Key words: sardine, anchovy, landings, environmental drivers, VMS, GAM(M), non-stationary 

relationships, NW Mediterranean Sea 

  



 
 

 

  



 
 

Resumen/Abstract Catalan 
 

La comprensió dels factors implicats en la fluctuació d’abundància de les poblacions de peixos és un 

requisit important per a la conservació i la gestió, especialment en el context dels canvis ambientals. En la 

Mediterrània occidental, les captures de sardina (Sardina pilchardus) i l'anxova (Engraulis encrasicolus) 

durant el període 1990-2014 han disminuït bruscament. 

Malgrat que cap de les dues poblacions es consideri subexplotada, és poc probable que només la 

sobreexplotació hagi causat la recent disminució. Això és encara més cert si es té en compte que dins a la 

zona estudiada durant els últims 40 anys s'han produït clars canvis en el medi marí. L'objectiu general 

d'aquesta tesi doctoral és detectar els principals factors ambientals que intervenen en les fluctuacions de 

l'abundància de les dues espècies de petits pelàgics del mar català. 

Abans de centrar-se en les influències mediambientals, s'ha analitzat la distribució espaciotemporal de les 

operacions de la pesca de teranyina. Els resultats han revelat que la distribució de la flota representa 

fidelment les característiques de les distribucions de petits pelàgics. 

Aquestes troballes han contribuït a una millor comprensió i visualització de la distribució espacial de les 

captures que formen també la base de la sèrie de dades de desembarcament estudiada a la resta de la tesi 

doctoral. 

A continuació, s’han investigat les relacions entre els desembarcaments d'ambdues espècies i els factors 

ambientals locals i l'índex climàtic (Índex d'oscil·lació de la Mediterrània occidental, WeMOI). 

Es conclou que la temperatura, la salinitat i els corrents són factors importants per ambdues espècies, i 

l'índex WeMOI afavoreix l'abundància de la sardina quan es troba en fase positiva. 

Hem destacat que la relacions entre la disponibilitat d’aquestes espècies de petits pelàgics i aquests factors 

poden ser millor descrits amb models no-lineals. Finalment, aportem evidències, de manera independent 

d’altres estudis centrats directament en ous i larves, que la temperatura i el nivell superficial del mar 

(utilitzat com proxy de processos de mesoescala ) tenen un important rol en la variabilitat del reclutament 

per ambdues espècies. Encara més important, hem mostrat que els efectes d’aquests factors no són 

estacionaris sinó que han canviat amb el pas del temps  

Encara que aquest estudi representa un pas endavant en el coneixement i la comprensió de la variabilitat 

en l’abundància de petits peixos pelàgics al mar Català, encara és necessària la investigació addicional 

centrada en l‘efecte sinèrgic de la pesca amb els factors ambientals.  
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General Introduction 
 

Fish populations fluctuate at a multitude of time scales, from seasonal to centennial and, attempting to 

comprehend and explain the processes involved in these variations is a key objective for marine scientists. 

Searching and understanding the driving forces of these fluctuations constitute, in fact, an indispensable 

requirement in the field of conservation and management especially in the context of environmental 

changes. 

Small pelagic fish populations and their ecological importance 
 

Small pelagic fishes are one species group particularly known for the high interannual and long-term 

variability in biomass and abundance. These species including sardine (genera Sardina and Sardinops) and 

anchovy (genera Engraulis) have a very wide distribution. They are predominantly confined to coastal 

regions and are abundant in the major productive areas of the world (Fig. 1) which differ from each other 

for their own oceanographic characteristics, i.e. the South American west coast (the Humboldt Current), 

the North American west coast (California current), the waters around Japan (Kuroshio Oyashio current), 

the waters of Namibia and South-Africa (Benguela Current) the Northeast Atlantic (European Atlantic and 

Canary Current) and the Australian waters (Checkley et al., 2009; Ganias, 2014). Further, they are also 

important species in semi-enclosed basins like the Mediterranean Sea and the Black sea (e.g. Lloret et al., 

2001; Tugores et al., 2011; Giannoulaki et al., 2013; Bonanno et al., 2014). 

 

Figure 1. Major systems in which is well known the prevalence of anchovy and sardine (adapted from: Checkley et 

al., 2009; Ganias et el., 2014) 
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These small planktivorous fishes generally dominate the intermediate trophic levels (Rice, 1995). For this 

reason, the bulk of the available energy generated by the primary producers pass through them to become 

available for predators. Thus, within their ecosystems, they become important both as predator (top-down 

control) and prey (bottom-up control). Such systems being characterized by an intermediate, energy 

mediating, abundant species (or at most a few species) capable of having an influence on both lower and 

higher trophic level are denoted as wasp-waist systems (Rice, 1995; Bakun, 2006; Shannon et al., 2008). 

Small pelagics, operating at the wasp-waist levels, as suggested by Bakun (2006) reviewing different marine 

systems across all oceans, have specific characteristics that together make them pivotal in their respective 

ecosystems and allow them to play a role which goes further than the simple transfer of perturbations 

across trophic levels. In summary, these features are: 

1. The complex life history (e.g. short- lived, pelagic larvae) which makes the waist populations 

vulnerable to environmental fluctuations giving large inter-annual variation. 

2. The dominance in biomass of their trophic level which allows that each variation of their abundance 

induces changes to both higher and lower trophic levels (bottom-up and a top-down control). 

3. They represent the lowest mobile trophic level. The changes in its distribution force the distribution 

of their predators and consequently tend to reorganize the spatial pattern of the trophic 

interactions in the ecosystem. 

4. In some systems, they can prey upon the eggs and larval stages of their predators forming a 

negative feedback loop that keeps them abundant while suppressing that of predators. 

Additionally, despite their low commercial value, small pelagic fishes provide a substantial source of income 

for many countries due principally to their abundance, being employed for aquaculture feed, industrial oil, 

health supplement and human consumption (Barange et al., 2014). Anchovies and sardines with herring, 

in fact, made up ca. 50 % of landings of the global capture of the pelagic fisheries and ca 25 % of the marine 

fishery (FAO, 2015). 

Physical process characterizing the habitat of small pelagic fishes 
 

Anchovies and sardines are small bodied fishes and have a short life span (Rochet, 2000). They display early 

maturation and most of them are pelagic spawners (e.g. Checkley et al., 2009). The fecundity for these 

species is high and accounts for thousands of eggs produced daily by females during the spawning season, 

which can vary from a few weeks to several months (e.g. Fréon et al., 2005; Ganias, 2014 and references 

therein). This strategy of releasing a high number of eggs through a protracted period is adopted in order 

to enhance the chances of larvae and eggs to meet the ‘survival window’ (Cury and Roy, 1989), since their 
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early life stages are highly vulnerable to predation and have strict requirements in terms of environmental 

conditions. Despite these reproductive strategies most anchovy and sardine stocks display and have 

displayed high level of recruitment variability (i.e. variation of how many young fishes survive sufficiently 

long to enter in the adult population) and, owing to their short life span any fluctuation in recruitment 

success is translated rapidly into fluctuations at the population scale (Blaxter and Hunter, 1982; Cury and 

Roy, 1989; Fréon et al., 2005; Checkley et al., 2009). Although the mechanisms of fluctuations of anchovy 

and sardine vary in their specificity (e.g. species, populations, and stocks) the prevailing view is that the 

populations’ size of small pelagics are controlled primarily by the environmental conditions (Checkley et 

al., 2017). Thus, the presence and the choice of suitable habitat is crucial to determine the survival during 

egg-larval and juvenile stages from which the population levels depend (e.g. Katara, 2014). 

Comparative studies on fish habitat, have identified the presence of three major classes of physical 

processes that give rise to a favourable habitat for successful populations (e.g. Cury and Roy, 1989; Bakun, 

1996). These three elements are called ‘fundamental triad’ (Bakun, 1996; Agostini and Bakun, 2002) and 

are: 

- Enrichment processes (upwelling, mixing, river discharge etc.) 

- Concentration processes (convergence, water column stability, fronts etc.) which favour larvae to 

encounter food particles and allow them to grow more rapidly, enabling a quick passage through 

the size-related intense predation period  

- Retention processes inside the appropriate habitat, which avoid the dispersion and the loss of 

early life stages from the population habitat during their period of passive drift. 

This concept became the basis for numerous studies which have attempted to show the environmental 

effects on the small pelagic population variability across different marine systems (e.g. Bakun, 2010; Katara 

et al., 2011; Santos et al., 2012). Among these systems, in fact, the presence or high abundance of these 

species at different life stages have been often associated with different ranges in the value of 

oceanographic variables, e.g. salinity, temperature, oxygen concentration, sea level anomaly, current 

velocity and other variables (e.g. Planque et al., 2007; Bertrand et al., 2008; Checkley et al., 2009), leading 

to no apparent general pattern in regard to the relationships with the hydrographic characteristics. Despite 

such dissimilarities, the variables and their values characterizing the habitats of these fish were found 

consistent with the ‘triad’ and adjusted to the peculiarities of to the water masses containing the source 

nutrient of each population in question (e.g. Checkley et al., 2009; Bonanno et al., 2014).  
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Responses to the environmental forces 
 

The exogenous factors affecting individuals and their populations are plentiful, and in general can be 

distinguished in: a) those whose effects are direct through physiology, including metabolic and 

reproductive success; b) those whose effects are indirect, because acting on their biological environment 

e.g. predator, prey, disease (e.g. Ottersen et al., 2004); and finally, c) those which trigger the responses of 

the population not immediately but temporally lagged (Ottersen et al., 2010).  

The biological characteristics of the life cycle of these species make them highly sensitive to the 

environment and extremely variable in their population’s abundance (Lasker, 1981; Cury and Roy, 1989; 

Bakun, 1996). Although the population-environment relationships have been widely studied, the 

understanding of these links is yet incomplete (Checkley et al., 2017). This likely depends mainly on the 

higher complexity of these relationships which generally involve non-linearity, time lags, combined effects 

and locally diverse manifestations (Katara, 2014). In addition, this topic is further complicated when trying 

to discern the importance of fishing versus the environment as a cause of population variability (e.g. 

Rothschild, 2000; Planque et al., 2010). Fishing, in fact, by modifying the size of the spawning stock and 

altering its age or size, can give rise to substantial consequences on the capacity of the population to buffer 

the environmental variability (Planque et al., 2010). For instance, fishing can cause the reduction of the 

duration of the spawning period of the population through the removal of old individuals (the remaining 

young individuals have a smaller spawning period) followed by a reduction of the viability of eggs and 

larvae, because forced to experience a restricted range of environmental conditions, leading to potentially 

higher chance of not survival and recruitment failure (Planque et al., 2010; Hidalgo et al., 2011).  

Even though the action of fishing on the population variability is recognized, the role of the environment 

as driving force on the fluctuations of both anchovy and sardine is evident as demonstrated by analysis 

performed on sedimentary records, showing the non-constant population size of this species prior to the 

advent of the large-scale commercial fishing (Finney et al., 2010; Checkley et al., 2017). Either by directly 

defining mortality or indirectly through altering relationships between life cycle, its role on the recruitment 

variability is, in fact, undeniable (e.g. Cahuin et al., 2009). Several theories were developed attempting to 

explain how the environmental factors and processes operate since the early 1900s (Hjort, 1914; ’critical 

period’ hypothesis). 

In general, temperature and prey abundance, favored by mechanisms of mixing and advection, have been 

considered the most influential drivers of recruitment success and consequently on population abundance 

variability (e.g. Ottersen et al., 2010; Katara, 2014; and references therein). Despite the potentially positive 

effects that these factors can have on the survival and growth rate on the early stages of the small pelagic 
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fishes, most of the times the relationships with recruitment are not linear taking instead a dome-shaped 

form, mainly due to the complexity of the combined effects of both the species biology and the 

environment. For instance, although higher temperatures can lead to a faster development of fish larval 

stages lowering the mortality rate due to reduced exposure to predators (e.g. Dulčić and Kraljević, 1996; 

Wang et al., 2009), at the same time it could provoke, among other effects, early maturation at smaller size 

and reduced per capita fecundity and therefore affecting population productivity (Rijnsdorp et al., 2009). 

Still, although the match in timing and location between spawning and plankton peaks is a process 

favouring the recruitment success (match/mismatch hypothesis; Cushing, 1990), as argued by Cushing 

(1990), processes enhancing nutrient supply, e.g. upwelling turbulences, when increase their intensity, 

have a reverse effect through a high rate of transport of larvae away from upwelling areas before primary 

production peaks. 

 

Fish populations, in general, are capable of altering their behaviour in response to the environmental 

variation (Agenbag et al., 2003). Despite this ability, species and populations usually prefer those 

environmental conditions most favourable to their survival growth and reproduction (Blaxter and Hunter, 

1982). The habitat choice, in fact, in marine fish is widely accepted to being based on the habitat suitability 

defined according to different biotic and abiotic factors able to optimize the population fitness by 

maximizing the differences between birth and death (‘ideal free distribution’; MacCall, 1990). For this 

reason, small pelagics, thanks to their features of being good and fast swimmers, may change their spatial 

distribution annually and or seasonally based on the changes in hydrological factors, and can perform 

migrations between habitats in order to try to satisfy the different environmental preference among the 

life stages (e.g. Bertrand et al., 2004b).  

Consequently, it is fairly clear that the environmental variability, in addition to the above-mentioned effects 

on the recruitment, can affect populations by promoting shifts in their distributions. In the most common 

of the situation, these shifts consist only on alongshore horizontal displacement at short temporal and 

spatial scale (Fréon and Misund, 1999; Fréon et al., 2005). Conversely, if the non-favourable conditions 

persist over time, this temporal and local shifts in distribution, can result in contraction or expansion of the 

distributional range of populations (e.g. Bertrand et al., 2004a; Fréon et al., 2005). 
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Small pelagic fishes in the Catalan Sea (North Western Mediterranean Sea) 
 

The study focuses on the two most important species in terms of both biomass and commercial interest of 

small pelagic fishes in the Catalan Sea (NW Mediterranean Sea), the European anchovy (Engraulis 

encrasicolus) and the European sardine (Sardina philchardus). These species together with the round 

sardinella (Sardinella aurita) and sprat (Sprattus sprattus) are the clupeoids inhabiting this area (Palomera 

et al., 2007).  

In the Western Mediterranean Sea (Gulf of Lion and the Catalan-Balearic Sea, FAO fishery subareas 37.1.1- 

37.1.2) anchovy and sardine represent the main species landed (ca. 50 % of the total fish landings; Fig 

2,GFCM dataset) as well as in the rest of the basin (Stergiou et al., 2016;GFCM dataset Year 2014;Fig. 2). 

Furthermore, apart from their commercial importance, both species in the area have been described to 

play important ecological roles in the ecosystem as pointed out by the results of an ecosystem model 

constructed for the South of the Catalan Sea  in which sardine was identified to be involved in wasp-waist 

control of the trophic flow while anchovy in the bottom-up control (Coll et al., 2006).   

 

 

 

 

  

 

 

 

 

 

In the NW Mediterranean the high biomass of the two small pelagic fishes and its variability have been 

associated with the favorable environment during the early life stages (e.g. Lloret et al., 2004; Martín et al., 

2008). The biology of the two species is relatively well known in the region. In general, they are both 

planktivorous and feed during their different development stages on a wide range of planktonic species 

(Tudela and Palomera, 1995; Tudela et al., 2002; Costalago et al., 2012). The two species have a non-

overlapping spawning period, in autumn-winter and in spring-summer for sardine and anchovy respectively 

(Palomera et al., 2007) (Fig. 3). The adult stock abundance and the fecundity of one order of magnitude 

higher than the other species, allow the early life stages of the two clupeoids to dominate the 

ichthyoplanktonic fraction along the shelf during the respective spawning seasons (Somarakis et al., 2004; 

Figure 2. GFCM capture production of the year 2014. WM = Western 
Mediterranean Sea; M= Whole Mediterranean Sea 
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Sabatés et al., 2007). The shelf in the Catalan Sea is quite narrow and it expands only in the southernmost 

part near of the Ebro River and in the north part among two major submarine canyons just south to the 

Gulf of Lions (Fig. 4). Overall, eggs and larvae of anchovy have a maximum density near the edge of the 

continental shelf (about 200 m isobath) while sardine eggs are located mainly from coastal area to a depth 

of 100 m and near the shelf when it is narrower, while for both species larvae are more spread than eggs 

(Palomera, 1992; García and Palomera, 1996; Olivar et al., 2001; Palomera et al., 2007). Anchovy nursery 

grounds are generally found in shallower waters (between 50–100 m isobaths) compared to spawners, 

while juveniles of sardine are persistent along the coast where locally increased productivity events occur 

(Giannoulaki et al., 2011; Tugores et al., 2011). Due to the topographic characteristics (i.e. irregularity of 

the coastline and bathymetry), the two species’ habitats in Catalan Sea as well as in the rest of the 

Mediterranean Sea show a large degree of overlap between them and among the different life stages 

(Giannoulaki et al., 2011, 2013). 

 
Figure 3. Life cycle schemes of a) Engraulis encrasicolus and b) Sardina philchardus. 

 

Even if the Mediterranean Sea is generally considered oligotrophic, the complex coastline and bathymetry 

together with strong seasonality lead to exceptions of this rule. One of these is represented by the NW 

Mediterranean Sea, in which mechanism of enrichment and concentration processes are recognizable, 

making it a favorable habitat for both the small pelagic populations. During the year, the physical factors 

determining productivity depend on the seasonal cycle, and the two species are well adapted to these 

mechanisms characteristic of their respective spawning season. In general, the upper layer is well mixed in 

late autumn-winter and strongly stratified during the hot season with the thermocline starting to develop 

during spring. In winter the convection phenomena are wind-mediated and result in nutrient supply to the 

surface which sustains high productivity, especially in the wider shelf of the Gulf of Lions and in the Ebro 

shelf (Salat et al., 2002; Palomera et al., 2007; Sabatés et al., 2007). In these areas, sardine larvae are 
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typically found in high abundance because the environmental conditions favoring their growth (Garcia et 

al., 2006). These same conditions are also suitable for the juveniles’ anchovy which tend to avoid 

oligotrophic offshore waters (Giannoulaki et al., 2013).  

During late spring and summer, the formation of the thermocline prevents vertical motion and the only 

way to which the productivity could be improved is through river run-offs, which are strong in April -May 

(Palomera et al., 2007). The riverine waters may spread over wide areas due to the stratification, 

contributing at about 10% - 20% of the surface productivity. These waters enhance the production of 

zooplankton during this season (Salat, 1996; Salat et al., 2002) improving both the feeding of the sardine 

juveniles and the survival of anchovy larvae which are widely distributed from the coast to offshore but 

with highest density near the Ebro River mouth (García and Palomera, 1996; Palomera et al., 2007; 

Giannoulaki et al., 2011) (Fig 4, example of the chlorophyll-a production in late winter-spring). 

As in the rest of NW 

Mediterranean Sea, a cyclonic 

circulation (Northern Current, 

NC) contouring the continental 

slope characterize the area 

(Font et al., 1988). This current 

is in geostrophic equilibrium 

with a shelf/slope density 

front, the so named Catalan 

front, which is associated with 

a salinity gradient separating 

the low salinity-freshwater on 

the continental shelf, derived 

by the Atlantic Water and reinforced by the influences of riverine inputs, from the saltiest waters on the 

open sea (Font et al., 1988). The meandering behavior, generated by a variety of factors (e.g. influxes of 

freshwater or episodes of strong northerly wind; Font, 1990; Salat, 1996), and its related accumulation 

mechanisms when the associated front is near the shelf, together with the succession of anticyclonic eddies 

travelling over the continental shelves, are the most important mesoscale activities of this current flowing 

southwestwards (Rubio et al., 2005; Sabatés et al., 2007, 2013). Both fronts and eddies are described in 

the area as important structures which help to ensure better survival conditions for larvae and eggs by 

enhancing their retention, concentration and feeding (Sabatés et al., 2007, 2013).  

Figure 4. Chlorophyll-a during late winter early spring in 2014 and current 
direction and intensity calculated by using the meridional and the zonal 
current (http://marine.copernicus.eu/) 
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Despite these environmental characteristics favouring the spawning, the survival early stages and growing 

of the two small pelagic species, the catches in the North-eastern Spain (geographical subarea 06, GSA06) 

during the period 1990-2014 suffered a lasting decrease which after 1994 was consistent also with the 

biomass estimates by acoustic surveys (GFCM, 2015). Sardine reached the lowest values of both catches 

and biomass ever during the year 2014, while for anchovy, these values have been slightly increasing since 

2008 (GFCM, 2015) (Fig 5a). Similar temporal patterns can be observed, when considering landings of both 

species along the Catalan coast, characterize by a steadily decline of sardines, and negative trend but less 

clear regarding anchovy (Fig. 5b).  

 

Figure 5. a) Biomass estimates for anchovy and sardine in GSA06 from 1990 to 2014. Surveys ECOMED 1990-2009, 

MEDIAS 2009-2014 and the respective landings. b) Annual landings form the main Catalan ports standardized in 

respect to the long term mean. 

 

Even if in the whole GSA06 neither of the two populations is considered underexploited (GFCM, 2015), 

overfishing alone is an improbable cause of the recent situation. In fact, when looking for example at the 

estimated summer biomass of both species from 2010 to 2013 from scientific acoustic surveys (MEDIAS) in 

the whole GSA 06 (Fig 5a), on average was almost three and a half times higher than their respective annual 

landing estimates. In these estimates, both species seem to maintain high biomass regardless of the 

preceding fishing pressure, and consequently, it seems unlikely that overexploitation alone has caused the 

recent decrease (Van Beveren et al., 2016).  

 

On the other hand, changes in the marine environment, although not entirely clear, characterized the area 

in question. A consistent warming pattern in the entire Western Mediterranean Sea occurred over the last 

40 years at different depths (Vargas-Yáñez et al., 2010). Furthermore, salinity gradually have risen 

especially at the intermediate layers (> 150 of depth) but also an increment at the surface was noticed 

(Vargas-Yáñez et al., 2010). This salinization might have substantial repercussions on the ocean currents 

and on the stability of water column with subsequent alterations of the nutrient supply from the deep 
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layers to the photic zones with consequences on the community of the primary producers (Auger et al., 

2014) and thus on the tropic levels above them (Calvo et al., 2011). In addition, during the last decade, the 

zooplankton, which constitutes the bulk of small pelagic fish prey (Palomera et al., 2007; Ganias, 2014 and 

references therein), has undergone a shift towards smaller plankton species in the Catalan Sea (Calvo et 

al., 2011). 

As pointed out, the environmental factors and their variation can influence small pelagic populations 

abundance in different ways by, for instance, affecting early life stages and the subsequent recruitment 

success, or by shifts in distribution at a short or a wide temporal and spatial scale. These effects inevitably 

affect fisheries which depend upon the total abundance of the target species as well as when and how they 

are distributed. This work aims at a better understanding of the anchovy and sardine populations variability 

and their relationships with the environmental drivers in the Catalan Sea. 
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Thesis outline and objective 
 

The overarching objective of the thesis is to contribute to the better understanding of the roles of the 

environmental driving forces on the the fluctuations and general decrease of the abundance of small 

pelagic populations in the NW Mediterranean Sea. The study was developed in four parts. 

We started with the analysis of the spatial distribution of the purse seine fishery operations in the area 

(Chapter 1). Based on the hypothesis that the efficient exploitation of small pelagic fish by fishers relies 

greatly on the matching of vessels and fish spatial distributions, we used positioning data of fishing vessels 

obtained by Vessel Monitoring System (VMS) to infer the spatiotemporal dynamics of anchovy and sardine 

populations. Further, since the data used in this thesis are the high-resolution data of commercial landings 

for the most important harbors of Catalunya, this chapter, shaping the spatial dimension at which these 

data can be associated with the local environmental variables, paves the way for the succeeding analysis 

with the external driving forces. 

The three remaining parts of the thesis aim to model the relationships between the environment and 

landings of both species. Modeling is a necessary tool that can be used to relate abundance, distribution, 

fluctuations, and production of living organisms to variation in the abiotic environment.  When modeling 

fishery data, it is important to distinguish between the type of influences of environmental drivers have on 

the availability of the resource i.e. immediate or lagged. The immediate effects of the abiotic environment, 

are those implicated principally on the concentration of fish in a specific area, consequently, when 

favourable conditions are present the occurrence of small pelagic individuals and thus their availability as 

a fishing resource are promoted. Whereas, when looking to the delayed influences what we are doing is to 

look the environmental forces who act on the abundance of the adult fish population by affecting the 

critical stages of development.     

In Chapter 2 and 3 we looked at the immediate effects of the environmental factors on landings per unit 

effort of anchovy and sardine respectively by using relatively short monthly time series. We considered 

those environmental drivers which are often used as a proxy of the enrichment, concentration, and 

retention processes. In Chapter 2 anchovy landings were related with these drivers considering three 

fishing zones defined along the Catalan Coast. While in Chapter 3 only landings of sardine from the Ebro 

Delta shelf were considered. 

In chapter 4, we looked at the lagged effects of the environment on the small pelagic populations by using 

forty years of monthly anchovy and sardine landings along the Catalan coast. We searched, by using time 
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series regressions, the environmental factors acting on the temporal windows, defined in respect to the 

different critical stages of development of both species, which more affected the anchovy and sardine 

abundance. Furthermore, once these environmental forces affecting the recruitment success were 

identified we assessed if these effects were stationary or changed over time. 

Finally, I discuss the overall results, more relevant findings and the study limitations and provide possible 

perspectives to pursue this work.  
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Abstract 
 

Vessel monitoring systems (VMS) represent a tool that can provide information on the spatial and temporal 

distribution of fishing activity and a quantitative evaluation of the fishing effort on both a spatial and 

temporal scale. The aim of this study was to characterize the spatio-temporal structure of the Catalan 

purse-seiner fishing effort directed towards anchovy or sardine, which was estimated by filtering the VMS 

data (from 2012 to 2014) by species and seasons. Results showed that the mean location of the fishing 

effort directed towards anchovy did not vary among the summer seasons, in contrast to efforts in spring 

and autumn, whereas the mean location of the effort directed towards sardine was constant over the 

seasons. The concentration curves indicated similar fishing effort patterns during all seasons when directed 

towards sardine, whereas the effort directed towards anchovy was more concentrated during summer. 

The ranges of the variograms indicated that fishing effort directed towards both species formed patches. 

The dimensions of these patches changed from season to season with the smallest magnitudes during the 

summer seasons. In this study, seasonal distribution pattern of the fishing efforts was recognized that 

apparently adequately captured the features of the distributions of small pelagic populations. 

 

KEYWORDS: spatial analysis, small pelagic fish, purse seine fisheries, northwestern Mediterranean Sea, 

VMS, Fishing effort 
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Introduction 

 

Small pelagic fishes are the primary contributors to total fisheries landings in the Mediterranean Sea. 

Specifically, in the northwestern Mediterranean Sea, sardine (Sardina pilchardus, Walb. 1792) and anchovy 

(Engraulis encrasicolus, L. 1758) are the most important species both in biomass and commercial interest 

(Lleonart & Maynou, 2003; Palomera et al., 2007). Sardines are the primary contributor to fisheries landings 

in volume, but the landings of anchovy can be more important in value because of the higher unit price 

(Palomera et al., 2007; Pertierra & Lleonart, 1996).  

In the Catalan Sea, purse seining is the only technique used to exploit small pelagic species (Pertierra & 

Lleonart, 1996). By law, purse seiners are obliged to return daily to a port, not necessarily the home port, 

and also to a minimum docking time of 12 hours per day, during the day-time. This regulation allows the 

fleet to exploit areas in which the environmental conditions seasonally favour anchovy or sardine 

aggregations in attempts to maximize fleet catch rates.  

Small pelagics aggregate into clusters of schools (e.g., Petitgas 2001; Giannoulaki et al. 2003; Giannoulaki 

et al. 2006; Brehmer et al. 2007), which can vary in dimensions and in numbers (Giannoulaki et al., 2003, 

2006; Petitgas, 2001; Petitgas & Levenez, 1996), and during the night-time, when purse seiners work, they 

disaggregate forming shoals (Fréon & Misund, 1999). In general, large clusters are more easily located by 

fishing vessels than smaller ones (Brehmer et al., 2006). These large fish aggregations are detected 

primarily using acoustical methods (echo sounder), in conjunction with the aggregative behaviour of 

vessels (Arcos & Oro, 2002), i.e., when a large cluster is detected by a vessel, that vessel becomes more 

exposed to other vessels, which then aggregate and join the effort to fish the cluster. Consequently, 

because a fishery is the result of the interaction between the spatial distribution of fish and the application 

of fishing effort in space (Petitgas, 1998), the presence of large fish aggregations can be reflected in an 

extended fishing area. 

Over the past years, important changes in sardine and anchovy catches were observed in the Catalan Sea 

(as in other areas of the NW Mediterranean Sea, such as the Gulf of Lions), characterized by a continuous 

decreasing trend since the mid-1990s. Although signs of anchovy recovery were observed beginning in 

2008, overall, both stocks are considered unsustainably exploited, with high biomass but high fishing 

mortality in the case of anchovy and a depleted stock with low fishing mortality in the case of sardine (SCSA 

2015).  

In 2000, the European Commission introduced the Vessel Monitoring System (VMS) for all vessels ≥ 24 m 

LOA, afterwards extending it to all vessels ≥ 12 m (European Commission, 2008), as tool to allow the 
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management authorities to supervise fishing activities, including monitoring the compliance of fishing 

vessels with spatial and temporal regulations (Lee, South, & Jennings, 2010). VMS is a powerful tool in 

fishery studies and management, because high resolution analyses of fishing activity and quantitative 

evaluations of fishing effort can be conducted on both spatial and temporal scales (Bastardie, Nielsen, 

Ulrich, Egekvist, & Degel, 2010; Lee et al., 2010). Monitoring the daily activity of purse seiners operating on 

small pelagic fish aggregations can serve as proxy in the study of the spatial distribution of small pelagics, 

when dedicated acoustic surveys do not exist or do not cover the appropriate spatio-temporal scale of the 

species. For example, in the NW Mediterranean, the MEDIAS acoustic survey is conducted once a year, in 

summer, since 2009 (Brosset et al., 2017). 

Based on the hypothesis that the efficient exploitation of small pelagic fish by purse seiners relies greatly 

on the matching of vessels and fish spatial distributions, we used positioning data of fishing vessels 

obtained by VMS to infer the spatio-temporal dynamics of small pelagic fish. First, the prominent spatial 

characteristics (location and space occupation) and the changes in aggregation pattern of the seasonal 

fishing effort directed towards both species were studied. Second, the general characteristics of the spatio-

temporal structure of the fishing effort were examined, and finally, the internal organization of the spatial 

structure of effort aggregations was investigated. 

 

Materials and Methods 

 

The study area spans the entire Catalan coast in the NW Mediterranean Sea and is limited by the 35 m and 

200 m isobaths, which correspond to the portion of the continental shelf in which the purse seine fishery 

is conducted (Fig. 1). In the Catalan Sea, the purse seine fishery targeting small pelagic shoals operates 5 

days per week (Pertierra & Lleonart, 1996) at night by using light attraction and is concentrated between 

Cape Creus and the Ebro River delta (Agostini & Bakun, 2002). To protect the recruitment of anchovy, purse 

seining is suspended during two months in winter, generally from mid-December to mid-February, 

although the exact timing varies among harbours. 
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Figure 1. The study area limited by the 35 m and 200 m of the isobaths and the two fishing home ports.  

 

VMS Data and grid effort estimates 
 

The VMS data using 2-hour polling rates of 29 purse seine vessels based in the harbours of Blanes and 

Palamós and operating along the Catalan Coast were provided by the Secretaria General de Pesca, the 

fisheries management agency of the Spanish government. The data accounted for the activity of ca. 30% 

of the entire Catalan purse seiner fleet and included daily records for 2012, 2013 and 2014. 

 Data processing and data filtering 
 

The coordinates of the VMS data points were expressed as longitude and latitude degrees. Data were 

projected into a Lambert Azimuthal Equal Area (LAEA) projection, which is suitable for statistical analysis 

because it is based on an equal area projection (Annoni, Luzet, Gubler, & Ihnde, 2001). 

The raw VMS data did not indicate reliably when each vessel was actually engaged in fishing; therefore, the 

most common approach to overcome this problem is to use the speed of the vessel to define whether the 

VMS points corresponded to a fishing operation (Lambert et al., 2012; Lee et al., 2010; Murawski, Wigley, 

Fogarty, Rago, & Mountain, 2005; Russo, Parisi, & Cataudella, 2013). All the VMS data points located at a 

depth less than 35 m were removed, because purse seiner fishing activity is prohibited landwards from this 

isobath. Furthermore, VMS records from December to February were deleted, because the purse seine 

fishery is stopped due to the annual closure (from mid-December until mid-February) in the area. The 

remaining VMS data (from March to November) were grouped by season:  spring (all the VMS data from 
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March, April and May), summer (all the VMS data from June, July and August) and fall (all the VMS data 

from September, October and November). 

 Defining the signature of purse seine operation 
 

Purse seiners spend much of the time searching with the aid of echo sounders for the appropriate 

location to set the purse seine. Once located, the purse seine is shot, and the fish school is surrounded. 

This characteristic fishing operation is easily recognized visually in high-frequency monitoring systems, 

such as the Automatic Identification System (AIS). Using AIS data from online providers such as Marine 

Traffic (www.marinetraffic.com), the seasonal VMS data were filtered by speed. The filtering procedure 

was performed by visually examining the daily timeline from AIS data for a sample of vessels, which 

suggested a starting speed of the fishing of ca. 5 knots (Fig. 2); thus, VMS signals with speeds lower than 

this velocity were retained. Each purse seine cast lasts ca. 1 h, and typically, 2-3 such casts occur each 

night during the permitted 12 working hours. 

 

Figure 2. Example of the daily trip of a vessels trip and the timeline associated from AIS data used to filter VMS data 
(data from WWW.MARINETRAFFIC.COM). 

 GIS analysis 
 

The filtered VMS records were then combined with the fish sales records provided by the first sale market 

at the harbour of fish landings, which permitted separation of the records based on the targeted species 

of the fishing activity of each day and also eliminated the VMS positional information received when a 

vessel was not involved in fishing activity. With this approach, the seasonal VMS data were divided by 

species, and each of the VMS records was characterized by a value of Gross Registered Tonnage (GRT), 

which was used as the fishing capacity parameter to measure the fishing effort.  

The seasonal filtered VMS data were then used to represent the fishing effort on a grid (e.g., Gerritsen, 

Minto, & Lordan, 2013; Lee et al., 2010) by season and species. In general, the skills of the fishermen and 

good knowledge of the spatial patterns of fish largely influence the success of the purse seines fishery 
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(Hieu, Brochier, Tri, Auger, & Brehmer, 2014). Small pelagic fishes are described in many pelagic stocks as 

organized in clusters of schools (e.g., Mackinson, 1999; Pierre Petitgas & Levenez, 1996). In the 

Mediterranean Sea, the mean size of small pelagic patches varies from < 10 to ca. 25 km2 (Fréon & Misund, 

1999 and references therein; Giannoulaki et al., 2003, 2006); therefore, considering the objective of the 

study, a 16 km2 grid (4 x 4 km) was used as the elementary unit, and the centroids were extracted for the 

subsequent analysis. Based on empirical observation of the daily fishing activity with the use of the online 

AIS providers, each elementary unit was subdivided into sub-grids with cells of 1 km x 1 km to assign an 

appropriate estimate of the fishing effort. All the VMS records belonging to a specific vessel that fell inside 

one of the sub-cells were defined as a singular fishing event in a day, and therefore, the GRT value of the 

vessel was assigned to that specific sub-cell. Then, the daily fishing effort of a specific vessel in the 

elementary unit (i.e., 4 x 4 km) was obtained by the sum of the sub-cells representing the GRT value.  

The following expression was used to estimate the seasonal fishing effort for a species in each elementary 

unit: 

Seasonal fishing effort  per species in a cell =  ∑ 𝑆𝑐𝑗 × 𝐺𝑅𝑇𝑗
𝑛
  𝑗=1   (1) 

where n is the total number of vessel x days in a season, 𝑆𝑐𝑗 is the number of sub-cells occupied in a day 

by a specific vessel and 𝐺𝑅𝑇𝑗 is the gross registered tonnage.  

Based on the values of equation (1), fishing effort distribution maps were developed using QGIS Ver. 2.10.1. 

(QGIS, 2015). 

Spatial Data analyses 
 

 Seasonal Spatial distribution and Concentration patterns of Fishing effort 
 

To capture the spatial patterns of the estimated fishing effort directed towards both species as simply as 

possible and to investigate season-to-season variations, we calculated the centres of gravity (CG) with their 

associated inertia (Woillez, Rivoirard, & Petitgas, 2009). The CG represents the mean location of the 

population; whereas inertia describes the dispersion of the population around its centre of gravity. 

Spatial concentration (or aggregation) of the estimated fishing efforts was compared between season and 

species by computing geostatistical concentration curves and the derived space concentration index (P. 

Petitgas, 1998).  

The concentration curves (Matheron, 1981; Petitgas, 1998) describe the changes in spatial distribution of 

a population as a function of its abundance. Overall, the curves represent the maximum proportion of a 
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variable (e.g., biomass, abundance or as in this study, fishing effort) that can be found in any proportion of 

the area of interest (Petitgas, 1998; Petitgas, 1997). For the construction of the concentration curves, the 

fishing effort was estimated for the elementary units (i.e., cell), which then were ranked from maximum to 

minimum, and the cumulative fishing effort and the cumulative area were calculated. These estimates were 

then expressed as a proportion of total fishing effort 𝐹𝑒(𝑦) and area 𝐴(𝑦), respectively, as shown below:  

𝐹𝑒(𝑦) = ∑
𝑓𝑖

𝐹𝑒𝑡𝑜𝑡

𝑘
𝑖=1     (2) 

𝐴(𝑦) = ∑
𝑎𝑖

𝐴𝑡𝑜𝑡

𝑘
𝑖=1    (3) 

where 𝑓𝑖 is the fishing effort in the effort class i and 𝑎𝑖  is the cumulative area in which the fishing effort of 

the class i occurs; 𝐹𝑒𝑡𝑜𝑡 corresponds to the total fishing effort and 𝐴𝑡𝑜𝑡 to the total area.  

The concentration curve of fishing effort per season and species obtained by the combination of equations 

(2) and (3) was used to evaluate whether the effort was homogeneously distributed and also to perform 

temporal and between species spatial distribution comparisons. Fishing effort is distributed 

homogeneously when the concentration curve increases at the same rate as that of the area (i.e., linearly 

in a plot of Fe against A).  Consequently, with a greater concentration of effort, the distance between the 

curve and the 1:1 line is greater. The concavity of this curve represents the space concentration index, 

which is defined as twice the area between the concentration curve and the 1:1 line (Petitgas, 1998). 

Additionally, to evaluate whether the concentration pattern was dependent on the amount of fishing 

effort, we used linear regressions to relate the seasonal space concentration index for both anchovy and 

sardine with the corresponding fishing efforts over the 3-year study period. 

 

 Spatial structure of Fishing effort 
 

The spatial structure, defined as the spatial autocorrelation between values at different locations, of the 

fishing effort associated with the two species in each season was investigated using variograms (Matheron, 

1963).  

A non-parametric method based on the median polish (Cressie, 1993; Cressie & Read, 1989; Tukey, 1977), 

which helps avoid problems of trends in the mean and is also resistant to outliers, was used to estimate 

the variograms of seasonal fishing effort on the centroids extracted from the grid for both species.  Median 

polish is an iterative procedure in which the median value of each row of a matrix (the west-to-east points) 

and the median value of each column of the matrix (south-to-north points) are subtracted from the original 

values of rows and columns, respectively. The procedure is repeated until no changes occur with the row 
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or column medians (Tuckey, 1977).  The omnidirectional variogram for each species and season calculated 

on the median polish residuals was defined as follows: 

 

𝛾(ℎ) =
1

2𝑁(ℎ)
 ∑ [𝑑(𝑥𝑖) − 𝑑(𝑥𝑖 + ℎ)]2𝑁(ℎ)

𝑖=1   (4) 

 

where 𝛾(ℎ) is the estimated semivariance, ℎ is the vector of distance, 𝑁(ℎ) is the number of pairs of 

observations at distance ℎ,  and 𝑑(𝑥𝑖) is the value of the median polish residual for the 𝑖th data point.  

The semivariogram description is based on the quantification of three parameters: range, sill and the 

nugget effect. The range is the distance beyond which the observations are independent; thus, the 

correlation between them becomes zero. The sill is the value at which the variogram reaches the 

asymptote. The nugget effect is the measurement of the spatial variability for distances smaller than h 

(Rossi et al. 1992). To estimate these three variogram parameters for each season and species, the most 

appropriate model chosen to fit the omnidirectional variogram, determined by the weighted nonlinear 

least square procedure, was the spherical model (Cressie, 1993).  

The features of the study area, which extends in latitude along the entire Catalan coast and longitudinally 

only in the area between the 35 and 200 m depths, implied that the spatial relationships could depend not 

only on distance but also on the direction (i.e., anisotropy). Thus, in addition to the omnidirectional 

variograms, multi-directional variogram plots (Isaaks & Srivastava, 1989) with 45° increments and ± 22.5° 

(non-overlapping) tolerance were also computed. Furthermore, for each direction, the spherical model was 

fitted separately to estimate the distance of the spatial continuity of the fishing effort in each direction. 

The estimated autocorrelation ranges in each direction were then converted to an x-y axis system as follow:  

 

𝑥𝑖 = cos(𝛼𝑖) ∗  𝑟𝑖  

𝑦𝑖 = sin(𝛼𝑖) ∗  𝑟𝑖  

 

where 𝑥𝑖 and 𝑦𝑖  are the coordinates in the Cartesian plane, 𝛼𝑖 is the direction of the variogram in radians, 

and 𝑟𝑖 is the range estimated. The resulting plots were symmetrical about the origin, because the ‘+ range’ 

values were equal to the ‘- range’ values, permitting a better assessment of the direction and magnitude 

of the spatial structure of the fishing effort.  

All analyses were performed using R version 3.3.0 (R Core Team, 2016) and QGIS Ver. 2.10.1. (QGIS, 2015). 
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Results 

Fishing effort distribution and concentration pattern 
 

The total counts of days of fishing operations directed towards anchovy and sardine per vessel and season 

are shown in Table 1. A seasonal pattern was easily identified for both species in which most of the 

operations occurred in the summer season, followed by the spring and fall (Tab. 1). However, the seasonal 

pattern of the operations directed towards anchovy fishing was more evident in which 50%, 52% and 37% 

of the operations during the three years were conducted during summer, whereas the operations for 

sardine fishing were more equally distributed. 

 

Table 1. Counts of fishing operations (vessel x day) per season by target species. 

  2012 2013 2014 

  Spring Summer Fall Spring Summer Fall Spring Summer Fall 

Anchovy  736 1017 293 530 972 350 759 869 701 

Sardine 717 902 435 698 858 569 784 867 751 

 

 

Fishing effort estimated by equation (1) is shown in Fig. 3. Over the three-year period, estimates for both 

anchovy and sardine showed an increment in the total annual area occupied (Fig. 3), although the 

increment was greater for anchovy than for sardine (Fig. 3). The spread of the fishing effort directed 

towards anchovy showed seasonality, with more effort extended in the summer season (Fig. 3a, c, e), unlike 

the fishing effort directed towards sardine, which did not show this pattern (Fig. 3b, d, f).  

The CG of the fishing effort directed towards anchovy did not vary between the summer seasons of the 

different years, and the distance between CGs ranged from 6.01 to 7.5 km, whereas for spring and fall, they 

ranged from 8.2 to 22 km and 6 to 39 km, respectively (Fig. 3). For the fishing effort directed towards 

sardine, the distance between centroids did not vary for the spring and summer seasons (range from 7.1 

to 9.1 and 2.2 to 7.4 km, respectively) but did vary for the fall season, although not as clearly as the fishing 

effort directed towards anchovy (range from 6 to 17.5 km) (Fig. 3). 

The associated inertia (Table 2) related to the fishing effort directed towards both species was lower during 

the summer seasons than in the other seasons.  The average root mean square distance between a point 

of fishing effort directed towards anchovy and sardine for the summer seasons was 51 ± 8.38 km and 48 ± 

9 km, respectively, which were distances less than half that between a point of the grid and the gravity 

centre of the total area (Inertia= 10452.5 km2, mean distance= 102.24 km); therefore, during the summer 
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seasons, the fishing effort directed towards both species was dispersed in less than half the entire area of 

the Catalan Sea.  

The degree of concentration was apparently similar for both the fishing effort estimates, with average 

efforts more concentrated during summer as shown in Fig. 4 and confirmed by the space concentration 

index. However, over the three years, the seasonal space concentration index increased significantly with 

the increase of fishing effort for anchovy (LM: 𝑦 = 0.48 + 0.001𝑥; R2adj = 0.45; p < 0.05) but not for the 

one directed towards sardine (LM: 𝑦 = 0.53 + 0.0006𝑥; R2adj = 0.04; p > 0.05). 

 

 

Figure 3. Seasonal maps for each years of the fishing effort estimates directed 
towards anchovy and sardine with the centres of gravity and inertia in red. n° 
cells=number of cells occupied by the fishing effort estimates. 



 
  __________________________________________  

29 
 

Chapter 1 

Table 2. Values of inertia calculated for each season by target species. 

  Spring Summer Fall 

  Anchovy Sardine Anchovy Sardine Anchovy Sardine 

2012 2587.6 2488.1 1894.1 1562.3 3853.3 3219.2 

2013 5975.6 4682.7 2437.5 2104.7 4591.5 4591.5 

2014 3681.3 4008.6 3605.6 3288.4 4570.9 4709.7 
 

 

Spatial structure of Fishing effort 
 

Omnidirectional variograms of the median polish residuals calculated from the fishing effort estimates 

directed towards both species showed spatial structure (i.e., the variance increased with the increase in 

the distance between sampling points) for each season during the three years. Therefore, the spatial 

distributions of fishing effort were not random, as expected, and two points close to one another had a 

higher probability of having similar values than distant ones. The maximum fishing effort concentrations 

varied among seasons, with similar patterns shown for both target species. Specifically, the largest 

concentration patterns of fishing efforts were shown during the spring seasons, with the range of the 

spherical models varying from ca. 14 to ca. 21 km (Supplementary Fig. A.1, Tab. 3). During the summer 

seasons, the average dimensions of the concentrations of fishing effort were smaller and the ones directed 

toward anchovies were more concentrated (Supplementary Fig. A.1, Tab. 3). Although the seasonal pattern 

was repeated each year, this pattern was less pronounced in 2014 than in the other two years 

(Supplementary Fig. A.1, Tab. 3).  

Table 3. Parameters obtained by fitting spherical models to the omnidirectional variograms of the residuals of the 
median polish of the seasonal fishing effort (Fe) directed towards anchovy and sardine. 

    2012   2013   2014 

    Fe to Anchovy Fe to Sardine   Fe to Anchovy Fe to Sardine   Fe to Anchovy Fe to Sardine 

Spring 

Nuget 0.80 0.89   1.59 1.12   0.80 0.80 

Partial Sill 4.44 4.14   4.18 4.44   4.30 4.37 

Range 16.85 16.22   20.29 19.49   13.85 15.41 

                    

Summer 

Nuget 0.49 0.66   0.94 1.08   0.94 0.94 

Partial Sill 4.43 4.01   4.57 3.02   4.57 3.76 

Range 9.77 11.40   11.79 13.48   11.79 13.62 

                    

Fall 

Nuget 1.67 0.64   0.86 1.48   1.22 0.64 

Partial Sill 2.32 4.38   3.08 2.79   4.81 4.38 

Range 13.28 12.45   10.36 17.26   13.46 12.45 
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Anisotropy was apparent for both fishing efforts targeting these species, i.e., the autocorrelation range 

changed among directions but was inconsistent in direction and magnitude for any particular season 

(Supplementary Fig. A.2, A.3). When considering the effort towards anchovy, the spatial structures 

between seasons in 2012 and 2013 and more specifically the differences between spring and the two other 

seasons were markedly different. 

The spatial continuities were higher 

in the north-east direction and east 

direction (i.e., 45° and 90°) reaching 

ca. 35 km during the spring season, 

whereas during summer and fall 

seasons, the average was ca. 20 km 

(Supplementary Fig. A.2). 

Additionally, anisotropy was 

negligible in summer 2012. In 2014, 

the structure of the effort 

concentrations changed, and the 

smallest magnitudes were observed 

for all directions and in all seasons, 

with almost insignificant anisotropy 

in summer and fall (Supplementary 

Fig. A.2). Structure of the effort 

directed towards sardine showed 

greater magnitudes of spatial 

continuity in all directions than the 

effort directed towards anchovy. 

During spring and fall in 2012 and 2013, equivalent magnitudes of spatial continuity were found in the 

northeast and east directions (Supplementary Fig. A.3). In 2014, the anisotropic pattern was analogous to 

the one directed towards anchovy, i.e., negligible for summer and fall seasons (Supplementary Fig. A.3). 

 

 

 

Figure 4. Seasonal concentration curves of fishing effort for each year 
and species. Number in parentheses indicates the value of the 
concentration index. 
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Discussion 

 

This study focused on the spatio-temporal patterns of the fishing effort directed towards the two most 

important small pelagic species fished in the Catalan Sea. The success of small pelagic catches depends on 

the perception of fishermen of the spatial patterns of fish and how well they identify high density fish 

patches (Hieu et al., 2014). Consequently, the spatial distribution of fishing effort and its spatial structure 

depend on how the resource (i.e., small pelagic fish) is structured, which is dependent on the 

environmental conditions and how they change spatio-temporally. In this study, we showed definite spatial 

patterns of the fishing effort directed towards anchovy and sardine and their seasonal variations by 

applying geospatial techniques. Overall, the total area occupied by the fishing effort directed towards 

anchovy was greater than that directed towards sardine, and both showed seasonal fluctuations with larger 

areas occupied during the summer season. The mean location of the fishing effort directed towards 

anchovy, expressed as the centre of gravity, did not vary during the summer season over the three years, 

in contrast to the effort during the other two seasons, and moreover, the associated values of inertia were 

lower during summer than in the spring and fall. The summer season corresponds to the peak of anchovy 

spawning, and the locations of these summer CGs were previously described as an area in which anchovy 

aggregate to spawn (García & Palomera, 1996; Palomera, 1992). The permanence of the CGs and the low 

inertia suggested that fishermen used the ecology of the exploited species, which in this case, led to 

encounter with a favourable spawning environment to increase their catches (Parrish, 1999). 

The effort directed towards fishing sardine was persistent based on the seasonal CG locations between 

years. The inertia associated was almost always lower than that directed towards anchovy. Sardine are less 

important economically (Pertierra & Lleonart, 1996) and along the Catalan coast are more widely 

distributed than anchovy (Bellido et al., 2008); thus, fishermen were apparently less interested in widening 

and relocating the effort throughout the area, in contrast to efforts with anchovies during the spring and 

fall seasons. These results are consistent with the known behaviour of fishermen who do not operate at 

random but instead follow a process conditioned by the capacity to locate the target species and by the 

market prices during different seasons (Tsitsika & Maravelias, 2006; Tsitsika & Maravelias, 2008). This 

behaviour was also confirmed by the concentration curves, which showed similar fishing effort 

concentration patterns during all seasons when directed towards sardine, whereas the efforts directed 

towards anchovy were more concentrated during the summer. The preference in fishing anchovy by 

fishermen was also made evident in the change in the aggregation pattern of the effort directed towards 

anchovy during summers in which it changed from more concentrated in 2012 and 2013 to less 
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concentrated in 2014, which was a change that was likely associated with the high anchovy biomass 

registered in the area during this last year (GFCM, 2015) that allowed the fishing effort of fishermen to be 

more widely scattered. Nevertheless, using the space concentration index to investigate the aggregation 

patterns in more detail, we found that the concentration of the fishing effort directed towards anchovy 

increased when the fishing effort itself increased, which suggested an aggregative behaviour of fishing 

vessels when an anchovy cluster was detected by other fishermen. Contrarily, the space concentration 

index of the fishing effort directed towards sardine did not vary according to the total fishing effort, which 

again indicated the importance of anchovy as a species target compared with that of the sardine.  

Spatial structure (i.e., spatial autocorrelation) and its seasonal stability were described using omni- and 

multi-directional variograms. The correlation structure obtained by the omnidirectional variograms 

reflected patchiness in the distribution of fishing effort directed towards both species, which in general 

(averages of 13.5 km for anchovy and 14.5 km for sardine), were in the same size range, 12–55 km, 

consistent with the correlation structures found by other researchers studying acoustic data of small 

pelagic fishes (Fréon & Misund, 1999 and references therein; Giannoulaki et al., 2003, 2006; Petitgas & 

Levenez, 1996). Therefore, a strict correspondence of the effort spatial structure distribution with the 

spatial structure of the small pelagic populations was indicated by the similarities between our findings and 

the ones obtained by the use of acoustic data, in addition to the reduced probability of concentrations 

escaping the nets of fishermen because of the technology used (sonar; high resolution radars; (Fréon & 

Misund, 1999) and the stability of similar effort spatial structures (i.e., magnitude of the range) among the 

same seasons in the three different years. Hence, based on these results, the use of data completely 

independent from fishermen control (i.e., VMS) to generate information about the distribution changes in 

space and in time of the exploited population becomes a possibility when adopting management measures 

of the resource. 

With the spherical models fitted in different directions, we could comprehensively summarize the 

directional spatial dependence of the fishing effort, which provided an indication of the diameter of the 

patches in the area. Overall, the geometry of the area affected the organization of the spatial structure of 

the fishing effort, i.e., the way in which the patches are organized in space (Giannoulaki et al., 2003). As 

expected, the magnitudes of spatial continuities were the largest in almost all cases in the southwest-

northeast directions, following the latitudinal extension of the Catalan coast. Additionally, fishing efforts 

towards both species did not show a seasonal pattern concerning the direction of spatial continuities. By 

contrast, the dimensions of the patches tended to change from season to season, although more clearly 

for the fishing effort directed towards anchovy, which were in smaller patches during the summer seasons. 

These changes could be interpreted as a reflection of the aggregation behaviour of anchovy, which during 
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the summer season are at the peak of the reproduction period (e.g., Palomera et al., 2007) forming 

spawning aggregations (Fréon & Misund, 1999), allowing much easier processes of detection and catch 

(Bertrand, Díaz, & Lengaigne, 2008; Csirke, 1989; Fréon & Misund, 1999) and therefore, a more 

concentrated fishing effort. The same pattern was not evident for sardine, most likely due to the fishing 

closures in the area during the time corresponding to the peak of sardine spawning (Martín, Sabatés, Lloret, 

& Martin-Vide, 2012). 

Overall, despite the potential biases that may affect the ability of fishing operations to track small pelagic 

distributions (Bertrand et al., 2008), from our results, a seasonal distribution pattern of the fishing efforts 

was recognized that apparently adequately captured the features of the distributions of small pelagic 

populations (i.e., the extent and patchiness of organization), as described by various authors (Barange & 

Hampton, 1997; Barra et al., 2015; Petitgas, 2001; Petitgas & Levenez, 1996; Saraux et al., 2014).  

Description of the stock size by fishery management authorities is principally affected by the use of 

indicators, with the primary indicator the Catch per unit effort (CPUE). The use of this index is questionable, 

particularly for small pelagic fishes because of the high variation in catchability (Bertrand et al., 2008; 

Csirke, 1989; Fréon & Misund, 1999). However, this variation can be explained by the spatial distribution 

of the resource exploited and how the fleets fish these resources, as shown by various authors (e.g., 

Gaertner & Dreyfus-Leon, 2004; Petitgas, 1998). Consequently, using spatially explicit data to determine 

the organization of the fishing effort in space and how it changes might be useful for improving fish stock 

assessment and management. Both persistence of the gravity center, inertia, area occupied, as well as the 

high clustering and the dimension of the patches, are strictly related to fish catchability and vulnerability. 

The two forage fish in the NW Mediterranean Sea and in other marine ecosystems show highly selective 

behaviour for suitable areas when they are at both low abundance and biomass values (Saraux et al. 2014, 

Barra et al. 2015). Accordingly, when the fishing effort is highly clustered, structured by small patches and 

persistent in the same area along subsequent seasons can correspond to the situation at which fish are 

concentrated in small suitable areas and for this reason easily to detect and catch (e.e. Fréon & Misund, 

1999). Put differently, the stocks are more vulnerable to the fishing operation in these situations. 

Subsequently, times when fishing operations are spatially structured as described above could be used as 

warning signals indicating the rise of anchovy and sardine vulnerability to the fishery (Hyperstability, e.g. 

Hilborn and Walters 1992) and therefore lead to management measures aimed at reduce the fishing effort. 
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Supplementary Material 

 

Figure A1. Seasonal omnidirectional variograms of the median polish residuals of the fishing effort directed 
towards anchovy and sardines. 
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Figure A2. Correlation distances (ranges) estimated by fitting spherical models on omnidirectional variograms of 
the median polish residuals of the fishing effort directed towards anchovy calculated at 0°, 45°, 90° and 135° 
directions separately. 
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Figure A3. Correlation distances (ranges) estimated by fitting spherical models on omnidirectional variograms of 
the median polish residuals of the fishing effort directed towards sardine calculated at 0°, 45°, 90° and 135° 
directions separately.  
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Abstract 
 

Generalized additive and generalized additive threshold models were used to study the relationship 

between landings per unit effort (LPUE) of anchovy, Engraulis encrasicolus, during the spawning season 

(May-October) from 2000-2010, and environmental variables, using sea surface data derived from satellite 

imagery (temperature, salinity, chlorophyll a, and meridional and zonal velocity current) in three fishing 

zones defined along the Catalan coast. The configuration of the environment where spawning aggregations 

occur affects early life stages and therefore the future demographic structure of the population. It is 

therefore fundamental to define the environmental conditions and their variations during the spawning 

season. Our results show that the low salinity in the Northern and Central sector and the velocity of the 

zonal and meridional currents in the Central and Southern sector, respectively, implicated in retention 

processes, increase LPUE during the spawning period. Temperature was related to LPUE in the Southern 

and in the Northern sectors, in both of which a non-linear positive effect with a local maximum peak at 

lower temperature values was present. However, in the Northern sector, this relationship held only for the 

period before 2007. After 2007 the decrease in preferred temperature suggests a reduction of the thermal 

window in which adult spawner aggregations occur. In agreement with previous studies on this species, 

the relationships were non-linear, stressing the importance of the match in timing and location between 

favourable conditions and spawning period as a crucial event for understanding the dynamics of small 

pelagics populations. 

 

 Keywords: Engraulis encrasicolus; NW Mediterranean; environmental conditions; anchovy landings; 
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Introduction 
 

Small pelagic fishes are key components of marine ecosystems and support fisheries of global importance 

(Alheit et al. 2012). These organisms are characterized by a short life span (2-3 years) and they feed on 

phytoplankton and small zooplankton (Tudela and Palomera 1995) in a short plankton-based food web. 

Populations of these fishes experience large interannual and long-term variations in abundance (Lluch-

Belda et al. 1989), and several hypotheses have been formulated in order to explain these fluctuations (e.g. 

the “match-mismatch” hypothesis (Cushing 1990); the “optimal environmental window” (Cury and Roy 

1989); and the “ocean triad” (Bakun 1996, Agostini and Bakun 2002)). These hypotheses highlight the 

importance of suitable environmental conditions in time and location during early life stages (eggs and 

larvae) for recruitment success and failure. Since early life stages are characterized by high sensitivity to 

environmental changes (Pörtner and Peck 2010), small variations in growth and survival rates of these 

stages could generate large differences in the annual recruitment (Houde 1997) and therefore in the future 

structure of the adult population. It is therefore fundamental to define the environmental conditions and 

their variations during the spawning period of these species.  

In the northwest Mediterranean, the anchovy, Engraulis encrasicolus (Linnaeus, 1758), is the most 

important small pelagic fish in terms of biomass along with the pilchard, Sardina pilchardus (Walbaum, 

1792) (Lleonart and Maynou 2003). Anchovy age-at-first-maturity is 1 year in the area (Lm>9 cm TL) 

(Pertierra 1992) and 88% of individuals are mature at age 0 (Cardinale et al. 2010)). Anchovy spawns in late 

spring and summer in coastal waters of continental origin characterized by low salinity (Lloret et al. 2004, 

Palomera et al. 2007, Sabatés et al. 2007a, 2013). The time of spawning is linked to temperature and, as 

for species that reproduce in spring/summer, spawning starts earlier in the Southern than in the Northern 

sector because the surface temperature increases earlier in the south and later extends northwards. For 

this same reason, the spawning period is longer in the south, where temperatures decrease more slowly 

(Martín and Sabatés 1991, Martín et al. 2008).  

Two main spawning grounds characterize the NW Mediterranean: one is located in front of the Ebro delta 

and the other one in the Gulf of Lions up to the Rhône delta. Both areas are highly productive and character-

ized by relatively low salinity due to river runoff if compared with adjacent areas (Palomera et al. 2007). 

Early stages of development of the anchovy are favoured by these highly productive, low-salinity waters 

and also by mesoscale structures such as eddies (e.g. Palomera et al. 2007, Sabatés et al. 2013), which 

appear along the Northern Current coming from the Gulf of Lions (Millot 1991, Rojas et al. 1995). Both 

conditions cause a greater concentration of nutrients, phytoplankton and zooplankton fluctuations of the 

anchovy have been associated with local environmental conditions and climate variability (e.g. Lloret et al. 
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2001, 2004, Martín et al. 2008, 2012). Thus, the positive trends in temperature and salinity data observed 

during the second half of the twentieth century in the western Mediterranean Sea (Calvo et al. 2011, 

Vargas-Yáñez et al. 2009, 2010) could have affected the population dynamics of this small pelagic fish.  

In the Catalan Sea, the anchovy fishery is concentrated mostly between Cape Creus and the Ebro river delta 

(Agostini and Bakun 2002); it is carried out for 10 months per year (close season: December-January, 

generally) and 5 days per week (Pertierra and Lleonart 1996). Discards of this species are negligible (Lloret 

et al. 2004). Anchovy is caught mainly in spring/summer, when a significant fraction of the population is 

mature (Cardinale et al. 2010) and has incorporated the recruits from the previous year’s spawning, so 

landings in these seasons can be considered as a proxy of the abundance of adult spawners (e.g. Martín et 

al. 2008).  

The catches in the geographical subarea 06 (GSA06) in the period 1990-2010 were highly variable, suffering 

a continuous decrease after 1994, with a minimum of 1900 t in 2007 and an average of 11700 t, with two 

recoveries in 2002 and 2009 (Cardinale et al. 2010). Also, Farrugio (2013) reported decreasing trends in 

anchovy biomass in the Gulf of Lions between 2001 and 2005 and along the Catalan coasts, where this 

trend continued until 2010. Cardinale et al. (2010) described the status of this species as overexploited in 

GSA06, but the decrease and fluctuations in abundance cannot be attributed only to the fishing activities 

but to a combined effect of overexploitation and unfavourable environmental conditions (e.g. Martín et al. 

2008, 2012, Lloret et al. 2000, 2001).  

Coupling catches and oceanographic information is one of the main objectives in fisheries science and 

management. Tools such as generalized additive models (GAMs, Hastie and Tibshirani 1990, Wood 2006) 

allow these relationships to be described thanks to their flexibility, which allows the non-linear effect of a 

variable to be assessed independently from the value of another covariate (i.e. additivity). Because of this, 

they have been largely used in the Mediterranean Sea (e.g. Martín et al. 2008, Bellido et al. 2008, 

Giannoulaki et al. 2013). A variant of the GAM is the threshold GAM (TGAMs, Ciannelli et al. 2004). Using 

this modelling approach, composed of two additive formulations, it is possible to test whether a covariate 

effect changes according to two levels, which are defined by a threshold, of another variable (i.e. non-

additive interaction). Therefore, the comparison of the results from the GAM and the TGAM allows us to 

assess, apart from non-linear relationships, whether the effects of the environmental variables are additive 

or not.  

Through the use of both GAM and TGAM, this study aims to investigate the relation between the anchovy 

fishery landings and the local environmental conditions in the NW Mediterranean Sea during the spawning 

season, considering landings per unit of effort (LPUE) as a proxy of abundance of the adult population 
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(spawners), in order to determine potential exogenous drivers of the population spatio-temporal dynamics of 

this small pelagic fish. 

Materials and Methods 
 

Study Area 
 

The study area is located in the Catalan Sea, NW Mediterranean (Fig. 1). The area is characterized by a 

permanent shelf-slope density front, separating open-sea high-salinity waters from low-salinity continental 

shelf waters, and a geostrophic Northern Current which flows southwestwards roughly parallel to the coast 

with an overall transport of around 1 Sv (Castellón et al. 1990). The NW Mediterranean coast receives 

significant freshwater runoff 

from two major rivers, the 

Rhône and the Ebro. The 

Rhône discharges at the east 

of the Gulf of Lions and 

enhances the shelf-slope front 

by lowering the salinity of 

shelf waters. The Ebro, with 

lower runoff, also decreases 

the salinity of the waters on 

the relatively wide shelf near 

its mouth at the southern limit 

of the area. The water column 

structure shows a marked sea-

sonal cycle, well mixed in winter and strongly stratified in summer, during the anchovy spawning season, 

when primary production is limited to a deep chlorophyll maximum (DCM), a thin layer at the deepest 

levels of the photic zone, ca. 60 m depth (Estrada et al. 1985). Another contribution to local productivity 

results from freshwater river runoff, which can enrich coastal waters near major river mouths. Summer 

productivity conditions are highly dependent on interannual variability in temperature and salinity, which 

in turn depends on the heat balance of air-sea exchanges in the region and fresh water runoff, which are 

variable from one year to the next. The environmental characteristics and the daily displacement of the 

fishery operation were used to define three sectors in the study area, Northern, Central and Southern, 

Figure 1. The study area divided into three sectors (Southern, Central 
and Northern) limited by the 35 m and 200 m isobaths and their 
major fishing ports. 
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according to Martín et al. (2008) (Fig. 1). These sectors were limited by the 35 m and 200 m isobaths, which 

represent the longitudinal expansion where the anchovy fishery is carried out. 

Data 
 

Monthly landings (kg) from the main ports with a purse seine fleet (a total of 90 vessels) (Fig. 1) were used 

to analyse the variations in abundance of E. encrasicolus during the period 2000-2010. Landings data for 

each sector (Northern, Central and Southern sector) were obtained from the daily fish sale database of the 

Fisheries Directorate of the Autonomous Government of Catalonia. LPUE were computed by dividing the 

total monthly landings in each sector by the total number of vessels that carried out fishing operations 

(LPUE as kg/(vessel×day)). The part of the data set analysed represents the whole anchovy spawning 

period, considered to be from May to October (Palomera 1992, García and Palomera 1996). This period 

also coincides with the period when most anchovy is caught (62% - 83% of the total annual catch in weight). 

The average monthly landings and effort are summarized in Table 1. The technical characteristics of the 

purse seine fleet operating in the area are 18.7 m length-overall (min. 12, max. 25 m), tonnage 37.7 GT 

(min. 20, max 78 GT) and engine power 209 kW (min. 155, max. 447 kW). Figure 2 shows the age 

composition of the landings in Geographic SubArea 6 (GSA06, the northern half of which corresponds to 

the study area), based on the 2010 stock assessment carried out by the Mediterranean subgroup of the 

Science, Technical, Economic Committee for Fisheries of the European Commission (Cardinale et al. 2010). 

Depending on the year, between 70% and 90% of the landings in number correspond to year 1 or older 

individuals, i.e. spawning adults.  

 

Figure 2. Left: Spawning individuals in age class 0 and age classes 1 and higher, assuming a maturity ogive 0.5, 0.89, 
1, 1 for age classes 0 to 3 in GSA06 (Cardinale et al. 2010). Right: age class composition of landings (number of 
individuals) for the period 2002-2009 in GSA06 (Cardinale et al. 2010). 
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Table 1. Average anchovy landings (1) and fishing trips (monthly vessel*day) (2) in the three sectors for each year, 
during the May-October spawning period. All values are reported as mean ± standard error (SE). 

    2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

N
o

rt
h

 

1 255.3±78.1 249.1±73.9 265.9±72.8 232.8±61.3 121.1±52.1 104.1±31.8 106.5±30.1 81.5±28.9 100.4±21.1 87.6±26.7 91.1±27.4 

2 184.6±52.1 148±34.8 103.5±23.7 155.3±44.7 94.3±29.8 76.5±22.7 83.1±27.1 66.5±16.7 91.3±25.4 82.6±23.2 74.6±20.9 

C
e

n
tr

e 1 69.8±25.9 106.1±35.1 274.6±104.8 86.6±38.4 216.7±98.4 155.9±63.4 56.6±17.7 26.2±13.7 25.4±11.9 332.6±87.6 203.6±80.1 

2 77.8±27.4 125.3±35.3 202.3±58.1 113.8±47.1 194.3±68.6 171.2±64.8 107.6±32.3 67±27.3 38.5±5.4 231.2±51.5 199.1±78.1 

So
u

th
 

1 87.6±24.1 97.7±34.1 147.9±27.5 93.2±23.9 93.2±39 88.8±27.3 54.8±17 27.2±13.4 85.5±26.8 220.1±17.3 173.1±36.1 

2 146.8±26.1 123.6±27.6 192.6±21.7 177.5±39.3 150.5±32.1 107.6±29.2 114.5±23.2 80.5±29.8 134±32.7 176.1±17.6 175.6±21.1 

 

The explanatory variables used to model the anchovy landings are (Fig. 3): 1) the sea surface temperature 

(SST in °C), because it has been shown that it determines the species distribution, enhances the growth of 

larvae and regulates the onset and the duration of the spawning period (García and Palomera 1996, 

Palomera et al. 2007); 2) the sea surface salinity (SSS in psu), because previous studies have associated the 

spawning period and the early life stages of anchovy with low-salinity water (e.g. Lloret et al. 2004, Martín 

et al. 2008); 3) the chlorophyll a concentration (Chla in mg m–3) as an indicator of the primary production; 

4) the meridional current (MC in m s–1, north to south); and 5) the zonal current (ZC in m s–1, west to east). 

Both the MC and the ZC are involved in larva, egg and prey retention and transport (Sabatés et al. 2007a).  

The above environmental variables were derived from satellite data with a monthly time resolution and a 

space resolution of 1/16°×1/16° developed within the EU-funded project MyOcean (http://marine.coper-

nicus.eu/). All monthly satellite images were merged to obtain aggregate amounts by sector, using ArcGIS 

software (ESRI 1994). 

Statistical analysis 
 

GAMs (Hastie and Tibshirani 1990, Wood 2006) were used to assess the effect of environmental conditions 

on the monthly LPUE of the spawning period (May-Oct), log-transformed, in the three sectors (Northern, 

Central and Southern) from 2000 to 2010. One model for each zone was constructed. Using the backward 

selection, the best model for each sector was selected based on the minimization of generalized cross-

validation criterion (GCV) (Craven and Wahba 1979), which is an estimate of the model’s predictive 

performance and aims at optimizing the trade-off between the model’s parsimony (the number of param-

eters) and goodness of fit.  

We used the Gaussian probability distribution as an error distribution and the identity as a link function 

(Wood 2006), checking the residuals of the model visually for normality and homogeneity, to assess the 

appropriateness of the choice of probability distribution function. The univariate penalized cubic spline was 
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used as a smoother, and the maximum degree of freedom measured as number of knots (k) was limited to 

k=5 to avoid over-fitting. For each of the best models obtained we also explored the interaction effect 

between the time and the other covariates using threshold GAM (TGAM) (Ciannelli et al. 2004).  

 
Figure 3. Series of monthly values (mean) for each sector. A, the sea surface temperature (SST); B, sea surface 
salinity (SSS); C, chlorophyll; D, meridional current; E, zonal current; F, anchovy landings during the years 2000-
2010. Top ticks indicate the seasons of the year. Note missing data in winter due to the annual close season to 
protect anchovy recruitment (usually December and January). 

 
In practice, the TGAM algorithm divides the time (defined as the month expressed in number, in the year), 

representing the ‘threshold variable’, into two levels (i.e. a factor variable), before and after the threshold 
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value (Tv). By introducing in the model the interaction between time and another covariate, the covariate 

effect can change during the observed period. Hence, through this model formulation, the shape of the 

smoothing function of each covariate was allowed to change over two contrasting periods defined by Tv. 

The identification of the threshold value was obtained by defining a search grid over an interval given by 

the 15th to 85th percentiles of the variable time, and the value within this range that produced the model 

that minimized the GCV score was selected (for details please see Ciannelli et al. 2004).  

We used the genuine cross-validation (gCV) to directly compare the selected TGAM and the corresponding 

GAM models. We calculated gCV scores by excluding randomly about 15% of the entire dataset and using 

the remaining data to fit a candidate model, and the mean-squared predictive error was estimated 

(Ciannelli et al. 2004). The routine was repeated 500 times, with the final gCV being the average mean-

squared predictive error of all runs for each candidate model (Ciannelli et al. 2004). All the analyses were 

performed with R v. 2.0.1 statistical package (http:// www.r-project.org/). 

Results 
 

Environmental conditions 
 

The environmental data show that the SST has a clear seasonal pattern (Fig. 3A): the maxima during 

summer show high variability along the latitudinal gradient, decreasing from south to north. For all sectors, 

the years 2003 and 2006 are the ones with the highest temperatures, while from the year 2007 SST showed 

a decrease, especially during spring and summer and more evident in the Northern sector. During cold 

seasons (winter and autumn) SST showed lower variability between the three sectors, with very similar 

minima. SSS also showed clear latitudinal differences (Fig. 3B), with lower values in the Southern sector. 

Although salinity did not show a clear seasonal pattern, we observed lower peaks in late summer and early 

autumn, more evident in the Southern sector, due to the direct influence of river runoff in this period of 

the year. Salinity increase was evident from 2004 to 2007 in all areas, followed by a gradual stabilization 

(Fig. 3B), and 2006 showed higher salinity than the other periods (Fig. 3B). Chl a showed the highest peaks 

in winter and the second-highest in autumn (Fig. 3C). The Central and Southern sectors show the highest 

production of Chl a, with the highest value in the Central sector in winter 2006.  

Along the Catalan coast, the zonal current showed a velocity of 5 to 15 cm s–1 (Fig. 3D). The Southern sector 

was characterized mainly by an inshore-offshore flow (eastward flow, positive values), except in 2009 and 

2010, which were characterized mainly by a westward flow (negative values, Fig. 3F). During the first half 

of the decade, in the Central sector currents were slow in both directions, persisting in the range of –5 and 

5 cm s–1 until the beginning of 2005 (Fig. 3D). Afterwards, alternating high eastward and westward 
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velocities characterized this sector, with the strongest westward current during the spring of 2009. The 

Northern sector followed the same pattern as the Central one, but in this case the highest velocity was the 

eastward one, reaching the uppermost peak in spring 2008 (Fig. 3D). Intense meridional current with high 

northward and southward current velocities characterized the Northern sector, while in the other two 

sectors velocities in both directions did not exceed 10 cm s–1 (Fig. 3E). 

Anchovy LPUE 
 

The LPUE by sector is shown in Figure 3F. In 2000-2008 LPUE was more than twice as high in the Northern 

sector than in the Central and Southern sectors, 

while after 2008 it decreased to values closer to 

the Southern and Central sectors (Fig. 3F). 

Considering the overall LPUE during spawning 

periods in each year from 2000 to 2010, all 

sectors showed decreasing trends starting in 

2002, but during 2009-2010 both the Central 

and Southern sectors showed an increase (Fig. 

4). The reduction in abundance was more 

marked in the Northern sector, with no evidence 

of recovery. In the Central and Southern sectors 

the abundances were lower than in the 

Northern sector and showed a similar 

decreasing trend until 2008, after which they 

increased (Fig. 4). 

 

Environmental influence on spawning season 
 

The threshold model (TGAM) was selected for the Northern sector, while standard GAM models were 

selected for the other two sectors based on the genuine cross-validation criteria.  

The following threshold GAM was the best model fit in the Northern sector: 

log(LPUE)  =  {
α + g1(SSS) + f1(CHL) + s1(SST) + ε     if time ≤ 𝐽𝑢𝑛𝑒 2007  

α + g1(SSS) + f1(CHL) + s2(SST) + ε     if time > 𝐽𝑢𝑛𝑒 2007
    

Figure 4. Anchovy LPUE during the spawning season 
(from May to October) for each sector during the 
years 2000-2010. N, Northern sector; C, Central sector; 
S, Southern sector 
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This TGAM formulation, formed by two additive model formulations where α is the intercept while g1, f1, 

s1, s2 are the non-parametric smoothing functions specifying the effect of the environmental covariates, 

showed better results than the corresponding GAM model, with a reduction of the gCV from 0.43 to 0.30 

after including time as threshold variable. The 

TGAM model explained 61.4% of the deviance 

(Table 2). The effect of the SST changed during 

the period considered (the smoothing function 

switched from s1 to s2) and the threshold value 

estimated for time was at the beginning of the 

spawning season in 2007 (June), as depicted on 

the GCV profile in Figure 5. 

All partial effects are shown in Figure 6A, B, C, D. 

Results showed a positive effect of the SSS for 

values lower than ca. 37.7, followed by a small 

negative effect at values between ca. 37.7 and 

38.1 (Fig. 6A). The effect of Chl a was linear, and 

became negative for values higher than 0.3 mg m–3 (Fig. 6B). The effect of temperature as described above 

changed during the period considered. From May 2000 to May 2007 it was positive between ca. 17.5 and 

ca. 21.3°C, with a peak at ca. 19°C corresponding to spring conditions, and clearly negative at temperatures 

higher than ca. 21.3°C (Fig. 6C). In the period between June 2007 and October 2010, a linear positive effect 

was observed for temperatures lower than 19°C, whereas above this value a small negative effect was 

observed (Fig. 6D).  

The following model was the final GAM selected for the Central sector (37.2% of deviance explained) (Table 

2): 

log(LPUE)  = α + g1(SSS) + f1(ZC) + s1(CHL) + ε 

where α is the intercept, g1, f1, s1 the smoothing functions and ε the error term. Relatively low SSS values 

positively affected LPUE within a range starting from ca. 37.6 to ca. 37.83 with a local peak at ca. 37.7 (Fig. 

6E). Negative effects were evident for both high east-and westward velocities of the zonal current. 

Although less evident, low westward velocities at values around –0.05 m s–1 affected the LPUE positively, 

while no evident effects were present at low eastward velocity values (Fig. 6F). Moderate positive effects 

were found at values below 0.2 mg m–3 of Chl a concentration, and a negative effect was found at higher 

Figure 5. GCV profile for the threshold estimation for 
the variable time in the Northern sector. 
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values, excluding the presence of a local non-significant, positive peak at a concentration of 0.35 mg m–3 

(Fig. 6G).  

The final GAM for the Southern sector explained 56.1% of the total deviance (Table 2): 

log(LPUE)  = α + g1(MC) + f1(CHL) + s1(SST) + ε 

with α representing the intercept, g1, f1, s1 the smoothing functions and ε the errors. LPUE was positively 

related to meridional current velocity at values lower than –0.01 m s–1 (i.e. north-to-south flow of 0.01 m 

s–1 or higher) and negatively related to the intensification of the meridional current velocity, particularly at 

values higher than 0.01 m s–1, while it showed no effects in the range between ca. –0.01 m s–1 and ca. 0.01 

m s–1 (Fig. 6H). The relationship with Chl a was similar to that observed in the Central sector, with a local 

peak for concentration equal to 0.35 mg m–3, and a slightly positive effect below a Chl a concentration of 

0.2 mg m–3 (Fig. 6I). Positive effects of SST were evident between ca. 19°C and 22°C with a peak at ca. 21°C 

(Fig. 6J), while no evident effects on LPUE were found for higher values of SST. 

 

Figure 6. Partial effects of sea surface temperature, sea surface salinity, chlorophyll a concentration, meridional 
current and zonal current for each sector during spawning periods. The median, 1st and 3rd quartiles and 95% 
distribution of the explanatory variables are shown along the x-axis as vertical grey lines. The shades areas 
indicate the 95% confidence interval. A,B,C,D, partial effects on LPUE in the Northern sector, where C and D are 
the partial effect of the sea surface temperature before and after June 2007, respectively; E,F,G, partial effects on 
LPUE in the Central sector; H,I,J, partial effects on LPUE in the Southern sector. See models in Table 2. 
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Table 2. Genuine cross-validation scores (gCV) used to select the models in each sector with the best prediction 
performance among candidate models and % of the deviance explicated (DVe %). The final models are indicated 
in bold text with the analysis of deviance of the covariates (SSS, sea surface salinity in psu; SST, sea surface 
temperature in °C; CHL, Chlorophyll concentration in mg/m3; ZC, zonal current velocity in m/s; MC, meridional 
current velocity in m/s). 

Sector Model Formulation gCV DVe % Edf Null DV Res. DV GCV 

 

N
o

rt
h

 

GAM log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔1(𝑆𝑆𝑆) + 𝑓1(𝐶𝐻𝐿) + 𝑠1(𝑆𝑆𝑇) + 𝜀 
0.43 34.6 % 

𝒈𝟏(𝑺𝑺𝑺)

=  𝟑. 𝟎𝟒𝟗 

𝒇𝟏(𝑪𝑯𝑳) =  𝟏 

𝒔𝟏(𝑺𝑺𝑻)

=  𝟐. 𝟐𝟔𝟒 

𝒔𝟐(𝑺𝑺𝑻)

=  𝟑. 𝟕𝟐𝟕 

0.42 0.19 0.23 

TGAM 

log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔1(𝑆𝑆𝑆) + 𝑓1(𝐶𝐻𝐿) + 𝑠1(𝑆𝑆𝑇) + 𝜀𝑖𝑓𝑡𝑖𝑚𝑒 ≤ 𝑟 
log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔2(𝑆𝑆𝑆) + 𝑓1(𝐶𝐻𝐿) + 𝑠1(𝑆𝑆𝑇) + 𝜀𝑖𝑓𝑡𝑖𝑚𝑒𝜀 > 𝑟 

 

log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔1(𝑆𝑆𝑆) + 𝑓1(𝐶𝐻𝐿) + 𝑠1(𝑆𝑆𝑇) + 𝜀𝑖𝑓𝑡𝑖𝑚𝑒 ≤ 𝑟 
log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔1(𝑆𝑆𝑆) + 𝑓2(𝐶𝐻𝐿) + 𝑠1(𝑆𝑆𝑇) + 𝜀𝑖𝑓𝑡𝑖𝑚𝑒𝜀 > 𝑟 

 

𝐥𝐨𝐠(𝑳𝑷𝑼𝑬) = 𝜶 + 𝒈𝟏(𝑺𝑺𝑺) + 𝒇𝟏(𝑪𝑯𝑳) + 𝒔𝟏(𝑺𝑺𝑻) + 𝜺𝒊𝒇𝒕𝒊𝒎𝒆

≤ 𝒓 
𝐥𝐨𝐠(𝑳𝑷𝑼𝑬) = 𝜶 + 𝒈𝟏(𝑺𝑺𝑺) + 𝒇𝟏(𝑪𝑯𝑳) + 𝒔𝟐(𝑺𝑺𝑻) + 𝜺𝒊𝒇𝒕𝒊𝒎𝒆 > 𝑟 

0.38 

 

0.94 

 

0.30 

55.2 % 

 

45.7 % 

 

61.4% 

 

C
e

n
tr

e 

GAM 𝐥𝒐𝒈(𝑳𝑷𝑼𝑬) = 𝜶 + 𝒈𝟏(𝑺𝑺𝑺) + 𝒇𝟏(𝒁𝑪) + 𝒔𝟏(𝑪𝑯𝑳) + 𝜺 
0.70 37.2% 

𝒈𝟏(𝑺𝑺𝑺)

= 𝟐. 𝟕𝟔𝟏 

𝒇𝟏(𝒁𝑪)

= 𝟑. 𝟒𝟑𝟕 

𝒔𝟏(𝑪𝑯𝑳)

= 𝟑. 𝟔𝟐𝟔 

 

0.53 0.39 0.54 

TGAM 

log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔1(𝑆𝑆𝑆) + 𝑓1(𝑍𝐶) + 𝑠1(𝐶𝐻𝐿) + 𝜀𝑖𝑓𝑡𝑖𝑚𝑒 ≤ 𝑟 
log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔2(𝑆𝑆𝑆) + 𝑓1(𝑍𝐶) + 𝑠1(𝐶𝐻𝐿) + 𝜀𝑖𝑓𝑡𝑖𝑚𝑒𝜀 > 𝑟 

 

log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔1(𝑆𝑆𝑆) + 𝑓1(𝑍𝐶) + 𝑠1(𝐶𝐻𝐿) + 𝜀𝑖𝑓𝑡𝑖𝑚𝑒 ≤ 𝑟 
log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔1(𝑆𝑆𝑆) + 𝑓2(𝑍𝐶) + 𝑠1(𝐶𝐻𝐿) + 𝜀𝑖𝑓𝑡𝑖𝑚𝑒𝜀 > 𝑟 

 

log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔1(𝑆𝑆𝑆) + 𝑓1(𝑍𝐶) + 𝑠1(𝐶𝐻𝐿) + 𝜀𝑖𝑓𝑡𝑖𝑚𝑒 ≤ 𝑟 
log(𝐿𝑃𝑈𝐸) = 𝛼 + 𝑔1(𝑆𝑆𝑆) + 𝑓1(𝑍𝐶) + 𝑠2(𝐶𝐻𝐿) + 𝜀𝑖𝑓𝑡𝑖𝑚𝑒𝜀 > 𝑟 

0.72 

 

0.74 

 

0.90 

36.2% 

 

44.3% 

 

43.4% 

 

So
u
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Discussion 
 

In this study we investigated the relationships between anchovy LPUE and the local environmental vari-

ables on the Catalan coast during the spawning period. The strong influence of environmental factors on 

small pelagic adult populations is well known, particularly the influence on the location and timing of their 

reproduction (Lloret et al. 2004, Palomera et al. 2007, Giannoulaki et al. 2013) and on the survival of the 

early life stages (e.g. Agostini and Bakun 2002, Sabatés et al. 2007b, Maynou et al. 2014). In fact, pelagic 

eggs and larvae need favourable environmental conditions in order to enhance the probability of success 

(Bakun 1996). During the period considered, i.e. 2000-2010, anchovy LPUEs showed high fluctuations, with 

minimum values between 2007 and 2008. The LPUE during the year showed seasonality typical of the 

species in the Mediterranean Sea, with maxima mainly in spring-summer and minima in late autumn-

winter. In this area the anchovy spawning period overlaps with the main fishing season for this species, in 

spring/summer. During this period catches are composed mainly of individuals of the 1- and 2-year cohort 

(Pertierra and Lleonart 1996, Cardinale et al. 2010), so peaks in landings can be considered as an index of 

spawning stock biomass, which in this short-lived species is closely related to recruitment to the fishery 

from the previous year’s spawn (as argued by Lloret et al. 2004, Martín et al. 2008). 
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The relative lower SSTs (below 22°C) in which high abundance of the anchovy population was found can be 

indicative of nutrient enrichment processes such as wind mixing or river runoff, which are often associated 

with favourable conditions for fish. The relationships with temperature found in our results are in 

accordance with that described by other studies in the same area, using different methodologies (e.g. 

García and Palomera 1996, Lloret et al. 2004, Palomera 1992, Palomera et al. 2007, Martín et al. 2008). 

Moreover they also agree with results of Somarakis and Nikolioudakis (2007) and Basilone et al. (2006, 

2013) in the Aegean Sea and in the Straits of Sicily, respectively, highlighting the synchrony between the 

seasonal reproductive cycle and temperature. This synchrony could be a strategy to enhance the 

probability of success of larval survival, which is favoured by the subsequent stable sea conditions 

promoting the prey aggregations (Lasker 1981, Basilone et al. 2006). In fact, these temperatures in the 

Catalan Sea correspond to the period (late April-May, when anchovy starts spawning) immediately before 

the stratified season (e.g. Palomera et al. 2007, Giannoulaki et al. 2013). Specifically, in the Southern sector 

higher LPUEs were found at temperatures between 19°C to 22°C, while in the Northern sector LPUE was 

higher at temperature between 18°C and 21°C and below 19°C, before and after 2007, respectively. The 

identification of optimal temperature values for the anchovy spawners by several authors (e.g. Motos et 

al. 1996, García and Palomera 1996, Palomera et al. 2007) may lead one to suppose that stable 

temperatures are a favorable factor for the reproductive season of anchovies. The northernmost part of 

the region is characterized by a shorter spawning season related to the thermal cycle (Palomera and 

Lleonart 1989) in comparison with the other sectors. The apparent decrease in preferred temperature from 

2007, corresponding to the threshold value obtained from our analysis, might have further reduced this 

period and the thermal window in which spawning aggregation occurs.  

Results regarding the relationships of Chl a concentration with the landings were found to be similar in all 

sectors. The low values of Chl a in late spring and summer, which in this study were associated with higher 

landings, are typical features of temperate oligotrophic areas such as the Mediterranean Sea (Estrada et 

al. 1985). In fact, the strong runoffs during early spring from Mediterranean rivers, enhancing the surface 

primary productivity and the subsequent production of zooplankton (the main food for anchovies) (Tudela 

and Palomera 1995, Tudela et al. 2002), are followed by a stabilization of the water masses and by the 

development of the thermocline, which inhibits vertical mixing and determines the depletion of nutrients 

at the surface (Palomera et al. 2007). 

Hydrographic variability influences the spatio-temporal extent of spawning habitat, producing large 

fluctuations in the recruitment of small pelagic fish (Planque et al. 2007). Our results show that salinity 

lower than 37.8 enhances the LPUE in the two northernmost areas, closer to the Gulf of Lions, and that this 

variable is the first to be selected in the models (Fig. 6). During the study period in the Catalan Sea, an 
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alternation between years of high and low salinity was observed, similar to those described by Nicolle et 

al. (2009) in the Gulf of Lions. This alternation could have reduced the suitable habitat for spawning both 

spatially and temporally, negatively influencing the fish aggregation for reproduction that takes place along 

the Catalan coast (Palomera 1992, García and Palomera 1996, Palomera et al. 2007). The influence of 

salinity on preferred habitat during the spawning might be complex because the survival of larvae results 

from an interaction between several environmental variables (e.g. temperature, dissolved oxygen, 

currents, salinity, Chl a concentration) (Fréon et al. 2005) and predation. Nevertheless, our results confirm 

that salinity is important for anchovy, as previously shown by results from echo-survey, egg collection and 

commercial catch samples in the Mediterranean Sea (e.g. Bellido et al. 2008, Sabatés et al. 2007b), the Bay 

of Biscay (Massé et al. 1995, Motos et al. 1996, Planque et al. 2007) and the Black Sea (Lisovenko and 

Andrianov 1996). 

The importance of SSS is evident in the Northern (Deviance explained = 21.5%, Fig. 6A) and Central sectors 

(Deviance explained = 11.5%, Fig. 6E), where low values positively affected anchovy abundances. Our 

results agree with those of Sabatés et al. (2007b), who found that a gradual decrease in larva and egg 

concentration occurred towards the south along the Catalan coast when water is extremely salty. They also 

agreed with previous studies that characterized the spawning habitat, relating anchovy eggs and larvae 

proliferation to low-salinity periods in the NW Mediterranean Sea (Palomera and Sabatés 1990, Palomera 

1992, Martín et al. 2008, Sabatés et al. 2007b, Maynou et al. 2014), and in the Aegean sea (Somarakis and 

Nikolioudakis 2007), while in the Bay of Biscay salinity was identified as a modest driver of anchovy 

spawning (Planque et al. 2007) and in the Black Sea anchovy spawning occurs in mesohaline conditions 

(Lisovenko and Andrianov 1996). 

Moreover, we found that other hydrological variables (i.e. currents flowing towards the coast, Fig. 6F) also 

helped explain the LPUE variability during the spawning periods. The zonal and meridional currents were 

important environmental drivers in both the Central and Southern sectors, explaining 15.7% (Fig. 6F) and 

19.9% (Fig. 6H) of the total deviance, respectively. In the Central sector, negative zonal currents imply water 

flow towards the coast, facilitating the retention of spawning aggregations, while in the Southern sector 

negative values of the meridional current suggest north-to-south flow, facilitating retention towards the 

Ebro Delta area. Retention of eggs and larvae produced by spawning aggregations has been identified as 

one of the three key processes favouring reproductive success in small pelagic fish (the other two processes 

of the triad being enrichment and concentration, Bakun 1996). 

Overall, mesoscale structures facilitating the aggregation of spawners and highly productive low-salinity 

waters have been identified as important pelagic conditions for early life stage fish survival and growth 

(e.g. Lloret et al. 2004, Bakun et al. 2006, Santojanni et al. 2006, Sabatés et al. 2007a). Thus, the match in 
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timing and location between these favourable conditions and the various stages of the life cycle could be 

crucial in the dynamics of the population. Though LPUE is only an approximation of fish abundance, its 

analysis improves the understanding of the relationship between small pelagics and the environmental 

conditions. Specifically, our study confirms the importance of low temperature for the spawning period, in 

accordance with previous observations, and provides further evidence on the dependence of anchovy adult 

population on specific oceanographic variables, i.e. salinity and current velocity. 
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Abstract 
 

In the area surrounding the Ebro Delta, similar to the rest of the north-western Mediterranean Sea, the 

sardine (Sardina pilchardus), one of the most exploited small pelagic fishes, has suffered a decreasing trend 

in abundance and biomass in the last decade, with low values in evidence since 2007. The dependence of 

this species on environmental factors makes it vulnerable to environmental changes; consequently, the 

abundance of the species is highly variable. Using segmented regression, we evaluated the presence of 

discontinuities in the temporal pattern of the seasonally adjusted landings per unit effort (LPUE), which 

was used as a proxy of abundance, between 2000 and 2013. The results suggested a sudden increase in 

mid-2005, followed by a sharp decrease starting in 2006. A generalized additive mixed model (GAMM), 

incorporating the linear correlation structure, was used to identify relationships between the seasonally 

adjusted LPUE and trends of the Western Mediterranean Oscillation index (WeMOI), sea surface 

temperature (SST), salinity (SAL) and the Zonal and Meridional Currents (ZC and MC, respectively). The 

variance inflation factors (VIFs) were calculated between all environmental variables to avoid high-

dimensional collinearities. The final GAMM, selected using the Akaike information criterion, indicated that 

positive WeMOI values, which favour the productivity of the area, along with SAL (at ca. 38) and a 

northward-flowing MC, favoured LPUE. Our results, obtained by applying a method in which variation due 

to season, non-linearity, autocorrelation and collinearity of the covariates was taken into account, provided 

further evidence of the dependence of the sardine population upon specific hydrographic variables. 
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Introduction 
 

Small pelagic fishes are an important component of marine ecosystems due to their role in energy transfer 

from lower to higher trophic levels (Cury 2000; Palomera et al. 2007). Globally distributed, they support 

important fisheries around the world (Alder et al. 2008). Early maturation, a short life span, and rapid and 

drastic responses to changes in the ocean climate (Checkley et al. 2009) characterize their biology. 

Large fluctuations in the population abundance of these species in different parts of the world have been 

associated with shifts in biological and physical processes that particularly affect the recruitment phase 

(Agostini & Bakun 2002) due to the vulnerability of the species to changing oceanographic conditions during 

early life stages. Moreover, changes in environmental conditions also influence the adult populations and 

consequently affect fisheries’ production by directly influencing the spatial distribution of fish or their 

availability to fishing fleets and by indirectly influencing adult mortality (Palomera et al. 2007; Van Beveren 

et al. 2016). 

The effects of climatic components on the variability of small pelagic resources have been studied across 

various marine ecosystems (e.g. Checkley et al. 2009). Despite the differences encountered across the 

ecosystems, such as the importance of an environmental factor in one area but not in another area (e.g. in 

the Mediterranean sea between the Strait of Sicily, where the Atlantic-Ionian Stream was identified as a 

main driver; Patti et al. 2004; and the Aegean Sea, where the main drivers were depth and river flow; 

Giannoulaki et al. 2005), patterns of physical mechanisms, summarized as the ‘fundamental triads’ concept, 

can generally be identified (Agostini & Bakun 2002). In fact, even if small pelagics inhabit distinguishable 

areas characterized by different oceanographic characteristics (e.g. circulation patterns, bathymetry, rivers 

influences), their distribution patterns seem to be driven by environmental processes, which, although 

specific to each ecosystem, lead to conditions capable of enhancing and maintaining food availability 

(Bonanno et al. 2014).   

Small pelagics dominate the catches in the Mediterranean sea; in particular, European anchovy Engraulis 

encrasicolus (Linnaeus, 1758) and European sardine Sardina pilchardus (Walbaum, 1792) represent the 

main species landed (Stergiou et al. 2016).  Similar to other Mediterranean fish stocks, sardine spawning 

stock biomass and age at the time of capture have shown a progressive decrease in the last two decades 

(Vasilakopoulos et al. 2014).  

Since the mid-1990s, sardine and anchovy landings have demonstrated a continuous decreasing trend in 

the NW Mediterranean Sea (Catalan sea and Gulf of Lions; Van Beveren et al. 2016). This trend has also 

been observed in the rest of the Mediterranean in recent decades and is consistent with the decline in 

population biomass in almost all areas where small pelagic stocks are assessed (GFCM 2015; STECF 2015). 
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In the Catalan sea, sardine reproductive success is enhanced by productivity mechanisms during the 

spawning season, which occurs from the autumn to spring, with a peak in the winter (January and February; 

Olivar et al. 2001, 2003; Sabatés et al. 2007). Spawners’ abundance is mainly high in inshore waters, where 

sardine eggs are concentrated in water < 100 m deep (Olivar et al.  2001, 2003). During winter vertical 

mixing, which is mediated primarily by wind stress, an increased homogenization of the water column 

enhances biological primary productivity. This condition favours the survival of sardine in their early life 

stages, which is directly linked to increased landings (Lloret et al. 2004). However, extreme wind speeds 

can negatively affect sardine populations by increasing larvae mortality via reduced feeding success due to 

the dispersal of food and larvae to unfavourable locations (Borges et al. 2003; Lloret et al. 2004).  

In addition to the wind mixing index, significant positive relationships were found with the Western 

Mediterranean Oscillation index (WeMOI, Martin-Vide & Lopez-Bustins 2006; Martín et al. 2012), a good 

proxy for regional atmospheric conditions in this area. Finally, although less significant, negative 

correlations were found in relation to sea surface temperature (Martín et al. 2012).   

These significant relationships (Lloret et al. 2004; Martín et al. 2012) demonstrated that environmental 

changes influenced sardine population variability by presumably acting principally on the early life stages. 

However, the results of these analyses were strongly based on correlative or linear models; there is 

evidence that the relationships between the fisheries’ catches (or landings) and the information available 

on environmental and climate factors can be better modelled using non-linear relationships (Borges et al. 

2003). Generalized additive models (GAMs) are a modelling framework well suited to describing this kind 

of relationship by means of non-linear specification of the dependence of the response variable (Wood 

2006); hence, the data allow for the determination of the nature of the relationship rather than the 

assumption of some form of parametric relationship (Guisan et al. 2002). Furthermore, in cases in which 

residual autocorrelation is significant (i.e. violation of independence), as in the analysis of time series, 

generalized additive mixed models (GAMMs) can be used to explicitly model autocorrelation (Wood 2006). 

Environmental variability can alter fish distributions over short time-scales and can persist as long as 

environmental conditions remain unfavourable for fish survival, growth and reproduction, significantly 

affecting fishery by varying resource availability (Fréon et al. 2005). Thus, in the present study, a 

characterization of sardine landings in terms of trend and breakpoints was performed to evaluate the 

presence of marked temporal changes. Then, using GAM and GAMM, we investigated the relationships 

between the decrease in sardine landings and a combination of potential climate drivers in the Catalan Sea 

in order to assess their influence. 
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Materials and methods 
 

General characteristics of the Study Area 
 

The fishing area is situated off the Ebro delta (NW Mediterranean Sea) between 40°56’ N and 41°16’ N 

latitude and 0°80’ E and 1°72’ E longitude (Figure 1 (a)). This area, which is part of the so-called Ebro shelf, 

is marked by a drastic change in shelf width, evolving from ca. 15-20 km in the northern part to ca. 70 km 

in the southern part, and by the presence of a steep slope (Figure 1 (a)). A shelf-slope density front 

separating the less dense continental influenced waters and the denser open sea waters (Font et al. 1998) 

and the presence of a quasi-permanent geostrophic slope current (Northern Current, NC) flowing south-

westward (Millot 1999; Salat et al. 2002) characterize the Ebro shelf.  

 

Figure 1. (a) The study area limited by the 35 m and 200 m of the isobaths and the two fishing ports; (b) landings in 
tons per month and sum of the days per month in which fishing operations were carried out by the fleet. Note the 
missing data in the winter due to the annual closed season; (c) annual landings in tons from the two ports starting 
from the year 1993. 

 

The study area receives an important amount of continental fresh water from the Ebro river. On average, 

its annual water discharge rate ranges from 300 and 600 m3 s-1 with maximum discharge in the spring and 

autumn (Salat 1996). The seasonal evolution of the stratification is clear in the area. The water column, in 

fact, is almost homogenous during winter (13-14° C at all depths), in contrast to early spring and late 

autumn, when it is characterized by a defined thermocline (Salat 1996). Consequently, the river outflow 

plays an important role, especially immediately before the stratified season, by providing nutrients and 

enhancing surface productivity during this season (Salat 1996; Palomera et al. 2007).  

The sea surface is dominated by winds coming from the north-northwest, which are strong and more 

frequent in the winter (60-100 km/h). These winds are associated with vertical mixing along the coast, 

contributing to the formation of the surface mixed layer during the stratified season (Salat 1996). 



 
  __________________________________________  

67 
 

Chapter 3 

Furthermore, the north westerly wind predominance, together with the specific features of the shelf, are 

involved in the intrusion processes of the shelf edge flow into the shelf, allowing the development of 

anticyclonic eddies (Salat 1996; Xing & Davies 2002), which are important structures for the spawning and 

reproduction of the small pelagic populations (Bakun 2006). Given these features, the Ebro river 

continental shelf is considered one of the most important spawning areas for clupeids in the western 

Mediterranean Sea (Palomera 1992; Palomera et al. 2007). 

 

Data 
 

The monthly data of landings (kg) and the number of fishing days (a measure of fishing effort) (Figure 1 (b)) 

for purse seine vessels were obtained for the two harbours of the study area with a small pelagic fleet, 

Tarragona and L’Ametlla del Mar, in the South of Catalonia, from 2000 to 2013 (Figure 1(b)). The selected 

ports produce 20-30% of the total landings of sardine in the geographical subarea GSA06 (STECF, 2015 p. 

110 shows 9-10,000 t in GSA06 in 2012-2103, from 17-20,000 in 2002-2004), while in south Catalonia, 

production was ca. 6,000 t annually in the early 2000s and has been down to ca. 1000 t in recent years. The 

fleet was composed of 20 purse seiners in 2013 with the following characteristics: 16-24 m LOA, 30-65 GT 

and 127-450 kW engines. This purse seine fleet has decreased in the number of vessels (STECF, 2015 p. 

109), similar to the other fleets in the Mediterranean Sea, in the last two decades due to poor profitability 

of fisheries and EU-funded subsidies for the decommissioning of vessels (STECF, 2015 p. 111, 140 vessels 

in GSA06 in 2013, i.e. our fleet is approximately 15% of the total fleet). 

As an index of sardine fishery productivity, the monthly average LPUE (Yt) was obtained by dividing the 

landings per month by the sum of the days when fishing operations were carried out by the fleet (LPUE in 

kg/day). 

The environmental monthly time series were derived from satellite datasets, which are commonly used in 

studies of fisheries data due to their consistent space-time coverage and their ability to highlight the main 

ocean processes that determine the dynamics of fish populations dwelling near the surface (e.g. Tugores 

et al. 2011; Bonanno et al. 2013). The environmental variables selected were as follows; Sea Surface 

temperature (SST in °C), Sea Surface Salinity (SSS), the Meridional Component of the water current (MC in 

m s-1, positive northward), and the Zonal Component of the water current (ZC in m s-1, positive eastward), 

which were retrieved from the Myocean Project with a spatial resolution of 1/16° x 1/16° (5.2 x 7.0 km, 

approximately). The first variables mentioned were useful because they were linked to the population 

dynamics of small pelagic fishes in the NW Mediterranean Sea (e.g. Lloret et al. 2001, 2004; Martín et al. 

2008; Maynou et al. 2014) as well as in other locations around the Iberian Peninsula (Guisande et al. 2001; 
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Borges et al. 2003; Guisande et al. 2004; Santos et al. 2012). The latter two variables (MC and ZC) were 

selected because they are indicative of the circulation patterns upon the Ebro shelf, which is characterized 

principally by a current flowing south-westward (Northern Current) and interrupted by clockwise eddies 

(structures supporting high level of biological activities; Bakun 2006) and periods of current reversal (i.e. 

current flowing northward; Font et al. 1990; Salat et al. 2002; Lorente et al. 2015). Furthermore, the 

monthly Western Mediterranean Oscillation index (WeMOI), resulting from the difference of the 

standardized atmospheric pressure values in San Fernando-Cadiz (South western of Spain) and Padua 

(North eastern Italy) (Martin-Vide & Lopez-Bustins 2006), was used as an additional explanatory variable 

encompassing the overall atmospheric climatology in the area.  

All environmental variables (Xt) were averaged over the entire study area (Figure 1 (a)) and examined using 

statistical modelling to explore their temporal trends and whether they are possible explanatory variables 

of sardine LPUE. The study area was delimited considering the area fished by the fleet, which was based in 

the 2 study harbours and the bathymetric range from 35 to 200 m depth (Lleonart & Maynou 2003). The 

fishing range of the vessels was local because the fleet was obliged to return to port daily, and the boats 

had to be tied up for a minimum of 12 hours daily (Martín et al. 2012). 

The LPUE dataset contained irregularities in terms of missing data in the winter months and in the different 

number of trips where fishing operations were carried out (Table 1, Figure 1 (b), Figure 2). This was due to 

the annual closure of the purse seine fishery in the area for 2 months to protect anchovy recruitment. The 

closure occurs usually in December and January, but may be advanced to mid-November or delayed until 

mid-February for ad hoc reasons. 

Table 1. Sum of landings in tons and number of fishing operation for each month subseries. 

  Jan Feb Mar Abr May Jun Jul Aug Sep Oct Nov Dec 

Landings (Tons) 0 1090.72 2815.35 3865.54 4677.89 3463.29 3236.93 4100.31 3868.99 4501.23 2497.49 1094.84 

N of trips 0 1335 3034 3160 3050 2246 2615 2710 2439 2558 2039 1289 

 

Statistical analyses 
 

Because the objective of the analysis was to relate trends in the environmental variables to the temporal 

variation observed in sardine fisheries productivity, to avoid any influence of the monthly cycle (Figure 2), 

the LPUE series was seasonally adjusted (𝑆𝑎𝑌𝑠) as follows: 

 

(𝑆𝑎𝑌𝑡) = 𝑌𝑡 − 𝜇𝑠 
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where the calculation of the monthly averages (𝜇𝑠) using the data from all years was used to correct the 

time series by subtracting these values from each cycle subseries (months) (Figure 3). This simple seasonal 

adjustment was chosen because we were not interested in imputing missing LPUE data, which is a 

requirement for many decomposition methods since they do not allow ‘internal’ missing values.  

The decomposition and extraction of temporal trends in the data series were performed according to ‘the 

seasonal and trend decomposition procedure based on loess’ (STL) (first designed by Cleveland et al. 1990) 

(Figure 4). The STL is an empirical, non-parametric filtering procedure that decomposes a time series (Xt) 

into three unobservable components using an iterative procedure (inner and outer loop) based on 

successive smoothing (for more details see Cleveland et al. 1990), resulting in a trend (tt), seasonal (st) and 

residual or short -term variation (et) and is as follows:  

 

(𝑋𝑡) = (𝑡𝑡) + (𝑠𝑡) + (𝑒𝑡)  

 

Overall, the STL includes six parameters that determine the degree of smoothing in trend and seasonal 

components: np (Number of observations in each cycle of the seasonal component), ni (Number of 

iterations of the inner loop), no (Number of iterations of the outer loop), nl (Smoothing parameter for the 

low pass filter), ns (Smoothing parameter for the seasonal component), and nt (Smoothing parameter for 

the trend component). The smoothing parameters of the seasonal component were selected using the 

visual diagnostic method described by Cleveland et al. (1990), while the trend smoothing parameters using 

the smallest odd integer number that satisfies the following equation:  

 

 𝑛𝑡 ≥  
1.5 𝑛𝑝

1 −1.5𝑛𝑠
−1 

 (Cleveland et al. 1990). 

 

The seasonally adjusted LPUE (Figure 3) showed relatively stable values around the zero mean until 

approximately 2007 and decreasing values from 2008 onwards, indicating the possible presence of a 

change in the trend around the mid-2000s. This change in trend suggests that a better description of the 

seasonally adjusted LPUE may be provided by segmented regression. The selection of the best explanatory 

segmented regression was achieved by comparing linear and non-linear (second order polynomial) models 

and choosing the model with the lowest Akaike Information criterion (AIC). The AICs were the minimum 

values obtained during the process of the selection of the optimum breakpoint performed for each 

regression model. The selection of this point, indicating a marked change (in this case on LPUE over time), 

was performed by doing a search grid throughout a time range starting from the beginning of 2001 to the 

end of 2012 (ca. 90% of the data) and choosing the break that produced the model that minimized the AIC 
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(Crawley 2007). Because the objective was not to test the null hypothesis of no effects, no correction for 

autocorrelation was attempted. 

To assess the influence of exogenous factors on the decrease of sardine landings, the environmental trends 

extracted by the STL procedure were included as explanatory variables in the Generalized Additive Model 

approach (GAM, Hastie & Tibshirani 1990; Wood 2006) using the seasonal adjusted LPUE as the response 

variable. The cubic regression spline was used as a one-dimensional non-parametric smoothing function 

and a double penalty was applied to the penalized regression to reduce the chance of over fitting. As error 

distribution, the Gaussian with the identity link function was applied, and the restricted maximum 

likelihood estimation (REML) was used.  

To detect possible high-dimensional collinearities, the variance inflation factors (VIFs) between all 

environmental variables were calculated. The covariates with the highest VIFs were removed from the 

model until the highest VIF value was <5 (Zuur et al. 2007). 

The residuals of the full model were checked using variography, and violations of the independence 

assumption were detected (Figure 5 (a)). Consequently, to avoid a Type I error, the generalized additive 

mixed model (GAMM), which is capable of accounting for dependence between observations by adding a 

correlation structure to the additive model, was used (Wood 2006). Following Pinheiro & Bates (2000) and 

Zuur et al. (2009), we selected the linear residual correlation based on the minimization of the AIC by 

comparing models with the same fixed component (i.e. the full model with all the covariates) and different 

correlation structures. Furthermore, to assess the adequacy of the linear correlation structure, we 

investigated the sample semi-variogram for the normalized residuals (Figure 5 (b)). The general form of the 

GAMM used in the analysis has the following structure: 

 𝑦 =  𝛽0 + ∑ 𝑓𝑗(𝑋𝑗) +
𝑝
𝑗=1 𝜀𝑗  

 

𝑐𝑜𝑟𝑟(𝜀𝑗𝑠 , 𝜀𝑗𝑡) = {
1 𝑖𝑓 𝑠 = 0

ℎ(𝑠, 𝑑) =  1 − (
𝑠

𝑑
)   𝑖𝑓 0 < 𝑠 < 𝑑

 

where β0 is the intercept, Xj are the covariates, fj the cubic spline smoothing function for each covariate and 

εj are the error terms, which are normally distributed with mean 0 and variance σ2. In the independence 

assumption, residuals from different time points were not allowed to covary. Next, we modelled the 

dependence between the residuals of different time points (εjs , εjt) by the introduction of the linear 

correlation structure (second equation), where h(·) is the correlation function, s is the temporal distance 

between εj and εjt and d is the range, which represents the time distance at which residuals are no longer 

correlated. 
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The likelihood ratio test (ML) was used to obtain the optimal fixed model formulation, and the final 

combination of variables was refitted using REML (Zuur et al. 2009). 

All analyses were performed with R v. 3.1.2, and the mgcv library was used to implement the generalized 

additive and mixed models (Wood 2006). 

 

Results 
 

Sardine LPUE exhibited the lowest values in the winter, while the highest LPUE occurred between the spring 

and fall (Figure 2). Figure 3 shows the seasonally adjusted LPUE and the fitted breakpoint regression. 

Landings underwent a decreasing trend during the whole period, with higher values between 2000 and 

2004, followed by a slow decrease between 2004 and 2006 and a more accentuated decline starting in 

2006. 

 

 

The values of the AIC when comparing the different models suggested that the trend in LPUE was better 

modelled by dividing the data into two blocks rather than assuming a constant variation over time. The first 

block was best described with a linear function, while the second was best represented by using a second 

order polynomial regression. The profile of the AIC indicated that the optimum break was in 2005, and 

specifically, in June of that year. The seasonally adjusted LPUE decreased linearly and more slowly before 

the break and was characterized by large fluctuations, followed by a jump in mid-2005 to a higher LPUE. 

Figure 2. Seasonal cycle of the sardine LPUE. 
The bold lines indicate the median, while 
bold points are the mean LPUE values. 

Figure 3. Variation in seasonal-adjusted LPUE 
series (points) and segmented regression (lines) 
fitted to identify the possible presence of 
breaks. 
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The second block was characterized by a strong LPUE decrease and slight intra and inter-annual variations, 

with the minimum values of LPUE almost constant at the end of the series (Figure 3).  

Table 2 shows the parameters used for the STL decomposition of the environmental variables.  

 

Table 2. STL decomposition parameters. np, number of observations in each cycle of the seasonal component; ni, 
number of iterations of the inner loop; no, number of iterations of the outer loop; nl, smoothing parameter for 
the low-pass filter; ns, smoothing parameter for the seasonal component; nt, smoothing parameter for the trend 
component. 

 Decomposition Parameters 

Environmental Variables np ni no nl ns nt 

Temperature 12 2 0 13 29 19 

Salinity 12 2 0 13 21 19 

WeMOI 12 2 0 13 27 19 

Meridional Current 12 2 0 13 25 19 

Zonal Current 12 2 0 13 21 19 

 

 

The trend components obtained from the environmental series are shown in Figure 4. Salinity showed two 

clear increasing trends during 2000-2006 and 2009-2013 and for a period between 2006 and 2009 where 

the values reached those observed in 2000; overall, the values at the end of the study period were notably 

higher than those at the beginning of the period (ca. 37.7 vs ca. 38.2) (Figure 4 (a)). Temperature showed 

a slightly increasing trend with fluctuations during the whole period, although less marked than salinity 

(from 18.8 at the beginning of the period to 19.0 °C, approximately) (Figure 4 (b)). Figure 4 (c) shows the 

WeMOI trend, which was characterized by a decrease from 2000 to 2006, followed by stabilization at 

negative values; the highest positive values were observed between 2000 and 2003 (Figure 4 (c)). Both the 

Meridional and the Zonal currents showed a decreasing trend from mainly positive values to mainly 

negative ones starting from the end of 2009. Both currents presented a peak of positive values in 2009, 

indicating a higher northward flow in the case of the Meridional current and a higher eastward flow for the 

Zonal current (Figure 4 (d), Figure 4 (e)). 
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Figure 4. Main graphs: trend components of the environmental drivers obtained by the STL decomposition (SAL, 
salinity; SST, sea surface temperature; WeMOI, Western Mediterranean oscillation index; ZC, Zonal Current; MC, 
Meridional Current). Small graphs: monthly mean of each covariate. 

 

The calculation of VIFs to determine variables of high collinearity indicated a value of 5.67 for the Zonal 

current, and hence, this variable was not included in the model. The other variables showed a maximum 

VIF of 3.73 and were utilized because they did not introduce major bias in the analyses. 

The GAMM formulation, with the incorporation of the linear residual correlation structure, was selected 

because the semi-variogram on the residuals compared with the GAM full model showed temporal 

independence (Figure 5) and because it minimized the AIC compared to the GAM formulation.  

 

Figure 5. (a) Experimental variogram of the residuals obtained by applying a GAM with all environmental trends. 
Note that there is evidence that the independence assumption is violated. (b) Experimental variogram of the 
normalized residual using the GAMM with the linear correlation structure. The horizontal axis (h) in each graph 
represents the time distance. 
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The optimal fixed model formulation of the GAMM included Salinity, WeMOI and the Meridional current 

and explained 47% of the deviation. The parameter estimates of the GAMM are shown in Figure 6 and in 

Table 3. Significant negative effects on the LPUE were present in relation with WeMOI for negative values 

between ca. -0.5 to ca. -0.2, while positive values higher than ca. 0.2 positively correlated with abundance. 

Although not particularly evident, a positive effect was present for WeMOI values lower than ca. –0.8 

(Figure 6 (a)). The non-linear relationship with salinity is shown in Figure 6 (b). Negative significant effects 

were found for values lower than ca. 37.5, followed by values not affecting abundance until ca. 38. Above 

this value, significant positive effects were recognized and were characterized by a local peak at ca. 38.1, 

which was followed by a negative non-significant effect (Figure 6 (b)). The meridional current negatively 

affected LPUE when flowing southward and positively at the opposite direction, with the shape of the 

relation presenting a local positive peak between 0.01 to 0.02 m/s, and anything above the positive effect 

started a decrease (Figure 6 (c)). 

 

Table 3. Final GAMM model with the analysis of deviance of the covariate.  WeMOI, Western Mediterranean 
oscillation index; Sal, salinity; MC, Meridional Current). Edf, estimated degree of freedom. DVe, explained deviance. 

  edf F p-value DVe R2 

s(WeMOI) 2.878 5.898 < 0.01 47% 0.43 

s(Sal) 5.06 5.144 < 0.01     

s(MC) 3.1 5.24 < 0.01     

 

 

Figure 6. Final GAMM of the seasonal adjusted LPUE in relation to the trend of the environmental variable. The y-
axis indicates the smoothers for significant effects of (a) WeMOI, (b) salinity and (c) Meridional Current. Shaded 
areas show 95% confidence limits for the smoothers. 
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Discussion 
 

The highly productive waters surrounding the Ebro river represent one of the few exceptions in the 

essentially oligotrophic coasts of the Mediterranean Sea; they are influenced by the two principal 

enrichment processes characterizing this semi-enclosed sea: nutrient intake by large river discharge and 

exposure to strong winds, allowing water mixing (Salat 1996; Salat et al. 2002; Lloret et al. 2004). 

During the period of 2000 to 2013, the declining trend of sardine LPUE was characterized by two striking 

events: the sudden increase in mid-2005, followed by an abrupt decrease until the year 2010, where it 

stabilized at a lower value for the rest of the investigation period. 

The breakdown of the seasonal adjusted LPUE agrees with the findings of Tugores et al. (2010), who, with 

the use of acoustic surveys, described a general decreasing trend in abundance from 2003 to 2006 with 

signals of recovery during the year 2005 in the area surrounding the Ebro. Since sardines in the NW 

Mediterranean Sea spawn from November to March (e.g. Lloret et al. 2004; Palomera et al. 2007), during 

the early summer, the fished sardine population is mainly composed of adults that are 1 and almost 2 years 

old (Lloret et al. 2004). The discontinuity observed in the summer of 2005 might have occurred due to more 

suitable environmental conditions during the spawning season between the late autumn of 2003 and the 

winter of 2004 compared with the other spawning periods preceding the breakpoint. In particular, 

temperature during this period was on average relatively low and had small variability (low standard 

deviation compared to other years) which could indicate a completely broken thermocline in mid-autumn. 

This homogeneous water column most likely allowed optimal environmental conditions in terms of nutrient 

supplies that lasted the whole spawning season and therefore increased food availability for sardine early 

life stages. Although this was only a small recovery, which formed part of the general decreasing trend 

observed in the area, it could have led to an expansion of the area occupied by this fish and the formation 

of more dense patches (in areas with favourable environmental conditions), which became more 

susceptible to fishing pressure (Barra et al. 2015). 

The second characteristic event of this period, occurring between 2010 and 2013 and consisting of the 

stabilization at the lowest values, is in accordance with the findings in the nearby Gulf of Lions (NW 

Mediterranean Sea), where sardine landings in the same period became even lower than those during the 

period before the 1960s (Van Beveren et al. 2016).  

A part of the landings variation, which are only an approximation of fish abundance, could be explained by 

a change in fishing effort (Figure 1 (b)), but sudden changes, such as the LPUE shift observed, emphasize 

the fact that the fluctuations can also be due to variation in the availability of the species to the fishing gear 

due to environmental conditions, thus leading to low productivity (Cushing 1995; Van Beveren et al. 2016). 
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Furthermore, when looking at the estimated summer biomass from 2010 to 2013 from scientific acoustic 

surveys (MEDIAS) in the whole GSA 06, its average was almost three and a half times higher than their 

respective annual landing estimates (STECF 2015). In these estimates, sardine seems to maintain high 

biomass regardless of the preceding fishing pressure, and consequently, it seems unlikely that the recent 

LPUE changes were caused by overexploitation alone. Instead, a combination of overexploitation and an 

unfavourable environment for the species would better explain these trend changes. On the other hand, 

the likely increase in the catchability of modern purse seiners, as seen with other fleets in Europe (García-

Carreras et al. 2015), may contribute to the problem of decreasing abundance of sardine due to excessive 

fishing mortality.  

The aim of this study was to test the environmental drivers that best explained the variation of sardine 

LPUE, and to do so we used GAM and GAMM, which are useful tools to describe relationships between 

biological and environmental variables (e.g. Bellido et al. 2008; Martín et al. 2008; Giannoulaki et al. 2011; 

Carpi et al. 2015).  

In our study, in the final GAMM obtained, the drivers that better explain the LPUE dynamic are WeMOI, 

SSS and MC. The influences of the WeMOI on fish populations were indirect, with its effects mediated 

through relationships with local environmental factors (Martín et al. 2012). In fact, during the positive 

WeMOI, which positively affected LPUEs, the low pressures in the Gulf of Genoa and the high pressure over 

the Azores (Martin-Vide & Lopez-Bustins 2006) led to two phenomena: one, the prevailing winds affecting 

the study region came from the northwest (García-Sellés et al. 2010) and two, an augment of the river’s 

discharge rate volume due to an increase in rainfall in the head of the Ebro drainage basin in north Spain 

(Martín et al. 2012).  

When north westerly winds and river discharge are simultaneously propitious, wind pushes the continental 

and more productive waters across the shelf and causes these waters to be mixed and trapped in the 

mesoscale eddy structure, which takes form offshore of the Ebro mouth (Font 1990; Xing & Davies 2002; 

Salat et al. 2002). Furthermore, wind stress allows a rise in the mixing and increases the turbulence in the 

surroundings of the river mouth, widening the mixing area and thus reducing the salinity gradient (Sierra 

et al. 2002). The resulting waters become more productive and have salinity values more typical of the 

shelf-water (ca. 38), which was observed in our results and are positively related with LPUEs.  

These favourable, high nutrient conditions enhance phyto- and zooplankton production (Salat 1996; Salat 

et al. 2002; Lloret et al. 2004) and allow the sardine population to increase in abundance and consequently 

yield high LPUE (Agostini & Bakun 2002; Lloret et al. 2004; Sabatés et al. 2007; Palomera et al. 2007). Our 

findings are congruent with those of other studies in the Mediterranean Sea (Lloret et al. 2004; Ganias 

2009; Martín et al. 2012) as well as in other areas and for other species of sardine (e.g. Pacific sardine in 
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Emmett et al. 2005), where the positive relationships between sardine and primary and secondary 

production, the latter being enhanced by wind and continental water inputs, are described.  

The negative values of the WeMOI, which are characterized by an onshore wind flowing from the South (S) 

and Southeast (SSE), lead to warmer conditions and enhance rain events in the area (Martin-Vide & Lopez-

Bustins 2006) and do not allow the discharge water of the river to extend offshore (Xing & Davies 2002); 

instead, it remains confined to the north and northwest of the Ebro mouth (Mestres et al 2003), probably 

decreasing primary production. These conditions negatively affect sardine LPUE. Negative relationships are 

also found with low values of salinity, suggesting that less saline waters or meteorological parameters that 

lead to a reduction in the salinity of the coastal waters (i.e. rainfall enhanced by WeMOI) are not a suitable 

environment for this small pelagic fish. As described by Palomera et al. (2007), sardine in early life stages, 

contrary to anchovy which can be distributed in a wide salinity range and appear to have a lower tolerance 

to low salinity waters.  

Moreover, another environmental variable (i.e. current flowing towards the coast) that contributed to the 

explanation in the landing per unit effort variability was the meridional current flowing northward, which 

was positively related with LPUE. This northward current, resulting from the interaction between the cross 

shelf flow and the topographic structure of the Ebro shelf, which displaces the coastal flow eastward 

(Lorente et al. 2015), is described as being essential for the generation of the mesoscale anticyclonic eddies 

along the Catalan coast (Garreau et al. 2011). These structures allow the surface waters and particles to 

converge in the centre of the anticyclonic circulation, increasing food availability (Bakun 2006) and 

influencing sardine aggregations.  

Overall, with respect to previous studies in the area, our results constitute a step forward by applying a 

more complex methodology where variation due to the seasonality, non-linear relationships, 

autocorrelation in the data and collinearity of the environmental covariates were considered and thus 

provided further evidence of the dependency of sardine LPUEs upon specific hydrographic variables. The 

study stresses the importance of the additive and non-linear effects on sardine landings production in 

Catalan Sea via the WeMOI and the local environmental variables (i.e. salinity and northward current). 

Although LPUEs are only an approximation of the population abundance, they are a function of fishing 

efforts and stock dimension (Santos et al. 2012); therefore, the environmental influences encountered can 

also be expected to affect the sardine population in the area.   

Sardine landings along the Catalan Coast have been characterized by cyclical fluctuations for the last 40 

years (Martín et al. 2012), and the analysed period is part of the long decreasing trend starting from the 

mid-90s. In the studied area and the whole GSA06, this decreasing trend reached the lowest values of the 

historical series during the last years of the series. Given the overexploited status of sardine stock and the 
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nonstationary nature of the relationships between the physical factor and the populations’ functional 

response (Schmidt et al. 2014), which may have changed over time, unexpected patterns such as the 

downfall of cyclic fluctuations may arise and prolong the period of low abundance. The environmental 

conditions that can be expected in the western Mediterranean Sea, under the current climatic change, is a 

considerable decrease in rainfall and wind, warmer surface waters and a prolonged stratification period 

(Calvo et al. 2011). These conditions are in line with the second half (i.e. 2006 and later) of the time series 

environmental data analysed here. If these trends continue in future decades, a likely scenario of decreased 

primary productivity and lower sardine fisheries production can be anticipated. 
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Abstract 
 

We investigated environmental effects on a population of anchovy and sardine in three fishing areas of the 

waters off the Catalan Coast (NW Mediterranean Sea), based on a long series of monthly landings from 

1973 to 2014). Different statistical analyses were used, including Artificial Neural Networks to fill in missing 

data in the series, breakpoint analysis to identify co-occurrent temporal shifts, eigen vector filtering to 

identify the main patterns of the series, generalized linear least square (GLS) regression to identify the 

relationships with environmental variables and finally, the rolling regression approach to examine temporal 

changes in these relationships across years. Specifically, we examined the effects of temperature (SST) and 

salinity (SSS) which are important in determining suitable habitat for the eggs and larval development and 

survival. Additionally, we examined the effect of kinetic energy (KE), which may influence the recruitment 

of these species by controlling the trophic environment at the spawning areas and finally, the effects of the 

sea surface height (SSH), which is indicative of changes of the mesoscale circulation patterns. All the 

environmental variables were seasonally adjusted and introduced in GLS model formulations after 

hysteresis in order to identify the critical period of development at which they affected the both 

populations. SSH and SST represented the most important and recurrent variables affecting the early life 

stages of both species in the three fishing areas. SST affected the early life stages of both species negatively 

in each area. Increasing SSH affected negatively sardine in the three zones and anchovy only in the 

southernmost two. Several previous studies have emphasized the importance of these factors during the 

critical stages of development of small pelagic fishes. Herein we showed by rolling regressions that the 

strength of such relationships was transient and non- stationary over time. These time-varying relationships 

may be due to the coupled effects of the environmental changes and the recent variations in demographic 

patterns of the two populations which as consequence could have altered the responses to changing 

environmental conditions. 
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Introduction 
 

The global distribution of small pelagic fishes, their high biomass at the mid-trophic level of the food webs 

and the role they play as a link between lower and higher trophic levels make them an essential part in 

most ecosystems (Cury, 2000; Fréon et al., 2005; Palomera et al., 2007). Small pelagic fishes, which form 

large dense schools making them easy to catch in large numbers, are targeted species for both artisanal 

and industrial fishery, and constitute about half of the world’s annual fish harvest (Fréon et al., 2005). 

Short life span, fast growth, early maturity onset and direct dependence on plankton characterize these 

species (e.g. Palomera et al., 2007). These features make their populations particularly sensitive to the 

environment. Since their abundance, is highly dependent on the annual successful recruitment that in turns 

is extremely susceptible to shifts in physical and biological processes influencing the survival of the early 

life stages (Bakun, 1996; Cole and McGlade, 1998). Tolerance range of the early life history stages, such as 

eggs and larvae, is narrower than the tolerance range of juveniles or adults (Pörtner and Peck, 2010) making 

the former more susceptible to environmental changes. The effects of the environmental fluctuation 

together with the high exploitation of these species cause small pelagic fish populations to vary widely in 

abundance and biomass (Checkley et al., 2009). These fluctuations can have substantial consequences for 

both fishery and ecosystem structure and functioning (e.g. Cury, 2000; Shannon et al., 2000). 

In the North-Western Mediterranean Sea, sardine (Sardina philchardus) and anchovy (Engraulis 

encrasicolus) dominate both the small pelagic fish community and purse seine fishery (Lleonart and 

Maynou, 2003; Palomera et al., 2007). For both species, the catches in North-eastern Spain (geographical 

subarea 06, GSA06) during the period 1990-2014, in which on average they were 28000 t and 12000 t for 

sardine and anchovy respectively, suffered a decrease. After 1994 the trend in landings for both species 

are consistent with the acoustic biomass estimates, available since the year 1990 (GFCM, 2015). Sardine 

reached the lowest values of both catches and biomass during the year 2014, while for anchovy, these 

values have been slightly increasing since 2008 (GFCM, 2015). 

In the Catalan Sea, the purse seine fishery is concentrated mostly between Cape Creus and the Ebro river 

delta (Agostini and Bakun 2002). The reproductive season of these two small pelagic fishes spans opposite 

periods of the year: autumn-winter and spring-summer, for sardine and anchovy respectively (Palomera et 

al., 2007). Both species are well adapted to the productivity mechanisms characteristic of their respective 

spawning seasons, i.e. vertical mixing in winter and spreading of continental runoff at the surface in spring–

summer (Sabatés et al., 2007). The minimum landing size of these species is 11 cm and 9 cm for sardine 

and anchovy respectively (Regulation (EC) No 1967/2006). These conservation sizes are smaller than the 
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average size at first maturity (11.4 cm and 10.8 cm) (GFCM, 2014), which is achieved by both species at one 

year of age (age at first maturity, GFCM, 2014). 

Landings data from the area, standardized or not for fishing effort, have been used to link the fluctuations 

of small pelagic populations abundance to the surrounding environmental variability (e.g. Lloret et al., 

2004; Martín et al., 2008, 2012). These studies singled out the importance of the riverine outputs, the 

surface chlorophyll and wind mixing on the early life stages of anchovy and sardine, and therefore on 

recruitment variation. These factors contribute to the enrichment process which, together with 

concentration and retention, constitute the three key processes that favour reproductive success in small 

pelagic fish (ocean triads theory; Bakun, 1996). 

However, these outcomes were based on the assumption that the response of the populations to the 

environmental conditions is time-invariant, probably due to the use of relatively short monthly time series. 

It has been recognized that marine systems can undergo very rapid shift (e.g. Blenckner and Niiranen, 

2013), passing from a certain level relatively stable denoted as ‘regime’ to another called ‘regime shift’. 

This non-stationarity in the environment can cause in turns non- stationarity in population processes (e.g 

shift in reproductive success, mortality, growth; Szuwalski and Hollowed, 2016) as consequence of the 

strong links between them. Szuwalski et al., 2015, for example demonstrated that changes in recruitment 

over time of different fish stocks shifted in coincidence with shifts of environmental conditions. These 

events being unpredictable could produce as a consequence unexpected responses of the populations in 

question which in turns result in unexpected results in  modelling prospective (Planque, 2016).  

Thus, the relationships between populations and environmental signals can change over time (Schmidt et 

al., 2014) becoming stronger or weaker, in a way that may be better appreciated when looking at a wider 

temporal scale. 

However, the small pelagic population is not only shaped by environmental factors. Fishing of these species 

in NW Mediterranean Sea as well as in the whole basin has existed since ancient time. As discussed in 

different studies (e.g. Hsieh et al., 2010; Planque et al., 2010; Hidalgo et al., 2011), fishing effects don’t 

consist simply in the removal of biomass. It can also affect the population dynamics by truncating the age 

and the size structure of the exploited population since it has been historically directed at large and old 

individuals, or by reducing intraspecific diversity, or by selecting particular life history strategies (e.g. early 

maturation)  (e.g. Planque et al., 2010; Hidalgo et al., 2011). These changes create populations more 

sensitive to climate variability for reasons that include the following: the loss of long-lived individuals, the 

reduction of the number of cohorts which helps the population survive during periods of adverse 

conditions, and the increase of the coupling between climate fluctuation and recruitment variations 

(Fromentin and Fonteneau, 2001; Planque et al., 2010).  



Chapter 4 
 __________________________________________  

88 
 

A general decreasing trend of the body size and body condition of both anchovy and sardine has been 

reported in the NW Mediterranean sea and in other parts of the basin (Brosset et al., 2017). Considering 

these changes together with the long-term variation of the environment in the area, constituted by the 

increase in temperature and salinity in the upper layer (Vargas-Yáñez et al., 2010), the way in which the 

small pelagic populations are related or respond to the environmental forces may have changed over time. 

The capacity of these populations to buffer the changing environment might have been altered, for 

example, by the reduction of their reproductive potential and the time span at which the spawning season 

occurs due to the lack of large individuals, leading to a diminished probability of encounter the optimal 

environmental window by eggs and larvae. Furthermore, this situation might have been aggravated due to 

the intensification of the adverse conditions owing to the environmental changes (Planque et al., 2010; 

Hidalgo et al., 2011).  

Herein we attempt to investigate environmental effects on variation in anchovy and sardine population 

size using fisheries monthly landing data from the year 1973 to 2014 in the north-western Mediterranean 

Sea. The purposes are to examine the long-term trend and the variability of the anchovy and sardine 

population in the Catalan sea in response to the local environmental changes. Specifically, we examined 

the effects of temperature and salinity which have been proposed to be important in determining suitable 

habitat for the egg and larval development and survival (e.g. Palomera et al., 2007; Giannoulaki et al., 2011, 

2013). We also studied the effect of kinetic energy, which may influence the recruitment of these species 

because of its hydrodynamic control over the trophic environment at the spawning areas (e.g. Ruiz et al., 

2013; Bonanno et al., 2014; Carpi et al., 2015). Finally, we analysed the effects of the sea surface height, 

which has been suggested as a factor indicative of changes of the mesoscale circulation patterns and the 

presence of moderate convergence and divergence conditions (e.g. Tugores et al., 2011; Giannoulaki et al., 

2013).  

Material and Methods 
 

General characteristics of the Study Area 
 

The study area is located in the Catalan Sea, NW Mediterranean (Fig. 1). The area is characterized by a 

permanent shelf-slope density front, separating open-sea high-salinity waters from low-salinity continental 

shelf waters, and a geostrophic Northern Current which flows southwestwards roughly parallel to the coast 

with an overall transport of around 1 Sv (Castellón et al. 1990). The NW Mediterranean coast receives 

significant freshwater runoff from two major rivers, the Rhône and the Ebro. The Rhône discharges at the 
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east of the Gulf of Lions and enhances the shelf-slope front by lowering the salinity of shelf waters. The 

Ebro, with lower runoff, also decreases the salinity of the waters on the relatively wide shelf near its mouth 

at the southern limit of the area. The water column structure shows a marked seasonal cycle, well mixed 

in winter and strongly stratified in summer, during the anchovy spawning season, when primary production 

is limited to a deep chlorophyll maximum (DCM), a thin layer at the deepest levels of the photic zone, ca. 

60 m depth (Estrada et al. 1985). Another contribution to local productivity results from freshwater river 

runoff, which can enrich coastal waters near major river mouths. Summer productivity conditions are highly 

dependent on interannual variability in temperature and salinity, which in turn depends on the heat 

balance of air-sea exchanges in the region and fresh water runoff, which are variable from one year to the 

next. The environmental characteristics and the daily displacement of the fishery operation were used to 

define three sectors in the study area, Northern, Central and Southern, according to Martín et al. (2008) 

(Fig. 1). These sectors were limited by the 35 m and 200 m isobaths, which represent the longitudinal 

expansion where the anchovy fishery is carried out.  

 

Figure 1. The study area divided and three fishing zones (Southern, Central and Northern) limited by the 35 m and 
200 m isobaths. 

 

Landings data 
 

Monthly data of landings (kg) of anchovy and sardine for purse seine vessels were obtained from a total of 

18 ports off the Catalan coast. The landing series data obtained were from the years 1973 to 2014 in the 

southern and central sector, while for the northern sector the first data available were from 1988 and from 

1993, for sardine and anchovy respectively. Landings data, which are consistent with the results of the 

acoustic assessment (GFCM 2015) of both species, were used as estimates of abundance. Data were 
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aggregated without any more subdivisions because the main physical features could be considered similar 

in each sector (Martín et al., 2008) and because the fishing range of the vessels was local due to daily 

obligatory return to port of the fleet (Martín et al. 2012). Landings for the years 1990 to 1992 were missing 

because of the change in the administrative data system and had to be reconstructed. Furthermore, 

starting from the year 2000, the data corresponding to the months December or January were missing due 

to the annual closure of the purse seine fishery. These gaps were filled by using the best Artificial Neural 

network obtained in terms of prediction performance for the former (1990-1992) missing data, and by 

using linear interpolation for the latter (December/January) missing data (see further in statistical analysis 

section). 

 

 Seasonality 
 

Landings of both species showed strong seasonality (Fig.2). Generally, there was a major peak in all sectors 

at the end of the spring and in summer for 

anchovy, while for sardine, the major catch 

percentage were from mid-spring to mid fall (Fig. 

2). Throughout this study, the winter season is 

defined as January to March, spring season from 

April to June, summer season from July to 

September and fall season from October to 

December, consistent with the conventional 

calendar seasons. 

In the area, anchovy spawns during spring and 

summer and during fall the juveniles occupy the 

upper layer until the winter when they recruit at 

the adult population (Fig 3a). Contrarily, larvae 

and eggs of sardine occupy the upper layer from 

late fall to the late winter early spring, during 

summer the large percentage of the population 

belong to the juvenile’s fraction and at the end of 

summer and the beginning of the fall sardine can 

be considered fully recruited (Fig 3b). 

Figure 2. Monthly percentage of sardine and anchovy 
landings in the three sectors during the whole period. 
North: From 1988 and from 1993 to 2014 for sardine 
and anchovy respectively. Central and southern 
sectors: from the year 1973 to 2014 for both species.  
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Figure 3. Life cycle scheme of respectively a) Engraulis encrasicolus b) Sardina philchardus   

 

Environmental data 
 

Remote sensing data series were used for modelling the catches of sardine and anchovy in respect to the 

environmental conditions. Specifically, the monthly sea surface temperature (SST), salinity (SSS), sea 

surface height (SSH) and horizontal (𝑢) end meridional (𝑣) current velocity components from the years 

1974 to 2014 were obtained from the  COPERNICUS Marine Environment Monitoring Service 

(http://marine.copernicus.eu/), with a spatial resolution of 1/16° x 1/16° (5.2 x 7.0 km, approximately). The 

last two were used to calculate the kinetic energy (KE) as follows: 

 𝐾𝑒 = (𝑢2 + 𝑣2)/2  

where 𝑢 and 𝑣 are the velocity components (Ruiz et al., 2013).  

These variables were considered important either as direct influence, in terms of physiological suitability 

of the habitat, on the abundance and on different life stages of small pelagic fishes (e.g. SST, SSS and KE; 

e.g. Giannoulaki et al., 2011, 2013; Ruiz et al., 2013; e.g. Maynou et al., 2014), or as a proxy of factors 

enhancing the productivity and favouring the retention of early life stages such as gyres and eddies (SSH; 

e.g. Tugores et al., 2011; Giannoulaki et al., 2013). All the environmental variables were seasonally 

averaged by sectors following the conventional year division described above. Summarizing the 

environmental variables in seasons allowed us to describe and assess the effects of the average conditions 

of the environment during the main events of the annual cycle of both species (e.g. pre-spawning, spawning 

and adult feeding shoals, planktonic stages of eggs and larvae, recruitment). This can reflect on the monthly 

landings series, which in general are mainly composed of adult individuals of one year for anchovy and 

between one and two years for sardine (Lloret et al., 2004; Martín et al., 2008). 
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Statistical analysis 
 

 Missing data imputation of landing series 
 

Since we were interested in analysing the relationships between catch series and environmental variables, 

and also because the selected statistical methodology requires contiguity in the data series, the missing 

values were estimated by using the artificial neural network (ANN) and linear interpolation. The ANNs were 

used to forecast missing values from 1990 to 1992 for both anchovy and sardine landing series in the central 

and southern sectors. ANNs are forecasting methods which can be used in time series analysis to predict 

future observations by using some function of past observations (Faraway and Chatfield, 1998). In general 

it is an information processing system composed of nonlinear interconnected elements or neurons and it 

is organized as layers connected via weights (Wang et al., 2009). A common ANN generally consist of three 

layers. The input layer, in which the data are introduced to the network, the hidden layer or layers, which 

correspond to the processing part of the network, and the output layer where the results are produced. 

Throughout the study, the ANN named multi-layer feed forward back propagation network (Haykin, 1994) 

with only one hidden layer was used. In time series the value at time yt (output) is to be forecasted using 

the values at lags yt-1, yt-2 … yt-n (input). Each of these inputs is connected to the hidden neurons (nodes) 

which in turn are connected to the outputs. The inputs to each node are combined using a weighted linear 

combination which is then transformed by mean of a non -linear function (activation function, typically a 

logistic function) in the nodes of the hidden layer. These neuron values undergo a similar operation to 

obtain the prediction outputs, although in this case a linear function is applied, which implies the identity 

activation function at the output stage (Faraway and Chatfield, 1998).  

The estimates of the weights between the inputs and the hidden neurons and between the neurons and 

the outputs were selected in the NN framework using an algorithm that minimizes the sum of square of 

the within sample one step ahead forecast errors over the part of the monthly series selected as training 

set (Faraway and Chatfield, 1998). Specifically, for both the central and the southern sector of the anchovy 

and sardine series, the training sets used were from the years 1973 to 1987, keeping the last two years i.e. 

1988 and 1989 as the test set. The general process can be written as: 

𝑦𝑡 = 𝜙0 {𝛽𝑘 + ∑ 𝑤𝑗𝑘𝜙ℎ (𝛽𝑗 + ∑ 𝑤𝑙𝑗𝑦𝑡−𝑙𝑖 𝑙 )𝑗 }  

where 𝑦𝑡−𝑙𝑖 are the input signals (lags of the series), 𝑦𝑡 are the output signals, 𝑤𝑙𝑗 are the weights between 

the input neuron i to hidden neuron j, and 𝑤𝑗𝑘 are the weights between the hidden neuron j and the output 

neuron k. 𝛽𝑘 and 𝛽𝑗are the bias which behave like the intercepts in the regression, and 𝜙0   and 𝜙ℎ are the 
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activation function for the hidden and the output layers. The network is ‘trained’ in order to find a series 

of weight that yield an output signal that has a small error relative to training sets, and it is performed by 

using the back-propagation training procedure. In practice this procedure adjusts the weights starting from 

the output layer and ending with the input layer in a looping pattern (Chen and Ware, 1999). Since the 

objective of our analysis was imputing the three years missing values, we were not interested in fitting the 

best NN on the training set but instead in fitting NN models to obtain the best forecasts of the test set data. 

Consequently, we chose the best model based on the forecast accuracy and in particular on the 

minimization of the root mean square errors between the forecast estimates and the test set observations.    

To do so we compared different feed forward NN models prediction accuracy using different input (lagged) 

variables and different architecture. Specifically, we considered different NN models composed by inputs 

lagged values p of the time series up to the last 12 observations (yt-1, yt-2 … yt-12) and inputs lagged seasonal 

values P up to the last 3 seasonal observations (since our series were seasonal monthly data), and the 

number of nodes in the hidden layer varying from 2 up to 6. For each structure, a total number of 1000 

networks were trained and their prediction averaged.  

Missing values during the winter season (in December or January) due to the annual fishing closure starting 

from the year 2000 of the anchovy and sardine series in the three sectors were instead imputed by using 

linear interpolation.  A periodic seasonal trend decomposition procedure based on loess (Cleveland et al., 

1990) was first fitted onto the data to remove the seasonal component from the series. On the remaining 

component a linear interpolation was performed to impute the values and subsequently, to obtain the 

complete series, the seasonal components were again added (Hyndman et al., 2014; Moritz et al., 2015). 

 

 Time series main pattern and Seasonal adjustment 
 

Time series are, in general, considered as a set of three components: the slow varying trend, the oscillatory 

or seasonal component, and the white noise. In order to describe the main pattern of both landings and 

environmental variables (i.e. identify what of the components above mainly characterize the ‘shape’ of the 

series) the Eigen vector filtering (EVF, Colebrook, 1978) was performed for each standardized time series 

(i.e. landings monthly series and environmental quarterly series, of which the KE log transformed). The EVF 

method is identical to the Principal component analysis (PCA), in which the components are calculated on 

the autocovariance matrix, which is constructed based on the original series plus several copies of it lagged 

by one-unit time (Colebrook, 1978; Ibanez and Etienne, 1992). The choice of the number of the lagged 

series to construct the matrix was based on the observation of the autocorrelation function and by selecting 

this number equals to the lags just less than the shortest significant cycle (see Ibanez and Dauvin, 1988 for 
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details). The variance explained by the main temporal pattern, this being the first axis of the PCA, may be 

calculated, giving us the possibility to quantify its importance (Van Beveren et al., 2016).  

Subsequently all series were seasonally adjusted in order to avoid spurious relationships (i.e. obtain 

apparently significant relationships from unrelated variables), as the aim was to relate the origin of the 

trend in the landing series in relation to the local environmental factors. The seasonal adjustment method 

employed was the follow: 

𝑦𝑡𝑠 =  𝑦𝑡 − 𝜇𝑠 

Where 𝑦𝑡𝑠 was the seasonal adjusted series, 𝑦𝑡 the observation value of a particular month (for the landing 

series) or season (for the local environmental factors) in the year,  𝜇𝑠 the mean of the monthly/season 

values. These resultant series, composed by the trend – residuals component were used for the subsequent 

analysis. 

 

 Breakpoints and relationships with the environment 
 

Since environmental and landing series were analyzed together, the time series characteristics like patterns 

and sudden shifts could be identified and compared. The existence of synchronous temporal changes, in 

fact, could indicate if the local environmental forces have been influencing the small pelagic landings.  

For all the seasonal adjusted environmental variables and landing series in each sector, a breakpoints 

analysis was computed using the ‘strucchange package’ (Zeileis et al., 2003) to assess the period(s) and the 

95% confidence interval of significant changes, which were then checked for their synchrony.  

The breakpoints procedure detects a structural change in regression relationships (Zeileis et al., 2003) by 

searching a break where the regression coefficients shift from one stable regression relationship to a 

different one. It works in two steps. First, the ordinary-least-squares moving sum (MOSUM) test, which 

uses the residuals of a series of regressions to determine if the coefficients are stable or varying over time, 

is used to test for the existence of breakpoints in the time series. Second, if significant structural changes 

are identified, different breakpoints are then iteratively tested. The optimal number of segments 

(breakpoints + 1) and the optimal position of a breakpoint are estimated by minimizing the Bayesian 

Information Criterion (BIC) and by minimizing the residual sum of squares of this regression respectively 

(Bai and Perron, 2003; Zeileis et al., 2003). 

In addition, to determine and quantify the possible relationships between the local environmental variables 

and the landings of both species in each sector, multiple linear regression models were used. In particular, 

based on the hypothesis that the variability of fishing landings was largely determined by survival during 

the larval and juvenile stages, we related the seasonal environmental variables with lags up to 6 seasons 



 
  __________________________________________  

95 
 

Chapter 4 

(corresponding to 18 month) for sardine and up to 4 seasons (12 months) for the anchovy, with landings of 

both species at the time t. 

In standard linear regression, the errors are assumed to be independent and identically distributed, but 

when dealing with time series regression, it is generally implausible to assume that errors are independent. 

For this reason, Generalized least squares (GLS) models in the nlme package (Pinheiro and Bates, 2006) 

were used to relate the landings with the local environment. GLS extends the ordinary least square (OLS) 

estimation of the normal linear model by providing for possible correlations between different errors and 

so allowing one to avoid the Type I errors. Since we related current values of the landings (dependent 

variable) with lagged values (past period at t-1 t-2… and so forth) of the different local environmental 

variables, which could likely be correlated among them, serious problems of violation of the assumption of 

independence of predictors could have arisen. To avoid the model producing parameter estimates with 

highly inflated standard errors, resulting in an overall significant model with no significant predictors, we 

identified collinear predictors by calculating a Variance inflation factor (VIF). This represents the proportion 

of variance in one predictor explained by all the other predictors in the model. We calculated a VIF of each 

predictor and excluded sequentially the predictor with the highest VIF. As suggested by Zuur et al., 2010 

the predictors were dropped until all VIF values were below a cutoff of 3. These remaining variables were 

used to formulate the GLS models. 

Final model selection for each sector and species was performed by the top-down strategy suggested by 

Diggle, 2002 and Zuur et al. 2009.  It consists in estimating the model by restricted maximum likelihood 

estimation (REML) with all the predictor variables and with different errors correlation structures, limited 

for simplicity up to the third-order autoregressive structure. These models were compared in order to find 

the optimal correlation structure based on the minimization of the AIC. Once it was found, the best 

combination of explanatory variables was obtained by fitting the model with the maximum likelihood 

estimation (ML) and by using the likelihood ratio test to compare nested models obtained by dropping the 

terms basing on its significance. Finally, the best model was refitted using the REML estimation. 

 

 Multivariate rolling regressions 
 

In order to investigate whether the relationships between anchovy and sardine landings with the local 

environmental variables were persistent over time, we adopted the rolling regression method, a technique 

used to investigate time-based effects in a specific coefficient (Jank and Shmueli, 2008).  

Specifically, the rolling regression technique fits a regression model multiple times by moving forward in a 

rolling fashion (Brown et al., 1975). The rolling regression procedure consists in the selection of the 
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dimension of the window, i.e. the number of observations on which the regression model has to be fitted, 

and on the slide this window forward of a determined step size (the increment by which the window is 

moved each iteration) up to the end of the series. The outcome of this procedure is the production of 

multiple sets of coefficient estimates. The number of regressions and their resulting sets of coefficients 

depend on the window size, the number of observations in the dataset, and the step size (Jank and Shmueli, 

2008).  

In our study we used as regression model the best GLS formulation for each sector and species of above, 

assuming that the residuals correlation structures found were optimal also for the rolling regressions. 

Consequently, the significance of the obtained coefficients was used to infer the strength of the association 

between landings and the local environmental variables. For each sector, the models were fitted on a 

number of observations selected by predetermining a window size basing on the mean length of the 

segments obtained with breakpoints analysis, which for the northern, central and southern sector, were of 

8, 10 and 10 years respectively. The use of these windows allowed us to evaluate the associations in 

different periods of stability and not-stability (i.e. the shifts detected with the breakpoints analysis). Then, 

the window for each sector was slid forward once a year and the fitting procedure was repeated each time. 

Doing so, we obtained different coefficient estimates and their significance and how they changed over 

time. 

 

Results 
 

Landing series description and main patterns 
 

The best ANN models, based on the forecast accuracy, were applied to reconstruct the three years of 

missing values of landing series in the central and southern sectors, which are summarized in Table 1. 

 

Table 1. Neural Network models used to reconstruct the three years (1990-1992) of Anchovy and Sardine landing 
series. RMSE= Root mean square errors 

  Lags - Seasonal Lags 
Number of 

Hidden Neurons 
Forecast Accuracy 

(RMSE) 

Central Sector 
Sardine 1,2 - 12,24 2 133.27 

Anchovy 1,2,3,4,5,6,7,8,9,10 - 12,24,36 2 146.9 

     

Southern Sector 
Sardine 1,2,3,4,5,6 - 12,24,36 6 376.66 

Anchovy 1,2,3,4 - 12,24 2 219.34 
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Over the investigated period the Southern area was the most important in terms of quantity of landings of 

both anchovy and sardine, accounting on average 247 t and 646 t per month respectively. It was followed 

by the Central sector (219 t for anchovy and 338 t for Sardine) and, lastly, the Northern sector (179 t for 

anchovy and 152 t for sardine). The maximum reported annual landings of anchovy and sardine were, in 

order of quantity, 6757.8 t (year 1982) and 13604.7 (year 1994) in the Southern sector, 7364.7 (year 1994) 

and 10745.8 (year 1994) in the Central sector, and finally 1121.8 (year 1992) and 3661.9 t (year 1988) for 

the Northern sector. Anchovy landings in the Northern sector, despite having started in 1988, had a pattern 

similar to that of the Central sector (Fig. 4), with the highest peaks during summer in the 1990s followed 

by a sharp decrease until ca. the year 2010, after which signs of landing recovery can be observed (Fig 4).  

 

 

Figure 4. Landing and environmental variables series. Ke= Kinetic energy; SSH= sea surface height (m). SST=sea 
surface temperature. 

The long-term patterns showed an increase during the 90s before stabilizing and the deviances explained 

were 29.07 % and 21.76 % for the central and the northern sector respectively (Fig. 5). In the southern 

sector, the decreasing trend started earlier, more precisely from the second half of the 1980s until ca. the 

year 2008, after which landings started to increase (variance explained 29.45%, Fig. 5). Regarding the 

landings of sardine, in all sectors, they were characterized by a long-term decreasing trend. The trend 

decreased more slowly in the Northern sector (deviance explained 23.45%, Fig. 5), while it was more 

pronounced in the other two sectors, explaining 35.92 % of the variance for the Central area while in the 
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South it was the 41.53 % Fig. 5. In the Southern area the period preceding the sharper decrease at ca. the 

year 2000 was characterized by a certain stability at high values Fig. 4, while in the Central sector landings 

increased rapidly during the 90s but suffered a strong decline in the subsequent years Fig. 4 and Fig. 5.  

When looking at the seasonally adjusted series (Fig. A1, supplementary material) a significant decreasing 

trend could be appreciated in all the time series of both sardine and anchovy landings in the whole areas. 

 

 

Figure 5. Standardized time series of anchovy and sardine landing. The red line represent the first eigen vector, 
and the percentage of deviance explained by this is indicated in the upper left corner for landing series and in the 
bottom left corner for the environmental series. SST= Sea surface temperature; SSS= sea surface salinity; SSH= sea 
surface height and KE =kinetic energy. 

 

Environmental Series description and main patterns 
 

Fig. 4 shows the monthly environmental series and Fig. A1 (supplementary material) the series averages 

per season and seasonal adjusted. Kinetic energy showed stable patterns in the Northern and Southern 

sectors. The North did not show long-term trend and was characterized by random noise pattern (variance 

explained 40.9 %) while in the south the trend was relatively stable, explaining the 18.35 % of the variance 

(Fig. 5). In the central sector, KE started to fluctuate more after the second half of the 90s Fig. 3-5 and was 

characterized by a long-term increasing trend, explaining the 54.6 % of the variance (Fig 5).  

SSH was similar in all sectors, showing peaks during the fall season Fig 4 The main pattern explained from 

approximately 45 % to 50% of the variance from south to north (Fig 5) and all sectors were characterized 

by strong seasonality (Fig 4; 5). SST showed similar values during the colder months in all three sectors (Fig 

4). During summer seasons the lowest values were in the north with the hottest peak reached during the 

year 2006, while in the other two sectors, which showed similar higher values, the highest peak was 

reached in the year 2003. For both SSH and SST, seasonality was the main characterizing pattern in the 
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whole study area (Fig 5) explaining 56.3 % ,64.28% and 64.55% of the variance in the Northern, Central and 

southern sector respectively (Fig 5). SSS showed similar fluctuations across sectors, with the lowest values 

in the southern sectors (Fig 4). In all three areas, SSS increased during the period studied and was more 

evident in the last 15 years (Fig 4). The deviance explained by the long trend in the northern sector was 

62.1%, Fig 5) and in the central and in the southern explained 66.63% and 69.87 % respectively (Fig 5). 

The seasonally adjusted series for both SST and SSS showed a linearly increasing trend in all areas (Fig A1,  

supplementary material). SSH increased in the northern sector while it did not show a trend in the other 

two sectors (Fig A1, supplementary material). KE showed a positive long-term trend in the Central sector, 

contrary to the South where it decreased and to the northernmost area where it didn’t show long-term 

variation (Fig A1, supplementary material). 

 

Breakpoint analysis 
 

For landing series of both species, the breakpoints analysis detected between one and four significant 

discontinuities (Fig 6). The last breakpoints regarding the sardine landings were detected in the southern 

and northern sector between the years 2008 and 2009, consistently leading to low landing values. A co-

occurring breakpoint was detected in the central and in the southern sectors between the years 1998 and 

2000 (Fig 6). Regarding the anchovy landings, a breakpoint during the second half of the 90s co-occurred 

in all areas, and one co-occurred in the central and southern areas at ca. the year 2010 (Fig 6). In the Central 

area two more breakpoints were detected in the early 80s and at ca. the year 1990, consistent with the 

subsequent sharp increase in landing values which characterized the first half of the nineties (Fig 6). 

Regarding the environment, breakpoints were detected in Salinity time series around the year 2000 and 

the year 2005 in all sectors (Fig 6). In the Centre and in the south around the year 1980, a coinciding 

breakpoint was identified, and during the period from the second half of the 80s and earlier 90s the only 

breakpoints detected were in the southern sector. Between ca. the year 2000 and the year 2005 co-

occurring breakpoints were detected regarding the SSH in all three sectors (Fig 6) and a coinciding 

breakpoint was detected in the central and in the northern sector between the year 1990 and 1992. In the 

Northern sector, no breakpoints were detected on the kinetic energy series, while for both the central and 

the southern sector two and one discontinuities were identified respectively (Fig 6). Despite being in 

opposite directions, the last break of the central sector co-occurred with the only break of the southern 

area around the year 2005.  

In all zones, three breakpoints were detected on the SST series (Fig 6). In the central and southern sectors, 

the last breakpoint coincided around the year 1999 and the second breakpoint of both areas concurred 
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with the first breakpoint of the northern sector around the year 1992 (Fig 6). The last breakpoint in the 

North was instead detected around the year 2007 (Fig 6). 

 

 

Figure 6. Breakpoint analyses of landing series and the environmental variables.  SST= Sea surface temperature; 
SSS= sea surface salinity; SSH= sea surface height and KE =kinetic energy. Horizontal lines indicate confidence 
interval around the detected breakpoint and the sign (plus or minus) indicate the direction of the breakpoint 
toward an increase or a decrease. 

 

Relationships with the environment 
 

VIFs were calculated to identify variables with high collinearity. Regarding the anchovy landings in the 

southern sector, the salinity at the seasonal lag equal to 2 resulted in a VIF value greater than 3, and was 

therefore removed from the model. For the sardine landings, the variable removed from the model was 

the salinity at the time lag equal to 3 seasons. The procedure was repeated for the Central sector and for 

both species it led to the removal of SSS at time lags of 3 and 4 seasons for anchovy and sardine landing 

respectively. Regarding the sardine landings in the North, we removed SSH at the time lag of 5 and SSS at 

the time lags equals to 4, whilst for the anchovy landings we removed the SSS at the time lags of 4 seasons.  

Table 2 and Fig A2, A3 A4 (in supplementary material) show the final GLS models obtained for each sector 

and species.  

The Final model for the northern zone regarding the anchovy landings contained SST and SSH as significant 

explanatory variables, the former negatively affecting the landings, and the latter positively affecting them 

at time lags of 3 and 4 seasons, respectively (Fig A2). Sardine landings, instead, were related negatively 

with SSS, SST, and SSH at the time lags of 1, 5 and 4 respectively (Tab2; Fig A2).   

In the Central area, SST and SSH were the variables which resulted significantly related with both anchovy 

and sardine landings (Table 2, Fig A3). SSH at a time lag of 3 seasons influenced negatively both landings of 
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the sardine and anchovy. SST negatively affected the sardine landings at the time lags of 1, 3 and 5 seasons 

and the anchovy landings at the time lags of 2 and 4 seasons (Table 2, Fig A3). 

In the southern area SST was the only environmental factor which was significantly related with the 

anchovy landings (Table 2, Fig A4). This relationship involved the time lags at 2 and 4 seasons and was 

negative in both cases (Table 2, Fig A4). Landings of sardine were negatively affected by SST at the time 

lags of 3 and 5 seasons, by SSS at the time lags of 2 seasons and by SSH at the time lags of one and 5 seasons 

(Table 2, Fig A4). 

The rolling regression analysis in Figures 7, 8, 9 showed that the relationships and their strengths (measured 

in terms of magnitude of the coefficients and their significance) between landings and the environmental 

variables changed over time. During the early period in the northern sector SSS with a lag of 1 seasons 

significantly affected sardine landings until 2009 (Fig 7). Afterwards, although the relationship continued 

to be negative, it lost strength and didn’t influence the sardine landings significantly until the last decade 

of the series (Fig 7). SST with a lag of 5 seasons negatively affected sardine landings during the middle years 

of the study period until the 2008 (Fig 7). During the later years of the series, the SSH with a lag of 4 seasons 

was the one to influence the sardine landing most significantly (Fig 7).  

In the Central sector, SST with lag at 1, 2 and 5 seasons, negatively influenced the sardine landings until 

2005 in a significant manner. In the first and in the last case, this negative relationship was very pronounced 

in the early period, and losing practically all of its effect afterwards, with regression coefficients reaching 

values equals to ca. zero. While SST and SSH both with the lag at 3 seasons, significantly affected the sardine 

landings in the period between 1995 and 2005 (Fig 8). 

 

 

Table 1. Final GLS models for each sector and species. The Subscript (S-i) indicates the lags in seasons while (t) lags 
in months 

Sector 
Landings 

for 
Species 

Final Model 
Errors autoregressive 

forms 

North 
Sardine 

𝑦𝑡 = −0.04−0.17 ∗ 𝑆𝑆𝑆𝑠−1 − 0.09 ∗ 𝑆𝑆𝑇𝑆−5 − 0.22 ∗ 𝑆𝑆𝐻𝑆−4 + 𝑊𝑡 
 

𝑊𝑡 = 0.33𝑊𝑡−1 +  0.09𝑊𝑡−2 + 𝑍𝑡  
𝑍𝑡~ 𝑁(0, 𝜎2) 

 

Anchovy 
𝑦𝑡 = 0.005−0.33 ∗ 𝑆𝑆𝑇𝑠−3 − 0.15 ∗ 𝑆𝑆𝐻𝑆−4 + 𝑊𝑡  

 

𝑊𝑡 = 0.32𝑊𝑡−1 + 𝑍𝑡  
𝑍𝑡~ 𝑁(0, 𝜎2) 

 

Centre 
Sardine 

𝑦𝑡 = −0.009−0.15 ∗ 𝑆𝑆𝑇𝑠−1 − 0.14 ∗ 𝑆𝑆𝑇𝑆−2 − 0.24 ∗ 𝑆𝑆𝑇𝑆−5 −0.16 ∗ 𝑆𝑆𝐻𝑠−3 + 𝑊𝑡  
 

𝑊𝑡 = 0.59𝑊𝑡−1 + 𝑍𝑡  
𝑍𝑡~ 𝑁(0, 𝜎2) 

 

Anchovy 
𝑦𝑡 = −0.002−0.18 ∗ 𝑆𝑆𝑇𝑠−2−0.15 ∗ 𝑆𝑆𝑇𝑠−4 − 0.12 ∗ 𝑆𝑆𝐻𝑆−3 + 𝑊𝑡  

 

𝑊𝑡 = 0.67𝑊𝑡−1 −  0.17𝑊𝑡−2 + 𝑍𝑡  
𝑍𝑡~ 𝑁(0, 𝜎2) 

 

South 

Sardine 
𝑦𝑡 = −0.03−0.16 ∗ 𝑆𝑆𝑆𝑠−2 − 0.11 ∗ 𝑆𝑆𝑇𝑠−3 − 0.20

∗ 𝑆𝑆𝑇𝑆−5 −0.19 ∗ 𝑆𝑆𝐻𝑠−1 −0.16 ∗ 𝑆𝑆𝐻𝑠−5 + 𝑊𝑡  
 

𝑊𝑡 = 0.41𝑊𝑡−1 −  0.22𝑊𝑡−2 + 𝑍𝑡  
𝑍𝑡~ 𝑁(0, 𝜎2) 

 

Anchovy 
𝑦𝑡 = −0.004−0.15 ∗ 𝑆𝑆𝑇𝑠−2−0.16 ∗ 𝑆𝑆𝑇𝑠−4 + 𝑊𝑡  

 

𝑊𝑡 = 0.48𝑊𝑡−1 + 𝑍𝑡  
𝑍𝑡~ 𝑁(0, 𝜎2) 
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Figure 7. Temporal variability (based on a sliding window of 8-yr) of the sign and magnitude of the GLS coefficients 
(black line) of the relationships between the sardine and anchovy landings and the environmental variables in the 
northern sector. Filled circles indicate significant relationships. Grey lines represent the temporal variability of the 
mean value (based on a sliding window of 8-yr) and grey segments the standard deviation, of the specific 
environmental variable. 

 

 

Figure 8. Temporal variability (based on a sliding window of 10-yr) of the sign and magnitude of the GLS coefficients 
(black line) of the relationships between the sardine and anchovy landings and the environmental variables in the 
Central sector. Filled circles indicate significant relationships. Grey lines represent the temporal variability of the 
mean value (based on a sliding window of 10-yr) and grey segments the standard deviation, of the specific 
environmental variable. 
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In the south concurrent negative effects on sardine landings, with coefficients showing similar patterns i.e. 

local minimums during the period between the years 1995 -2008, were accomplished by SSS, SST and SSH 

at a lag of 2, 3 and 5 seasons respectively. The negative relationship with SST at a lag of 5 seasons showed 

only one significant negative value during the period between 1997-2007 (Fig 9). SSH at a lag of 1 season 

was significantly related with sardine during the early period and slowly diminished its negative effect over 

time (Fig 9). 

In relation to the anchovy landings in the northern sector, regression coefficients of SST at a lag of 3 seasons 

gradually decreased its negative effect until it reached non-significant values during the last decade. SSH 

always affected anchovy positively, observing significant effects only between 1999 and 2010 (Fig 7).  

In the central sector, significant negative relationships between SST at the time lag of 2 seasons and 

anchovy landings occurred between 1995 to 2005, after which it became insignificant and almost null. SST 

at a lag of 4 seasons negatively affected anchovy landings in the period included between 2000 and 2010 

(Fig 8). During the years 1990 to 2010 the regression coefficient of the relationship between SSH at a lag of 

3 seasons and anchovy changed from a significantly negative relationship to a positive one which, although 

relatively low, was significant (Fig 8).  

Finally, in the southern sector, SST at the time lag of 2 and 4 seasons negatively influenced the anchovy 

landings during the middle part and the second half part of the study period. SST at a lag of 2 seasons 

negatively affected anchovy from the year 1986 to the 2004 and later it started again to influence 

negatively anchovy during the last two decades. While the SST at the lag of 4 seasons influenced negatively 

anchovy from 1992 until the end of the series (Fig 9). 

 

 

Figure 9. Temporal variability (based on a sliding window of 10-yr) of the sign and magnitude of the GLS coefficients 
(black line) of the relationships between the sardine and anchovy landings and the environmental variables in the 
Southern sector. Filled circles indicate significant relationships. Grey lines represent the temporal variability of the 
mean value (based on a sliding window of 10-yr) and grey segments the standard deviation, of the specific 
environmental variable. 
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Discussion 
 

In this study, we investigated the characteristics of the long-term trend and the potential causes of 

variability of the anchovy and sardine landings in the Catalan sea. Because of the consistence between 

catches and the annual biomass estimates observed in the last ca. 15 years in the GSA06 (GFCM, 2015), 

landings can be an acceptable proxy of abundance for both species. But when interpreting the results, it is 

important to consider and keep in mind the various problems related to any kind of official fisheries 

landings data e.g. “black” market, misreporting or discards, although the latter could be considered 

negligible in our case study (Martín et al., 2008). To achieve the purpose, we needed as much long-term 

information of small pelagic landings as possible for subsequent analysis. Such kind of series generally are 

hard to obtain as long-term data are often fragmented, not digitized, partially lost etc. Here, in order to get 

exceptional extended time series, the three years gap (1990-1992) in the central and southern fishing area 

were estimated by using the ANN methods on the set of data before the 1990. Generally, in time series 

forecasting past observations of the same variable are collected and analysed to develop a model which 

describes the underlying relationships of these variable allowing to estimate its future realizations (Zhang, 

2003). Although there are many kinds of time series analyses such as exponential smoothing method, Box–

Jenkins autoregressive integrated moving average (ARIMA) models, which have been used to forecast small 

pelagic landings (e.g. Stergiou et al., 1997; Koutroumanidis et al., 2006; Tsitsika et al., 2007), recently ANN 

methods have attracted increasing attention due to their flexible non-linear capacity (Czerwinski et al., 

2007, Zhang,2003) and to their ability of  identify inputs and output rather than considering causality of 

data, i.e. using a black box approach (Gutiérrez-Estrada et al., 2007; Kim et al., 2015). With ANNs there is 

in fact no need to specify a model form. Rather the model is adaptatively formed based on the features 

presented from the data (Zhang,2003). Despite ANN method is difficult to understand due to its ‘black box’ 

nature, it has a superior and reliable forecasting power compared to the other empirical methods 

(Gutiérrez-Estrada et al., 2007; Kim et al., 2015). This is especially true when a consistent repetitive pattern 

does not characterize the data such as landings time series, which are instead susceptible to drastic 

environmental changes or are influenced by fish age, growth, or natural mortality (Kim et al., 2015). Since 

the purpose of the reconstruction of our landing series was not in the sense of the interpretative aspect 

(e.g. the relation between the landing of a specific month compared to the same month from the previous 

year) but instead was the realization of the largest anchovy and sardine series to be subsequently modeled, 

the choice of ANN method because of its characteristics seemed to be the most appropriate. 

Excluding the last four years, sardine was the most important species in volume (tons) caught and exhibited 

peaks during the spring and at the end of the summer. Regarding reproductive strategies, this species is a 
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multiple spawner, producing batches of eggs during an extended season, covering the colder period of the 

year, from November to March in the Catalan sea, when the water is vertically homogenous (Olivar et al., 

2001). Sardine is a species following the ‘capital breeder’ strategy (e.g. Albo-Puigserver et al. 2017; Ganias 

et al., 2007). Even though the two landing peaks were not so evident, they suggest individuals’ aggregation 

of which, the first during spring, reflect this strategy, i.e. the accumulation of energy during the spring 

season. While the second peak reflect the spawning aggregation starting at the beginning of the fall season 

(Palomera and Olivar, 1996). 

Seasonality was more evident for anchovy landings and showed a latitudinal evolution in terms of peaks, 

starting earlier at the lower latitudes at the end of the spring and during late summer in the northernmost 

latitudes. These latitudinal differences could be related to the species reproduction cycle, characterized by 

the high temperature-dependence of the spawning onset (Palomera, 1992).  

Sardine landings exhibited a general decreasing trend and none of the three sectors showed signs of 

recovery, reaching instead the lowest values during the last ten years, most evident in the southern area.  

Regarding anchovy, a general reduction in landings was observed in the northern and central sector. In the 

southern zone, despite the differences of peaks of the last years during the summer seasons respect to the 

peaks during the first half of the years 90s which were extremely high, overall, they remained at rather high 

levels compared to the sardine landings. Furthermore, in the two southernmost sectors we actually 

observed a slight increase of anchovy landings during the latest years. This increase could be the result of 

both the capacity of anchovy to recover more quickly when good feeding conditions reappear, thanks to 

its reproductive strategy ('income breeder', McBride et al., 2015), and to the annual closed fishing season, 

which coincides with the period of its recruitment. These results concur with the findings of the adjacent 

area (Gulf of Lions), as well as with the general decrease in other areas of the Mediterranean Sea (Van 

Beveren et al., 2016, GFCM 2015). 

 

One of the most noticeable events in this study was the synchronous breakdown of the landings of both 

species with the rise of SST and SSH and the decrease in SSS during the second half of the 90s and the 

beginning of the 2000s. These breakpoints matched the start of the most pronounced decrease of landings 

for both species. In the case of anchovy, it stopped with signs of recovery starting in ca. 2009 also evidenced 

by the breakpoint analysis for the southern and central sector (Fig 6). The combined effect between the 

long term fishing exploitation (in fact, none of the stocks of these species are described as underexploited 

in the GSA06; GFCM, 2015), which could have eroded the age structure of the populations making them 

increasingly juvenescent, together with the negative effects of sudden environmental changes acting on 

these populations mainly composed by juveniles more susceptible to the environmental variations 
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(combined effects of fishing and environmental variability; e.g. Anderson et al., 2008; Planque et al., 2010; 

Hidalgo et al., 2011) could be hypothesized as an explanation of the downfalls of the two small pelagic 

fishes.  

Although we did not analyse data regarding the age structure of these populations during the period 

considered, the recent findings regarding the decrease in size structures of both the anchovy and sardine 

population in NW Mediterranean Sea (Van Beveren et al., 2014; Brosset et al., 2017) indirectly strengthen 

this hypothesis. 

 

Our analysis is grounded on the hypothesis that the environmental impacts on small pelagic fish should be 

mainly felt through recruitment depending on eggs and larvae survival and juveniles growth, with the 

subsequent effects on the population dynamics (Bakun, 1996; Agostini and Bakun, 2002; Fréon et al., 2005). 

So as to study these impacts on the adult population (landings), we introduced the environmental 

parameters in the models after hysteresis (i.e. time lagged-effects, considering seasons).  

SST and SSH appeared to be the most important and frequent factors among the local environmental 

factors considered in influencing the landing variations along the Catalan coast. SSS was related only with 

the sardine landings in the North and in the South, which are the sectors influenced more directly by the 

continental waters, i.e. from the Rhone river and the Ebro river respectively. Considering that the bulk of 

landings was during the late spring and summer for both species, the significant seasonal lags of SST and 

SSH encountered affected mainly their early stages of the life cycle. For anchovy, the seasonal time lags 

found were considered representative of the spawning period of the prior year (spring-summer, time lag 

of 4 seasons), the juvenile aggregation shoals (fall, time lag of 3 season), and the period at which anchovy 

reach ca. 1 year old, which is when they are almost sufficiently mature to contribute to spawning and to 

recruit in fishery (winter, time lag of 2 season). The sardine population during the late spring and summer 

is a mixture of both juvenile (age 0) and adults (age 1 and older) (Tugores et al., 2011; Bonanno et al., 2014). 

The significant seasonal lags were considered to be the related with the spawning period of the previous 

year (late fall and winter, seasonal lags of 5-4), the juveniles feeding period, and recruitment (summer-fall, 

3 and 2 seasonal time lag).  

SST negatively affected both anchovy and sardine during the different life stages in the whole area. These 

negative relationships a coincided with other findings in this area (Martín et al., 2012) as well as in other 

parts of the Mediterranean sea where both anchovy and sardine catches were negatively correlated with 

SST (Katara et al., 2011). In the NW Mediterranean sea, cold years tend to be more productive, because 

winter mixing may reach greater depth (Salat, 1996). This enhanced productivity during the colder months 

of winter and spring also meant an increase in micro and meso-zooplankton (Fernandez de Puelles et al., 
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2004), the main food for the early life stages and adult individuals. Oppositely warm periods, were likely to 

trigger and anticipate strong thermal stratification preventing the mixing of water masses and therefore, 

leading to a reduction of nutrient supply in the upper layers with a consequent reduction of the 

zooplankton (Fernandez de Puelles et al., 2004) and in a modification of its composition (Auger et al., 2014).  

 

Regarding anchovies, the low productivity during the spawning period of the previous year (as a 

consequence of the high SST) might have affected the trophic environment for spawners and, 

subsequently, the eggs production, which therefore negatively affected landings. In fact, in another area 

of the basin Somarakis et al., 2004; Somarakis and Nikolioudakis, 2007 showed that waters cooler and much 

richer in zooplankton represent a favourable trophic environment for the spawning adults, which in these 

conditions enhanced the anchovy eggs production. In addition to food limitation, the high temperature 

values during the early life stages in the summer and fall of the previous year, could have led to a lower 

growth rate of larvae and juveniles owing to physiological limitations (dome-shaped relationship between 

temperature and growth larval and juveniles; Takasuka and Aoki, 2006; Urtizberea et al., 2008), negatively 

affecting landings due to the smaller chances of survival that young individuals have (Miller, 1997; Sogard, 

1997). As described in a recent study in the Bay of Biscay by Aldanondo et al., 2016, the size-dependent 

mortality could be a significant regulating process of the anchovies recruitment strength.  

 

Temperature affected sardine landings by acting on the spawning period in winter and on the juvenile 

aggregation shoals in summer and fall, just before the first breeding season. During both periods 

temperature probably played an indirect role in determining the early life stages survival, similar to what 

occurs with anchovy, by limiting prey availability. The growth and survival of the pilchard eggs and larvae 

developing in this area were described to be highly dependent on high food availability (Catalán et al., 

2006). This dependence was also seen for the growth of juveniles, which in the western Mediterranean sea 

(Alemany et al., 2006) seems to be strongly affected by a poor feeding environment due to the extended 

period of water column stability.  

 

The other factor recurrently linked to both anchovy and sardine landings in the whole area was the SSH, 

which is a variable that describes processes such as gyres meanders and eddies (Pujol and Larnicol, 2005). 

These hydrological features are known to enhance the enrichment and retention processes and are 

therefore crucial structures for successful recruitment, especially of small pelagic fish (Agostini and Bakun, 

2002; Lafuente et al., 2002; Sabatés et al., 2007; Checkley et al., 2009).  Low SSH during fall/winter favoured 

the following year landings for both sardine (eggs and larvae) and anchovy (recruitment) in the southern 
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and central sectors. These relationships were in agreement with other studies aimed at describing 

favourable environments for larvae and juveniles of both species in the Mediterranean sea (Giannoulaki et 

al., 2011, 2013; Tugores et al., 2011; Bonanno et al., 2014). Lower SSH generally indicate zones of 

divergence characterized by an uplift of subsurface and nutrient rich water (Nieto et al., 2014), which along 

the Catalan shelf were described to be caused by the strong downslope winds that originate in the Ebro 

valley (Bakun and Agostini, 2001). The positive relationships between anchovy landings and SSH in the 

northern sector during spring summer of the previous year seemed to be in contrast to what occurred in 

the other two sectors. Nevertheless, anchovy as shown by Katara et al., 2011; and Bonanno et al., 2014 in 

the Aegean Sea, was favoured by a wide range of SSH. The rise of SSH could be indicative of the start of 

processes like the mesoscale anticyclonic eddies which retains food and prevents larval dispersion 

favouring growth and survival (Sabatés et al., 2007). Convergent ocean surface transport and downwelling 

is indeed a typical situation occurring during, the summer season along the Catalan coast, and it is caused 

by the wind pattern characterizing this season (Bakun and Agostini, 2001). 

The rolling regression analysis allowed us to identify the period in which the strength (in terms of 

magnitude and significance of the coefficient estimates) of the main local factors causing variation of 

landings of both species changed. For both sardine and anchovy, the period in which the strength of most 

relationships with SST and SSH increased both negatively and positively was between the 90s and ca. 2010. 

The abrupt rise in sea surface temperature during this period, according to Vargas-Yáñez et al., 2010,  and 

changes in the mesoscale patterns as evidenced by the breakpoints analysis could have reduced the 

chances of survival of the early life stages and affected the recruitment of both species. Concerning SST, 

the negative effects became stronger during the summer/fall and winter for sardine and during 

spring/summer and fall for anchovy from the 90s to ca. 2010. During this period a change in mean 

temperature values was extremely noticeable and could have influenced sardine and anchovy larvae both 

directly on the foraging and growth capacity (Garrido et al., 2016), or indirectly by food limitation (e.g. 

Alemany et al., 2006; Catalán et al., 2006). The negative relationships between SST and anchovy landings 

during the last decades in the southern sector coincided both with the highest temperature values 

observed and with the slight recovery of landings. In general, higher temperatures during spring/summer, 

such as those observed during this period, might have favoured the growth rate of larvae and, therefore, 

lowered the mortality rate due to reduced exposure to predators (e.g. Dulčić and Kraljević, 1996; Wang et 

al., 2009), favouring the overall recruitment and recovery of anchovy. Nevertheless, this positive effect, 

useful for the anchovy recovery, likely turned into a negative one when the water temperature exceeded 

a threshold value and became a factor which prevented productivity of phytoplankton and subsequently 
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zooplankton, which as suggested by Garcia et al., 1998, represents one of the major factors limiting anchovy 

eggs and larvae growth in the area.  

SSH always had a negative impact on sardine, observing an increased strength of the relationship during 

the middle years of the period studied. During this time period SSH was, on average, high during the winter 

spawning season as well as during the growing period in summer-fall, indicating a low divergence pattern 

and hence a lack of enrichment of the upper layer. The relationship between anchovy and SSH showed 

instead a controversial pattern, changing in spring/summer from a negative to a positive effect in the 

central sector, and always positively influencing anchovy landing in the northern sector. In the Central zone, 

during the late summer and fall of the previous year a fairly clear divergence pattern characterized the area 

(lowest value of mean SSH, Fig 8), indicating a mixed upper layer which sustained high productivity after 

the break of thermocline (Salat, 1996; Sabatés et al., 2007). Consequently, an increase of SSH, which 

negatively affected landings, could be indicative of the failure of this break. Contrarily, significant positive 

effects on landings appeared when SSH values were on average highest (Fig 8). The rise in SSH likely could 

be indicative of convergent patterns, which therefore favoured retention of nutrients, favouring anchovies.  

The loss of significant relationships during the last period, especially for sardine landings, was not 

surprising, considering the complex effects the environmental factors have on a biological population 

(Hsieh et al., 2009). Variability of small pelagic fishes cannot indeed be explained by single environmental 

factor, but by a set of different drivers which permit these populations to prosper. The effect of a rise in 

temperature can be, for example, positive for the growth rate of early life stages but limiting for food 

availability. This latter effect could be mitigated if mesoscale processes are formed, permitting 

convergence, with the associated opportunities for the concentration of small organisms.  

In addition, the population responses to the environmental variability as shown by various studies could 

be further complicated by fishing, which by modifying demographic parameters of the stocks could 

enhance the nonlinear dynamics of the populations (e.g. Anderson et al., 2008; Planque et al., 2011) and 

alter their capacity to cope with changing environments (Hidalgo et al., 2011).    

This study was designed to investigate whether local environmental factors may have affected landings 

variation in the Catalan sea. Although some aspects of the long-term effects of the temperature and the 

role of productivity-enhancing oceanic features acting on the critical periods of the life cycle are revealed, 

the exploitation state of both species in this area might not allow unambiguous conclusions about the 

impacts of the environment on the population of these two small pelagic fishes. From this study, it is 

evident that the decline of both stocks is not only a result of environmental changes but rather the 

combined effects of these with the lengthy period of exploitation, and calls for studies oriented towards 

understanding the interaction between climate and fishing of these two species. 
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Supplementary Material 
 

 

 

Figure A1. Seasonal adjusted series and long-term linear trend of sardine and anchovy landings and the 
environmental series. 

 

 

Figure A2. Final GLS models for the northern sector. Red line indicate the fitted model and the 95 % of confidence 

interval. SA= Seasonally adjusted. 
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Figure A3. Final GLS models for the Central sector. Red line indicate the fitted model and the 95 % of confidence 

interval. SA= Seasonally adjusted. 
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Figure A4. Final GLS models for the Southern sector. Red line indicate the fitted model and the 95 % of confidence 

interval. SA= Seasonally adjuste
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General Discussions and Conclusions 
 
Discussions 
 

The objective of this PhD thesis was to detect the main environmental factors involved in the fluctuations 

of the abundance of small pelagic fishes (Sardine and Anchovy) along the coast of the North-East Spain, 

whose catches were historically one of the highest of the entire Mediterranean Sea, which after some 

anomalies have been observed to decrease strongly, especially regarding Sardine.  

Before focusing on the environmental influences, the spatial pattern of the fishing effort directed toward 

both species by using VMS data was studied to understand the behavior of the purse seine fleet targeting 

this species. This analysis showed that the fleet spatial distribution captured the features of the 

distributions of small pelagic populations in the area (Chapter 1). The results of this chapter led to a better 

understanding and visualization of the spatial distribution of catches, which form the basis of the landings 

data series1 studied in the rest of the PhD thesis. Then I considered both local environmental factors 

(Chapters 2 and 3) and climate index (WeMOI) (Chapter 3) and searched which of these was strictly linked 

with landings of both species. Results of these chapters showed that non-linearity better described the 

relationships between the availability of the resource and the environmental factors than previous studies 

effectuated in the area (e.g. Lloret et al., 2001; Martín et al., 2012). The results highlighted the importance 

of temperature, salinity and currents for both species, and the role of the WeMOI index in favoring sardine 

abundance when it was in a positive phase.  

Finally, I described the main driving forces acting on the critical stages of development of both species in 

the area and provided evidence, independent from the studies directly targeted on early life stages of 

development, that the temperature and sea surface height (used as a proxy of mesoscale processes) play 

an important role in the recruitment variability of the species studied (Chapter 4). In addition, we 

highlighted how the effects of these drivers were not stationary but transient over time (Chapter 4).  

 

The decreasing trend and the shifts (i.e. breakpoints) of both sardine and anchovy landings of the Northeast 

Coast of Spain during the 90’s, together with the relationships found with concentration and enrichment 

processes (positive phase of WeMOI characterized by low temperature and strong wind mixing, or low  

                                                           
1 In these purse seine fisheries, it is commonly assumed that discards are negligible and catches are equated to 

landings (cf. for instance recent stock assessments in GFCM or STECF). 
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salinity continental waters), concurred with the ones found in the adjacent northernmost area, i.e. the Gulf 

of Lions (e.g. Van Beveren et al. 2016). These similarities lead to think that these drivers act and have acted 

on a larger scale, that is, the NW Mediterranean basin rather than just the Catalan Sea. This is even truer 

when considering the dynamics of the coastal circulation of the Northwestern basin. This is characterized 

by the Northern Current flowing along the continental slope from the Gulf of Lions toward the Catalan Shelf 

perturbed by significant mesoscale activity like meanders eddies and filament (Millot 1987) which greatly 

influence biological activity (Garreau et al. 2011; Sabatés et al. 2001). This main permanent flow southward 

allows the transport of biological material, including pelagic eggs and passive larvae, from the Gulf of Lions 

toward the Catalan Coast (e.g. Sabatés et al. 2001, 2007). A recent study aimed to depict the transport of 

anchovy fish larvae in NW Mediterranean Sea (Ospina-Alvarez et al., 2015), by considering both 

hydrodynamic forcing and spawning behavior, identified the connectivity between the Gulf of Lions and 

the Catalan Coast as being characterized by an occasional two-way exchange of larvae, and by a marked 

but not uniform, in time and location, exchange southward, as also previously suggested by Sabatés et al. 

2001. Consequently, this exchange can play an important role in structuring the adult population in terms 

of abundance, acting as a transport from spawning areas toward the nursery areas. Therefore, when 

modeling local adults fish abundance (landings) as in this case study, it is important to note that it could be 

the result depending on the year (even if in small fraction especially in the central and southern parts of 

the Catalan Coast), of loss or gain of a fraction of recruited individuals due to the exchange between the 

Gulf of Lions and the Catalan Coast (Ospina-Alvarez et al., 2015). At the same time, our results regarding 

the northern part of the Catalan Coast being characterized by a strict connectivity with the Gulf of Lions 

(Ospina-Alvarez et al., 2015), could be extended, even if with extreme caution, to the nearby area. Although 

the scientific knowledge is less extensive for sardine, it is plausible to think that the exchanges of the 

passive early life stages between the two areas occur also for this forage fish.          

The reader may find here a final discussion in which information from the chapters and other studies is 

given in order to provide a general overview and explain the small pelagic populations’ trend in the area. 

The discussion is organized by distinguishing the two kinds of relationships considered; those related with 

favorable environmental conditions which shape the abundance of the small pelagic fishes by promoting 

their distribution and concentration, which unavoidably it is reflected on landings values; and those related 

with the recruitment success and their changes over time.  

 

The central hypothesis of this study was that environmental changes were the main drivers of the small 

pelagic populations in the area, but, the lack of data on biomass and abundance precluded making direct 

links with the environmental factors. Actual biomass and abundance of small pelagics is usually estimated 



 
  __________________________________________  

125 
 

General Discussions and Conclusions 

through acoustic surveys (MEDIAS, Mediterranean acoustic surveys), which have also the advantage of 

providing also geo-located information but are of complex logistics and high costs (e.g. Carpi et al., 2015). 

The use of landings as proxy for biomass or abundance of small pelagic populations is common in studies 

of these species (e.g. Lloret et al., 2004; Katara et al., 2011; Ruiz et al., 2013; Leitão, 2015; Teixeira et al., 

2016). Although we are aware that these data are only an approximation, landings offer the possibility of 

inferring, to a certain level, the population variation thanks to the strong consistency between them and 

annual biomass estimates (GFCM, 2015). 

 

Populations responses at immediate and intermediate temporal scales 
 

The success of small pelagic catches depends on the ability of the fishermen to recognize the spatial 

patterns of fish and identify high-density patches (Hieu et al., 2014). In NW Mediterranean Sea the purse 

seiners fleet has a very mobile behaviour and the vessels usually perform migration along the coast to 

search and reach areas where the resource is abundant (Pertierra and Lleonart, 1996). The search of pelagic 

resources is basically a problem of localization which can be summarised as follows: each vessel explores 

the sea using information about past fishing ground positions and its own present information from 

echosounders or other detection devices, but also evaluates the activity of the other vessels simultaneously 

exploiting the same fishing grounds, so if another finds the resource all vessels can converge into this area 

and fish (Russo et al., 2015). Consequently, the spatial distribution of the fishing effort and its spatial 

structure depends on how the resource (i.e., small pelagic fish) is structured, which in turn is dependent on 

the environmental conditions and how they change spatiotemporally.  

Gregarious fish such as anchovy and sardine have different levels of aggregation (rarely are they observed 

alone), from core concentrations or nuclei within a school to large concentration or sub-stocks, passing 

though schools/shoals and clusters (Fréon et al., 2005). The importance of the environmental processes 

influence on fish distribution rises with the increase of the level of aggregations (Fig. 1) (Bertrand et al., 

2008). The distribution and structure and size of the clusters, which correspond to the aggregation level in 

which fishers operate, depend mainly on those mesoscale processes which shape the zooplankton 

distribution patches like eddies or fronts (Bertrand et al., 2008). In addition, cluster distribution depends 

on those environmental forces such as temperature and salinity which, apart from acting directly on the 

physiological requirements of the fish (e.g. Pörtner and Peck, 2010), are responsible for the zooplankton 

availability and quality in terms of community composition. This can be altered over time owing to its 

increase together with the increase in stratification or changes in ocean currents circulations (Calvo et al.,  

2011).  
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Figure 1. A conceptual model describing the relative importance of factors regulating aggregation as a function of 

spatial scale. y-axis=oneself-organization, x-axis= environmental forcing. From Bertrand et al. 2008 

 

In Chapters 2 and 3 we stated the importance of salinity, temperature and current velocity of both 

meridional and zonal directions, used as a proxy of concentration and retention processes, for landings of 

both species and the importance of WeMOI index for sardine when is in its positive phase indicating strong 

river runoff and wind mixing (García-Sellés et al., 2010; Martín et al., 2012). These relationships were non-

linear and allowed identification of ranges of values of these variables which favor the abundance of both 

species. By superimposing this information with the spatial distribution of the effort obtained in Chapter 1 

it seems that effectively fishermen, according to our findings, allocate and assemble their efforts where 

environmental conditions are more favorable for the concentration of high abundance of fish (Fig. 2). 

 

Although fishing vessels can migrate among different harbors the fishing range is local because the fleet is 

obliged to return to port daily, and the boats must be moored for a minimum of 12 hours daily (Pertierra 

and Lleonart, 1996). Even though adults of small pelagic have less strict habitat requirements than their 

early life stages (e.g. Bellido et al., 2008; Giannoulaki et al., 2013; Petitgas et al., 2013) it is likely that those 

large fish aggregations, which are easier to be located by fishermen (Hieu et al., 2014), shift their 

distribution in response to changes in the environment so as to maximize the individuals fitness (Bertrand 

et al., 2008). This makes them more available for certain local fishing operations and unavailable for others. 
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The size or geographical area occupied by the aggregation formation of small pelagic fishes clearly does not 

depend only on the environmental forces but also on the size of population (MacCall, 1990; Bertrand et al., 

2004b). In a recent study Saraux et al., 2014 described the spatial organization of small pelagics in the Gulf 

of Lions and identified a different behavior in terms of aggregation of the two species. According to their 

results, anchovy seems to follow the relationship between the geographical area occupied and abundance 

proposed by MacCall, 1990 and known as the ‘basin model’, where density and area vary with abundance.  

Such kind of spatial organization was also observed in other systems (i.e. water off South Africa, Kuroshio 

Figure 2. Fishing effort direct toward anchovy and sardine in spring and summer 2014. Isotherm and isohalines in 

red and purple respectively. Direction and Magnitude of the current velocity estimated from Meridional and 

Zonal current. For a better visualization of the possible concentration process the style of the vector representing 

the Magnitude of the currents in the area at which the highest fishing effort occurred was amplified. GT=Gross 

tonnage. 
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Current and in the Humboldt Current) by Barange et al., 2009. On the other hand, according to the findings 

of Saraux et al., 2014, sardines seem to follow the ‘proportional model’, where the area occupied remains 

constant and local density varies in proportion to abundance (Hilborn et al., 1992; Petitgas, 1997).  

 

Part of the lasting decrease in landings of sardine and the unclear trend regarding anchovy could be 

hypothetically explained in a summarized way by combining our findings concerned with: 1) relationships 

with the environmental forces stressed to be non-linear (Chapters 2 and 3); 2) the changes in the 

aggregation distribution of the small pelagics which is reflected unavoidably on the fishing operations 

distribution (Chapter 1); 3) the kinds of the aggregation behavior of these species mentioned above, and 

4) the environmental changes observed in the Catalan Sea.  

Over the last 40 years evident changes in the environment such as the increase in temperature and salinity 

and the diminution of wind stress and water mixing have been observed in the NW Mediterranean Sea 

(Vargas-Yáñez et al., 2010a, 2010b; Calvo et al., 2011). These changes have inevitably affected sub-

mesoscale and mesoscale processes by acting on the hydrology as well as on the stratification, and on the 

ocean currents patterns which in turn affects the distribution and the abundance of the zooplankton 

communities (Molinero et al., 2008; Calvo et al., 2011; Villate et al., 2014). Such variations lead to an 

alteration of the distribution and to the decrease of the abundance of the prey patches, which influences 

the distribution of the cluster aggregations of both species due to their biological requirement (Bertrand 

et al., 2008). The general oceanographic and topographic features of the areas which forces the distribution 

of these population to be associated with the few point sources of nutrient (e.g. Giannoulaki et al., 2013) 

together with the catchability of these populations which depends on how well fishers perceive their spatial 

patterns and how successfully they identify high-density fish patches (Hieu et al., 2014), make these clusters 

more likely to be identified by fishermen during fishing operation. Fewer suitable areas due to the changing 

environment could have thus caused a reduction of the aggregations of both species, as evidenced for 

instance with the use the Threshold-GAM in the relationship between anchovy LPUE and temperature 

(Chapter 2), but the effects of the less suitable conditions were probably different for the two species owing 

to the different behaviour they have (Saraux et al., 2014; Barra et al., 2015). Specifically, sardines don’t 

spread their area, being capable of structuring high-density patches. This increases their availability to 

fishermen, resulting in a magnification of catchability when the population is at the same time particularly 

vulnerable to the unfavorable environment conditions, determining a drastic reduction of the abundance. 

On the contrary, anchovy is capable of spreading into areas less suitable and could thereby have avoided 

the rapid overfishing caused by the formation of these extremely dense patches. This hypothesis about the 

changes in the ranges of anchovy and sardine habitat to explain the variation of their populations is not 
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new. In fact, authors such as Bertrand et al., 2004a or Gutiérrez et al., 2007 proposed the ‘habitat-based’ 

hypothesis to explain fluctuations and shifts in abundance in pelagic fish populations in upwelling 

ecosystems and emphasized the role of the aggregation as an important parameter to explain variation in 

abundance because it reflected how the fish distribution responded to changing environmental conditions. 

 

Lagged populations response to environmental drivers 
 

So as to compensate for the low lifetime fecundity small pelagic species display several characteristics such 

as early maturation or the production of many eggs released in batches throughout protracted periods of 

time (Blaxter and Hunter, 1982). These characteristics make their life history traits highly sensitive to the 

environment (e.g. Cury and Roy, 1989; Bakun, 1996; Checkley et al., 2009), and because these traits can 

influence population dynamics years later, when cohorts reach reproductive maturity, direct effects of 

environment on development and reproduction can produce lagged population responses to 

environmental changes (e.g. Katara et al., 2011; Santos et al., 2012; Teixeira et al., 2016). In Chapter 4 

temperature and sea surface height, which is indicative of convergent and divergent processes, were 

identified as the main forces driving the landings variation in the Catalan Sea. These drivers were found to 

have a significant influence on the early stages of development of both species, as has been previously 

outlined by other authors in other parts of the Mediterranean Sea (e.g. Giannoulaki et al., 2011, 2013; 

Katara et al., 2011; Tugores et al., 2011; Bonanno et al., 2014) as well as in other systems (e.g. Asch and 

Checkley, 2013; Nieto et al., 2014). Although significant relationships were encountered, the presence of 

long-term trends and the shifts (evidenced by the breakpoint analysis) of both landings and environmental 

data lead to think that the relationships might not be statistically stationary i.e. the functional form of the 

relationships changed over time (e.g. Hidalgo et al., 2012; Schmidt et al., 2014; Szuwalski and Hollowed, 

2016) due to the evident non-stationary properties of the variables in question. This implied that even if 

the local environmental variables significantly affect the early life stages of sardine and anchovy, they might 

not extend into the future and that the effects inferred from the past may not be relevant today (e.g. 

Planque, 2016).  Since one of the obvious advantages of using lagged regression models is just that of 

producing prediction (Post, 2004), evaluating if such relationships were stationary resulted to be an 

important issue. For this reason, I decided to use the rolling regression approach which was particularly 

useful in this context since it allowed me to examine temporal changes both within and across years 

without choosing an arbitrary point (Hsieh et al., 2009; Hidalgo et al., 2011; Schmidt et al., 2014). As a result 

of the analysis of the long-term relationships between landings of sardine and anchovy and local 

environmental variables, we were able to take the first step in identifying when the relationships with seas 
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surface high and temperature began to emerge and how they have changed over time. Obviously, 

understanding what led to the non-stationarity in the response of the individuals and populations to 

physical processes is a complex issue, and based on the results presented here it can only be hypothesized. 

Non-stationary responses to the environment are mainly due to an alteration of the population processes 

such as shifts in reproductive success, mortality, growth, or maturation rate (Planque et al., 2010; Szuwalski 

and Hollowed, 2016). Both anthropogenic and environmental factors (e.g. Anderson et al., 2008; Hidalgo 

et al., 2011) can cause alteration of these processes.  For instance, warmer temperature values within the 

optimal temperature range for sardines increases their growth and development rates (e.g. Garrido et al., 

2016). In addition, the fishery can alter the reproductive success of the population due to the removal of 

adult individuals (e.g. Hsieh et al., 2006). The total annual number of spawns, in fact, depends on the 

duration of the spawning period and the spawning frequency of individuals. Both these spawning 

parameters can be size/age dependent in anchovies and sardines, so as a consequence of the removal of 

the adult individuals, the total annual number of spawns can decrease when the size/age decreases (Ganias 

et al., 2014 and references therein). 

Considering this, a plausible hypothesis could be the co-occurrent effects of the changing environment and 

the effects of the fishery. Fishing exists in the area since ancient time (Lleonart and Maynou, 2003; 

Palomera et al., 2007), and because fishing typically targets the larger individuals of a species, the average 

size and thus the age of the target population could, in turn, be decreased (Anderson et al., 2008; Hsieh et 

al., 2010; Planque et al., 2010). Changes in both size structure and age of both species have been observed 

in the NW Mediterranean Sea and were mainly attributed to the changes in prey availability and 

composition due to environmental variability (Van Beveren et al., 2014; Brosset et al., 2015). Obviously, as 

specified above, both fishing and environmental factors are not mutually exclusive, in fact, they might have 

acted synergistically on the age-size reduction of the two populations (Van Beveren et al., 2014). The 

reduced demographic structure of both populations could have in turn reduced the capacity to buffer the 

changing environment by reducing the duration of the spawning season, thereby reducing the probability 

of the eggs and larvae encountering the optimal environmental window because of the reduced 

reproductive potential young individuals have compared to the older and larger (Planque et al., 2010; 

Ganias et al., 2014). 

Therefore, the reported decrease of the age-size structure of both populations in the area  (Van Beveren 

et al., 2014; Brosset et al., 2017) together with the likely changes in population processes (e.g. growth, 

maturation), which can result from both linkages to non-stationary environmental variables (Fulton, 2011) 
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and fishing exploitation (Anderson et al., 2008), might be a possible explanation of the transient responses 

of sardine and anchovy in relation to the local environmental drivers observed over time.  

A possible signal which strengthens this hypothesis was shown in chapter 2. A shift towards lower values 

inside the range of temperature preferred by the anchovy for spawning was observed. This reduction in 

the preferred temperature can be indicative of smaller temporal windows in which the spawning 

aggregations occurred owing to an increasingly juvenile population. This consideration is further supported 

by the recent findings on the reduction in size reported for anchovy during the same period (2006-2007) 

by Brosset et al., 2017. 

Study limitations and Perspectives 
 

Despite having a better understanding of the environmental driving forces acting on the two small pelagic 

populations along the Catalan Coast many questions remain unanswered. The two hypothesis specified 

above could be considered possible starting points for future research while at the same time highlighting 

some limitations of the study, specially in regard to the kind of data which could add to our findings.  

For example, one of the limitations of this study could be the use of landings data as a proxy of the 

abundance of both populations. Commercial fishing data provide an inexpensive sampling of the exploited 

species with wide spatiotemporal scale coverage and in the area, thanks to both the fishing regulations and 

the topography, offer a fairly good representation of the small pelagic populations size. However, since 

these data rely on the variability of catchability which varies with the behavior of fish, fishers and their 

interactions (e.g. Fréon and Misund, 1999), a step further might be coupling available data from acoustic 

surveys with spatial explicit fishing data. Doing so, a better understanding of the concentration behavior of 

vessels in relation to the changes in biomass of anchovy and sardine related to the adjustment of their 

density and range of distribution could be provided.  

In addition, inferring the possible results for a whole year (acoustic estimates are effectuated once a year) 

by discriminating for example the cluster size by using similarities in the VMS tracks, the distribution and 

the aggregation patterns could be analyzed in relation to the temperature, salinity, currents and nutrient 

concentrations in order to evaluate in a spatially explicit way the effects of these on the small pelagic 

aggregations and how these relationships change over time. 

Another gap of the study is the lack of the size/age structure of commercial catches whose availability could 

improve our findings.  By using historical monthly time series of biological parameters of commercial 

catches to analyze the evolution of the average size and weight over time, the non-stationary response 
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observed in relation to the local drivers could be refuted or demonstrated. However, the relevant time 

series over sufficiently long-time scales (e.g. 10 years or more) are simply unavailable. Trends and 

breakpoints might be analyzed using, for example, similar time series analyses, as used in chapter 4, and 

compared with both landings and the local environmental drivers. In addition, the changing effects on 

landings of environmental drivers as a function of the size-age structure could be explored by the use of 

different threshold models in which the demographic parameters could be used as a fixed threshold 

(likewise in chapter 2) or as a variable coefficient model e.g Ciannelli et al., 2012.  

Despite these unanswered questions that could be looked into, this work is one step forward in the 

understanding of the small pelagic populations abundance variability in the Catalan Sea. 
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Conclusions 
 

The main conclusions derived from this study can be summarized as follows: 

1) The use of spatial indicators applied to the fishing efforts showed that the temporal and spatial 

organization of fishing operations differed when directed toward anchovy or sardine. When 

directed toward anchovy the fishing effort’s spatial distribution changed between seasons and 

revealed a clear application of the fishermen’s knowledge of the spawning aggregation behavior of 

this species when allocating and concentrating their fishing effort. In addition, fishing effort 

increased when the level of spatial concentration (concentration index) rose, suggesting an 

aggregative behavior of fishing vessels when an anchovy cluster was detected. On the contrary, 

when directed toward sardine these spatial patterns described did not occur. The fishing effort’s 

concentration curve and its related index, which provide information on the proportion of the area 

occupied by the fishing operations, could give, if coupled with available catch data, a preliminary 

idea of the status of the exploitation of the small pelagic fishes.         

2) Fishing effort distribution directed toward both species reflected spatial patchiness which was 

highly consistent with the spatial structures described by other authors using acoustic surveys data. 

Therefore, we should consider the possibility of using these data as a complementary tool for 

studying the spatial distribution of small pelagic fishes for management or assessment purpose, 

and also take advantage of the fact that it provides information of a whole year, unlike acoustic 

survey data.  

3) High productive low salinity waters together with the currents flowing southward and westward, 

both of which indicate the occurrence of concentration and retention processes during the spring 

and summer seasons, favoured the Landing per unit effort (LPUE) used as a proxy of the anchovy 

adult abundance. 

4) During the decade 2000-2010, the threshold GAM allowed to identify a threshold effect of 

temperature on adult anchovy abundance in the northernmost part of the Catalan Sea, suggesting 

a reduction of the spawning period and the thermal window in which the spawning aggregation 

occurred. 
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5) The Western Mediterranean Oscillation index (WeMOI), which was used as a proxy of productivity-

enhancing oceanic features, played an important driving role in favouring Sardine LPUE, but the 

relationship between them was non-linear. Our results expand those of other studies by showing 

that this relationship became almost or totally insignificant when WeMOI reached high absolute 

values.  

6) Sardine tended to prefer a restricted range of salinity values, avoiding both low and high salty 

waters, and their abundance was favoured by the current flowing northward, which is essential for 

the generation of the mesoscale anticyclonic eddies implicated in retention and concentration 

processes along the Catalan coast. 

7) Sea surface height (SSH), used as a proxy of convergence and divergence processes, together with 

the sea surface temperature (SST) were the two main environmental drivers which, by acting on 

the eggs/larvae and juvenile stages of both species, explained the abundance fluctuations of 

Sardine and Anchovy in the Catalan Sea.     

8) The strength with which the SSH and SST affected the abundance of both populations changed over 

time owing to the non-stationary behaviour of the environmental variables (i.e. their mean values 

steadily changed) together with the extended exploitation of both species in the area. The effects 

of both environmental factors became stronger during the periods characterized by a sudden 

increase or decrease in their mean values or when they were higher compared to other periods. 

The variation over time of the strength of the relationship between these environmental variables 

and the population abundance are supposed to be due to the synergic effects of the environmental 

changes and the variations in demographic patterns described for both populations in the NW 

Mediterranean. 
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