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The thing that di�erentiates scientists is purely an artistic ability to discern
what is a good idea, what is a beautiful idea, what is worth spending time on, and
most importantly: what is a problem that is su�ciently interesting, yet su�ciently
di�cult that it hasn't yet been solved, but, the time for solving it has come now.

-Prof. S. Dimopoulos (Particle Fever, 2013)
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Resumen

De acuerdo con estimaciones recientes, 1018 bytes de datos se generan di-
ariamente alrededor del mundo. Nuestra sociedad necesita urgentemente solu-
ciones efectivas para lidiar con este diluvio de datos. Utilizando elementos fun-
damentales de la teoría cuántica �la teoría más explorada de la física moderna,
posiblemente� la información cuántica está revolucionando la forma en la que
adquirimos, procesamos, almacenamos y transmitimos información. En plena era
de la información, el sector industrial reconoce cada vez más el potencial de las
tecnologías cuánticas, y a su vez nuevos desarrollos en el procesamiento de la infor-
mación cuántica continúan impulsando descubrimientos prominentes relacionados
con aspectos cientí�cos de carácter más fundamental.
Existen varios programas de investigación alrededor del mundo desarrollando y

comercializando tecnologías cuánticas, principalmente para aplicaciones de crip-
tografía y generación de números aleatorios. Así, las limitaciones que hoy nos
separan de la era de la información cuántica están siendo gradualmente super-
adas. Sin embargo, existe un problema fundamental que aún necesita ser en-
frentado: la imposibilidad de saber lo que realmente sucede en un experimento
cuántico, debido a sus dimensiones de tamaño atómico. En efecto, ¾cómo podrá
un usuario garantizar el funcionamiento adecuado de un dispositivo cuántico que
ha sido adquirido a través de una compañía externa? A sus ojos el dispositivo
será una verdadera caja negra. Incluso si el usuario contara con un Doctorado
en ciencia cuántica, el problema prevalecería insoluble debido a la imposibilidad
de controlar a la perfección, es decir monitorear, todos los procesos físicos que
ocurren en cualquier experimento cuántico. Además, la situación se vuelve aún
más dramática si se piensa en aplicaciones en donde un agente maligno pudiese
hackear los dispositivos y manipular su funcionamiento interno, volviendo así el
protocolo en cuestión inseguro y por ende también irrelevante.
El propósito de esta Tesis es entonces contribuir al desarrollo experimental

de protocolos de información cuántica con dispositivos sin caracterizar, llamados
device-independent. Estos protocolos son, por naturaleza, immunes a cualquier
ataque o falla relacionada con desajustes entre la teoría y la implementación del
protocolo. Esto se logra a lo largo de los diferentes Capítulos prosiguiendo las
siguientes tres tareas que en ocasiones se traslapan: (i) Ampliar las capacidades
teóricas estableciendo un entendimiento mayor de los recursos fundamentales de

vii



la teoría de la información cuántica con dispositivos sin caracterizar. (ii) Desarrol-
lar protocolos de información cuántica competitivos, encontrando un intercambio
adecuado entre alto rendimiento y practicabilidad; entre el poder del marco de tra-
bajo device-independent y sus menos demandantes versiones, dichas semi-device-

independent. (iii) Analizar y mejorar las condiciones experimentales de diversas
plataformas para llevar a cabo implementaciones en experimentos de prueba de
principio, demostrando la realización de protocolos de información cuántica con
cajas negras.
Nuestro objetivo de convertir la teoría de la información cuántica en una tec-

nología tangible para nuestra sociedad a través del uso de dispositivos sin car-
acterizar contribuye no solamente al desarrollo tecnológico de estos protocolos,
sino que también ofrece una visión valiosa de aspectos más fundamental. En este
sentido, contribuimos a la caracterización y cuanti�cación del entrelazamiento �
el recurso cuántico fundamental de muchos fenómenos sin contraparte clásica�
en escenarios de interés práctico en dónde se consideran dispositivos sin carac-
terizar. Desde la perspectiva más aplicada, contribuimos al desarrollo de dos
tareas especí�cas: la certi�cación de números genuinamente aleatorios en esce-
narios device-independent y semi-device-independent, y la generación de una llave
secreta entre dos partes de manera device-independent.
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Abstract

According to recent estimates, 1018 bytes of data are generated on a daily basis
around the globe. Our information society urges for radical solutions to treat
such data deluge. By exploiting fundamental key elements of quantum theory
�arguably the most probed theory of modern physics� quantum information
science is nowadays revolutionizing the way in which we acquire, process, store
and transmit information. In the midst of the information era, the potential of
quantum technologies is being recognized by the industry sector, and in turn, new
capabilities for quantum information processing keep driving exciting discoveries
related to more fundamental aspects of science.
There are several research programs all around the world fostering the develop-

ment and commercialization of quantum technologies, mostly for cryptographic
and randomness generation duties. Thus, the technological limitations that today
step us aside from the quantum information era are gradually being overcome.
But there is a fundamental issue that still needs to be faced: the impossibility to
know what is really going on in quantum experiments, due to their atomic-scale
dimensions. Indeed, how will an average user guarantee the proper functioning of
a quantum device that has been purchased from an external company? To his
eyes, the device will merely look like a black box. Even if the customer holds a PhD
in quantum science, the issue will remain fundamentally cumbersome because of
the impossibility to fully control, i.e. monitor, all the physical processes occurring
in any quantum experiment. Furthermore, the situation turns even more dra-
matic when considering adversarial applications, where a malicious eavesdropper
could break the devices to manipulate their internal working, turning the protocol
insecure and hence irrelevant as well.
Therefore, it is the purpose of this Thesis to contribute to the experimen-

tal development of quantum information protocols with uncharacterized devices,
namely, device-independent quantum information protocols. These protocols are
naturally immune to any attack or failure related to mismatches between protocol
theory and its actual implementation. This is achieved throughout the di�erent
Chapters by pursuing the following three overlapping duties: (i) To broaden the-
oretic capabilities by establishing a richer understanding of relevant fundamental
resources lying at the basis of the theory of quantum information with uncharacter-
ized devices. (ii) To develop competitive quantum information protocols by �nd-
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ing an adequate trade-o� between high-performance and practicability; between
the power of the device-independent framework and its less demanding, so-called
semi-device-independent, relaxations. (iii) To analyze and improve experimen-
tal conditions of diverse physical setups in order to carry out implementations in
proof-of-principle experiments demonstrating quantum information protocols with
black boxes.
Our objective of turning the theory of quantum information into a graspable

technology for our society through the development and implementation of pro-
tocols based on the minimalist, user-friendly, black-box paradigm contributes not
only to the technological development of these protocols, but it also o�ers valu-
able insights on more fundamental aspects of quantum theory. In this sense,
we contribute to the characterization and quanti�cation of entanglement�the
pivotal quantum resource at the basis of most testable phenomena without classi-
cal account� in scenarios of practical interest where uncharacterized devices are
used. From the more applied perspective, we contribute to the development of
two speci�c information tasks: the certi�cation of genuinely random numbers in
device-independent and semi-device-independent scenarios, and the generation of
a shared secret key among two parties in a full device-independent manner.
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1. Introduction

1.1. Brief overview

Quantum information science exploits fundamental key elements of quantum the-
ory �arguably the most probed theory of modern physics� to dramatically im-
prove the acquisition, transmission and processing of information. Over the last
three decades, the �eld has experienced tremendous growth as a consequence
of the following converging stimuli: (i) the development of quantum algorithms
and quantum information protocols largely outperforming their classical counter-
parts, (ii) the urgent demand for radical changes in technology due to the fact
that the miniaturization of information, dictated by Moore's law, has reached the
quantum scale and (iii) the development of e�cient experimental techniques to
create, store and manipulate quantum systems within a wide range of physical
implementations. In the midst of the information era, the potential of quantum
technologies is nowadays recognized by enterprises from the industry sector, and
in turn, new capabilities for quantum information processing keep driving exciting
discoveries related to more fundamental aspects of science.
Quantum Key Distribution (QKD), that is, the distribution of a secret key

between two honest parties whose security is exclusively guaranteed from the
laws of quantum physics [BB84, Eke91], is possibly the most mature quantum
information technology today. Originally introduced by Bennett and Brassard in
the eighties [BB84], QKD fundamentally changes and improves the way in which
we assess crypto-security, as QKD security is no longer based on assumptions
on the eavesdropper's computational power, but on the fact that her actions
must obey the laws of quantum physics. With the subsequent development of
optic �bre technology, entangled photon sources and decoy state pulses, QKD
became experimentally reachable by the beginning of the 21st century [HMP00,
ZQM+06]. Up to date, QKD has been extensively implemented and allows two
honest users to exchange secure keys at a rate of kilobits per second over hundreds
of kilometers with optic �bers [KLH+15] and on free-space as well [SMWF+07].
In fact, there are currently four companies o�ering commercial QKD systems
(ID Quantique, MagiQ, QuintessenceLabs and SeQureNet) and several others �
including Toshiba, HP and IBM� are also developing active research programs.
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1. Introduction

A few years ago, however, several publications reported on the hacking of
some of the above-mentioned QKD commercial products [ZFQ+08, LWW+10,
GLLL+11a]. At �rst sight, this seemed to suggest that the mathematical proofs
of QKD security were �awed, or even worse, that quantum theory itself was in-
correct. But a closer examination revealed that in reality the hacking attacks had
not broken any principle at all: instead, they had exploited mismatches �hitherto
unidenti�ed� between the theoretical description and the physical implementa-
tion of the protocol in question. In fact, the success and security of existing QKD
products is built upon assumptions about the quantum states and measurements
used which are crucial, though actually di�cult to meet in practice [SK14]. If the
parties cannot legitimately guarantee that the states that they receive and the
measurements that they perform correspond to those required by QKD theory,
security breaches are opened and protocols become unreliable and insecure.

Of course, a patch closing the loophole exploited in the attacks was immediately
put in place by the company distributing the QKD products. This is in fact a pos-
sible solution to the quantum hacking problem: to patch all mismatches occurring
between theoretical modeling and real implementation by improving experimental
conditions to guarantee that the states and measurements required in the proto-
col are correctly implemented. However, this approach seems out of reach, due
to the near-to-perfect implementation demands from QKD theory [SK14], and to
the unavoidable presence of noise sources that will never be fully characterized
and thoroughly accounted for in any experiment.

A radically di�erent solution to this fundamental problem would be to com-
pletely ignore the internal working of all devices and attempt to establish security
exclusively from the observed statistics, that is, without making any assumption
about the states and measurements used in the QKD protocol. This approach was
introduced by Acín and collaborators ten years ago [ABG+07], under the name of
device-independent quantum key distribution (DIQKD). Inspired from previous re-
sults on self-testing [MY98] and non-signaling key distribution [BHK05], DIQKD
proposes a minimalist paradigm to design protocols whose security is exclusively
guaranteed from the observed (classical) data, without any reference to the shape
of the (quantum) states and measurements used to obtain it.

Generally speaking, the device-independent (DI) approach provides protocols
naturally immune to hacking attacks exploiting experimental imperfections, and
thus has emerged as an engaging formalism for the development of new-generation
quantum information technologies. The DI approach has in fact been proven
fruitful over the past decade for QKD [ABG+07, MPA11, PMLA13, VV14, MS16]
and beyond, yielding protocols also for random number generation (RNG) [Col07,
PAM+10, GMDLT+13, NSBSP16], entanglement detection [BGLP11, BBS+13]
and other tasks as well [GBHA10, CBB15, CS16].
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1.1 Brief overview

Experimentally, however, implementing DI quantum information protocols re-
mains hitherto di�cult because the uncharacterized devices used must produce
statistics exhibiting Bell nonlocality [Bel64, BCP+14] �a strong form of correla-
tions achievable by means of quantum resources but with no classical counterpart�
in a loophole-free manner. In particular, loophole-free implementations in the con-
text of Bell experiments crucially rely on high overall e�ciencies for the collection
of the observed statistics, making the certi�cation of genuine nonlocality di�cult
�though not impossible [HBD+15, GVW+15, SMSC+15]� to be implemented
from state-of-the-art quantum technologies.

A midpoint among the scenario in which all quantum devices are trusted and the
full DI paradigm is the semi-DI approach (see Fig. 1.1). This is a hybrid combina-
tion which takes the best of the two worlds, as it provides high performance from
less experimental requirements by moderating ultra-security claims through proto-
cols based on partial elements of trust. The semi-DI approach delivers a very com-
petitive edge because it o�ers a more practical framework than the DI formalism
to implement quantum information protocols with uncharacterized devices. For in-
stance, in Measurement-DIQKD [LCQ12], the two parties willing to share a secret
key prepare speci�c quantum states which are sent to a measurement station in
between them. The state preparation is device-dependent, but the measurement
process in the middle remains, indeed, device-independent. Measurement-DIQKD
has been experimentally demonstrated lately at high rates with continuous vari-
able systems [POS+15]. Generally speaking, relaxing DI quantum information
protocols consists of assuming that some of the parties trust their measurement
apparatuses while the devices of the other parties remain uncharacterised. This
relaxation, which is often experimentally justi�ed, is often based on the obser-
vation of Einstein-Podolsky-Rosen (EPR) steering correlations [WJD07, SNC14],
and in particular has been proven e�ective for one-sided DIQKD [BCW+12] and
for one-sided DIRNG [PCSA15, MSA+17].

This Thesis contributes to the experimental development of quantum infor-
mation protocols with uncharacterized devices, namely, �black boxes�. It aims at
reducing the breach between quantum information theory and implementation.
This is achieved throughout the di�erent Chapters of this Thesis by pursuing the
following three overlapping duties: (i) To Broaden theoretic capabilities by es-
tablishing a richer understanding of relevant fundamental resources lying at the
basis of the theory of DI and semi-DI quantum information. (ii) To develop com-
petitive quantum information protocols by �nding an adequate trade-o� between
high-performance and practicability; between the power of the DI framework and
its less demanding semi-DI relaxations. (iii) To analyse and improve experimental
conditions of diverse physical setups in order to carry out state-of-the-art imple-
mentations of quantum information protocols with black boxes.
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Figure 1.1.: Operational approaches to quantum information processing. An
unknown quantum state � is distributed among N parties holding each
a measurement device. Top: In the standard approach, all devices
behave as white boxes, in the sense that their internal working is fully
trusted. The parties can therefore apply tomography techniques to
reconstruct the state �. Quantum information processing under this
approach relies on the certi�cation of entanglement among the dif-
ferent devices. Middle: The semi-DI approach is hybrid as certain
devices are uncharacterized and may be treated as black boxes, pro-
ducing an outcome labeled ai for some possible input choice labeled xi
for the i-th party. Quantum information processing in this approach
relies on the observation of steering correlations in the network. Bot-
tom: The full DI approach treates all devices as black boxes. This
minimalist framework provides the strongest form of security in these
scenarios since both the state and measurement devices can, to some
extent, be provided by a malicious agent. The DI approach is based
on the observation of nonlocal correlations.
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1.2. Motivation and main contributions

This Thesis focuses on turning the theory of quantum information into a gras-
pable technology for our society through the development and implementation of
prominent protocols based on the minimalist, user-friendly, black-box paradigm.
From the fundamental standpoint, it contributes to the characterization and quan-
ti�cation of entanglement [Sch35, HHHH09] �the pivotal quantum resource at
the basis of most testable phenomena without classical account� in scenarios of
practical interest where uncharacterised devices are used. From the more applied
perspective, it contributes to the development of two speci�c information tasks:
the certi�cation of genuinely random numbers in DI and semi-DI scenarios, and
the generation of a shared secret key among two parties in a full DI manner.

1.2.1. Entanglement with uncharacterised devices

Entanglement is the key resource at the heart of quantum mechanics to assess
information processing with black boxes. From the practical side, it is highly de-
sirable to count with experimental techniques to detect the presence of entangle-
ment in networks buit from uncharacterized devices. From the more fundamental
side, it is crucial to enlighten the subtle relation that exists between entanglement,
nonlocality, and steering, which are known to be inequivalent types of correlations.

Experimental detection of multipartite entanglement over steering networks.

We develop and implement semi-de�nite programming (SDP) techniques to ex-
perimentally certify the presence of all kinds of entanglement on a three-qubit
photonic W state in the steering scenario. The W state displays both genuine
multipartite entanglement (GME) and entanglement in all of its reduced states,
being therefore a �exible resource for quantum networks. We show that all types
of entanglement of the W state can in fact be certi�ed in all tripartite steering
scenarios in a scheme where each party applies the same set of measurements.
In this way, each party can certify all types of entanglement without the need to
rely on any characterisation of the measurement devices used by the others. Our
techniques can be readily adapted to other states in larger networks.

Quantifying nonlocality without anomalies. We introduce a natural measure
of nonlocality based on the probability for a quantum state to produce nonlocal
correlations from uniformly random sampled measurements. Our measure is op-
erational and has the crucial advantage of encompassing all Bell inequalities for a
given scenario at the same time. With this measure, we show that no anomalies
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1. Introduction

of nonlocality �-cases in which maximal entanglement does not yield maximal
nonlocality� occur for two-qubit states for a large class of situations.

1.2.2. Genuine random number generation

Entangled quantum systems have the potential to provide genuine randomness,
that is, randomness which cannot be attributed to incomplete knowledge of any
classical variable of the system. At the basis of such genuine, device-independent,
randomness lies a quantitative relation between the amount of nonclassicality �
nonlocality or steering� observed, and the degree of predictability of the results
produced by the uncharacterised devices. What is the maximal amount of ran-
domness that a given quantum state allows for? What is the maximal amount
of randomness that a given physical setup allows for? What are the experimental
challenges encountered in the certi�cation of genuine randomness? We assess
these questions, both within theory and experiment, by focusing our attention on
optical polarization-based schemes.

Optimal randomness generation in Bell experiments. We construct a general
framework and methods for optimal randomness certi�cation in Bell experiments.
The idea is to keep as much information as possible by avoiding any post-processing
of outcomes, then to estimate randomness by constructing a device-independent
guessing probability optimized over all possible Bell inequalities, and �nally to opti-
mize the latter quantity over all the tunable physical parameters of the experiment.
We then focus on entirely optical polarization-based implementations, for which
we certify four times more randomness than what a standard analysis, based on
a binning of the outcomes and on the use of a single Bell inequality, can achieve.

Experimental one-sided device-independent randomness certi�cation. We
implement for the �rst time methods for one-sided device independent random-
ness certi�cation on a three-qubit W state. The W state is created at each round
of the experiment from pairs of entangled photons, using both their polarization
and spatial degrees of freedom in order to produce three qubits. First, we show
that any reduction of the W state is steerable but does not allow for one-sided
randomness certi�cation: this constitutes the discovery of a form of steerable
correlations for which an eavesdropper can predict the result of any of the mea-
surements performed on the untrusted side. We verify that the experimental data
of each of the the reduced states does not reveal any amount of one-sided random-
ness, as predicted by the theory. Second, we analyze the amount of randomness
retrieved when untrusted measurements are performed on both the polarization
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and path degrees of freedom of one of the two photons produced. In fact, a phys-
ical bipartition of the state naturally stems between the two photons produced in
the experimental implementation of the photonic W state. We manage to certify
0:26�0:04 bits from the bipartitions of the W state. This value falls far from the
theoretical value of � log2(2=3) � 1:58 bits. This discrepancy is due to the fact
that the amount of randomness is extremely sensitive to the visibility of the pure
W state with respect to white noise. For instance, we observe that for visibility of
99:4% the number of one-sided random bits that can be certi�ed is already less
than unity.

Certifying more than one random bit from one entangled bit is possible.

Motivated by the extreme sensitivity of randomness towards visibility encountered
with the W state, we consider a re�ned scheme based on Sagnac interferometry to
certify more than one bit of randomness from one of the parts of an entangled bit,
that is, a maximally entangled state of two qubits. From the fundamental perspec-
tive, this probes the ultimate limits for randomness certi�cation using quantum
resources. From the practical perspective our scheme o�ers an advantage over
standard Bell experiments based on projective measurements of up to 30% in the
number of bits certi�ed. Upon optimization of the physical parameters and of all
possible Bell inequalities, our optical experiment based on polarization-entangled
photons certi�es 1:17�0:08 full DI random bits. We further increase this number
by assuming that the other qubit is trusted; in this case, we certify 1:27 � 0:15

semi-DI random bits.

1.2.3. Device-independent quantum key distribution

Implementing DIQKD is similar than certifying genuine random numbers in the
sense that the parties willing to exchange the secret key need to produce statistical
data exhibiting violation of a Bell inequality free from the detection loophole. This
demands high e�ciencies for the collection of the experimental data, but in the
DIQKD case this is far more di�cult to achieve as the parties are far from each
other and loss increases exponentially with distance over channels. Is it possible to
circumvent this problem and close the detection loophole at long distances? If so,
which are the remaining experimental challenges for DIQKD? Which experimental
setups could make DIQKD a technological reality?

Theoretic solutions for experimental DIQKD. We provide solutions based on
heralded-state-preparation to overcome the crucial problem of channel loss in the
frame of DIQKD physical implementations. By means of SDP techniques, we
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also develop an e�cient method which allows one to assume that spurious con-
tributions not accounted for in the modelling of an experiment are fully controlled
by the eavesdropper to her bene�t. Last but not least, we introduce a method
based on data post-processing to deal with the negative impact of loss on the
information reconciliation part of QKD protocols, a crucial issue unaddressed un-
til now. The post-processing method in fact provides much greater robustness
against noise and loss, and signi�cantly higher key-generation rates.

Implementation proposals. We propose the �rst implementation for DIQKD
based on light-matter interaction. The scheme relies on a heralded mapping of
polarization entanglement of light onto matter spins which can be subsequently
read-out with near-to-unit e�ciency. We also introduce and analyze improved
versions of existing optical DIQKD schemes based on spontaneous parametric
down-conversion (SPDC) sources, and present a DIQKD implementation which
does not rely on SPDC processes, but instead, is based on single-photon sources
�a new-generation resource for scalable photonic quantum technologies whose
development has grown extensively in the recent times. Our DIQKD scheme based
on single-photon sources largely outperforms previous proposals when physical
imperfections are taken into account.
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2. Preliminaries

In this Chapter we introduce the concepts and tools necessary for the develop-
ment of quantum information protocols with black boxes. We narrow our focus to
the bipartite case, the situation mostly �though not exclusively� encountered
along this Thesis (in Chap. 3 the tripartite case is also broadly considered). We
begin by formally de�ning the concepts of entanglement, steering and nonlocality

in Sec. 2.1. These three resources enable quantum information tasks when all de-
vices are trusted, when some devices are trusted, and when no device is trusted,
respectively, as explained already in Fig. 1.1. Then, in Sec. 2.2 we characterize the
sets of assemblages and correlations attainable by quantum theory. Such charac-
terization is indispensable for implementing semi-DI and DI quantum information
programs, whose general architecture is also described. In Sec. 2.3 we introduce
the problem of quantifying nonlocality and steering, which typically is assessed by
constructing witnesses known as Bell inequalities and steering inequalities. We
then make use of these tools in Sec. 2.4 to recall methods to certify genuine ran-
domness from quantum systems. This intrinsic randomness cannot be attributed
to a lack of knowledge of the underlying system, and thus it is certi�ed in a DI
or semi-DI manner. Finally, in Sec. 2.5 we review how such genuine randomness
can further be used to establish a secret key among two honest users in a full DI
way, in a task known as device-independent quantum key distribution (DIQKD).

2.1. The impossibility for local descriptions

Quantum entanglement. In 1935, Einstein, Podolsky and Rosen [EPR35] and
Schrödinger [Sch35] discovered a �spooky� feature of the quantum mechanical
description of Nature with no classical counterpart, and which, since then, has lied
at the center of interest of modern physics. This feature, called entanglement, is
the impossibility for the state of a composite system to be written as a convex
sum of products of local states of the individual subparts. To be precise, the
quantum state � describing a bipartite system AB is separable if it can be written
as a convex combination of product states [HHHH09]:

�SEP =
∑

�

p��
A
� 
 �A� : (2.1)
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On the contrary, if the quantum state � does not admit a decomposition in
terms of local states of A and B, it is said to be entangled. Deciding if a state �
is entangled or not amounts to check its membership to the set S of all separable
states (see top of Fig. 2.1), i.e. those admitting a decomposition of the form (2.1).
Up to date, this so-called separability problem remains a cumbersome task, beyond
the scope of this Thesis and which can only be e�ciently pursued for qubit-qubit
and qubit-qutrit systems [HHHH09]. Still, the certi�cation of entanglement of any
state is possible to achieve by performing speci�c measurements on the quantum
state one is willing to test. These speci�c measurements stem from a necessary
and su�cient entanglement criterion formulated in terms of directly measurable
observables W known as entanglement witnesses [GT09]. In fact, these witnesses
are observables such that their expectation value Tr [W�] is strictly negative only
if the state � is entangled.
In practice, however, the construction of such entanglement witnesses relies

on a prior knowledge of �, and furthermore assumes trustworthiness on the mea-
surement apparatuses to perform the desired measurements and estimate the
expectation value of W . Such assumptions are often not justi�able, especially
since slight mismatches between either the state or the measurements and their
actual physical implementation may lead to false-positive conclusions about the
presence of entanglement in the state [RFSB+12].

Quantum steering. In contrast, if the bipartite scenario is semi-DI (see the
middle of Fig. 2.1) no assumption about the shape of the states and measurements
implemented is made for one of the parties. Concretely, the scenario is composed
by Alice and Bob sharing an unknown quantum state �, with Bob trusting his
measurement apparatus, but Alice is not. Alice performs mA measurements on her
subsystem labeled by x = 0; :::; mA�1, each having oA outcomes a = 0; :::; oA�1.
No characterisation of Alice's measurements is assumed, while Bob has full control
of his measurements and can thus access the assemblage of unnormalized states
given by:

�ajx = TrA
[
Majx 
 1B �

]
: (2.2)

The measurements of Alice are de�ned by positive-operator valued measures

(POVMs), satisfying
∑

aMajx = 1A and Majx � 0 8a; x . The collection of all
quantum assemblages �those arising from any quantum state � and any set of
POVM measurements fMajxgajx� forms the set Q� shown in Fig. 2.1 and de�ned
as:

Q� =
{
�Bajx j �Bajx = TrA

[
Majx 
 1B �

]
;

� � 0; Majx � 0;
∑

aMajx = 1A
}
:

(2.3)
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Figure 2.1.: Quantum resources. Top: Membership of a quantum state � to the
space of separable states S is in practice observed with an entangle-
ment witness: a hyperplane W on the space of all states, H. Middle:

The semi-DI approach is based on the observation of assemblages
which do not admit an LHS model, that is, not belonging to the
convex set �A:B. The steerability of an assemblage �ajx is witnessed
through the violation of a steering inequality: a linear functional ŵ
in the space of quantum assemblages Q�. Bottom: In the DI case,
Alice and Bob rely on the observation of a nonlocal behavior p lying
outside from the polytope L. This is witnessed in practice through
the violation of a Bell inequality g acting on the space Q of all quan-
tum behaviors. Blue arrows illustrate that entanglement is necessary
to demonstrate steering, which in turn is necessary to demonstrate
nonlocality. Dashed blue arrows illustrate that entanglement, steer-
ing and nonolocality are inequivalent resources: there exist entangled
states which are unsteerable, and assemblages demonstrating steering
but leading always to behaviors that admit an LHV model.
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Steering is formally de�ned as the possibility of remotely generating ensembles
that could not be produced by a local hidden state (LHS) model [WJD07]. An
LHS model is a set of messages � distributed according to some probability p�,
instructing Alice's device to output a with probability p(ajx�) whenever she de-
cided to apply measurement x , and providing Bob with the state ��. Bob does
not have access to the classical variable �, so the �nal assemblage he observes is
composed by the elements:

�LHSajx =
∑

�

p�p(ajx�) �B� ; 8 a; x: (2.4)

An assemblage is said to demonstrate steering if it does not admit an LHS model
(2.4). Furthermore, a quantum state � is said to be steerable if there exists
measurements fMajxga;x which produce an assemblage that demonstrates steering.
Note that assuming that � is separable implies the existence of an LHS model
for �ajx . This shows that entanglement is a necessary condition to demonstrate
steering. Interestingly, the converse statement does not hold, as shown in Fig. 2.1:
there exist entangled states which cannot lead to steering, even when considering
general (POVM) measurements [QVC+15]. The collection of all (unnormalized)
assemblages admitting an LHS model for Bob forms the convex set:

�A:B =

{
�Bajx j �Bajx =

∑

�

D�(ajx)�B� ; �B� � 0

}
(2.5)

where we have used the fact that any probability distribution p(ajx�) can always
be written as a convex combination of deterministic strategies D�(ajx). Decid-
ing whether an assemblage �ajx demonstrates steering amounts to checking its
membership to �A:B, which can be turned into an e�cient SDP problem whose
feasability we shall discuss in the next Sections [CS17].

Quantum nonlocality. In the DI case Bob is also �untrusted �, in the sense
that his measurement device remains uncharacterized. He performs mB unknown
measurements fMbjygb;y on his system, labeled by y = 0; :::; mB � 1 and each
having oB outcomes b = 0; :::; oB�1. Since in this case everything (the state and
all the measurements) is uncharacterised, all possible information is contained in
the joint conditional probabilities given by Born's rule,

p(abjxy) = Tr
[
Majx 
Mbjy �

]
: (2.6)

The oAoBmAmB such probabilities are the components of a real vector p =

fp(abjxy)g. p is the behavior, or the correlations, associated with the quantum

realization de�ned by the state � and the measurements with elements fMajxg
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and fMbjyg. The ensemble of all possible quantum behaviors �those arising from
any possible quantum realization� forms the convex quantum set Q:
Q =

{
p j p(abjxy) = Tr

[
Majx 
Mbjy �

]
;

� � 0; Majx � 0; Mbjy � 0;
∑

aMajx = 1A;
∑

bMbjy = 1B
} (2.7)

whose characterization is of paramount importance for DI quantum information
protocols and will be discussed in detail in the next Section.
In an analogous way to steering, nonlocality is de�ned as the possibility to re-

motely generate behaviors that could not be prepared by a local hidden variable

(LHV) model [Bel64, BCP+14]. An LHV model is again a set of classical instruc-
tions � distributed according to some probability p� and providing local response
functions p(ajx�) and p(bjy�) independent of the measurements made and of
the outcomes observed by the opposite party. In this case, the components of p
take the form:

p(abjxy) =
∑

�

p�p(ajx�)p(bjy�); 8 a; b; x; y : (2.8)

A behavior is said to be nonlocal whenever it does not admit an LHV model (2.8).
One can furthermore check that an assemblage �ajx which is LHS immediately
yields a behavior p which is LHV, or simpler said, local. In other terms, an LHS
model is a special instance of an LHV model for which the response function
on the trusted side is dictated by quantum theory. On the contrary, there exist
assemblages demonstrating steering but always leading to local behaviors, even
for the most general quantum measurements [QVC+15], as illustrated in Fig. 2.1.
It can be shown that the collection of all local behaviors (2.8) forms a convex
set [Fin82]:

L =

{
p j p(abjxy) =

∑

�;�

p��D�(ajx)D�(bjy); p�� � 0;
∑

p�� = 1

}
(2.9)

which is a polytope whose extremal vertices are the bipartite deterministic strate-
gies fD�(ajx)D�(bjy)g��. Note that the two last conditions in (2.9) simply de-
mand that p�� is a valid probability distribution. Hence, the local polytope L
consists of all possible convex combinations of deterministic strategies.
One of the most prominent scienti�c achievements of the 20th is the discovery

of quantum nonlocality by J. Bell [Bel64]. Bell's theorem proves the existence of
quantum realizations yielding behaviors p 2 Q which are nonlocal p =2 L. This
implies that the inclusion of sets Q � L is strict, as the bottom of Fig. 2.1 shows.
In fact, it turns out that all pure entangled states display nonlocality when applying
appropriate measurements onto them [Gis91], which con�rms the intimate relation
existing among these two fundamental resources.
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2.2. Characterization of quantum resources

Understanding which assemblages � and which behaviors p can be recovered by
quantum theory is a fundamental question of paramount importance for the de-
velopment of semi-DI and DI quantum information protocols. The idea behind
these protocols is to bound the actions of a third party Eve�the adversary who
prepared the devices� by constraining her attacks on the devices. These atacks
are remote preparations of quantum assemblages �e and behaviors pe.

Box 1. Architecture of programs based on nonclassical resources.

1. Program for semi-DI quantum information:

max f (f�ege)
s.t. cons (�; f�ege) and �e 2 Q� 8e

2. Program for DI quantum information:

max f (fpege)
s.t. cons (p; fpege) and pe 2 Q 8e

A sketch of typical optimization problems relevant for semi-DI and DI quantum
information are presented in Box 1. f represents the objective function, the
quantity to optimize. It is a function of the variables of the program labeled by
e. For instance, when considering the task of certifying genuine random numbers,
f is the probability for Eve to guess the outcomes of the black boxes. In the
semi-DI case, the constraints cons relate the observed assemblage � with the
�nite collection of quantum strategies f�ege achievable by Eve. These strategies
are the optimization variables of the program: the program looks for a worst-case
for f given the observation of �. In the DI case, the observed data is the behavior
p and the strategies of Eve are quantum behaviors fpege.
Imposing membership conditions �e 2 Q� and pe 2 Q for Eve's strategies re-

quires to characterize in an e�cient way those assemblages and behaviors that Eve
can reach within quantum theory, or at least, that she can reach without supra-
luminal power if nonsignaling constraints are set [BCP+14]. When the objective
function and the constraints are linear functions of the variables (for instance,
when characterizing the LHV set, see Fig. 2.1) the programs presented in Box 1
become linear. When the programs involve matrix inequalities they become SDP.
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Characterization of quantum assemblages. It turns out that in the bipar-
tite case, every nonsignaling assemblage admits a quantum realization [SBC+15].
More precisely, given an assemblage of positive matrices satisfying the nonsignaling
condition

∑
a �ajx =

∑
a �ajx 0 = �B, it is always possible to �nd an explicit con-

struction of a quantum state � and measurements fMajxg satisfying (2.2). The
multipartite case is much more subtle since there exist nonsignaling assemblages
which do not admit a quantum realization. This phenomena known as post-

quantum steering [SBC+15] falls beyond the scope of this Thesis, which mostly
focuses on one-sided DI protocols. Note however that it is possible to apply hi-
erarchical methods similar to the ones described next for nonlocality to e�ciently
approximate Q�, at least for the tripartite case [CSA+15, SBC+15, MSA+17].

Characterization of quantum behaviors. Given a behavior p, does there exist a
quantum state � and local measurements fMajxg and fMbjyg such that p(abjxy) =
Tr
[
Majx 
Mbjy �

]
(2.6)? The question is troublesome since the set Q (2.7) is

hard to characterize. Still, it is possible to de�ne a convergent hierarchy of convex
sets characterized by valid SDP constraints and being such that Q1 � Q2 � ::: �
Q [NPA07]. This so-called Navascues-Pironio-Acin (NPA) hierarchy is in�nite but
converges to the quantum set Q from the outside, allowing to relax the di�culty
of the problem (to the order k) by replacing Q by Qk . Such approximation from
the outside for Q is highly relevant in DI applications, where the observed behavior
p is assumed to be prepared by a malicious agent, Eve. Indeed, in this case it is
safe to relax Q to Qk since this amounts to give more power to Eve to tailor a
supra-quantum behavior p 2 Qk for her own bene�t. Since the convergence of
Qk is heuristically fast, this approximation is not overpessimistic. Hence, unless
otherwise speci�ed and for computational purposes, in this Thesis we assume from
now on that Q is always relaxed to Qk .

2.3. Quantifying steering and nonlocality

Membership problems. Deciding if a quantum assemblage demonstrates steer-
ing amounts to testing its membership to the set �A:B of assemblages having an
LHS model. The set �A:B in (2.3) is characterized by linear and positive-semi-
de�nite constraints, which allows one to write the membership problem into an
e�cient SDP that tests if a given assemblage �ajx belongs to �A:B:

�nd f��g�

s.t.
∑

�D�(ajx)�� = �ajx 8a; x
and �� � 0 8�

(2.10)
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Equivalently, deciding if a quantum behavior p is nonlocal requires to test its
membership to the LHV set L, which is a polytope characterized by a �nite number
of linear constraints (2.9). In this case, the membership problem is translated
to a linear program where � = (�; �) parametrizes the determinstic strategies
D�(abjxy) = D�(ajx)D�(bjy) of the two parties:

�nd fp�g�

s.t.
∑

� p�D�(abjxy) = p(abjxy) 8a; b; x; y ;∑
� p� = 0 and p� � 0 8�

(2.11)

Strict feasability. Unfortunately, the membership programs (2.10) and (2.11)
are not strictly feasible, in the sense that whenever �ajx =2 �A:B and p =2 L the
programs won't be able to �nd an LHS or LHV decomposition, respectively. It is
highly advantageous �both from the computational and practical perspectives�
to turn such programs into strictly feasible SDP versions. In analogy with en-
tanglement detection techniques [HHHH09], this is typically achieved by ensuring
that the decomposition of �ajx and p exisits in terms of additional sets character-
ized by SDP constraints. For example, the steering weight [SNC14] and the EPR2
decomposition of nonlocality [EPR92] are quanti�ers motivated by the best sepa-
rable approximation of entanglement [LS98]. They look for the minimum weight
v such that �ajx and p can be decomposed in terms of generic nonsignaling (NS)
resources and generic classical resources, namely:

v � = min v s.t �ajx = v�NSajx + (1� v)�LHSajx

v � = min v s.t p = vpNS + (1� v)pLHV
(2.12)

In particular whenever v � = 0 the resource admits a classical model, while a strictly
positive value v � > 0 guarantees that �ajx =2 �A:B and p =2 L respectively. A similar
approach is to ask how much noise r one has to add to a given assemblage or
behavior in order for it to have an LHS or LHV model. The noise can take di�erent
forms; for instance, it can be set to be a �xed point like the maximally mixed,
so-called, white noise. In this case the SDP yields the robustness:

r � = min r s.t (1� r)�ajx + r Iajx 2 �A:B

r � = min r s.t (1� r)p+ r1p 2 L
(2.13)

where Iajx and 1p denote the maximally mixed assemblage and the maximally mixed
behavior, the centers of the LHS and LHV sets. In particular, such white noise
robustness r � will be used as a steering quanti�er for multipartite entanglement
detection in Chap. 3.
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Duality and optimal inequalities. Strict feasability is a crucial step because it
enables the derivation of linear witnessses �inequalities� to quantify steering and
nonlocality in a practical manner. In the semi-DI case, the dual formulation [BV04]
of strictly feasible SDPs (2.12) and (2.13) provides operators fFajxgax , which are
the optimal variables of the dual program, such that the linear functional:

ŵ : �ajx 7!
∑

ax

Tr
[
Fajx �ajx

]
(2.14)

yields the solution of the primal problem ŵ
(
�ajx
)
= w �. In particular, the oper-

ators fFajxgax are such that the steering inequality ŵ
(
�ajx
)
> � is violated only

if �ajx demonstrates steering. � is a real number known as the classical bound of
the inequality. (In the examples presented in (2.13) and (2.14), � = 0).
In the DI case, the dual variables are real numbers gabxy acting linearly on p:

g � p : p(abjxy) 7!
∑

abxy

gabxyp(abjxy) (2.15)

with g � p = g� coinciding with the optimal solution of the primal problem. The
quantity g � p is a real number; it is the observed violation of the Bell inequal-
ity [Bel64, BCP+14] g � p < gloc. gloc is the local bound of the inequality. In both
the semi-DI and DI approaches, the witnesses ŵ and g are optimal hyperplanes
(see Fig. 2.1) which minimize the primal objective functions.

Box 2. Examples of inequalities with 2 measurements and 2 outcomes.

1. Steering inequality [CS17]:

ŵ
(
�ajx
)
=
∑

ax

Tr
[
(�1)a �ajxBx

]
<
p
2 (2.16)

2. Bell inequality (CHSH [CHSH69]):

g � p =
∑

abxy

(�1)a+b+xyp(abjxy) < 2 (2.17)

In Box 2 we present inequalities being maximally violated by the two-qubit maxi-
mally entangled state j�+i = 1=

p
2(j00i+ j11i). To obtain the maximal quantum

violation, in the steering case Alice and Bob perform two Pauli measurements (X̂
and Ẑ); in particular B0 = X̂ and B1 = Ẑ. In the DI case (2.17), the maximal
violation 2

p
2 is obtained with X̂ and Ẑ for Alice and 1=

p
2(X̂ � Ẑ) for Bob.
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Measures of steering and nonlocality. Thus, the most practical way to quantify
steering and nonlocality is through the amount of violation of steering and Bell
inequalities: � demonstrates more steering than �0 if ŵ (�) > ŵ (�0). Similarly,
p is more nonlocal than p0 if g � p > g � p0. As explained, such quanti�cation
of steering and nonlocality has practical advantages and, as we shall see later,
it directly enables semi-DI and DI quantum information tasks. However, from
a fundamental perspective this approach is problematic because in general there
exist other inequalities ŵ 0 and g0 such that ŵ 0 (�0) > ŵ 0 (�) and g0 � p0 > g0 � p.
This fundamental problem can be circumvented by relating back the amount of
violation of inequalities to operational measures of steering or nonlocality. In the
examples analyzed in this Chapter, this is equivalent to return to the original,
primal, problem. Indeed, notorious examples of operational measures based on
inequality violations are the robustness to the addition of noise (2.13) [ADGL02,
CS17] or losses [Ebe93], the nonclassical content (2.12) [SNC14, EPR92], the
statistical strength of Bell tests [AGG05], the communication cost needed to
reproduce the observed correlations [BT03, NV16] and the simulation of quantum
correlations with nonclassical resources [BGS05]. As we shall see in Chap. 4, it may
be valuable to consider measures of nonlocality and steering which are not linked to
the violation of inequalities but instead operate directly at the level of the quantum
state. As a �nal comment, note that Refs. [GWAN12, dV14, GA15], inspired by
entanglement theory, introduced a more axiomatic approach to quanti�cation by
characterising the set of operations that cannot increase the amount of steering
and nonlocality, respectively.

2.4. Genuine randomness from quantum systems

In this Section we review how to apply the machinery developed in the previ-
ous Sections of this Chapter to carry the quantum information task of certifying
genuine random numbers in a DI and semi-DI manner. As explained in Chap. 1,
device-independence is tremendously advantageous as it allows to ignore the inter-
nal working of the devices used and hence it provides immunity to hacking attacks
exploiting experimental imperfections.

In classical mechanics, for every event there exist conditions that could cause
no other event. For instance, knowing the location and momentum of all particles
of a composite system is su�cient to determine its values at any given future
time [Lap14]. In quantum mechanics, astonishingly, this so-called scienti�c deter-

minism falls apart as the outcomes of quantum measurements can be intrinsically
random. For example, detecting the path, 0 or 1, taken by single photons after a
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50=50 beam-splitter results in a sequence:

01110101010100110101 ::: (2.18)

for which, the probability of observing each outcome is 50%. The sequence (2.18)
is indeed random as the next value cannot be predetermined in advance, provided
that the laws of quantum physics yield a correct description of the situation. Such
randomness is in fact at the basis of quantum random number generators that are
sold commercially.
But how can one be sure that there is not some hidden mechanism that would

let someone else to predict the sequence? This is a serious problem because at
the quantum level it is very di�cult to have control over the processes that are
being implemented, which in turn makes di�cult to provide a fair assessment of
the unpredictability of the sequence. Moreover, there could be a backdoor in our
quantum random number generator secretly inserted by a malicious manufacturer
to retrieve all the outcomes of the observed sequence (2.18) in a deterministic
way. In this case randomness would be only apparent, as it would be related to an
incomplete knowledge of the system.
Remarkably, over the past decade results have shown that certain quantum

systems hold the potential to provide a strong form of randomness which cannot
be attributed to incomplete knowledge of any classical variable of the system.
At the basis of such genuine randomness lies a quantitative relation between the
amount by which a Bell inequality or a steering inequality is violated, and the
degree of predictability of the results of the test [PAM+10, PCSA15]. Intuitively,
the violation of such inequalities certi�es the presence of nonlocal and steering
correlations respectively, and in turn, this guarantees that the outcomes of the
measurements cannot be determined in advance [Eke91, Col07]. Furthermore,
this genuine randomness is certi�ed without any characterisation of the devices
used, that is, in a DI fashion. Device independence is advantageous since it
provides immunity to attacks that exploit imperfections, and to which device-
dependent protocols are susceptible [GLLL+11a]. For this reason, DI and semi-DI
randomness generation have recently received much attention [NSPS14, BSS14,
DdlTA14, dlTHD+15, PCSA15].
Indeed, an intense research e�ort has been devoted to the experimental realisa-

tion of genuine randomness generation. A few years ago, Pironio et al. [PAM+10]
implemented the �rst proof-of-principle experiment. It involved two entangled
atomic ion qubits con�ned in two independent vacuum chambers separated by
approximately one meter. This implementation, which was based on light-matter
interaction, managed to certify 42 random bits over a period of one month.
The principal challenge for a DI randomness generation experiment is that it

must close the detection loophole [Pea70, San92], i.e. it must provide a Bell
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inequality violation without post-selection on the data, since otherwise viola-
tion can be faked by classical resources [GLLL+11b] and no genuine randomness
can be guaranteed. The detection loophole was �rst successfully closed on sev-
eral systems relying on light-matter interaction [RKM+01, ABW+09, HKO+12].
More recently it was closed in optical setups with polarization-entangled photons
[CMA+13, GMR+13]. As we shall see, these optical implementations represent
an important achievement as they enable much higher rates of genuine random
bits per time unit.

Box 3. Fundamental assumptions for quantum DI and semi-DI protocols

(i) All the untrusted devices can be shielded: the parties
holding them control all information leaks.

(ii) The choice of measurements made on the untrusted
devices is independent of any external variable.

(iii) The parties have trusted classical memories and share
an authenticated, but otherwise public, classical channel.

(iv) Quantum physics is correct.

Scenario and assumptions. To carry out the tasks of DI and semi-DI random-
ness generation, we must bound the predictability that an eavesdropper Eve can
have about the outcomes produced by the black boxes (recall Fig. 1.1), only from
the observation of an assemblage � or a behavior p, and from a minimal set of
fundamental assumptions made explicit in Box 3.
For simplicity and following the line of the previous Chapter, we consider the

case of two parties, Alice and Bob, holding quantum devices. In the DI case
the two devices are black boxes, while in the semi-DI (also known as one-sided
DI) case, only the device of Alice is untrusted. The black boxes are assumed
to be manufactured by Eve with any a priori unknown quantum state �, possibly
correlated with Eve through some other quantum system �ABE, such that � =

TrE
[
�ABE

]
. The measurements implemented by the untrusted parties are also

unknown, described by positive operators summing to identity.
We consider that Eve is only interested in guessing the outcome a of Alice's box

when a �xed measurement x = x� is chosen by Alice. In this case the quantum
information task is known as local randomness certi�cation. The case where Eve
wishes to guess the output of the two boxes for �xed measurements x� and y �,

22



2.4 Genuine randomness from quantum systems

known as global randomness certi�cation, can be straightforwardly obtained as a
generalization of the local case [NSPS14, PCSA15].
The set of fundamental assumptions required for DI and semi-DI randomness

generation is listed in Box 3. Without assumption (i), the value of the output a
can leak-out of Alice's shield and Eve can trivially guess it with certainty. Simi-
larly, without assumption (ii) Eve can know if the measurement x� is going to be
implemented and attack the device only when this is the case. This attack would
in fact remain undetected; from a fundamental perspective, this assumption is
intimately related to the freedom of choice and superdeterminism loopholes in
the context of Bell experiments [Lar14]. Assumption (iii) simply guarantees that
the two parties are indeed interchanging information with each other and are cor-
rectly keeping track of the outcomes observed at each round. Finally, note that
assumption (iv) could actually be relaxed by considering, instead, an eavesdrop-
per with supra-quantum power, that is, being only limited by the non-signaling
principle [BHK05, PMLA13].
It is important to mention that the set of fundamental assumptions presented

in Box 3 are also the ones which are required for device-independent quantum
key distribution (DIQKD), which will be the task of interest in the next Chapter.
Indeed, we will see that DI random number generation is a primitive for DIQKD.
Finally, all along this Thesis we also consider for simplicity that all the statistics
are obtained from an in�nite number of independent and identically distributed

(i.i.d.) rounds. Note that this assumption is not fundamental: it can actually be
alleviated by means of statistical analysis and hypothesis testing [Lar14].
Furthermore, additionally to the assumptions presented in Box 3, when we will

report experimental results in the Sections which follow, we shall assume that fair-
sampling is valid and that the experimental setup is not vulnerable to the detection
loophole. This assumption is reasonable given that this loophole has already been
closed in several Bell experiments. Moreover, it is not our intention to generate
from our research genuine randomness for direct commercial applications; instead,
we are interested in exploring and reveal the remarkable features and capabilities
that genuine quantum randomness can potentially o�er.

Quantifying Eve's guessing probability. The predictability of the outcome a
when a given measurement x� is chosen by Alice is quanti�ed by the guessing

probability G(x�) [Col07, NSPS14, PCSA15]: the probability that Eve guesses
correctly the value of a, optimized over all of Eve's possible quantum strategies,
and conditioned on the observation of an assemblage � or a behavior p by Alice and
Bob. In fact, the optimal number of random bits that can be certi�ed per round
from x� can measured by the min-entropy of the guessing probability [NSPS14],
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� log2 G(x�). Note that whenever G(x�) = 1, Eve has full knowledge about the
next possible value of a and no randomness can be certi�ed. On the contrary,
as long as G(x�) < 1 Eve cannot predict Alice's outcome with certainty, and a
positive amount of random bits per round can be certi�ed. In particular, when Eve
has no knowledge at all about the string of outcomes of x�, her best strategy is to
give a random guess, which succeeds with probability G(x�) = 1

oA
(recall that oA

is the number of outcomes of Alice's measurements). In this case, the maximal
amount of randomness, log2 oA bits per round, is certi�ed.
At each round of the experiment, Eve applies a measurement Me with oA out-

comes on her share of the system, with the aim that her outcome e equals that
of Alice's a, whenever Alice measures x�, with the highest probability. In other
words, Eve wants to maximize the objective function:

∑

e

p(e; a = ejx�) =
∑

e

Tr
[(
Ma=ejx� 
 1
Me

)
�ABE

]
: (2.19)

In the one-sided-DI case, the states left for Bob after Alice and Eve's mea-
surements are given by �eajx = TrAE

[(
Majx 
 1
Me

)
�ABE

]
. Furthermore, using

the fact that
∑

eMe = 1, the assemblage observed by Bob is recovered from
�ajx =

∑
e �

e
ajx . Thus, the collection of unnormalized assemblages f�eajxge may be

seen as preparations made by Eve's measurement, such that whenever Eve obtains
the result e = a, she guesses that the outcome of the black box was a. Formally,
the one-sided DI guessing probability G�(x

�) conditioned on the observation of
� = f�ajxgax by Alice and Bob is given by the solution of the SDP [PCSA15]:

G�(x
�) = max

f�eg

∑
e

Tr
[
�ea=ejx�

]

s.t.
∑
e

�e = �

∑
a

�eajx =
∑

a �
e
ajx 0 8e; x; x 0

�eajx � 0 8a; x; e

(2.20)

As expected, the objective function in (2.20) coincides with (2.19). The �rst
constraint guarantees that Eve reproduces on average the assemblage observed
by Bob, while the two last constraints guarantee that each of the assemblages
prepared by Eve admits a quantum realization, as explained in Sec. 2.2. Note
that the program presented in (2.20) has the architecture for semi-DI quantum
information processing which was presented in the top of Box 1.
In the full DI case, there is no knowledge about the shape of the states or the

measurements impemented by the parties. Still, the probabilities p(e; a = ejx�)
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Figure 2.2.: Genuine randomness versus visibility. The semi-DI approach
slightly outperforms the DI one, although no randomness can be cer-
ti�ed below v = 1p

2
for both approaches. But above v = 1=

p
2

the semi-DI approach provides higher performance as it is based on
additional assumptions of trust. (See main text for details).

may be conceived as marginals of a collection of unnormalized behaviors fpege
with elements pe = fp(eabjxy)gabxy prepared by Eve and reproducing on average
the behavior observed by Alice and Bob, that is,

∑
e p

e = p. Thus, the DI guessing
probability Gp(x

�) conditioned on the observation of p by Alice and Bob is given
by the solution of the following SDP [NSPS14, BSS14]:

Gp(x
�) = max

fpeg

∑
e

p(e; a = ejx�)

s.t.
∑
e

pe = p

pe 2 Q̃ 8e

(2.21)

where Q̃ denotes the NPA relaxation (recall Sec. 2.2) of the set of unnormalized
behaviors admitting a quantum realization. The program looks for the best pos-
sible quantum strategy for Eve to maximize the probability that her outcome is
correlated to Alice's, and it has the same structure than the general program for
DI quantum information presented in the bottom of Box 1.
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In �gure Fig. 2.2 we plotted the number of genuine random bits certi�ed using
programs (2.20) and (2.21). The assemblage � was obtained from the two-
qubit Werner state v j�+ih�+j + 1�v

4
1, were 1

4
1 is the maximally mixed state,

and j�+i is the maximally entangled state encountered already in Chap. 4. The
measurements made by Alice are the Pauli observables X̂ and Ẑ. In the full DI
case, the measurements made by Bob are (X̂ � Ẑ)=2. Note that for perfect
visibility v = 1, both approaches certify 1 genuine random bit. Below v = 1=

p
2,

no randomness is certi�ed in either case. Above v = 1=
p
2 the semi-DI approach

provides higher performance as it is based on additional assumptions of trust.
Furthermore, from the dual formulation of programs (2.20) and (2.21), which

are strictly feasible, it is possible to retrieve optimal steering and Bell inequalities,
which are such that ŵ (�) = G�(x

�) and g � p = Gp(x
�) respectively. Such linear

witnesses are crucial for the quanti�cation of randomness in practical situations,
and we shall encounter them in the following Chapters.

2.5. Device-independent quantum key distribution

In this Section we recall how the task of distributing a secret key among two
honest users, Alice and Bob, can be pursued in a DI manner. This so-called
device-independent quantum key distribution (DIQKD) task is intimately related
to the certi�cation of genuine random numbers exposed in the previous Section.
However, as we shall see later, DIQKD is more delicate to achieve in experimental
situations, mostly due to the long distances separating the two parties 1.
DIQKD relies on a relaxation of the security assumptions that are usually made

in QKD. While QKD relies on a near-to-perfect match between theory and imple-
mentation which is hard to meet in practice [SK14], DIQKD completely ignores
the internal working of all devices used in the protocol, thus providing immunity
against hacking attacks exploiting experimental imperfections. Inspired from pre-
vious results on self-testing [MY98] and non-signalling key distribution [BHK05],
DIQKD [ABG+07, MPA11, PMLA13] introduces a minimalist paradigm to design
protocols whose security is exclusively guaranteed from the observed statistics
without any reference to the shape of the states and measurements used to ob-
tain them.

Scenario. Concretely, the device-independent scenario [ABG+07] assumes the
four fundamental assumptions for DI protocols, presented in Box 3, and en-
countered already in the previous Section: (i) Alice and Bob are located in se-

1Note that, although the randomness certi�cation task requires two boxes, in practice it is

considered as a single-user protocol.
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S
Alice Bob b

y
x

a

Figure 2.3.: DIQKD scenario. At each round, Alice and Bob receive from a
source S the reduction of a quantum state �ABE possibly prepared by
an eavesdropper Eve, onto which they perform measurements labeled
x and y producing outcomes a and b, respectively. The measurement
devices are untrusted and to some extent could have been provided
by Eve, which means that the measurement elements Majx and Mbjy
remain uncharacterized. Hence, the only relevant object throughout
the protocol is the observed behavior P (a; bjx; y). Eve also performs
a measurement (not shown) on her share of the state, designed to
guess Alice's output a in the best possible way.

cure labooratories from which they can control information leaks (gray areas in
Fig. 2.3), (ii) each of them has a trusted random number generator, (iii) they
have trusted computing devices and an authenticated classical channel, and (iv)

quantum physics is correct. Without assumptions (i) and (iii) cryptography -
quantum or not- is inconceivable, while assumptions (ii) and (iv) arguably adhere
to fundamental aspects of science. Note that no assumption is made about any
implementation detail, such as the state produced or the internal working of the
devices used by Alice and Bob during the entire protocol, for instance.

Protocol. For completeness, we recall the protocol for DIQKD from refs. [ABG+07,
MPA11, PMLA13]. At each round, the parties perform measurements labeled
x 2 X and y 2 Y on some unknown quantum state �AB, and obtain outcomes
a 2 OA and b 2 OB, respectively, for some alphabets X , Y, OA and OB. No
other assumption on �AB is made, other than the fact that it is a quantum state.
In fact, �AB could be an operator of any dimension, and could even be correlated
with another quantum system in the possession of a malicious eavesdropper E,
such that �AB = TrE

[
�ABE

]
, as illustrated in Fig. 2.3.

The measurements made by Alice and Bob on �AB remain also uncharacterized;
the only restriction set is that they must obey Born's rule in order to reproduce
the observed statistics, namely, the joint probability of outcomes a; b conditioned
on the measurement choices x; y must read P (a; bjx; y) = Tr

[
�AB Majx 
Mbjy

]
,

for all a, b, x and y within their respective alphabet. Majx and Mbjy are positive
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operators describing measurement choices x and y , but nothing is speci�ed about
their actual shape, other than the fact that

∑
aMajx = 1A for all x 2 X and∑

bMbjy = 1B for all y 2 Y. We denote the alphabet sizes mA = jX j and
mB = jYj for the measurement choices, and oA = jOAj and oB = jOBj for the
possible outcomes. As before, we denote p the oAoBmAmB-sized behavior, or
correlations, with components P (a; bjx; y).
The protocol begins with Alice and Bob using the authenticated public channel

to share a sample of their data in order to estimate the behavior p. A Bell
inequality, that is, a linear functional g = fgabxyg pre-established by Alice and Bob,
and possibly known to Eve, is then applied to the observed p (recall Sec. 2.3).
In particular, the Bell inequality g � p < gloc witnesses the nonlocality of p for
some local bound gloc [Bel64, BCP+14]. If g � p is found to be greater than
the local bound gloc, then Alice and Bob can use classical error correction and
privacy ampli�cation to distill a secret key from some �xed measurements x�

and y � out of the remaining data [ABG+07, MPA11, PMLA13]. Concretely, we
shall consider from now on that Alice can chose among 2 possible measurements
(mA = 2) labeled x = 0; 1, while Bob can choose among 3 possible ones (mB = 3),
although his third measurement labeled y = 2 is only used to extract the key
[ABG+07, MPA11]. Hence, from now on, we assume x� = 0 and y � = 2.

Secret key. Security proofs in DIQKD are constructed from the following ob-
servation: under reasonable assumptions, the restrictions set on the observed
correlations p by Born's rule and by the amount of observed violation g � p are
su�cient to bound the predictability of Eve in such a way that the users certify
that they have stronger correlations among them; if this is the case then their
bit strings remain private, even after having published a (small) fraction of the
outcomes to make the strings perfectly correlated. In [PMLA13], the only extra
assumption required to prove security is that the quantum memory of the eaves-
dropper is bounded. This assumption is reasonable given the current status of
quantum technologies, and is formally known as the bounded quantum storage
(BQS) model. It is worth mentioning that a noise-tolerant proof of DIQKD secu-
rity without any additional assumption has been given in [VV14]. A di�erent and
more robust proof has later been derived in [MS16].
Remember that, given the observation of p by the two users, the predictabil-

ity that Eve can have on the outcome of Alice when input x� is chosen can
be quanti�ed by the guessing probability Gp(x

�) de�ned in (2.21), the average
probability that Eve correctly guesses the output of Alice using an optimal strat-
egy [NSPS14, BSS14]. As explained in Sec. 2.4, from the dual formulation of
the SDP program (2.21) one retrieves the Bell inequality g which is such that
g � p = Gp(x

�). Such a g is the optimal Bell inequality for bounding the degree
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of predictability that Eve can have about the string of outcomes of Alice. Pro-
gram (2.21) is hence relevant to retrieve the optimal Bell inequality to bound the
predictability of Eve on a from an observed behavior p. Nevertheless, these meth-
ods should not be considered to be part of the DIQKD protocol, since existing
DIQKD security proofs assume that the inequality used in the protocol described
above is pre-established and even publicly announced just as the protocol starts.
Therefore, from this time forth we shall assume that such inequality g is �xed and
publicly known.
After the success of the estimation phase of the DIQKD protocol, in which

the data reveals violation of the Bell inequality g, it turns out that Alice and
Bob have to publish a fraction of bits to correlate their bit strings given by the
conditional entroy H(x�jy �) of the joint probability distribution P (a; bjx�; y �); this
is the information reconciliation step of the protocol. In fact, in the asymptotic
limit of a large number N of causally independent rounds, it has been shown that
the number of device-independent secret bits certi�ed per round from the pair of
settings (x�; y �) is given by [MPA11]:

r = � log2 Gp(x
�)�H(x�jy �): (2.22)

Formula (2.22) is quite intuitive. The �rst term � log2 Gp(x
�) has already been

encountered; it corresponds to the min-entropy of the device-independent guessing
probability [NSPS14, KRS09]. It quanti�es the amount of private randomness
left in the string of outcomes of Alice, given the best possible strategy used by
Eve to attempt to learn such string. Note that whenever Gp(x

�) = 1, Eve has
full knowledge about the string and r = 0 (this occurs in particular when no
Bell violation is observed). The second term in (2.22) is the conditional entropy
of the joint probability distribution P (a; bjx�; y �). It is incorporated in order to
account for the information reconciliation step required by any QKD protocol. As
explained, NH(x�jy �) represents the number of key bits that have to be published
by Alice and Bob for successful information reconciliation [MPA11].
Note that the key rate expression presented in (2.22) has also been proved to

hold beyond the case where the rounds are causally independent; in particular,
it remains valid in the more realistic DIQKD approach based on the BQS model
previously mentioned [PMLA13], where the only additional assumption required
is that the quantum memory of the eavesdropper is limited in time. Indeed,
this assumption is reasonable given the current status of quantum technology.
DIQKD security in the BQS model arises from the following fact: since Eve cannot
hold quantum information about the state of Alice and Bob for too long, she is
forced to readout her system, and her optimal strategy is to apply a generalized
measurement optimized to correlate her result with the one of Alice at each round.
More recently, Ref. [AFRV16] realized that it is possible to establish a reduction
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from the scenario in which the most general quantum adversary operates to the
scenario in which the untrusted devices operate in an i.i.d. way in each round of
the protocol. In other words, this implies that (2.22) is at least a lower bound on
the number of secret key bits certi�ed against any quantum adversary.

Experimental challenges. Experimentally, DIQKD remains hitherto challenging
because the devices of Alice and Bob, which are a priori distant from each other,
must produce correlations that exhibit nonlocal correlations �i.e. correlations
which violate a Bell inequality [Bel64]� without post-selection on the data, since
otherwise the violation can be faked by an eavesdropper with classical resources
[GLLL+11a]. This is di�cult to achieve in real experiments due to typical exponen-
tial increase of loss in the optical channel separating the two parties. Channel loss
can be eliminated by means of conditioning over an auxiliary measurement that
allows to safely discard rounds for which the photon �the information carrier�
did not arrive, without opening the detection loophole [Pea70, San92]. These
methods based on safe conditioning have been proposed �and experimentally
demonstrated in some cases� both within the framework of all-optical implemen-
tations [GPS10, CM11, KXRP13, BPM+16], as well as with hybrid systems based
on light-matter interaction [PAM+10, HKO+12, MBA13, BYHR13, HBD+15].
Furthermore, loss also a�ects the information reconciliation [BB84, Eke91] part

of the DIQKD protocol, a step crucial to ensure perfect correlation in the �nal
string of secret bits. This is an issue that most DIQKD proposals [GPS10, CM11,
MBA13], with the exception of Ref [PMW+11], had not addressed so far. We will
review and address this problem in Chap. 6 by evaluating the optimal amount of
randomness from the post-processed data of conclusive rounds, which turns out
to be a direct application of the methods recently exposed by ref. [TdlTB+16] in
the context of device-independent random number generation.
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3. Entanglement detection with

uncharacterized devices

The certi�cation of entanglement is a crucial task for the near-future development
of quantum networks composed by observers sharing multipartite quantum states.
In this Chapter we derive and experimentally apply tools to certify all kinds of
entanglement in asymmetric networks, where some users do not have control
over the measurements they are performing. Such asymmetry naturally emerges
in physical systems where certain degrees of freedom cannot be experimentally
controlled. Furthermore, it arises in adversarial situtations, such as in semi-DI
cryptographic applications in quantum networks.

3.1. Background

In Sec. 2.1 we overviewed that experimentally certifying the presence of entan-
glement is a di�cult task since mismatches between either the state or the mea-
surements and their actual physical implementation may lead to false-positive
conclusions about the presence of entanglement in the network [RFSB+12]. Al-
though such mismatches can in principle be patched, the situation becomes dra-
matic when considering applications, where the devices used are not trusted as
they could have been provided and controlled by some adversary. As mentioned
already, one solution to this problem is the use of DI techniques [BCP+14], for
which no assumption is made on the devices that generate the state or perform
the measurements. In this approach the devices are seen as black boxes, accessed
only with classical inputs (corresponding to the measurement choices) and pro-
viding classical outputs (corresponding to the measurement outcomes). Although
such DI entanglement witnesses have been soundly considered in the past years
[BGLP11, BBS+13], their physical implementation turns out to be very demand-
ing [GLLL+11a] for it requires one to observe a Bell inequality violation without
the presence of loopholes [HBD+15, SMSC+15, GVW+15].
A midpoint among the aforementioned cases is the semi-DI approach based

on the presence of quantum steering [WJD07] to certify entanglement in the
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3. Entanglement detection with uncharacterized devices

network. This is an asymmetric situation in the sense that only some of the
parties in the network use trusted devices while others do not [CSA+15]. Trust
should be understood in terms of full knowledge or characterisation of the devices
used. More precisely, whenever a party's device is assumed untrusted all the
analysis employed is only based on the statistics it produces, not on its internal
working. The steering approach is less demanding experimentally than the DI case
and it presents practical interest for adversarial situations; for instance, one could
think of a practical semi-DI network composed by a single central provider using
well characterised devices, while the remaining parties, the clients, hold untrusted,
i.e. uncharacterized devices. For these reasons the study of quantum steering has
increased substantively in recent years [BCP+14].

Methods to certify all kinds of multipartite entanglement in semi-DI networks
were presented �and experimentally demonstrated� recently [CSA+15]. These
methods rely on SDP techniques and represent an important achievement for
the certi�cation of entanglement in quantum networks. In fact, these techniques
certify entanglement in networks with amounts of noise that make them unde-
tectable by the existing fully DI techniques [BGLP11]. In this Chapter we apply
such semi-DI entanglement certi�cation techniques to the three-qubit W state.
Crucially, this state displays both genuine multipartite entanglement (GME) and
entanglement in all of its reduced states, being then a �exible resource for the
implementation of quantum networks. Moreover, we show that all types of en-
tanglement of the W state can be certi�ed in all tripartite steering scenarios in a
scheme where each party applies the same set of measurements.

3.2. Witnesses construction

We begin by constructing multipartite semi-DI entanglement witnesses [CSA+15,
MSA+17] for the bipartite and tripartite cases. The construction can be gener-
alized for a larger number of parties and the intuition behind it is the following.
Assuming that the quantum state distributed in a steering network (recall the
middle of Fig. 1.1) is separable according to some particular decomposition (e.g
fully separable, separable across any bipartition, etc.) imposes constraints on the
collection of all possibly observable set of post-measured states that the untrusted
measurements create for the the parties holding trusted devices. From these con-
straints one can then determine if the original state could have the considered
decomposition with SDP techniques in an e�cient way. Crucially, this provides
experimentally friendly entanglement witnesses, known as steering inequalities.
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3.2 Witnesses construction

3.2.1. Bipartite case

In the bipartite case, presented already in Chap. 2, Alice and Bob share a state
�AB. The measurements performed by Alice are untrusted and therefore they
are described by unknown positive operators Majx summing to identity for each
x , where x labels the measurement chosen by her and a the obtained outcome.
On the other hand, the other party, Bob, trusts his measurement device and can
thus perform quantum tomography on his system to observe an unnormalized
conditional state �Bajx = TrA

[
Majx 
 1B �AB

]
, 8 a; x as stated already in (2.2).

The statistics observed by Alice can be recovered from the relation (Born rule)

p(ajx) = Tr
[
�Bajx

]
, and thus the quantum assemblage f�Bajxga;x contains all the

information obtainable in this measurement scenario. If �AB is not entangled,
it has the form (2.1) and in this case, the assemblage takes the form (2.4),
meaning that the assemblage admits an LHS model, a classical process explaining
the observation of the assemblage f�Bajxga;x by the two parties. In particular, if
�Bajx admits an LHS model it belongs to the convex set �B

A:B of all unnormalized
LHS assemblages de�ned by (2.5).
Crucially, imposing membership in �B

A:B involves a �nite number of linear ma-
trix inequalities and positive-semide�nite constraints for the variables �B� in (2.5),
which are all valid constraints to formulate the problem as an SDP [BV04]. By

introducing the maximally mixed assemblage for Bob, IBajx =
1
oA
TrA

[
1AB
dAdB

]
, where

oA denotes the number of outcomes of Alice and dA and dB denote the dimension
of the systems, we obtain the SDP test for bipartite entanglement with one party
holding untrusted devices given by the �rst program of (2.13). This test provides
the robustness r � to white noise of the assemblage observed by Bob �Bajx .

Since IBajx 2 �B
A:B, a su�ciently small value of r will always solve the constraint of

(2.13), and hence this SDP is strictly feasible. The solution of the test, denoted by
r �, quanti�es how much maximally mixed noise has to be added to the assemblage
such that the mixture becomes LHS: if r � = 0, then �Bajx 2 �B

A:B and no steering
can be demonstrated. Conversely, if r � > 0, some amount of noise has to be
added to the assemblage to make it LHS, so we certify entanglement in �AB.
As explained in Sec. 2.1, strict feasibility implies that from the dual formu-

lation [BV04] of the primal problem, it is possible to de�ne a set of operators
fFajxgax , which are such that the linear functional ŵ (2.14) acting on �ajx pro-
vides a strictly positive value only if the assemblage �ajx demonstrates steering.
Thus, ŵ constitutes a witness for bipartite entanglement with one party hold-
ing untrusted devices. Furthermore, since the primal problem is strictly feasible,
strong duality holds, and the dual and primal solutions coincide [BV04] giving

ŵ
(
�Bajx

)
= r �.
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3. Entanglement detection with uncharacterized devices

Figure 3.1.: Tripartite semi-DI scenarios. Left: If only Alice holds an untrusted
device, Bob and Charlie observe a bipartite state �BCajx . Right: With
two parties holding untrusted devices, Charlie receives a state �Cabjxy
conditioned on the statistics observed both by Alice and Bob.

3.2.2. Tripartite case

We now move on to the tripartite case, for which we wish to certify the presence
of entanglement in the whole state � distributed to Alice, Bob and Charlie. In
analogy with (2.1), � is said to be fully separable if it can be written as a convex
combination of product states:

� =
∑

�

p� �
A
� 
 �B� 
 �C�: (3.1)

If the previous decomposition cannot be found, � is tripartite entangled. Notice
however that a state can be separable across a bipartition without being fully
separable. For instance, it could be that � presents entanglement among Bob
and Charlie, but is separable with respect to Alice (e.g. � = �A 
 j�+ih�+j,
where j�+i = 1p

2
(j00i+ h11j) denotes the maximally entangled state of two

qubits for Bob and Charlie). In this case the state is said to be separable across
the bipartition A:BC. In particular, a state which contains entanglement across
all three bipartitions A:BC, B:CA and C:AB is said to be genuinely multipartite

entangled (GME) [HHHH09].
In what follows we present the construction of witnesses of tripartite entangle-

ment, but note that the construction of witnesses for the certi�cation of GME
follows the same reasoning and the details can be found in Ref. [MSA+17].

One untrusted device We treat �rst the case in which only Alice uses an un-
trusted device, while Bob and Charlie's devices remain trusted. In this case, Bob
and Charlie are provided with the assemblage:

�BCajx = TrA
[(
Majx 
 1B 
 1C

)
�
]
; (3.2)

which, after using (3.1), takes the form:

�BCajx =
∑

�

p(ajx�) �B� 
 �C�: (3.3)
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3.2 Witnesses construction

A decomposition of �BCajx of the form (3.3) can readily be seen to be similar to the
one in (2.4), with the only di�erence that now the bipartite states of Bob and
Charlie conditioned on a and x are separable. This last requirement (separability)
cannot, in general, be translated to a �nite number of linear matrix inequalities
and positive constraints as before, because the set of separable states has a com-
plicated structure. However, separability can be relaxed to positivity under partial

transposition [HHHH09], which is a valid SDP constraint and equivalent to sep-
arability whenever the product of the dimensions of B and C satis�es dBdC � 6.
Therefore, we de�ne the relaxed set:

�BC
A:B:C =

{
�BCajx j �BCajx =

∑

�

D�(ajx)�BC� ; �BC� � 0;
(
�BC�

)TB � 0

}
(3.4)

where TB denotes the partial transposition operation with respect to system B.
With the help of the maximally mixed assemblage for Bob and Charlie, namely

IBCajx =
1
oA
TrA

[
1ABC

dAdBdC

]
, we obtain the corresponding SDP test for tripartite entan-

glement with one party holding untrusted devices:

min r

s.t. (1� r)�BCajx + r IBCajx 2 �BC
A:B:C:

(3.5)

Here, again, duality theory allows one to retrieve operators fFajxgax de�ning a new
witness ŵ with the exact same structure and such that ŵ

(
�BCajx

)
> 0 guarantees

that � is tripartite entangled.

Two untrusted devices. In the case of two parties, say Alice and Bob, holding
untrusted devices, Charlie observes the assemblage:

�Cabjxy = TrAB
[(
Majx 
Mbjy 
 1C

)
�
]
; (3.6)

which, after replacing � with its separable form (3.1), gives:

�Cabjxy =
∑

�

p(abjxy�) �C�: (3.7)

Since p(abjxy�) arises from local measurements on a separable state, it can be
written as a convex combination of products of deterministic strategies for Alice
and Bob [BCP+14]. Thus, the relevant set of unnormalized assemblages for
tripartite entanglement with two parties using untrusted measurements is:

�C
A:B:C =

{
�Cabjxy j�Cabjxy =

∑

��

D�(ajx)D�(bjy)�C��; �C�� � 0

}
(3.8)
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3. Entanglement detection with uncharacterized devices

and since membership in �C
A:B:C involves valid SDP constraints, we obtain the

corresponding SDP test:

min r

s.t. (1� r)�Cabjxy + r ICabjxy 2 �C
A:B:C;

(3.9)

where ICabjxy = 1
oAoB

TrAB
[

1ABC
dAdBdC

]
is the maximally mixed assemblage for C. The

set of dual variables fFabjxygabxy of program (3.9) de�ne the witness:

ŵ : �abjxy 7!
∑

abxy

Tr
[
Fabjxy �abjxy

]
; (3.10)

which is strictly positive only if �C
abjxy demonstrates steering, and ŵ(�Cabjxy) = r �.

3.2.3. Multipartite steering of the W state

Here we provide numerical values for the three-qubit W state jW i = 1p
3
(j001i+

j010i+j100i) and discuss the fact that each party can check for all kinds of entan-
glement without trusting the devices of the others. The measurements performed
by all trusted boxes are Pauli observables, namely, X̂, Ŷ and Ẑ. Our theoretical
�ndings regarding the witness values r are summarized in Table 3.1.

Since the W state is symmetric, all reductions are equivalent regardless of the
party that is discarded. Speci�cally, �red = 2=3 j +i h +j + 1=3 j00i h00j, where
j +i denotes the two-qubit maximally entangled state j +i = 1=

p
2(j01i+ j10i).

The reduced state turns out to be steerable with a theoretical violation of r � =
0:11. This value is relatively small because of the detrimental contribution of the

Theory Experiment

Ent. in reductions 0:1112 0:07� 0:01

Ent. (1 untrusted) 0:7297 0:77� 0:01

Ent. (2 untrusted) 0:5355 0:500� 0:008

GME (1 untrusted) 0:4581 0:41� 0:01

GME (2 untrusted) 0:3244 0:32� 0:01

Table 3.1.: Witness values r � from the three qubit W state. A strictly positive
value certi�es the presence of: entanglement in the reduced state (�rst
row), entanglement in the full tripartite state (second and third rows),
genuine multipartite entanglement (fourth and �fth rows).
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3.3 Experimental implementation

separable state j00i. Such violation not only guarantees the presence of entan-
glement in the reduced state, but it also certi�es the presence of entanglement
across any bipartition of the tripartite network, regardless of whether the third
party (the discarded one) is using a trusted device or not.
For the tripartite W state, we observe the presence of entanglement and GME

both in the �one untrusted� scenario and in the �two untrusted� scenario as well
(see lines 2-5 of Table 3.1). Note that the violations for the �one untrusted�
scenario are always better than for the �two untrusted� scenario, because in the
former case there is more useful information available (about the state) than in
the latter case. The values for tripartite entanglement are also always better than
the values obtained for GME, as the presence of the latter implies the presence
of the former, but the converse is not true in general.

3.3. Experimental implementation

To demonstrate the practical utility of the theoretical results presented in the
previous Sections, we produced a three-qubit W state using photon pairs produced
by Spontaneous Parametric Down Conversion (SPDC).

3.3.1. Setup

For concreteness in Fig. 3.2 we show the experimental setup. Two 1mm thick type-
I non-linear BBO crystals with optical axes oriented perpendicularly were pumped
with a 325nm continuous-wave He-Cd laser, producing degenerate photon pairs
centered around 650nm. Using an additional half-wave plate in the path of photon
1, the crossed-crystal arrangement produces two polarization entangled photons
in the target state [KWW+99]:

j i = cos � jV Hi12 + e i' sin � jHV i12 : (3.11)

Qubits B and C were encoded in the polarization of the photons 1 and 2, respec-
tively. Qubit A was encoded in the path of photon 2. Initially, qubit A is in the
state j0iA. To produce the W state, we entangle the path and polarization degrees
of freedom (DOF) of photon 2 using a polarization-dependent Mach-Zehnder in-
terferometer composed of two beam displacers (BDs) and several half-wave plates
(HWPs), as described in more detail in Refs. [FAVH+12, AVHD+14]. We label the
input and output paths such that when the polarization state is jHiC, the output
state is j0HiAC. For input vertical polarization, the interferometer implements the
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Figure 3.2.: Experimental setup. Polarization-entangled photons are produced
using SPDC. A third qubit is encoded in the path degree of freedom
of photon 2. An interferometer consisting of beam displacers is used
to produce a three-qubit W state. Projective measurements on the
polarization (Proj. Pol.) and Path (Proj. Path) measurements are
performed using wave plates and polarizers.

transformation

j0V iAC �!
1p
2
j0V iAC +

1p
2
j1HiAC : (3.12)

By controlling the polarization of the pump laser [KWW+99], the initial polar-
ization entangled state was prepared with cos � = 1=

p
3 and ' = 0. Renaming

the polarization state jHi ! j0i and jV i ! j1i, our setup produces a three-qubit
state that is ideally a W state [FAVH+12].
A set of 216 joint projective measurements in the X̂, Ŷ and Ẑ Pauli basis

was performed on all three qubits, which allowed us to evaluate the SDP tests
developed above. To perform projective measurements on qubit B (polarization
of photon 1), the usual system consisting of a quarter-wave plate (QWP), HWP
and a polarizing beam splitter (PBS) is used. For projective measurements on
qubit C, a QWP, HWP and BD are used. This measurement system works in
much the same way as that of qubit B, however, after the projection on a given
polarization state, the BD maps the state of the path DOF at its input into the
polarization DOF at its output. In this fashion, the state describing the path
DOF, which is now encoded in the polarization DOF, can be measured using the
same arrangement as in photon 1. The photons were �ltered with 3nm FWHM
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bandwidth �lters centered at 650nm (not shown in the �gure), coupled into single-
mode optical �bers using 10� microscope objectives and registered with single
photon detectors and coincidence electronics (the "&" box in Fig. 3.2).
The methods described were designed to detect entanglement and certify ran-

domness from an observed physical assemblage �phys. However, due to the un-
avoidable problem of �nite statistics in any experiment, the assemblage that is
experimentally observed �exp does not satisfy the non-signalling property although
non-signalling conditions are within the statistical error. To overcome this prob-
lem we took the following steps. First, we construct a physical assemblage that
approximates the experimental data. This step is done with a least-squares op-
timization, an SDP program that minimizes the distance from the experimental
assemblage to the set of physical assemblages bounded by the non-signalling con-
straints. The second step consists of using the constructed physical assemblage to
obtain the desired witness ŵ phys, following the SDP techniques for entanglement
detection. The last step is to apply the derived witness, which is simply a linear
functional, to the experimental assemblage to show the presence of entanglement
in the network.

3.3.2. Results

Our experimental results are summarised in Table 3.1. The error bars were cal-
culated by performing Monte Carlo simulation (494 rounds) assuming Poissonian
coincidence counting statistics of our measurement results. Experimentally, the
reduced state is not entirely symmetric because of imperfections in the optical
setup, such as temporal and spatial mode mismatch in the interferometer. Thus,
we analyzed all reductions and found that the highest violation of 0:07 � 0:01 is
obtained when discarding Bob, corresponding to the polarization of photon 1.
As far as the experimental certi�cation of tripartite entanglement and GME

are concerned, the corresponding observed witness values are shown in lines 2-3
and 4-5 of Table 3.1, respectively. One obtains a strictly positive value for these
two types of tripartite entanglement, both in the �one untrusted� and in the �two
untrusted� scenarios. The experimental witness values are close to the theoretical
ones, although these do not always fall within the error margins obtained. This is
expected since the experimental state is not perfectly pure (see [MSA+17]). The
case where the measured value agrees with the theory within the error interval
corresponds to the situation where the correlations between two internal degrees
of freedom of the same photon (path and polarization) are the most relevant. In
this special case the purity of the reduced state can be very high experimentally.
Even with these small discrepancies between theory and experiment, we success-
fully certify the presence of entanglement and GME in the considered semi-device
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independent networks. For completeness the reader may �nd the numerical val-
ues for all steering inequalities described in this work at the Git online repository:
github.com/mattarcon2tes/Steering.

3.4. Discussion

In this Chapter we showed that it is possible to certify all types of entanglement
from a three-qubit W state in the semi-DI framework, both in theory and in prac-
tice. Such semi-DI entanglement certi�cation was achieved in all tripartite steering
scenarios, and without the need to consider di�erent measurements among dif-
ferent scenarios. We studied in detail the case of a tripartite con�guration, even
though the method is valid for larger networks. Our experimental results, obtained
with an optical setup yield good qualitative agreement with the theory, and verify
a strong dependence of the witnessed entanglement on the degree of purity of the
initial state. We notice that it is still an open question whether the reduced state
of the W state can violate any Bell inequality [SZDM15, BPB+15], although here
we showed that it does present steering. The results derived promote the W state
as a key candidate for the implementation of semi-device independent protocols.
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4. A measure of nonlocality

without anomalies

In the previous two Chapters we explained and demonstrated how practical wit-
nesses �inequalities� of steering and nonlocality can be constructed from ana-
lyzing the geometry of the space in which these quantum resources lie in. Such
inequalities will be the main ingredient for the development and implementation of
practical semi-DI and DI protocols in the next Chapters. However, we have also
learned that these inequalities cannot be directly considered as a proper, read fun-
damental or universal, measure, since they induce di�erent orderings and certify
more steering or nonlocality of a given resource than others (recall Sec. 2.3).
In this Chapter we leave for a moment the practical perspective to dig into

the more fundamental problem of properly measuring nonlocality. What is an
appropriate measure of nonlocality? Perhaps one which acts directly at the level
of the quantum states; could it be one which is monotone with the the degree of
the entanglement of the underlying state? Indeed, it is crucial to understand the
subtle relation that exists among entanglement, nonlocality, since some entangled
states might be more valuable than others for speci�c DI and semi-DI quantum
information tasks. In this context, we introduce a quanti�er for nonlocality which
does not present anomalies of nonlocality : cases for which maximal entanglement
does not imply maximal nonlocality. With our measure we show that no anomaly
ever occurs when restricting to qubits in a broad range of situations.

4.1. Motivation

Understanding the relation between entanglement and nonlocality has been a focus
of attention for the work of many. Werner revealed the subtlety of the question by
providing an explicit construction of a family of mixed entangled states that do not
violate any Bell inequality when subjected to projective measurements [Wer89].
Werner's result was later extended to general measurements, not necessarily pro-
jective, by Barrett [Bar02]. For pure states, the situation seemed to clarify since
Gisin recognized that all pure entangled states of any dimension display nonlocality
when applying appropriate measurements on them [Gis91].
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When going to quantitative aspects, the relation between entanglement and
nonlocality is not fully understood not even for bipartite pure states. Early work by
Tsirelson demonstrated that the maximal quantum violation of the Clauser-Horne-
Shimony-Holt (CHSH) inequality [CHSH69], the simplest Bell inequality, can only
be achieved when measuring a two-qubit maximally entangled state [Cir80]. It was
then natural to expect maximal entanglement to be indispensable to retrieve the
maximal quantum violation of Bell inequalities. However, subsequent examples
showed that the maximal quantum violation of certain Bell inequalities crucially
requires partial entanglement [ADGL02], even when considering states of arbi-
trary Hilbert space dimension [LVB11, VW11]. Furthermore, the phenomenon of
obtaining more nonlocality from less pure-state entanglement happened to occur
not only for the amount of violation of a given Bell inequality, but also for other
measures of nonlocality, such as the robustness of nonlocality to noise [ADGL02],
losses [Ebe93], statistical strength of Bell tests [AGG05] and the simulation of
quantum correlations with nonlocal resources [BGS05]. The inequivalence, from
a quantitative point of view, between pure-state entanglement and nonlocality was
dubbed anomaly in [MS07] and this is the terminology we adopt here.

It is desirable to understand if such an anomaly is related to a fundamental
aspect of quantum nonlocality, or instead, if it is possible to de�ne an opera-
tional notion of nonlocality for which maximally entangled states correspond to
maximal nonlocality. Interestingly, the authors of [FP15] recently reported that
the anomaly originally observed in [ADGL02] for the Collins-Gisin-Linden-Massar-
Popescu (CGLMP) inequality [CGL+02] for three-outcome measurements disap-
pears when considering a novel, yet intuitive, measure of nonlocality. For a given
quantum state j i, this measure is de�ned with respect to a speci�c Bell inequal-
ity, CGLMP in the case of [FP15], and corresponds to the probability to violate
the inequality when random projective measurements are performed on the state
j i. The authors of [FP15] numerically showed that the probability to obtain a
violation of the CGLMP inequality for three outcomes when pairs of random mea-
surements are performed on each part of a bipartite two-qutrit pure state is always
maximized by the maximally entangled state. It is worth noting that this result
can be seen as an extension to higher dimensions, namely qutrits, of the work of
Liang et al. [LHBR10], which introduced the same measure of nonlocality based
on random sampling of observables to estimate the nonlocality of Greenberger-
Horne-Zeilinger (GHZ) states of many qubits with respect to the Mermin-Ardehali-
Belinski-Klyshko (MABK) inequalities [Mer90, RS91, Ard92, BK93] and even with
respect to the family of Bell inequalities introduced in [WW01, idZB02].

The measure of nonlocality considered by Refs. [FP15, LHBR10] aims to be
an alternative to the use of Bell inequalities, but at the same time forces one
to consider some pre-established Bell inequality. Furthermore, it only assessed
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systems of low dimension and only a few examples of Bell inequalities were con-
sidered: the CHSH, the CGLMP and the MABK inequalities. Motivated by these
two issues, we dispense with the choice of a particular inequality and directly
consider the space of behaviors, which local polytopes inhabit, considering as
an indicator of nonclassicality the probability of generating nonlocality from ran-
domly sampled observables. Our quanti�er of nonlocality relaxes the need for a
speci�c Bell inequality (it covers all possible Bell inequalities for a given scenario
at the same time) and is therefore a natural generalization of the work of Refs.
[FP15, LHBR10].
Equipped with this measure, we prove that no anomaly of nonlocality ever occurs

when considering any number of projective measurements per side for any even
number N of qubits, for all scenario based on full-correlator inequalities (de�ned
later on). We then explore the limits of this result and show that our proof cannot
be extended to qutrits, nor to inequalities involving marginal terms. Finally, we
brie�y discuss whether our measure can be adapted to steering.

4.2. Nonlocality measure

We �rst consider the bipartite nonlocality scenario1 that has already been formally
introduced in Sec. 2.1. Speci�cally, the scenario is de�ned by the set of four
natural numbers [mA; mB; oA; oB] corresponding to the number of measurements
and outcomes of Alice and Bob. The Bell test is fully described by the behavior
~p = fp(abjxy)g whose elements are given by Born's rule (2.6), p(abjxy) =

Tr
[
Majx 
Mbjy �

]
. Within the set Q of such quantum correlations (2.7), the set

of local correlations L is formed by those admitting an LHV model (2.8). Recall
that a nonlocal behavior ~p =2 L is a manifestation of entanglement in the state �,
but the converse statement is in general not true.
As detailed in Chap. 2, the nonlocality of a given behavior ~p is witnessed through

the violation of a Bell inequality g if the quantity g � p :=
∑

abxy gabxyp(abjxy)
(2.15) is strictly larger than a �xed real number gloc known as the local bound of
the inequality [BCP+14]. fgabxyg are real coe�cients de�ning the inequality g in
question.

Bell operator. In turn, one can also witness such a Bell inequality violation
by working with operators directly at the level of the shared state �. Given the

1Note however that in this Section we do not assume device-independence, in the sense that the

measurements and the state can actually be retrieved, and are not assumed to be prepared in

a malicious way by Eve.
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measurements performed by Alice and Bob, one can construct the Bell opera-

tor [BCP+14]:
B̂g =

∑

abxy

gabxyMajx 
Mbjy : (4.1)

With the Bell operator one can now de�ne ĝ(�) := Tr
[
�B̂g

]
and from Born's rule

ĝ(�) = g �p holds. The Bell operator formalism therefore enables the possibility to
understand how distinct properties of � �such as its degree of entanglement�
may a�ect the observed Bell violation ĝ(�).

Anomaly of nonlocality. For concreteness let's take an example and consider
that Alice and Bob share a pure state of two qubits j �i = cos (�) j00i+sin (�) j11i
parametrized by � 2 [0; �

4
]. In this case it is always possible to �nd measurements

fMajxg and fMbjyg producing a nonlocal behavior ~p =2 L from j �i as long as
� > 0 [Gis91]. But which among all these states j �i yields more nonlocality?
The question is troublesome as the answer typically depends on the scenario and
on the Bell inequality considered. In the case of two dichotomic measurements per
side, the state which maximally violates the CHSH inequality upon optimization
of the measurements is the maximally entangled state obtained for � = �

4
and

denoted j�+i. Actually, there exists a monotonous relation between entanglement
and nonlocality in this case [WPGF09].
Intuitively, such monotonous relation between entanglement and nonlocality is

expected to hold for inequalities in broader scenarios involving states of higher di-
mension. In [ADGL02], however, it was found that the CGLMP inequality [CGL+02]
with oA = oB = 3 outcomes and with a two-qutrit state of the form j	


3i =
1p
2+
2

(j00i + 
 j11i + j22i) with 
 ' 0:79 achieves a higher violation than with

the two-qutrit maximally entangled state j�+
3 i = 1p

3
(j00i+ j11i+ j22i). Further-

more, this anomaly of obtaining more nonlocality from less entanglement happens
to occur for states of arbitrary dimension, and for several other measures of non-
locality as well [Ebe93, AGG05, BGS05].

Nonlocality from random measurements. To �x the entanglement anomaly
detected in [ADGL02] for the CGLMP inequality, Ref. [FP15] considered a di�er-
ent measure of nonlocality, to be understood as the probability that correlations
generated with randomly chosen measurements on � violate the inequality by any
extent. A state �1 is, in this sense, more nonlocal than the state �2 if uniform
randomly drawn measurements have a higher probability of generating correlations
violating the inequality when performed on �1 than on �2.
Interestingly, it was found that such a measure of nonlocality does not reveal any

anomaly for the CGLMP inequality [FP15]. The probability of �nding a violation
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4.2 Nonlocality measure

for this particular Bell inequality when Alice and Bob perform one out of two
measurements picked randomly, is always the highest for the maximally entangled
state j�+

3 i. This in fact constitutes the �rst measure of nonlocality for which the
CGLMP anomaly does not occur.
As said, this measure is to be understood as the probability for the generated

correlations to violate a particular inequality g with randomly drawn measurements.
But witnessing nonlocality in correlations with only one Bell inequality is limiting
as correlations can often be nonlocal without violating a given inequality. For this
reason, we consider a measure for which the nonlocality of � is witnessed by all

possible Bell inequalities for a given scenario.
Consider the volume V(�) of the set of measurements which lead to nonlocal

correlations when performed on the state �. This de�nes the probability of the
state to generate a nonlocal behaviour from uniformly random sampled measure-
ments:

P (�) =
1

N

∫

V(�)
dns; (4.2)

where the integration is taken uniformly over the space of measurement operators,
and with N a normalization factor equal to the volume of the entire space. Here
P (�) does not depend on any �xed inequality g, making (4.2) a natural and
appealing measure of nonlocality of the state �. In particular, by taking the
sampling of the measurements uniformly according to the Haar measure, our
quanti�er P (�) is invariant under local unitaries applied on the state �, which was
not considered by [FP15]. To show local unitary invariance of our measure, notice
that P (�) can be written as:

P (�) =

∫
dUx=0:::dUy=mB�1f

NL(p); (4.3)

with f NL(p) being an indicator function such that f NL(p) = 1 if the behavior
p generated by � and by the sampled measurements is nonlocal. Conversely,
f NL(p) = 0 if p 2 L. The sampled measurements are projectors whose elements
are obtained from the action of unitaries randomly sampled acording to Haar's
measure, that is, Majx = Ux jaihaj Uy

x and Mbjy = Uy jbihbj Uy
y for all x; y and

some computational basis fjaiga and fjbigb. Consider now that VA and VB are
�xed unitaries acting locally on � at Alice and Bob sites, respectively. Then,

P (VA 
 VB�V y
A 
 V y

B) =

∫
dUx=0:::dUy=mB�1f

NL(q); (4.4)

where q is now the behavior obtained from the measurements with elements
Majx = VAUx jaihaj Uy

xV
y
A and Mbjy = VBUy jbihbj Uy

yV
y
B. Then, by simply apply-

ing the variable changes fUx  VAUxgx and fUy  VBUygy , and using the fact
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4. A measure of nonlocality without anomalies

that Haar's measure satis�es unitary invariance as a probability measure, namely,
dUx = dVAUx and dUy = dVBUy for all x; y , it follows that P (VA
 VB�V y

A 
 V y
B) =

P (�) holds for any local unitaries VA and VB.
In general, evaluating explicitly the integral in (4.2) is hard because of a lack of

a precise characterization of the set V(�). We approach the problem alternatively
and directly analyze inclusion relations of sets V(�) of di�erent states. Crucially,
we show that in many situations the set V(j �i) obtained from any non-maximally
entangled state is included in the set V(j�+i) derived from the maximally entan-
gled one. This will naturally imply that P (j�+i) � P (j �i) and thus that no
anomaly appears in these situations. Furthermore, in more complex situations,
the operational character of our measure allows us to numerically estimate P (�)
via Monte Carlo simulations.

4.3. Less anomalies for nonlocality

Our main result concerns full-correlator Bell inequalities. These inequalities are
de�ned as those in which only two-body correlators appear, and hence can be
written as gh::i =

∑
x;y gx;y hAxBy i, where hAxBy i denotes the expectation value

of observables Ax and By . We show that when restricting to full-correlator in-
equalities, maximal two-qubit entanglement and maximal nonlocality are always
in correspondence for our measure (4.2). This is achieved by proving the in-
clusion relation V(j �i) � V(j�+i) for full-correlator inequalities. To do so, we
prove that measurements which yield nonlocality when performed on j �i from a
full-correlator inequality will always yield nonlocality if performed on j �0i for any
�0 � �. The result holds for any number mA and mB of projective measurements.

Theorem. For any full-correlator Bell inequality gh::i with local bound gloc,

gh::i(j �i) > gloc ) gh::i(j �0i) > gh::i(j �i); 8 �0 > �: (4.5)

In words, if the full-correlator Bell inequality gh::i is violated by correlations gen-
erated by the measurements fMajxg and fMbjyg acting on a partially entangled
state j �i, then any state j �0i with �0 > � will provide a higher violation of gh::i

from the same measurements.

Proof. Suppose that:

b� � Tr
[j �ih �jB̂gh��i

]
> gloc; (4.6)
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4.3 Less anomalies for nonlocality

where B̂gh��i is the Bell operator associated with the inequality gh::i, as explained in
Sec. 4.2. Observe that j �i can always be written as:

j �i =
(
cos � + sin �p

2
1+

cos � � sin �p
2

�z

)

 1 j�+i: (4.7)

Since the inequality gh::i is full-correlator it does not involve marginal terms and
thus the decomposition of the Bell operator B̂gh��i in the Pauli basis does not
contain terms proportional to 1
 1, 1
 �i and �i 
 1, for i = x; y ; z . Using this
fact and expression (4.7), the left-hand side of inequality (4.6) is re-written as:

b� =
b+ + b�

2
+

sin 2�

2
(b+ � b�) > gloc; (4.8)

where b� � h��j B̂gh��i j��i denotes the expectation value of B̂gh��i on the maximally
entangled state j��i = 1p

2
(j00i � j11i).

b++b�
2

is in fact the expectation value of B̂gh��i on the separable state j00i and
is thus smaller or equal to gloc. Since sin 2� is positive for � 2 [0; �

4
], (4.8) implies

that b+ > b�. Hence the violation b� given by (4.8) is monotonously increasing
with � (with sin 2� to be precise), achieving the maximum value for the maximally
entangled state at � = �=4. This means that, for any full-correlator inequality
there exists a (strictly) monotonous relation between two-qubit entanglement and
nonlocality, and b�0 > b� holds for any �0 > �, which completes the proof.

In particular, the theorem shows that for full-correlator Bell inequalities, the set
of measurements leading to nonlocality on j �i is included in the corresponding
set for the maximally entangled state j�+i. Moreover, it is possible to show
that the inclusion of sets is strict and Vh��i(j �i) � Vh��i(j�+i), where Vh��i(j �i) (
Vh��i(j�+i) ) denotes the set of measurements leading to nonlocality on j �i (on
j�+i) provided that only full-correlator inequalities are considered. Consequently,
and in the spirit of de�nition (4.2), it follows that:

Ph��i(j �i) < Ph��i(j�+i); (4.9)

where Ph��i(j �i) and Ph��i(j�+i) are de�ned in the same fashion as in (4.2), but
assuming that nonlocal correlations may only be witnessed from the class of full-
correlator inequalities. Crucially and in sound contrast with previous works [LVB11,
FP15, dRGP+17], our result is valid for any number of quantum measurements.
It is also worth noting that in most bipartite scenarios facet inequalities � those
delimiting the local set L � are not of the CHSH type [BCP+14], meaning that
our result hence applies to a broad class of inequalities in any scenario.
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Figure 4.1.: Probability of violation for qubits. The probability is obtained from
random measurements and is plotted as a function of entanglement
parameter �. For clarity of the image the range of � has been extended
to �

2
due to symmetry of the state j �i. Measurement scenarios: (+)

� [2,2,2,2], (�) � [2,3,2,2], (�) � [3,4,2,2], (�) � [8,8,2,2].

4.4. Marginal terms and higher dimensions

Can our theorem be extended to inequalities with marginal terms related to single-
body correlators, or to systems of larger dimension than C2 
 C2? A numerical
search supplied a counter-example of measurements producing nolocality on j �i
for � = 3�

16
but not on j�+i in the [3; 4; 2; 2] scenario. We veri�ed that the Bell in-

equalitiy which is violated by the partially entangled state contains indeed marginal
terms (see [LCMA]). This counterexample closes the possibility to generalize the
theorem onto single-body correlator Bell inequalities. Therefore, the sets V(j �i)
and V(j�+i) are not contained one into the other and we cannot order P (j �i)
and P (j�+i) based on inclusion relations. Still, in Fig. 4.1 we provide numeri-
cal evidence for a wide range of scenarios which indicate that the probability of
generating nonlocality from random measurements is always the largest for the
maximally entangled state, and conjecture that the relation P (j �i) < P (j�+i)
holds in general. This observation coincides with the numeric results of Ref.
[LHBR10], which more recently were con�rmed by Ref. [dRGP+17].

We also considered two-qutrit states in the Hilbert space C3o � C3. Here, the
notion of correlators is not uniquely de�ned, but one can generalize the de�nition
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4.5 Multipartite case

of correlators by using the roots of unity (see Ref. [SAT+16] for instance). A
numerical optimization revealed that j	


3i with 
 ' 0:79 violates a full-correlator
inequality in the [2,2,3,3] scenario with projective measurements, while for the
same settings the canonical maximally entangled state j�+

3 i generates a local
behavior. Not surprisingly, the inequality in question is of the CGLMP form (see
[LCMA]).
In spite of the fact that our main result cannot be generalized to the qutrit case,

an extensive numerical search of the [2,2,3,3], [3,3,3,3] and [4,4,3,3] scenarios with
projective measurements suggests that the probability (4.2) is always the largest
for j�+

3 i, as shown in Table 4.1. Thus, we conjecture that the state having the
highest probability of generating a nonlocal behavior is the maximally entangled
qutrit state j�+

3 i, and hence no anomaly should ever occur for our measure in this
case.



Probability for scenario:

[2,2,3,3] [3,3,3,3] [4,4,3,3]

0.25 0.0549 0.3021 0.6529

0.5 0.1033 0.5191 0.8913

0.6 0.1345 0.6131 0.9351

0.7 0.1649 0.6785 0.9577

0.79 0.1851 0.7117 0.9673

0.9 0.1977 0.7327 0.9729

1.0 0.2030 0.7382 0.9743

Table 4.1.: Probability of violation for qutrits. Random measurements were
sampled uniformly according to Haar's measure, and applied to the
parametrized qutrit state j	


3i. The maximally entangled state (
 = 1

is the one achieving the largest probability of violation.

4.5. Multipartite case

It is also relevant to ask if our theorem (4.5) may generalize to the multipartite
case, namely, if it could hold in a situation of N parties sharing N qubits. This
situation was partially addressed by Liang et al. who numerically showed the prob-
ability that GHZ states 1p

2
(j0:::0i+ j1:::1i) violate the MABK inequalities from
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4. A measure of nonlocality without anomalies

random measurements rapidly increases with the number N of qubits. We success-
fully managed to prove that our theorem does hold for the case where N is even,
showing that the GHZ state is the one with the highest probability to yield non-
locality among the family entangled states of the form cos � j0:::0i+ sin � j1:::1i,
when considering full-correlator inequalities and regardless of the number of mea-
surements considered.
More precisely, if j N

� i = cos � j0:::0i+ sin � j1:::1i denotes the partially entan-
gled state of N qubits above mentioned and bN� denotes the violation achieved of
a full-correlator inequality from j N

� i, then the following implication always holds:
if � � �0 then bN� > bN�0 . In other words, there is monotonicity of the Bell violation
with respect to entanglement for any full-correlator inequality for this familly of
states. Furthermore, this also implies monotonicity of the probability of violation,
namely Ph��i(j N

� i) < Ph��i(j N
�0 i). For simplicity we refer the reader to Ref. [LCMA]

for details about this generalization.

4.6. Anomalies in the steering case

We naturally adapt our measure and raise the question about entanglement anoma-
lies in the steering framework: does the maximally entangled state have the largest
probability of demonstrating steering from randomly drawn measurements? We
show that measurements performed by Alice on a partially entangled state j	di of
any dimension generate an assemblage violating a steering inequality if and only if
the same measurements on the maximally entangled j�+

d i state also do so. Such
an observation is made possible through results that were already known by the
quantum information community [QVB14, UMG14].

Theorem. Let f��ajxg be the assemblage retrieved when Alice performs any arbi-
trary number of general measurements fMajxg on j	di, a partially entangled state
of any �nite dimension. Let �+ajx be the assemblage retrieved when the same mea-
surements fMajxg are performed on the maximally entangled state of the same
dimension. Then:

��ajx is not LHS , �+ajx is not LHS : (4.10)

The proof of this implication comes directly from the equivalence between steering
and non-joint-measurability [QVB14]. Randomly sampled measurements will be
non-jointly-measurable with unit probability, in which case it is always possible
to �nd a steering inequality for which any pure entangled state demonstrates
steering [QVB14]. More precisely, it is always possible to write an LHS model
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if the measurements of Alice are jointly measurable, regardless of the degree of
entanglement of the shared state.
It follows that the volume of the set of measurements V(d)steer(j	di) leading to

steering of the non-maximally entangled state j	di is equal to the volume of
the set of measurements V(d)steer(j�+

d i) which lead to steering of the maximally
entangled one. In particular, our measure would trivially imply that Psteer(j	di) =
Psteer(j�+

d i) = 1. This observation holds for any number of measurements and any
dimension d . Thus, our measure does not provide any insight to discuss anomalies
of nonlocality �or any other property of the quantum states� in the framework
of steering, or at least not when restricting to pure states.

4.7. Discussion

In this Chapter we proposed a natural and operational measure of nonlocality
which acts directly at the level of the quantum states and which simultanously
encompases all Bell inequalities. With this measure we showed that no anomalies
of nonlocality occur for two-qubit states for scenarios based on full-correlator
inequalities. We showed that this result generalises to the multipartite case for an
even number of parties. We also provided numerical evidence suggesting that our
measure does not reveal anomalies in scenarios with systems of higher dimension
or in scenarios with inequalities involving marginal terms. In particular, our results
con�rmed the numerical �ndings of Refs. [LHBR10, dRGP+17]. In particular, Ref.
[dRGP+17] presented recently an exhaustive numerical search for systems of up
to 5 qubits and qutrits, onto which up to � 10 random projective measurements
uniformly sampled according to the Haar measure were locally applied. Among
several interesting numerical results, Ref. [dRGP+17] found evidence suggesting
that with our measure of nonlocality no anomaly appears for two-qubit and two-
qutrit systems.
Our main result, presented in detail in Sec. 4.3, enables interesting operational

implications beyond the fundamental study of entanglement and nonlocality. In a
situation where one wants to check if given measurements are useful to violate
a full-correlator inequality with a two-qubit state, thanks to our observation it is
su�cient to check if a violation is retrieved from the maximally entangled state
only. In the same manner, our theorem guarantees that considering the maximally
entangled state is the best choice to succeed in a two-qubit nonlocality test lacking
control over the measurements performed, as such a maximally entangled state
would be the one with the highest probability to reveal nonlocality.
Our measure was then attempted to be adapted to the steering framework

in Sec. 4.5, but in this case the equivalence between steering and non-joint-
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4. A measure of nonlocality without anomalies

measurability implied that our measure trivially yields a unit value for the proba-
bility to demonstrate steering from randomly sampled measurements for any pure
entangled state of any dimension.
Finally, note that a downside of our measure is that it does not seem to have

the potential to enable DI and semi-DI tasks, because it acts directly at the level
of the states and therefore assumes a certain knowledge of them and of the mea-
surements that are being implemented. For this reason in the next Chapters we
come back to the standard use of inequalities to develop and implement proto-
cols for genuine random number generation and device-independent quantum key
distribution.
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5. Certi�ed random number

generation

After having reviewed the basic concepts for genuine randomness certi�cation in
Sec. 2.4, we implement the �rst proof-of-principle experiment demonstrating one-
sided DI random number generation in Sec. 5.1. Then, in Sec. 5.2 we show how
genuine randomness can be further increased in experiments by tailoring the mea-
surements and avoiding post-processing of the observed data. Finally, with a more
re�ned setup, we manage in Sec. 5.3 to implement an extremal POVM with high
�delity, which allows to experimentally certify more than one bit of randomness
from one entangled bit, both under semi-DI and under fully DI conditions.

5.1. Experimental one-sided DI randomness

certi�cation

In this Section we implement the methods for one-sided DI randomness certi�ca-
tion (2.20) to the photonic three-qubit W state whose generation was explained
already in Sec. 3.3. Since the methods can only be applied on a bipartite scenario
we �rst analyze the reduced state �red. Then, we shall consider bipartitions of the
W state, namely, that two black boxes are held by a single party.

5.1.1. From reductions of the W state

The reduced state of the three-qubit W state jW i = 1p
3
(j001i + j010i + j100i)

is obtained, after tracing-out e.g. the third party, to be �red = 2=3 j +i h +j +
1=3 j00i h00j, where j +i denotes the two-qubit maximally entangled state j +i =
1=
p
2(j01i + j10i). In Chap. 3 we showed that �red is in fact steerable when

applying the three Pauli observables on the untrusted box, with a theoretical
violation �using (2.13)� of r = 0:11. We furthermore achieved an experimental
violation of r = 0:07� 0:01 (see Table 3.1).
It is therefore intuitive to expect that �red should yield some genuine semi-

DI randomness from one of the Pauli observables that is applied on the black
box. Interestingly, no one-sided DI randomness could be extracted from �red.
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Indeed, after deriving the corresponding assemblage � from �red and from the Pauli
observables, we found that G�(x

�) = 1 for any of the three possible measurement
choices x� = X̂; Ŷ ; Ẑ.
The fact that no one-sided DI randomness could be extracted from the reduced

state of the three-qubit W state is unfortunate but interesting. This is analogous
to a similar phenomenon, known as bound randomness [ACP+16], which arises in
the fully DI scenario where the two parties hold untrusted devices. More precisely,
in the fully DI scenario, bound randomness arises in nonlocal correlations for which
the eavesdropper, Eve, can �nd out a posteriori the result of any implemented
measurement. Thus, the fact that any reduction of the W state is steerable but
does not allow for one-sided randomness certi�cation, may tentatively be refered
to as one-sided bound randomness: a form of steerable correlations for which an
eavesdropper can predict the result of any of the measurements performed on the
untrusted side.
Experimentally, we checked that the experimental data of each of the the re-

duced states does not reveal any amount of one-sided randomness, as predicted
by the theory. Due to the unavoidable problem of �nite statistics, we had to derive
the steering inequality for randomness (from the dual of (2.20)) from the closest
non-signalling assemblage �phys to the one observed in the experiment, �. Then
we applied the inequality to �. In particular, this three-step method will also be
applied in the following Subsection.

5.1.2. From bipartitions of the W state

In our experimental implementation of the photonic W state presented in Fig. 3.2,
a physical bipartition of the state stems between the two photons produced. In
this sense, it is natural to consider the photon encoding both polarization and path
qubits as a single party, and analyze the amount of randomness of the outcomes
s = (a; b) retrieved when untrusted measurements are performed on such physical
part of the system. Thus, the scenario presented in Fig. 5.1 turns out to be
relevant and well suited to analyze our experimental data.
When two of the boxes are seen as a single untrusted measurement m = (x; y)

performed on some unknown quantum state, while the other qubit, C, remains
trusted, we manage to certify log2(3) � 1:58 random bits from the outcome
s = 00; 01; 10; 11 of the measurement m� corresponding to the observables X̂
and Ẑ acting on the two-qubit subspace reduction of the W state.
Experimentally, we managed to certify 0:26 � 0:04 bits from the above men-

tioned bipartition of the photonic W state. This value falls far from the theoretical
value of � log2(2=3) � 1:58 bits. This discrepancy is due to the fact that the
amount of randomness is extremely sensitive to the visibility v of the pure W
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s �C
s|m

m

Figure 5.1.: One-sided DI randomness from bipartitions. Alice and Bob are
thought as a single party holding two untrusted boxes, performing
at each round a measurement m and obtaining some result s. This
scenario allows us to analyze the amount of randomness of the result
s when �Cr jm is observed by Charlie.

state with respect to white noise. For instance, we observe that for v = 0:994

the number of one-sided DI random bits certi�ed is already less than unity.

5.2. Optimization over experimental conditions

The experimental certi�cation of 0:26� 0:04 semi-DI random bits from a biparti-
tion of the three-qubit W state detailed in the previous section is a promising result
to pursue the development of randomness certi�cation with uncharacterized de-
vices. However, the fact that this number is small (only 16%) with respect to the
theoretically achievable amount of � log2(2=3) � 1:58 bits, draws considerable
attention. Is there room for improvement of experimental conditions to increase
this amount? From the technological perspective, it is of paramount relevance to
quantitatively increase the e�ciency �the number of random bits certi�ed per
use� of quantum random number generators. From the fundamental perspective
it is desirable to explore the upper limits of genuine quantum randomness genera-
tion and in this way continue probing the limits of quantum theory. In this Section
we �rst derive in Sec. 5.2.1 a three-step method which requires little experimental
e�ort to increase by a notably large amount the randomness that can be certi-
�ed from Bell experiments. (For simplicity we narrow our focus to the nonlocality
framework, but the methods developed here are straightforwardly applied in future
Sections to the steering framework). To show the performance of the method, we
then apply it in Sec. 5.2.2 to a realistic model of optical Bell experiments, where
certify up to four times more randomness than previous methods.
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5.2.1. Method

In Section 2.4 we discussed how to retrieve the maximal amount of randomness
available for Alice and Bob from an observed behavior p, that is, the randomness
optimized over all possible Bell inequalities. Still, there are several degrees of free-
dom in p that can be further optimized to provide even more randomness. More
precisely, tailoring these degrees of freedom always leads to di�erent behaviours,
which in turn yields di�erent �and hopefully higher� amounts of randomness.

Keeping as much data as possible. In particular, the number of outcomes oA
and oB can be adjusted without much experimental e�ort. All loophole-free Bell
experiments so far [HBD+15, SMSC+15, GVW+15] have relied violation of the
CHSH inequality. This assumes the local observation of two outcomes per party.
However, in addition to the two good outcomes, loss and imperfections lead to
events where no detector clicks, resulting in a third outcome per party; this means
that a local binning process was applied in all these experiments to reduce the size
of the original behavior to two outcomes.
It is intuitive to expect that more randomness can be certi�ed when binning

strategies are avoided; any binning strategy represents a loss of potentially useful
information. Still, it could be the case that the amount of certi�able randomness
would not get diminished for some particular binning. Our results show that this
is not the case in general. In fact, In Ref. [MSB+15] we explicitly showed how
any binning strategy applied to CHSH correlations with ine�cient detectors will
systematically decrease the amount of certi�able randomness. Hence, to certify
optimal amounts of randomness, Alice and Bob must ensure that the number of
outcomes oA and oB is kept as high as possible.

Taking experimental parameters into account. The observed quantum be-
havior p possesses physical degrees of freedom that can be adjusted in the exper-
imental setup to produce higher amounts of randomness. The solution of (2.21)
can be minimized over all the possible realistic values that such parameters (which
we label P) can take. In this way, the optimal amount of randomness that can be
certi�ed to the order is now the solution of:





G(x�) = min
P

Gp(x
�)

s.t. Gp(x
�; y �) solves the SDP of eq. (4.4):

(5.1)

In particular, notice that this program could optimize Gp(x) over the number of
measurements mA and mB, which may be seen as implicit quantities in P. In
practice, program (5.1) is di�cult to solve because the dependence of p in terms
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of the physical parameters P is (highly) nonlinear. Still, a numerical nonlinear op-
timization can be carried with di�erent algorithms, providing possibly sub-optimal,
though still relevant, parameters. As mentioned, an analogous program to (5.1)
is also realizable in the steering framework for G�(x

�). In summary, our three-step
method for optimal randomness generation is presented in Box 4.

Box 4. General directions for optimal DI randomness certi�cation.

(i) Estimate the most general behavior p, without any binning.

(ii) Construct Gp, the device-independent guessing probability
optimized over all possible Bell inequalities. See (2.21).

(iii) Optimize Gp over the parameters P that can be adjusted
in the experimental setup. See (5.1).

5.2.2. Focus on optical Bell experiments

The methods presented above are general and can be adjusted to any bipartite
Bell experiment. We focus and describe in the following the architecture of op-
tical implementations based on polarisation measurements of entangled photons
distributed from a spontaneous parametric down-conversion (SPDC) source (see
Fig. 5.2). The source is characterized by three adjustable quantities: two squeez-
ing parameters g1 and g2 and a total number of modes N onto which the photons
may be distributed. Each mode locally splits into two orthogonal polarisations.
In terms of bosonic creation operators, the unnormalized state produced by S is
given by [CVSB+15]:

N∏

k=1

exp
[
tanh(g1)a

y
kb

y
k? � tanh(g2)a

y
k?b

y
k

]
j0i ; (5.2)

were j0i is the vacuum state associated to the 4N bosonic operators ay1; :::; a
y
N?,

by1; :::; b
y
N?, and the a-modes (b-modes) are distributed to Alice (Bob).

All the di�erent types of losses including detectors ine�ciencies are modeled,
without loss of generality, by two beam-splitters (not shown in Fig. 5.2) placed
at any point between the users and the source. The transmittance � of these
beam-splitters is the overall detection e�ciency of the experiment.
The measurements are performed with polarizing beam-splitters (PBS) and �

2

half-wave plates (HWP) and �
4
quarter-wave plates (QWP) which allow splitting
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Figure 5.2.: Experimental setup for optical Bell experiments based on SPDC and
polarization measurements. See main text and App. A for details.

the orthogonal modes along arbitrary directions [CMA+13, GMR+13, CVSB+15].
Each measurement u is fully characterized by two angles (�u; �u) de�ning a pro-
jection in the Bloch sphere. Each of the parties holds two detectors, which do not
resolve photon number (half-circles in Fig. 5.2). Hence, for each detector only
the outcomes �0=No click" and �1=Click" can be distinguished, and the maximal
number of local outcomes (without binning) is oA = oB = 4.

5.2.3. Results

In this Subsection we apply the three step method presented in Sec. 5.2.1 to the
optical setup whose modeling was described in Sec. 5.2.2.

Global randomness. To take full pro�t of the genuine randomness from the Bell
experiment we consider the task of global randomness certi�cation. This is strictly
equivalent to the local case already described in (2.21), with the only di�erence
that now we are interested in bounding the predictability of the two black boxes.
In this case, Eve is simultaneously trying to guess the output of Alice and Bob
when they chose measurements x� and y� respectively, and program (2.21) is
transformed to:

Gp(x
�; y �) = max

fpeg

∑
e

p (e; (a; b) = ejx�; y �)

s.t.
∑
e

pe = p

pe 2 Q̃ 8e

(5.3)

The di�erence between (5.3) and (2.21) is that now Eve requires oAoB strategies
fpege, since she is guessing the output of the two parties. The objective function
has also been adjusted accordingly, but the program itself remains the same.
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5.2 Optimization over experimental conditions

Optimal randomness with mA = mB = 2 measurements per side. Opti-
mal global randomness is retrieved from (5.1) upon optimization of all adjustable
parameters, which include the number of measurements in the experiment. Opti-
mizing G over mA and mB is of particular relevance for the setup that we consider
as distinct rotation directions of the incoming modes can be achieved by adjusting
the HWP and QWP, i.e. without the need of further experimental resources. Still,
to illustrate the performance of our methods we consider �rst the simplest case
mA = mB = 2.
We �nd that whenever the parties are restricted to obin = 2 outcomes, more

global randomness is certi�ed when no speci�c Bell inequality is considered. This
was to be expected a and the line of research of [NSPS14, BSS14] (see dashed and
dotted curves in Fig. 5.3). However, we improve considerably this expected result
by suppressing the binning of the outcomes and letting o = 4, as we explained
before (solid curve in Fig. 5.3). For � = 1 our methods certify 0:74 bits of
global randomness per source use, four times more than the 0:19 bits that are
certi�ed from the CHSH inequality (we provide the Bell inequality that certi�es
this improvement in [MSB+15]).
The numerical values of the optimal parameters P are given in Fig. 5.4 for

several values of �. Intuitively, the ratio t = tanh(g1)= tanh(g2) quanti�es the
degree of entanglement of the source, as (5.2) shows. For � = 1 optimal ran-
domness is obtained from a �maximally entangled� state, i.e. t = 100%, but as
� decreases t also decreases. This was to be expected for the lower values of
�, where nonlocality can only be certi�ed with non-maximally entangled states
[Ebe93]. Interestingly, for � � 1 the optimal measurements are not similar to
the ones that intuitively maximize the violation of the CHSH inequality on two
maximally entangled qubits (e.g. they are not mutually unbiased); see [MSB+15]
for the exact expressions. That is, the optimal measurements for optimal random-
ness certi�cation are not the same as those maximizing the CHSH violation. The
number of modes attains the maximal value that we allow (N = 100) whenever �
is greater than 2

p
2�2. For � smaller than this value, the single mode case N = 1

is su�cient to obtain maximal randomness; this fact was noticed in [CVSB+15]
for the maximization of the CHSH inequality violation. Finally, we have found that
the improvement obtained when increasing the number of modes beyond � 25 is
very small.

Optimal randomness with more than two measurements. Our next goal is to
see whether deploying more measurements yields an improvement in the number
of random bits. In the previous subsection we considered the case mA = mB = 2;
however, by adjusting the HWP and QWP located in front of their PBS, Alice
and Bob can measure their incoming subsystem along any arbitrary polarisation
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Figure 5.3.: Global randomness for the case mA = mB = 2. For the three curves,
the parameters P are optimized at each point. The solid curves are
the min-entropy of the solution of program (5.1) for oA = oB = 4

(optimal) and for oA = oB = 2 (binning).

direction of the Bloch sphere. These adjustments can thus be obtained with rel-
atively low experimental cost, the main drawback being a non-negligible increase
in the amount of statistical data (the size of p increases with mAmB).

Figure 5.4.: Color online. Optimal parameters P for di�erent values of �. t is
the ratio between tanh(g1) and tanh(g2), while g = max(g1; g2). N
always reaches 100. Blue (Red): optimal measurements for Alice
(Bob) in the Bloch sphere representation.

66



5.2 Optimization over experimental conditions

Our results in Table 5.1 show that more measurements certify more random-
ness, even in scenarios for which a binning strategy had to be considered and P
could not be fully optimized due to computational limitations. The time required
to solve (5.1) becomes large as the number of measurements increases, since the
total number of SDP variables describing the behaviours pe in (5.3) increases as
(mAmB)

2. The increase is less dramatic when local randomness is certi�ed (equa-
tion (2.21)) e.g. from Alice's perspective, as there are only oA (instead of oAoB)
SDP matrices for each choice of P.

SCENARIO (2; 2) (3; 2) (3; 3) (4; 3) (4; 4) (5; 5)

Total SDP variables 1348 3340 8392 15748 29620 � 105

Local random bits 0:454 0:459 0:519� 0:523� 0:557� N/A

Table 5.1.: Local randomness certi�ed for di�erent scenarios for � = 1. The
scenario speci�es the couple (mA; mB). The * symbol is used when
full optimization was not possible, and instead: (i) the optimization
was only carried over the number of modes, with g1 = g2 = 0:1; (ii)
the measurements were inspired from the chained inequality [BC90]
and (iii) we considered 3 outcomes per party by locally binning the �no
click-no click� and the �click-click� outcomes.

In particular, with four measurements per party we certify 0:557 local random
bits. This is 3 times more than the amount that is certi�ed from the CHSH
inequality (� 0:17 bits) under the same considerations.

Experiments with only one detector per side The setup depicted in Fig. 5.2
has been hitherto central in our analysis as it captures the general architecture for
Bell experiments with entangled photons. Unfortunately, state-of-the-art super-
conducting detectors, i.e. those which achieve detection e�ciencies above 70%

and thus enable a true Bell violation without post-selection, represent an extremely
high experimental cost nowadays.
This situation can be alleviated (the cost can be reduced by half) by realizing

that a Bell test can still be carried on with the use of only one detector on each
arm of the experiment [CMA+13, GMR+13]. Given the techniques that we have
shown so far, it is interesting to see how the optimal amount of randomness is
a�ected. For a �xed overall detection e�ciency �, how does the optimal amount of
randomness that can be certi�ed in an experiment with only one detector compare
to the optimal amount of randomness that can be certi�ed with two detectors?
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5. Certi�ed random number generation

The statistics of an experiment with only one detector are straightforwardly
obtained from the statistics of an experiment with two detectors. As discussed in
Sec. 5.2.2, the possible local outcomes of an experiment with two detectors are
00, 01, 10 and 11 where the �rst (second) number labels the outcome of the �rst
(second) detector�0=No click" and �1=Click�. Then, applying the local binning
B1Det = f00 ! 00; 01 ! 00; 10 ! 10; 11 ! 10g on Alice and Bob's sides yields
the statistics of the experiment without the second detector.

We observe that for � � 0:8 no disadvantage occurs if the second detector
is removed: the optimal amount of local and global randomness than can be
certi�ed in both cases is � 6� 10�4 bits. On the other hand, as � becomes close
to 1 removing a detector negatively a�ects the optimal amount of randomness:
for � = 1 the optimal amount of local (global) random bits certi�ed with two
detectors is � 0:45 (� 0:73) bits, while with only one detector the optimal amount
is � 0:31 (� 0:34) bits.

5.2.4. Conclusion

Summarizing, in this section we have explicitly shown the bene�ts of optimizing
randomness in a Bell experiment over the adjustable parameters in an experiment
and over all possible inequalities, and the negative consequences that occur when
information is lost through a binning of the resulting outcomes. We carefully
analysed and characterized optical setups based on SPDC and certi�ed up to four
times more randomness when all of the physical parameters were optimized. To
put it in a nutshell, here are the important facts to be aware of in order to retrieve
optimal amounts of randomness from an optical Bell implementation based on
SPDC (and their experimental cost):

1. Keep the whole statistics and avoid binning the outcomes. (no cost).

2. Use as many polarisation measurements as possible. (small cost).

3. Use many modes to distribute the entangled photons. (high cost in principle,

but keep in mind that more than � 25 modes will provide little improvement).

4. For � � 1, the optimal measurements for randomness extraction are not

the ones that maximize the violation of the CHSH inequality. (no cost).

5. For � � 0:8 it is enough to use a single mode to distribute entanglement

and use a single detector per side. (no cost).
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5.3 Experimentally certifying more than one random bit from one entangled bit

5.3. Experimentally certifying more than one

random bit from one entangled bit

In the previous Section we focused our attention on optimizing the amount of
randomness with little improvements of experimental conditions and a better pro-
cessing of the data generated in a given Bell setup; namely, by keeping the entire
statistics, adjusting the physical parameters and optimizing the guessing prob-
ability over all possible inequalities. As mentioned, the methods described for
nonlocality straightforwardly apply for the steering framework.

A more fundamental question is to ask for the maximal amount of randomness
that a given quantum state allows for. At the level of the quantum states, entan-
glement is the key resource to produce nonclassical correlations and in particular
the two-qubit maximally entangled state, j�+i = 1p

2
(j00i+ j11i) is considered

as the fundamental entanglement unit, known also as an entangled bit,, or e-bit.
If the two parties locally perform 2-outcome projective measurements on such an
e-bit, at most 1 bit of local randomness can be certi�ed from Alice's device (this
situation corresponds to the case where the eavesdropper makes a fully random
guess on the outcome a, as explained in Sec. 5.2). In fact, Ref. [AMP12] showed
that this limit can always be achieved using 2 projective measurements per side,
and even with arbitrary small amounts of entanglement.

Still, there exist non-projective measurements which allow for more outcomes,
the so-called Positive Operator-Valued Masure (POVM) measurements, encoun-
tered already in Chap. 4. POVM measurements correspond to the most general
formulation of a measurement in the theory of quantum physics. Can the use
of POVM measurements yield more than one bit of local randomness from one
entangled bit? If so, what is the maximal amount that such general measure-
ments, can achieve? And most importantly, would such a quantitative theoretical
improvement be substantial in a realistic situation, that is, within an experiment?

5.3.1. Background

In this Section we recall theoretical background to retrieve the maximum amount
of genuine local randomness extractable from one entangled bit with the use of
extremal POVM measurements, and brie�y explain how this limit can actually be
obtained with quantum correlations. Next, we show how such a POVM can be
realized by an orthogonal (projective) measurement in a Hilbert space of larger
dimension, by attaching an ancillary system to j�+i.
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Figure 5.5.: Scenarios for DI and semi-DI certi�cation of more than one bit of
randomness from one e-bit. At each round Alice randomly chooses
her measurement among a 3-outcome POVM and three 2-outcome
projective measurements. In the DI scenario Bob chooses among
three projective measurements, while in the semi-DI approach he ap-
plies tomographic measurements (e.g. the Pauli observables) to re-
construct his share of the state.

2 bits of local randomness. We start by stating a rather straightforward ob-
servation: no more than 2 log(d) bits of local randomness can be certi�ed by
measuring an entangled state of dimension d �d . This follows from the fact that
a POVM acting on space of dimension d can always be decomposed as a convex
sum of POVMs of at most d2 outputs [DPP05]. In the case of qubits, no more
than 2 bits of local randomness can be certi�ed, i.e. twice as much than using
projective measurements [AMP12]. In Ref. [APVW16] two examples of qubit
correlations saturating this bound were obtained, thus providing examples of opti-
mal local randomness certi�cation from one e-bit. The examples were obtained by
providing Alice with projective measurements and a 4-outcome extremal POVM
x� with elements fMajx�ga such that Tr

[
Majx�

]
= 1

2
and Majx� = 1

2
j aih aj for all

a = 0; 1; 2; 3. In particular the POVM x� gives P (ajx�) = 1
4
for all a. The idea

is to provide Bob with three tomographically complete measurements, the Pauli
observables �x ; �y and �Z, which simultaneously guarantee the presence of the
e-bit and the extremality of the POVM through self-testing properties [MY98].

Scenario. Unfortunately, both examples of Ref. [APVW16] are quite sensitive
to noise, as a fraction of (white) noise of the order of 1% makes the obtained
randomness smaller than one bit. In particular, the �rst construction, which re-
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5.3 Experimentally certifying more than one random bit from one entangled bit

quires 6 projective measurements for Alice, does not provide any advantage in
terms of noise tolerance with respect to the second construction, which only re-
quires 3 projective measurements on each side. A numerical search, based on the
methods from Sec. 5.2 revealed that no improvement in terms of noise tolerance
is obtained by having more than 3 measurements per side. In fact, in the task
of certifying more than one bit of randomness the numerical optimization also
revealed that roughly the same noise robustness to certify more than one random
bit is achieved when considering an extremal POVM of three outcomes (instead
of four), which reduces the complexity and cost of the experiment (see Table 5.2
and Fig. 5.8). For the reasons mentioned, we consider the scenario depicted in
Fig. 5.5, which consists of one 3-outcome POVM for Alice labeled x = x� = 3,
and three projective measurements for each of the parties, labeled x = 0; 1; 2 and
y = 0; 1; 2.

Neumark's theorem. To implement the POVM measurement x� in her share of
the e-bit, Alice needs to operate in a Hilbert space of larger dimension. Crucially,
Neumark's theorem guarantees that any POVM can always be realized by extend-
ing the Hilbert space to a larger space, and performing orthogonal measurement
in the larger space [NC00]. Concretely, suppose that Alice attaches an ancillary
qubit C to her qubit A, then she applies some unitary U on the system AC and
�nally she performs a projective measurement of the coupled system AC in the
basis fj00i ; j01i ; j10i ; j11ig. We label �AC

ajx� the four projectors associated to this
measurement. In this case, the joint statistics of the test, observed by Alice and
Bob and given by Born's rule, read:

p(abjx�y) = Tr
[
U 
 1B

(j
ih
j 
 j�+ih�+j)Uy 
 1B
(
�AC
ajx� 
Mbjy

)]
; (5.4)

where j
i denotes the initial state of the ancilla C. Using the fact that the trace
operator is cyclic, we have:

p(abjx�y) = Tr
[(
Uy�AC

ajx�U j
ih
j 
 1A
)
Mbjy

(
1C 
 j�+ih�+j

)]
: (5.5)

By taking �rst the partial trace over C, one �nally arrives to:

p(abjx�y) = Tr
[{
TrC

[
Uy �AC

ajx U j
ih
j 
 1A
]} 
Mbjy j�+ih�+j

]
; (5.6)

and the term in brackets in (5.6) can be identi�ed as the elements Majx� of a
generalized, 4-outcome, measurement acting on Alice's qubit:

Majx� := TrC
[
Uy �AC

ajx� U j
ih
j 
 1A
]
: (5.7)

Note that a formula equivalent to (5.6) is obtained when Bob is trusted in the
steering approach, producing the assemblage �ajx� = TrA

[
Majx� 
 1B j�+ih�+j

]

with Majx� given by (5.7).
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Figure 5.6.: Implementation of extremal 3-outcome POVM measurement

with double-path interferometer. A PBS initially splits polariza-
tions H and V into a clockwise and a counter-clockwise path inside
the interferometer. By adjusting the rotation angles of the HWPs

according to �a = 0, �b = 2 sin�1
(√

2
3

)
and �c = �

2
the 3-outcome

extremal POVM depicted in the right is obtained. The elements of
this POVM are proportional to rank-one porjectors in the (xz)�plane.

5.3.2. Optical Setup

Alice's POVM measurement is implemented by using the available propagation
modes of Alice's down-converted photon, when it is sent through a polarization-
based double-path Sagnac interferometer (see Fig. 5.6). The propagation modes
of a photon within this interferometer are not co-propagating and depend on its
polarization state. This allows for conditional polarization transformations to be
implemented with half-wave plates (HWPs) paramterized by rotation angles �a
and �b placed inside the interferometer. These two propagation modes are then
superposed again at the PBS. At one of the output ports of the interferometer an
extra HWP with rotation angle �c and a polarizing beam-splitter (PBS) are set.
From (5.7) and according to the HWP and PBS transformations (made explicit
in App. A), the POVM elements are found to be:

M0jx� =

(
cos2

(
�a
2

)
cos2

(
�c
2

) �1
2
cos
(
�a
2

)
cos
(
�b
2

)
sin(�c)

�1
2
cos
(
�a
2

)
cos
(
�b
2

)
sin(�c) cos2

(
�b
2

)
sin2

(
�c
2

)
)

M1jx� =

(
cos2

(
�a
2

)
sin2

(
�c
2

)
1
2
cos
(
�a
2

)
cos
(
�b
2

)
sin(�c)

1
2
cos
(
�a
2

)
cos
(
�b
2

)
sin(�c) cos2

(
�b
2

)
cos2

(
�c
2

)
)

M1jx� =

(
sin2

(
�a
2

)
0

0 sin2
(
�b
2

)
)

(5.8)
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Alice Bob

ba

Figure 5.7.: Experimental setup. A type-II PPKTP crystal is pumped by a con-
tinuous wave 405 nm laser to generate 810 nm polarization-entangled
photons. The non-linear crystal is placed inside an intrinsically phase-
stable Sagnac interferometer, which is composed of two laser mir-
rors, a HWP, and a polarizing PBS cube. The clockwise and counter-
clockwise propagating modes of the generated pair of photons overlap
inside the interferometer resulting in the photonic state given by (5.2).
High-quality narrow bandpass (FWHM of 0.5 nm) �lters centered at
810 nm are used to ensure phase-matching conditions. We use a
high-resolution coincidence �eld programmable gate array electronics
to implement 500 ps coincidence windows, thus drastically reducing
the accidental coincidence count probability to less than 10�5 . The
measurements x; y = 0; 1; 2 are implemented in each laboratory us-
ing high-quality polarizing optical components. Alice's measurement
x = 0 is a three-outcome POVM which is implemented using the
double-path interferometer.

In particular, when taking the values for the rotation angles of the HWPs �a = 0,

�b = 2 sin�1
(√

2
3

)
and �c = �

2
(See App. A also) the elements in (5.8) become:

M0jx� =

(
1
2

�1
2
p
3�1

2
p
3

1
6

)
; M1jx� =

(
1
2

1
2
p
3

1
2
p
3

1
6

)
; M2jx� =

(
0 0

0 2
3

)
: (5.9)

It can be checked that with this choice Tr
[
Majx�

]
= 2

3
for all a, and furthermore

each element is proportional to a rank-one projector in the xz-plane, pointing to
the vertices of an equilateral triangle in the Bloch sphere (see Fig. 5.6).
In our implementation, which is based on the scenario from Fig. 5.5, we produce

pairs of photons entangled in polarization degrees of freedom. The quality of our
implementation allows to observe a two-photon visibility of 99:7 � 0:2 extracted
from row coincidences detection, that is, without extra manipulation of the ob-
served signal for the calculation of P (abjxy). The details of our experimental
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methods are explained in the captions of Fig. 5.7.The binary projective measure-
ments corresponding to x; y = 0; 1; 2 are implemented by using a set composed
of a quarter wave-plate (QWP), a HWP, a PBS, and high- e�ciency polarizing
�lms placed in front of each detector (not shown in Fig. 5.7). Alice's measurement
labeled by x = 0 is the POVM measurement with three outcomes implemented ac-
cording to Fig. 5.6, as discussed in the previous paragraphs. The down-converted
photons are registered in coincidence using Perkin-Elmer single-photon avalanche
detectors with an overall detection e�ciency of 15%.

5.3.3. Results

3-outcome
POVM

4-outcome
POVM

White Dephasing White Dephasing
Device-independent 99:2 98:4 99:3 98:3
Steering (Semi-DI) 98:7 93:3 98:4 93:3

Table 5.2.: Theoretical results. Critical weights v � (%) to certify more than
one bit of randomness from the state initial state v j�+ih�+j + (1 �
v)�noise, for two types of noise: white noise, which draws the state to
a maximally mixed state �noise = 1=4, and dephasing noise, which is
less destructive, and for which �noise = (�z 
 1B) j�+ih�+j (�z 
 1B)y.

For the 3-outcome POVM case, in the device-independent approach, we con-
sider that A can perform a measurement among the 3-outcome POVM parame-
trized by (�; �; �a; �b; �c) and three PMs parametrized by angles (�Ai ; �

A
i )i=1;2;3,

while Bob can perform 3 PMs parametrized by (�Bj ; �
B
j )j=1;2;3. In the steering

approach A's side is unchanged but now Bob performs tomography on his system,
which can be achieved by measuring Pauli observables �x , �y and �z , for example.
The 4-outcome POVM is parametrized by (�; �; �a; �b; �c ; �d ; �d), and A can

still choose among this POVM and 3 PMs. In the device-independent approach,
Bob can perform now 4 PMs parametrized by (�Bj ; �

B
j )i=1;2;3;4, while in the steering

approach he keeps performing tomography on his system.
Following the methods of the previous Section for optimal randomness certi-

�cation, we numerically searched for the optimal parameters ~�� that allow the
lowest value of the critical weight v �. The values of v � obtained for the device-
independent approach and for the steering approach are exposed in Table 5.2, for
the two di�erent noise models considered. In particular, little improvement on
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Figure 5.8.: Experimental results in the DI framework. The experimental �-
delity of the state is � 99:7%. The theoretical curves were obtained
assuming the white noise model, which is a worse case assessment
producing completely uncorrelated results and thus systematically lies
below the experimental points.

was found by considering more than 3 projective measurements per side, and by
employing a 4-outcome measurement rather than 3-outcome one.

In the semi-DI case, the measurements of Alice which provided the lowest values
for v � where the Pauli observables. In the full DI case, the best measurements
found are those which maximize the violation of the chained inequality in the XZ
plane: de�ning the operator R(�) = 1

2
(1+ cos ��̂z + sin ��̂x), the Bloch vectors

associated with the �rst outcome x = 0 are M0j1 = R(�
6
), M0j2 = R(�

2
) and

M0j3 = R(5�
6
) for Alice, and M0j1 = R(0), M0j2 = R(�

3
) and M0j3 = R(2�

3
) for

Bob. For the 3-outcome POVM the best parameters found are those yielding
the extremal POVM detailed in Fig. 5.6. For the 4-outcome POVM, the optimal
parameters found correspond to the extremal POVM used by Ref. [APVW16] and
whose Bloch vectors point to the vertices of a tetrahedron.
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The experiment was thus performed with the parameters above mentioned for
the 3-outcome POVM, yielding a collection of observed experimental frequencies
f (abjxy). Retrieving the optimal amount of randomness from these observed
experimental frequencies f (abjxy) is not straightforward because the behavior
obtained upon normalizing these frequencies does not satisfy the nonsignaling
conditions de�ned in Sec. 2.2 due to the �nite statistics regime of any imple-
mentation. This same problem was encountered when analysing the amount of
one-sided randomness form the experimental data in Sec. 5.1.

To circumvent the signaling problem in the DI case we used the Collins-Gisin

parametrization to construct a nonsignalling behavior p. The Collins-Gisin parame-
trization discards all the statistics about the last outcome of each measurement
(indeed, such statistics are implicit in the normalization condition when the behav-
ior satis�es nonsignaling) enforcing in this manner the nonsignaling constraints.
In the semi-DI case, we used a least-squares optimization to �nd the closest
nonsignaling assemblage to the experimental data, just as in Sec. 5.1. From the
nonsignaling behavior and the nonsignaling assemblage we obtained the desired
inequalities, which come from the dual formulation of programs (2.21) and (2.20),
as explained in Sec. 2.4.

In the full DI approach our methods �nally managed to certify 1:18 � 0:08

bits of genuine randomness. As a matter of comparison we also calculated the
randomness we can obtain from our setup using only projective measurements to
be 0:929�0:085. In Fig. 5.8 we compare our experimental data with a simulation
of the protocol assuming a pure maximally entangled state under the in�uence of
the a depolarizing channel. In the semi-DI approach Bob's measurement devices
can be trusted to be perfectly calibrated. In this case, we were able to certify
1:27 � 0:14 bits of randomness, which is considerably more than the amount
retrieved in the DI case.

5.3.4. Conclusion

While our results demonstrate the possibility of achieving high-quality DI-RNG with
current technologies, we hope that it is just the starting point for a new generation
of DI-RNG. There is still room for several improvements both in the theoretical
and experimental side. In particular, more robust strategies are welcome, and
overcoming natural limitations as low detection e�ciencies would be desirable,
since in this proof-of-principle experiment we assumed fair-sampling and discarded
all round with inconclusive results. Following the line of research of Ref. [BKG+17]
If could also be appealing to perform a statistical analysis of our experiment beyond
the i.i.d. case.
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5.4. Discussion

In this Chapter we have presented the �rst proof-of-principle experiment demon-
strating one-sided DI random number generation. We found that the number of
random bits certi�ed (0:26 random bits) in this experiment was very distant from
the theoretic value (1:58 random bits), which motivated us to introduce methods
to increase genuine randomness in experiments by tailoring the measurements and
avoiding post-processing of the observed data. The performance of these meth-
ods was �rst theoretically applied to bipartite optical Bell experiments, increasing
the number of random bits certi�ed by up to four times. Second, the methods
were experimentally used in an ultra-high visibility setup, where we managed to
implement an extremal POVM with high �delity, which allowed us to experimen-
tally certify more than one bit of randomness from one entangled bit, both under
semi-DI and under fully DI conditions.
We became aware of another Bell-type randomness generation setup based

on SPDC, which considers path entanglement and displacement measurements
[VSB+15]. For this setup a CHSH optimization �as in [CVSB+15]� was derived;
it could be interesting to apply our methods to derive the optimal amount of
randomness that this recent experimental setup based on SPDC allows for.
It is also worth noting that new genuine random number generation techniques

have recently been exposed to deal with the problem of �nite statistics that was
encountered along the experiments of this Chapter. In particular, Ref. [NSBSP16]
has introduced protocols secure against classical side information, that rely on the
estimation of an arbitrary number of Bell expressions or even directly on the ex-
perimental frequencies of measurement outcomes. Ref [BKG+17] introduced and
experimentally demonstrated a new protocol secure against nonsignalling eaves-
droppers which performs well in experimental regimes characterized by low viola-
tion of Bell inequalities. Finally, Ref. [LaYZB+17] recently introduced estimates
in the i.i.d. regime converging to the underlying quantum distribution faster than
the relative frequencies of the experiment. We note however that although these
References might improve the randomness rate, the approach that we have con-
sidered �based on the min-entropy of the guessing probability� has the crucial
advantage of being directly linked to the secret key which is achievable when con-
sidering the DIQKD task; this will in fact be the matter of the following Chapter.
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In this Chapter we present techniques for realistic DIQKD, a task which, in con-
trast with the certi�cation of genuine randomness, is still experimentally awaited.
Indeed, DIQKD is experimentally more challenging than the randomness certi�-
cation task because the devices are far from each other and transmission loss
increases exponentially over channels, which rapidly opens the detection loophole.
In Sec. 6.1 we review plausible solutions, based on heralded preparation, to the
problem of closing the detection loophole at long distances. Then in Sec. 6.2 we
explain how loss also negatively a�ects the information reconciliation step of the
protocol, which is an issue that has remained mostly unaddressed so far. We show
how this issue can be alleviated by evaluating the optimal amount of randomness
from the post-processed data of conclusive rounds, which turns out to be a direct
application of the methods exposed by Ref. [TdlTB+16] in the context of genuine
random number generation.

6.1. Detection loophole in the context of DIQKD

Loopholes in the context of DIQKD. Recall the DIQKD scenario presented in
Fig. 2.3. Since Alice and Bob are each located in a secure place and control the in-
formation going in and out of their locations, the value of the inputs x and y and of
the outputs a and b does not leak out unwillingly of Alice's and Bob's secure place.
Thus, DIQKD is not a�ected by locality loopholes [BCP+14]. In fact, the locality
loophole only becomes an issue if one cannot guarantee that the information on
the choice of input is not transmitted from one device to the other. But if the
devices can leak unwanted information to break the protocol, why shouldn't they
simply broadcast, for instance to the eavesdropper, the outputs used to construct
the secret key? In our view, making a distinction between inputs and outputs
is rather arbitrary and arti�cial in this context1. Among several other loopholes
a�ecting Bell experiments [Lar14], DIQKD is principally di�cult experimentally
because of the detection loophole, which sets a critical overall detection e�ciency
� for the observation of conclusive outcomes in the experiment. Roughly speak-

1This of course does not mean that the locality loophole is not relevant in other contexts in

which Bell inequalities are tested.
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ing � is the product of the e�ciencies of all the physical processes (transmission,
coupling, detection, ...) occurring between the source and the users. In particular,
if the overall e�ciency of the test is below a critical �, security can no longer be
guaranteed (see for instance Ref. [GLLL+11a]).
The detection loophole has been successfully closed �rst in Bell experiments

based on light-matter interaction [RKM+01, ABW+09, HKO+12] and then in
purely optical-based ones [CMA+13, GMR+13]. More recently, three experiments
managed to successfully produce a loophole-free Bell test [HBD+15, GVW+15,
SMSC+15].
As seen in the previous Chapter, these loophole-free Bell experiments directly

enable device-independent random number generation, which relies on the same
security assumptions than DIQKD for the two boxes used in the protocol, but
with the di�erence that the two boxes might be arbitrarily close to each other in
the randomness certi�cation case. Thus and contrary to DIQKD, experimental
setups for genuine randomness certi�cation do not need to deal with the problem
of long distances, as was con�rmed in Chap. 5.
Indeed, in spite of the technological advances recently made to achieve higher

detecion e�ciencies in Bell experiments, DIQKD remains experimentally di�cult
at long distances due to the exponential decrease of transmission e�ciency in the
channel separating the two parties. In fact, in the standard DIQKD protocol (see
Fig. 2.3), with polarization entangled pairs of photons used as information carriers
and with current optic �bre technology, the detection loophole is already opened
for a distance of the order of � 4 km [GLLL+11b].

Partial solutions. It is worth noting that partial solutions -namely, semi-device
independent approaches- to the problem of DIQKD have been developed in the
recent years. One �rst relaxation to this problem is that of Measurement-Device-
Independent Quantum Key Distribution (MDIQKD) [LCQ12], in which the two
parties willing to share a secret key prepare speci�c quantum states that are
sent to a measurement station in between them. The state preparation is device-
dependent, as the protocol relies on the preparation of speci�c quantum states for
each round, but the measurement process in the middle remains, indeed, device-
independent. Very recently, MDIQKD has been experimentally demonstrated at
high rates with continuous variable systems [POS+15, YCY+16]. Another possi-
bility for relaxing DIQKD consists of assuming that one of the two parties trusts
his measurement apparatus while the other party remains untrusted. This re-
laxation is often known as One-Sided-DIQKD [TR11, BCW+12] and is formally
based on steering correlations [WJD07, SNC14]. Finally, one last semi-device-
independent approach worth to mention consists on assuming that the dimen-
sion of the states prepared in the protocol is always bounded. Recently, security
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6.1 Detection loophole in the context of DIQKD

proofs have been derived under such �bounded dimension� assumption for di�er-
ent prepare-and-measure QKD protocols [PB11, WP15]. These three relaxations
discussed here are certainly easier to implement than DIQKD and provide higher
key rates. However, the price to pay at the level of security seems to be high,
since the corresponding setups remain vulnerable to hacking attacks on the inter-
nal working of some of the devices used, unless one has a tomographic control of
everything that happens at the trusted sites, which seems rather unrealistic, as
explained already.
Intuitively speaking, a general solution to the detection loophole problem con-

sists on having some way to guarantee that the photons arrive to Alice and Bob
before they decide which measurement they will perform. This requires an aux-
iliary measurement, which announces to the users that their system has arrived
without destroying its carried information. It is crucial that the auxiliary measure-
ment remains independent of the choice of settings that Alice and Bob make,
since otherwise Eve could tailor an attack announcing the arrival of the systems
depending on the choice of x and y . In this case, the nonlocality of the corre-
lations could be faked with classical resources [GLLL+11b]. In the following we
present two types of solutions which use such auxiliary measurement to avoid the
detection loophole; in the �rst solution the auxiliary measurement is directly held
by the parties, while in the second one it is made by a third party.

Local heralding. The �rst solution to overcome the problem of channel loss in
DIQKD was realized by Gisin, Pironio and Sangouard [GPS10]. The scheme is
based on the heralded noiseless qubit ampli�cation [RL09], which given a state
with a vacuum and single-photon component � j0i+ � j1i, it ampli�es with some
non-zero probability the single-photon component � j0i + G� j1i, up to normal-
isation, with G > 1. The success probability is smaller for higher values of the
gain factor G. Then idea of [GPS10] is to use the heralded ampli�cation as an
approximation to a quantum non-demolition (QND) measurement at Bob's site to
herald to him the arrival of his photon, without destroying its carried information
(see top Fig. 6.1). In this way, the source can now be placed next to Alice (to
avoid loss on her side of the channel), and Bob only measures his system whenever
the ampli�cation measurement succeeds.
The source in Ref. [GPS10] is assumed to produce pairs of polarization en-

tangled photons (5.2). To perform the noise-less ampli�cation, at each round
Bob inserts two single photons with orthogonal polarizations on a beam-splitter
of transmittance T � 1. The re�ected modes are jointly measured with his input
mode via a Bell state measurement (this de�nes the ampli�cation measurement).
Whenever two clicks are observed in two of the detectors corresponding to orthog-
onal polarizations at the Bell state measurement, the transmitted mode (output
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Figure 6.1.: Solutions to implement DIQKD. In DIQKD, Alice and Bob are in
secure locations (black squares) from which they control information
leaks. They receive from a source S a quantum state possibly prepared
by Eve, onto which they perform randomly sampled measurements
labelled x and y , producing outcomes a and b. The devices are treated
as black-boxes since the only assumption made is that they produce
a behavior p = fp(abjxy)g compatible with the laws of quantum
physics. To prevent channel loss from opening the detection loophole
in practical situations, an additional signal is required to herald the
successful arrival of the state. (Top, 1a): This heralding signal may
be the outcome of a QND measurement locally performed by one
of the parties. (Bottom, 1b) Alternatively, the measurement can
be performed by a third party, which later publicly announces which
rounds were heralded.

mode) is projected to the original input state (see the top of Fig. 7.4 for a re�ned
version of the heralded qubit ampli�cation scheme). Heralded qubit ampli�cation
has been observed in a proof-of-principle experiment recently, �rst with polariza-
tion entangled pairs of photons in the visible regime [KXRP13], and subsequently
in the telecom regime with time-bin entangled pairs of photons [BPM+16], al-
though without closing the detection loophole. This represents an important
achievement for the future of DIQKD. Especially, since these setups are entirely
optical, they potentially allow for high repetition rates (� 108 Hz [GPS10]). A
similar proposal by Curty and Moroder managed to slightly enhance the rates and
decrease the critical e�ciencies of the qubit ampli�er [CM11]. Such proposal is
based on standard quantum relays for entanglement swapping with linear optics,
but for the previously mentionned reasons, it also represents a great challenge.
Another proposal, by Pitkanen et al. [PMW+11] slightly modi�ed the scheme of
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Gisin et al. to discard several false-positive events at the heralding measurement,
achieving a larger robustness to losses. This proposal will be presented with detail
in the next Chapter.
A di�erent alternative to implement DIQKD with a QND measurement follow-

ing the architecture of top of Fig. 6.1 was proposed in [MBA13] with light-matter
interaction systems, see also [BYHR13]. In these schemes, the entanglement be-
tween photon pairs is transferred to solid state (spin) qubits mediated by cavity
QED interactions. As this transfer is achieved in a heralded way, the spin is only
measured when the transfer succeeds. The main advantage of such light-matter
interaction schemes is that the spin state can subsequently be measured with near
unit e�ciency, the drawback being the fact that such spin read-out measurements
take in general long times, which considerably limit the attainable repetition rates.
Also, ine�cient frequency conversion processes might be needed in order to suc-
cessfully transfer the photonic state of the incoming system into the cavity. Note
that very recently, such heralding mapping of a photonic qubit into an atomic
state within a cavity has been experimentally achieved with a � 90% �delity
[KRRR15]. The DIQKD scheme based on spin-coupled cavities of Ref. [MBA13]
will be thoroughly analysed in the following Chapter.

Post-selection with a third party. A di�erent approach for overcoming channel
loss in Bell experiments was proposed by Bell himself [Bel87]. The key idea is to
record an additional signal to indicate whether the required state was successfully
shared between Alice and Bob. This idea has been developed in entanglement
swapping protocols [PBWZ98] and is to some extent the basis for quantum re-
peater technologies [BDCZ98, MKL+14]. For concreteness, and without loss of
generality, such additional signal can be seen as the outcome c of an untrusted
measurement performed by a third party, Charlie, located somewhere between
Alice and Bob (see bottom of Fig. 6.1). Crucially, the outcome c has to be inde-
pendent of the choices of measurements and outcomes made by Alice and Bob. In
a standard Bell experiment, this can be guaranteed through space-like separation.
In DIQKD, this independence is guaranteed by default as Alice and Bob have full
control of all the information about a, b, x and y that exits their secure locations.
Hence, by conditioning the validity of rounds on the outcome c , failed distribu-

tion events (those for which Alice and Bob's particles sent to Charlie got lost in
the channel) can be safely excluded at the end of the protocol. In other terms,
because of the independence of c from x , y , a and b, the scheme depicted at
the bottom of Fig. 6.1 can be simply seen as a heralded preparation from Charlie
to Alice and Bob, with the remarkable advantage that no channel loss occurs
between the sources S and the main users.
This idea has been implemented in the recent years in several light-matter inter-
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action systems, successfully closing the detection loophole [PAM+10, HKO+12],
and even attaining a loophole-free realisation [HBD+15]. Initially, matter-photon
entanglement is created at each site. Subsequently, photons are sent to Charlie
who performs a joint measurement that swaps the entanglement to the matter
spins. Alice and Bob then read-out their spins with near unit e�ciency. Finally,
using classical communication, only rounds for which Charlie's measurement suc-
ceeded are kept. As mentioned earlier, the principal inconvenient of working with
matter systems is the slow times required to perform the read-out (tipically few
�s). Naturally, this strongly limits the number of secret bits that can be certi�ed
per time unit. Thus, an interesting alternative would be to analyze the archi-
tecture for DIQKD of the bottom of Fig. 6.1 within all-optical implementations,
which potentially allow for much higher repetition rates. We will report on this
matter in the following Chapter.

Conclusion. There exist two distinct architectures to overcome the di�cult
problem of channel loss in the frame of DIQKD physical implementations. The
main drawback of the �rst method (local heralding) with respect to the second
one (post-selection with a third party) is the necessity for an ancilla to perform
the QND measurement. It is di�cult to say if the future development of quantum
memories will soon be su�cient to consider seriously the use of such ancillary
systems, but for the time being, the second solution seems easier to achieve. In
fact, as we mentioned earlier, only the second solution has successfully closed
the detection loophole, and in several occasions [PAM+10, HKO+12], recently
together with the locality loophole [HBD+15].
It is also worth noting a general trade-o� occurring in both solutions, between

high detection e�ciency and high repetition rate. The use of matter systems
(spins) allows for high detection e�ciencies, but the repetition rate is strongly
limited by the long times required to prepare and read-out the spins. On the other
hand, entirely optical systems bene�t from high repetition rates as measurements
are generally fast and no re-initialization of the system is required at each round,
but the detection process in such optical systems is di�cult due to coupling losses
and ine�ciency of photo-detectors. Near future development of either photo-
detectors or faster �uorescent methods for matter systems could lean the balance
in favor of either purely optical systems or matter-based ones.

6.2. Information reconciliation with losses

In the previous section we showed how the detection loophole issue in the context
of long-distance Bell experiments can be circumvented by means of an auxiliary
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measurement. Unfortunately, a loophole-free Bell test is not su�cient to distill a
positive number of secret key bits, because the information reconciliation term,
the conditional entropy H(AjB), must be included in (2.22). In this Section we
�rst show how loss negatively a�ects H(AjB). Indeed, Bob cannot correlate his
result to Alice's if he did not obtain a conclusive result. Then we introduce a post-
processing method �which does not open the detection loophole� to alleviate
this issue. The idea is to decrease the value of H(AjB) by looking only at those
conclusive events, while maintaining some randomness in the output of Alice.

Conditional entropy in the presence of loss. From a general perspective, when-
ever Alice and Bob share correlations p which satisfy Gp(x

�) < 1, they can certify
a number � log2 Gp(x

�) of private random bits in the outcome a observed by Alice
from her measurement x�, as explained in Sec. 2.5. However, this does not imply
that a positive key can be distilled, as the information reconciliation term, the con-
ditional entropy H(AjB), must be included in (2.22). Recall that H(x�jy �) is the
number of bits per round that have to be published from the data of measurements
x� and y � in order to reconcile the two bit strings.
Furthermore, when considering lossy setups, one must also account for the de-

structive impact of loss on H(AjB). However, all proposals aiming towards a phys-
ical implementation of DIQKD that we could �nd in the literature, with the excep-
tion of [PMW+11] do not take into account the fact that loss negatively a�ects the
term H(x�jy �). In fact, all these references [GPS10, CM11, MBA13, MSBB+13,
STS15] apply a variation of the Devetak-Winter (DW) formula [DW05] in the
context of DIQKD security against collective attacks [ABG+07]. (To some ex-
tent, the DW formula is equivalent to eq. (2.22)). This variation of the DW
formula accounts indeed for loss e�ects on the min-entropy part of the secret
key, but it assumes that H(x�jy �) is estimated from the post-selected rounds for
which a conclusive event was recorded both for A and B (see [GPS10] for the
derivation). In our view, there is no justi�able reason for such a post-selection.
Let us analyze the situation carefully. For instance, consider the following simple

strategy that A and B may perform in presence of loss. They decide always to
output the value 0 whenever no photodetection click was recorded. Here we are
assuming that the auxiliary QND measurement has succeeded and hence Alice and
Bob have successfully received their share of the state. Thus, loss in this context
refers to local detection e�ciency parameterized by �d . Naively, restricting to
conclusive outcomes, H(AjB) = 0. Although this remains true if loss occur at
both sites, H(AjB) crucially does not vanish if loss occurs only at one of the sites.
Suppose that Alice and Bob retrieve 2 conclusive outcomes 0; 1 and one in-

conclusive (lossy) outcome �. In the case of local loss parametrized by �d , the
joint probability distribution of outcomes a and b conditioned on the choice of
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measurements x� and y � is given by:

P (abjx�y �) =

b = 0 b = 1 b = �

a = 0 �2dP (00) �2dP (01)
�d (1��d )

2

a = 1 �2dP (10) �2dP (11)
�d (1��d )

2

a = � �d (1��d )
2

�d (1��d )
2

(1� �d)2

; (6.1)

where we have dropped the x�y � conditioning inside the table for the terms P (00),
P (01), P (10) and P (11). The corresponding conditional entropy is given by:

H(x�jy �) = �
∑

ab

P (abjx�y �) log2
P (abjx�y �)
P (bjy �) : (6.2)

Using the data from (6.1) in (6.2) and assuming that the outcomes 0 and 1 locally
occur with the same probability, one arrives to:

H(x�jy �) = �2dHK(x
�jy �) + �d(1� �d) + h(�d) (6.3)

where h(x) = �x log2(x)+(1�x) log 2(1�x) is the binary entropy and HK(x�jy �)
is the conditional entropy computed from the probability distribution of conclusive
events. Since HK(x�jy �) � 0, one obtains a lower-bound on H(x�jy �) by a function
which increases with loss:

H(x�jy �) � �d(1� �d) + h(�d); (6.4)

with equality in the case where perfect correlations are observed by A and B in the
subset of conclusive outcomes K = f(a; b)ja 6= � & b 6= �g. h(x) = �x log2(x)+
(1 � x) log 2(1 � x) is the binary entropy and �d denotes the local detection
e�ciency of each party.
Hence, one cannot achieve H(AjB) = 0 for any �d < 1. One can show that,

even if Alice and Bob observe the maximal violation 2
p
2 of the CHSH inequality

[CHSH69] from their subset of conculsive events, the Devetak-Winter formula re-
quires local e�ciencies larger than �d � 92:9% to yield a positive secret key (This
�gure is signi�cantly higher than the 82:8% threshold originally set by [GPS10])!

Guessing probability with data post-processing. Motivated by such unad-
dressed issue, here we introduce a method to safely discard inconclusive events
for information reconciliation purposes in the context of DIQKD. The method is
inspired on a recent result for certifying randomness from post-processed data
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[TdlTB+16]. In particular, we show how, in some situations, this method allows
to maintain a positive secret key for lower e�ciency values that cannot be reached
with (2.22). Intuitively, the price one has to pay when discarding data is a cut-
back in the total key rate, since more rounds are rejected as e�ciency diminishes.
Surprisingly, we show that this intuition is incorrect and observe cases in which
the post-processing method leads to an increase in the secret key rate.
Let K = KA�KB be a product subset of OA�OB. We are interested in keeping

only those rounds for which the outcomes (a; b) belong to K. For instance, KA
(KB) could be the subset of conclusive outcomes of A (B), but keep in mind that
the reasoning we present is general and actually works for any choice of subsets
KA and KB.
In contrast with the standard DIQKD protocol presented in Sec. 2.5, here

we consider that once the measurement outcomes are registered, the classical
information about whether or not (a; b) 2 K becomes public knowledge. From
a practical point of view, such information can be made public at the end of the
protocol, with Alice and Bob announcing whether or not (a; b) 2 K for each round,
but without revealing the actual values of a and b. In this way, if (a; b) 2 K, Alice
and Bob keep the round in question, while otherwise they discard it.
From the security point of view, the information about whether or not (a; b) 2 K

could have been initially preset by Eve. We de�ne the observed probability for Alice
and Bob to obtain a result from the set K:

pAB(K) =
∑

(a;b)2K
p(a; bjx�; y �) (6.5)

where we have simpli�ed the notation by dropping x� and y �, which are assumed to
be �xed. After Alice and Bob's measurements x� and y � are applied on TrE�ABE,
the classical-classical-quantum (ccq) state is given by:

�x
�y�K

ABE =
∑

a;b

pAB(a; bjx�; y �;K) ja; bi ha; bj 
 �abx�y�K
E (6.6)

where �abx
�y�K

E denotes the quantum state of Eve conditioned on a, b, x�, y � and
on the classical information K. Let fMejzg be the ensemble of POVM elements
characterizing the measurement z that Eve performs on �abx

�y�K
E . Then, accord-

ing to Born's rule, it follows that pE(eja; b; x�; y �;K; z) = Tr
(
�abx

�y�K
E Mejz

)
. The

device-independent guessing probability is de�ned as the probability for Eve to cor-
rectly guess the outcome a maximized over all possible measurements z and over
all possible quantum realizations for the behavior p with elements PAB(a; bjx; y):

Gp(x
�; y �jK) = max

∑

a;b

pAB(a; bjK)pE(e = aja; b;K) (6.7)
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where we dropped the dependence on x�, y � and z� which are �xed settings
in all this discussion. Using Bayes rule: pE(eja; b;K) = pE(ejK)pAB(a;bjK;e)

pAB(a;bjK) , (6.7)
transforms to:

Gp(x
�; y �jK) = max

∑

e;b

pE(ejK)pAB(a = e; bjK; e): (6.8)

With pE(ejK) = pE(e)pAB(Kje)
pAB(K)

and pAB(a = e; bjK; e) = pAB(a=e;b;Kje)
pAB(Kje) , (6.8) be-

comes:

Gp(x
�; y �jK) = max

1

pAB(K)

∑

e;b

pE(e)pAB(a = e; b;Kje); (6.9)

Notice now that pAB(a = e; b;Kje) = pAB(a = e; bje) if (a; b) 2 K and vanishes
otherwise. With this, we �nally obtain (6.10), as wanted:

Gp(x
�; y �jK) = max

1

pAB(K)

∑

(e;b)2K
pE(e)pAB(a = e; bje): (6.10)

Thus, under the assumption of i.i.d. runs, the local guessing probability Gp

A(x
�; y �jK)

of Alice's outcome conditioned on the observation of p and on the occurrence of
K, is given by the solution of the following SDP:

Gp(x
�; y�jK) = max

fpeg
1

pAB(K)

∑

(e;b)2K
p(e; a = e; b) (6.11)

s.t.
∑

e

p
e = p and p

e 2 Q̃; 8 e 2 KA:

Notice that, in contrast with (2.21), here E only requires as many behaviors pe

as elements in KA. In fact, E is only interested in learning the outcome of the
kept rounds (which she can know beforehand as the occurence of K is controlled
by herself), as the remaining rounds will be discarded. Notice also that pAB(K) is
a quantity observed by A and B and hence does not play a role in the maximiza-
tion of (6.11). Thus pAB(K) can safely be placed outside from the maximization,
which guarantees linearity of the objective function in (6.11). Notice also that
this new local guessing probability with data post-processing involves both of the
measurements of A and B, namely x� and y �, which was not the case in (2.21)
and (B.5), nor in the work of ref. [TdlTB+16]. Still, if KA = OA and KB = OB
no post post-processing takes place, and one retrieves (2.21) from (6.11), as ex-
pected 2. Finally, note that, in spite of the data post-processing, E is still required
to reproduce the entire statistics p (and not only the kept part); crucially, this
ensures that the detection loophole is never open, as pointed-out in [TdlTB+16].

2The dependence on the measurement choice y vanishes because of non-signalling constraints.

88



6.3 Discussion

DIQKD with data post-processing. Just as in Sec. 2.5, in order to consider
a DIQKD protocol one must possess a linear functional g such that g � p =

Gp(x
�; y �jK). g is optimal and is retrieved from the dual formulation of (6.11).

From this, as long as Gp(x
�; y �jK) < 1, Alice and Bob may reconcile their

bit strings (which now contain conclusive results only) with standard error cor-
rection. The number of bits that has to be published is NKHK(x�jy �), where
NK = pAB(K)N is the number of rounds kept by Alice and Bob, and HK(AjB) is
the conditional entropy computed from the post-selected probability distribution
of kept events. The number of bits with data post-processing certi�ed per NK

rounds is thus given by:

rpp = � log2 Gp(x
�; y �jK)�HK(x

�jy �); (6.12)

where the subindex �pp� indicates that post-processing took place. Critically,
and in sound contrast with the standard secret key r (2.22), one may in principle
choose K to contain perfectly correlated outcomes, so that the conditional entropy
HK(x�jy �) now vanishes for any value of �d .
The expected drawback of the secret key with post processing rpp (6.12) is

a cutback in the total key rate, since any round with inconclusive event(s) is
systematically rejected. However, this intuition is incorrect; namely, below we will
observe, in the next Chapter, realistic situations for which the post-processing
method can actually increase the total key rate.

6.3. Discussion

DIQKD is fundamentally hard due to the fact that channel loss rapidly opens
the detection loophole when considering a standard bipartite architecture. In this
Chapter we presented two architectures based on heralded preparation, which
circumvent the problem of closing the detection loophole at long distances. While
the �rst architecture requires an auxiliary system �which in practice might need
be initialized at each round� the second architecture requires a third party. It is
di�cult to forecast which of these two solutions would be more advantageous in
the future development of DIQKD technologies, but the second one is the only
one of the two that has managed to close the detection (and the locality, actually)
loophole, and unlike the �rst architecture it is naturally suited for quantum repeater
extensions.
We explained how loss negatively a�ects the information reconciliation step of

the protocol, which is an issue inherent to all QKD protocols. We showed how
this issue can be alleviated by evaluating the optimal amount of randomness from
the post-processed data of conclusive rounds. In the next Chapter we shall see
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that, surprisingly, when considering concrete setups this method not only increases
the loss tolerance but it even allows to certify more secret bits per round. We
note that the only reference that we could �nd in the literature to be aware of
this issue is Ref. [PMW+11], who addressed the question whether the key rate
could be improved by using knowledge of the positions within the data string
that, for example, have been assigned random values due to inconclusive results.
Ref. [PMW+11] demonstrated a generic way of making use of the knowledge,
without the need to revisit the full security proof. It would be interesting to
carfeully analyse the similarities and edges of our technique (based on the work of
Ref. [TdlTB+16]) with theirs.
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In this Chapter we apply the techniques of the previous Chapter to propose ex-
perimental implementations for DIQKD. In particular we consider and compare
the two solutions for DIQKD (see Fig. 6.1) under similar experimental conditions.
After formally de�ning in Sec. 7.1 the total key rate, which is the �gure of merit
used to quantify the performance of DIQKD protocols, we present a hybrid imple-
mentation based on light-matter interaction in Sec. 7.2. In contrast, in Sec. 7.3
we introduce two purely optical setups. In Sec. 7.4 we give discuss the advan-
tages and limitations of these proposals and present an outlook for the future of
DIQKD.

7.1. Achievable rate of DI secret key bits

In Sec. 2.5 we reviewed the protocols of Refs. [ABG+07, MPA11, PMLA13] for
DIQKD. We saw that the work of Pironio et al. [PMLA13] achieves DIQKD secu-
rity under the realistic assumption that the memory of the eavsdropper is limited
in time, which is more than reasonable given the state-of-the-art of quantum
technologies. The security proof yields in this case an expression (2.22) for the
number of secret key bits certi�ed per round, r , in terms of the guessing proba-
bility and the conditional entropy. Furthermore, the recent work of Friedman et

al. [AFRV16] has shown that the same bound (2.22) can actually be promoted to
be secure against generalised quantum eavesdroppers.
With (2.22) in mind, it is not di�cult to see that if the experiment consists of

a large number of rounds occurring at a repetition rate frep, and that each round is
only accounted in the case that the auxiliary heralding measurement C succeeded
(produced the outcome c , as explained in the previous Chapter), then the key rate
of bits certi�ed per second is given by:

K = frep p(c) r (7.1)

with r being the secret key bits per round given by (2.22). In the case of using
the post-processing (pp) method introduced in Sec. 6.2, the number of secret
bits certi�ed per kept round is given by (6.12). Indeed, among the rounds for
which c succeeded, only the rounds with outcomes (a; b) belonging to the set K
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of conclusive-conclusive events are kept, and the key rate reads:

Kpp = frep p(c) pAB(K) rpp (7.2)

whith pAB(K) given by (6.5). It is important to notice two trade-o�s that will
occur when using either (7.1) or (7.2) when we will consider speci�c DIQKD
implementations in the next Sections:

Trade-o� between rrep and r . The �rst trade-o� that is observed in (7.1) and
(7.2) is the one recalled among purely optical systems and hybrid ones. Indeed,
we have mentioned that hybrid proposals based on light-matter interaction will
achieve high detection e�ciency, and consequently a high value for the secret bits
per round, r . However, these hybrid systems shall be limited by the slow times
required to read-out and re-initialize the matter systems, which in turn results in
not-too-high repetition rates frep (typically around 100 MHz). On the other hand,
a purely optical implementation won't achieve such high local detection e�ciencies
when measuring the photon's polarization, which will diminish the values of r and
rpp, but it will achieve higher repetition rates (of the order of 10 GHz [GPS10]).

Trade-o� between p(c) and r . The second trade-o� that occurs is between
the probability to have a heralding round p(c) and the number of bits certi�ed per
round, r (or rpp). More precisely, there might exist physical parameters P which
maximize r , but which won't necessary maximize p(c), and vice-versa. In partic-
ular, when considering SPDC sources, a high value for the squeezing parameter
in (B.1) will produce photons with high probability which in turn might increase
p(c), but such a high value favors the production of multiple �unwanted� pairs
of photons, which in turn decreases the value of r . Thus, it will be crucial to
optimize K and Kpp over the adjustable parameters P, instead of optimizing r
and p(c) separately.

7.2. DIQKD with spin-coupled cavities

We �rst propose a hybrid DIQKD scheme based on interaction between light
and spin-coupled cavities. An important advantage of spin-cavity systems is that
the spin state can be measured with near unit e�ciency, as no single-photon
detection is required. At the same time, remote cavities can be entangled by
mapping the entanglement from a pair of photons onto the spins in a heralded
manner. The heralded arrival eliminates photon loss, and as the measurements
settings for the spin measurement are only decided after successful heralding, the
photon measurement constitutes a pre-selection that does not open any loopholes.
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Together, these facts lead to improvements of the attainable key rate and the
attainable distance. We �rst describe the protocol and then compute the key
rates that can be achieved, taking into account realistic imperfections such as
limited spin-photon coupling, spin decoherence, and optical detection e�ciency.

Scheme with coupled cavities. The architecture of our scheme is shown in
Fig. 7.1. We will consider both symmetric and asymmetric variants of the setup
in which, respectively, both parties have cavities and a source of entangled photons
is placed between them, or only Bob holds a cavity and the source is held by Alice
who measures her photon directly. The schemes are based on local heralding and
thus follow the architecture presented at the top of Fig. 6.1. The symmetric
scheme closely resembles the Bell test setup of [BYHR13]. We note that while
there heralding outcomes are communicated between the parties before the Bell
test measurements, no such communication is necessary in the present scheme.
That is, Alice does not need to learn Bob's heralding outcome before performing
her measurement, and vice versa.

Spin-photon interface. For the spin-photon interface, we consider the setup
proposed in [YHR13] which works in the low Q-factor regime. It is a single-sided
spin-cavity system characterized by four constants: �, the outcoupling rate via
the front mirror, �s , the decay rate of light into other loss modes, g, the spin
to cavity �eld coupling rate, and 
, the linewidth of the dipole transition. When
g2 = 
(�+�s)

4
(resonance scattering [APG99]), any input photons resonant to the

dipole-cavity system are scattered into loss modes, due to destructive interference
between the input light and light scattered from the dipole. Thus, the presence
of the spin strongly modi�es the re�ectivity of the cavity. The re�ectivities for an
empty cavity (g = 0), and for a cavity resonantly coupled to the spin, for a �eld
at zero detuning, are given by [HYO+08]

re =

∣∣∣∣
1� �=�s
1 + �=�s

∣∣∣∣ rf =
1

1 + �=�s
: (7.3)

Similar expressions apply to other systems, such as atoms, and NV-centers [BYHR13].
Whether an incident photon will couple or not to the cavity spin (i.e. see the cav-
ity as empty or full) depends on the spin state and the photon polarization. The
re�ection coe�cients for the joint circular polarization and spin states are rf for
jR; "i ; jL; #i, and re for jR; #i ; jL; "i. Clearly, when the outcoupling � is small
relative to the loss rate �s , all states transform the same, and there is no inter-
action between photons and spin. The ideal limit for our purposes is � � �s in
which case re � 1 and rf � 0.
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7. Implementations for DIQKD

Figure 7.1.: (a) Symmetric protocol. A source emits entangled photon pairs.
Each party holds a spin in a cavity, initialised in (j"i+ j#i)=p2. One
photon interacts with each cavity and, if re�ected, is measured in
the jHi, jV i basis. When such a heralding detection occurs on both
sides, the photonic entanglement is mapped onto the spins. Upon
heralding, Alice chooses a basis and reads out her spin (similarly for
Bob). The spin measurement data is used for the Bell test and key
generation. (b) Asymmetric protocol. Bob proceeds as above, but
Alice has no cavity. Instead, she directly measures the polarisation
of the photon she receives. The source is located at Alice's side to
minimise channel losses preceding her measurement.
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7.2 DIQKD with spin-coupled cavities

Ideal protocol. To see how the spin-photon interaction is used in the protocol,
consider the interaction of one (asymmetric protocol) or two (symmetric) spins
initialized in the state (j"i + j#i)=p2 with a Bell state of light j�+i = (jRRi +
jLLi)=p2. Conditioning on re�ection of the photon(s), the photon-spin states
then become

j Ai = 1

2




jHi 
 [re j	+i+ rf j�+i]
+

i jV i 
 [re j	�i+ rf j��i]
; (7.4)

and

j Si = 1

4





jHHi 
 [(r 2e + r
2
f ) j�+i+ 2rerf j	+i]

+

i jHV i 
 (r 2e � r 2f ) j��i
+

i jV Hi 
 (r 2e � r 2f ) j��i
�
jV V i 
 [(r 2e + r

2
f ) j�+i+ 2rerf j	+i] :

; (7.5)

j	�i, j��i denote the four Bell states. One sees that, for �� �s (i.e. re � 1 and
rf � 0), a measurement of the re�ected photon(s) in the jHi, jV i basis leaves the
remaining state (of photon-spin or spin-spin for j Ai, j Si respectively) maximally
entangled. For �nite values of �=�s entanglement persists but is not maximal.
The photonic measurement serves as a herald which primes the system for a
subsequent Bell test. In the case of ideal detectors and no loss, the probabilities
for each heralding outcome are pH = pV = (r 2e + r 2f )=4 for the asymmetric and
pHH = pV V = [(r 2e + r

2
f )

2 + 4r 2e r
2
f ] =16, pHV = pV H = (r 2e � r 2f )2=16 for the

symmetric protocol. The probabilities for successful heralding are thus pAher =

pH + pV = (r 2e + r
2
f )

2=2 and pSher = pHH + pHV + pV H + pV V = (pAher)
2.

Note that the shared state after heralding depends on the measurement out-
come. Thus a natural way for Alice and Bob to proceed is to communicate their
heralding results to each other and adapt the measurements of the Bell test to
the state they have. However, this requires a time L=c where L is the distance
between the parties and c is the signal speed. During this time the state will
decohere, thus above some critical distance Bell inequality violation is no longer
possible, and key distribution fails. To circumvent this problem, Alice and Bob
can adapt the following communication-free strategy: whenever a party observes
a "V" herald, a � phase-shift is applied to the spin. For the asymmetric protocol,
the states after heralding are (nA, nS are normalization constants) 1

j'A
+=�i =

[
j	+i � rf

re
j�+i

]
=nA H/V; (7.6)

1Note that it would be possible to make j'A
+=�i identical. However, the choice made here

simpli�es the computation of the key rate, see [MBA13].
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and for the symmetric protocol

j'S
0 i = j�+i HV,HV;

j'S
+=�i =

[
j�+i � 2rerf

r 2e + r
2
f

j	+i
]
=nS HH/VV:

(7.7)

The states for di�erent heralding outcomes are not identical, however if �=�s
is not too small, they are close, and the Bell test can proceed by ignoring the
herald and considering their mixture, with j'A

�i weighted by pH and pV , and j'S
0;�i

weighted by (pHV +pV H), pHH, and pV V respectively. Which strategy to adopt is a
matter of whether a higher key rate is extracted with communication, having more
decoherence but optimal measurements, or without, having less decoherence but
suboptimal measurements. We �nd that for the parameter ranges relevant here,
the communication-free strategy is always better. (See Ref. [MBA13] for more
details).

Experimental imperfections. The most important imperfection a�ecting the
protocol is spin decoherence. To model it, we assume independent noise on sep-
arate spins (as they are far apart) and adopt a worst-case model of depolarizing
noise with timescale � . Each spin is subject to a channel [NC00]

�(�) =

3∑

i=0


i �i � �i ; (7.8)

where �0 is the identity, �i the Pauli matrices, 
0 = (1 + 3 exp(�t=�))=4, and

i = (1� exp(�t=�))=4 for i = 1; 2; 3. Here t is the time during which the spins
decohere, which can be taken to be the time between heralding and the end of the
spin measurement. For a communication-free strategy, this time is governed by
the readout time �t, while otherwise communication must be taken into account
t = �t + L=c 2.
In addition to spin decoherence, we must account for coupling and transmission

losses, ine�cient photodetectors, and imperfections in the source. Transmission
loss leads to a survival probability of each photon of �St = e�L=2Latt (symmetric)
or �At = e�L=Latt (asymmetric protocol), where Latt is the attenuation length
of the channel. The heralding detectors have e�ciency �her . The protocol is
also a�ected by imperfections in the Bell test measurements. The spin readout

2Although the phase-shift operator �z does not commute with the Kraus operators of the noise,

the order of noise and phase shifts is nevertheless arbitrary, because �2z = �0 and �z�i = ��i�z

for i 6= z , which implies e.g. for a phase shift on Alice's side (�z 
�0)(�i 
�j)�(�i 
�j)(�z 


�0) = (�i 
 �j)(�z 
 �0)�(�z 
 �0)(�i 
 �j) for any i ; j . We always take phase shifts to be

applied before noise.
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7.2 DIQKD with spin-coupled cavities

Figure 7.2.: A positive key rate can be obtained in the region under the curves for
the symmetric (dotted) and the asymmetric protocol with �d = 1:0,
0.9, and 0.8 (solid, top to bottom). Note that beyond �=�s � 10 in-
creasing �=�s further does not improve the range for t=� signi�cantly.

e�ciency can be very high, and so this is not a problem in the symmetric protocol,
but in the asymmetric protocol, the e�ciency �d of Alice's optical measurement
must be considered. Coupling ine�ciencies can be absorbed in �her and �d . For
the source, experimentally accessible techniques, such as spontaneous parametric
down-conversion, do not generate ideal Bell states, but rather states like

jvaci+pp j�+i+O(p); (7.9)

where p is the probability of generating a photon pair. This equation is indeed
equivalent to (B.1). To avoid errors introduced by multi-photon contributions, p
must be kept small. In our calculations, we include the leading order of multiphoton
terms and optimize p to maximize the key rate K.

Results. As explained in Sec. 7.1, the �gure of merit for DIQKD protocols is
the key rate, i.e. how many bits of secret key can be generated per unit time.
The achievable key rate depends on the level of security considered. Here we
apply the bounds of Refs. [MPA11, HR09, PMLA13]. These bounds are valid for
memoryless devices [MPA11, HR09] or, more realistically, in the bounded quan-
tum storage (BQS) model, where the eavesdropper is assumed to have limited
quantum memory [PMLA13]. For this model, existing security proofs are robust
to noise and allow for protocols based on any Bell inequality [PMLA13], and since
current quantum memories have short coherence times, the BQS assumption is
very reasonable. Security has been proven without the BQS assumption, but un-
fortunately the proofs give zero [BCK12, RUV12b, RUV12a] or very little [VV14]
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robustness to noise. We will consider a protocol based on the Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality, and for comparison with Ref. [GPS10], we
also compute the key rate achievable for a protocol secure against collective at-
tacks. This corresponds to a slightly lower level of security, and thus allows higher
key rates.

For a detailed explanation of how to compute the key rate in the presence
of the imperfections described above, see [MBA13]. Intuitively, the key rate is
determined by the di�erence between Alice's and Bob's mutual information and
the maximal information that an eavesdropper Eve can extract at each round.
As long as the key rate is positive, Eve cannot extract complete information
about the data shared by Alice and Bob, and secrecy is guaranteed. Following
[MPA11, PMLA13] and the supplementary material of [GPS10], the key rate can
be expressed in terms of the observed CHSH violation S, the quantum bit-error
rate (the probability that Alice's and Bob's outcome are not correlated) Q, and
the ratio � of measurement events with inde�nite (no click) to those with de�nite
(click) outcomes. We have �S = 0 and �A � (1� �d)=�d for small p (with weak
dependence on L=Latt , �her , �=�s , and p). The violation S can be computed
following [HHHH09] and Q in a similar manner.

For a fair comparison, we consider the methods of [GPS10] for the key rate
computation. Fig. 7.2 shows the parameter regions that allow a positive key
rate. For su�ciently large detection e�ciency �d , the asymmetric protocol tol-
erates more spin decoherence, which can be understood intuitively since only
one spin, rather than two, decoheres. What parameter values in these regions
are realistic? In [YHR13] a detailed analysis, inspired by the quantum dot pil-
lar microcavity experiment of [Ra04], showed that lowering the number of DBR
mirror pairs relative to a strong coupling regime, resonance scattering is achiev-
able with g = 80�eV , 
 = 10�eV , �s = 180�eV and � = 2:38meV , which
yields �=�s � 13. Ref. [BYHR13] estimates values of �=�s � 6, 0:3, and 0:4

for strongly coupled atoms [RNH+12], NV-centers [PCW06], and quantum dots
[YOH+11] respectively, and 2 for NV-centers in low-Q photonic crystal cavities
[RMKH+12]. For the spin coherence vs. readout time, Ref. [BYHR13] estimates
that t=� could go as low as 10�4 for atoms and NV-centers, 10�3 for low-Q
cavities and 10�1 for quantum dots. Entangled source repetition rates frep may
go as high as 10GHz [ZXT+07, GPS10], however for interaction with dipoles in
cavities, the source bandwidth is limited by the narrow cavity linewidth, and the
rate is reduced. Ref. [BYHR13] estimates source repetition rates of 0:1MHz for
atoms and NV-centers and many MHz for quantum dots. Note that for quantum
dots, it can be challenging to achieve degeneracy of the two polarisation modes
in the cavity, such that they are both resonant with a single transition in the dot.
However the required tuning has been demonstrated in micropillar cavities [G+11].
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7.2 DIQKD with spin-coupled cavities

Figure 7.3.: (a) Secret key rate of the symmetric (left) and asymmetric (right)
protocols at L = 10km with frep = 100MHz (contours separated by
5 � 103 bits/s). (b) Secret key rate in units of the repetition rate
in the collective attacks (solid) and BQS (dashed) scenarios. The
symmetric and asymmetric protocol rates are shown in each case
(upper red and lower black curves), and �=�s = 6, t=� = 0:01.
The rate of Ref. [GPS10] is also shown (gray dotted). For all plots
�her = �d = 0:855 and Latt = 22km.
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Fig. 7.3 shows the key rates of the symmetric and asymmetric protocols. For
comparison with the optical DIQKD-protocol [GPS10], we take �her = �d =

0:9 � 0:95 as this corresponds to the joint coupling and detection e�ciency used
there. Fig. 7.3(a) shows the performance for varying decoherence and cavity cou-
pling, assuming frep = 100Mhz. The symmetric protocol performs better than the
asymmetric one in this case. However, for larger �d , as the asymmetric protocol
tolerates larger t=� (see Fig. 7.2), it must outperform the symmetric for su�-
ciently large decoherence. In Fig. 7.3(b) we take �=�s = 6 and t=� = 0:01 and
plot the key rate measured in units of frep for our protocols as well as [GPS10].
The present protocol delivers a signi�cant improvement in terms of key bits per
use of the source, for security against collective attacks as in [GPS10] and even
considering the stronger BQS model. For example at 75km we gain about �ve or-
ders of magnitude. As mentioned, frep is more limited in the present scheme than
for the purely optical scheme, because of the need to match the cavity linewidth.
However, with �ve orders of magnitude improvement in e�ciency of the source
use, even for signi�cantly lower repetition rates, considerable improvements can
still be expected. We note that the distance over which a practically relevant key
rate can be attained is also signi�cantly improved, see Fig. 7.3(b).

Conclusion. Our scheme for device-independent quantum key distribution based
on interaction between light and spins in cavities is found to be robust to spin deco-
herence as well as optical losses. Current state-of-the-art systems reach promising
numbers, making the scheme a good candidate for experimental implementation
of DI-QKD. We remark that a scheme for heralded mapping of photonic entan-
glement onto atoms in free space was also been proposed for a Bell test and can
be readily adapted to DI-QKD along the same lines as the scheme presented here
[SBM+13]. We also note that the loophole-free Bell experiment of Ref. [HBD+15]
relied on our symmetric architecture. It would be interesting to compare the key
rates achievable with these schemes to the present ones.

7.3. DIQKD with optical setups

In this Thesis we consider all potential systems to implement DIQKD. For this
reason we focus in this Section on photonic schemes, which allow the use of tele-
com bandwidth and pre-existing �bre-optic infrastructures. We recall the reader
that in the previous Chapter we sketched to types (i) and (ii) of architectures to
implement DIQKD (recall Fig. 6.1). We present a modi�ed version of a scheme
of Pitkanen et al. [PMW+11], the best known scheme of type (i), based upon
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heralded qubit ampli�cation [GPS10]. For type (ii), we present a scheme utilising
a QND measurement by a third party, inspired by the entanglement distribution
scheme of Lasota et al. [LRBT14]. We further consider the use of single-photon
sources, the fabrication of which has lately grown immensely, with nearly on-
demand single-photon sources with purity and indistinguishability above 99% al-
ready available [DHD+16, SGDS+16, LBH+16, SMM+17]. Combining these two
key ingredients, we show that the outlook for experimental DIQKD as a viable
future technology is signi�cantly improved, tolerating much high transmission loss
with a higher key generation rate.

Noiseless heralded-state-preparation Spontaneous parametric down-conversion
(SPDC) sources produce photonic entanglement in two spatial modes and have
been the workhorse of DIQKD proposals so far. In the proposal of Gisin et

al. [GPS10] the SPDC source is held by Alice to avoid channel loss on her
side, while Bob performs heralded qubit ampli�cation [KXRP13] to obtain the
desired signal c and con�rm the arrival of his photonic system without revealing
its carried information. Heralded qubit ampli�cation has been demonstrated in the
visible [KXRP13] and telecom [BPM+16] regimes, and more recently with path-
entangled qubits [MVV+16], although never without the presence of the detection
loophole. See the top of Fig. 7.4 for a re�ned version of the qubit ampli�cation
scheme.
Other authors [CM11, MSBB+13, STS15] subsequently introduced re�ned

schemes requiring Alice and Bob to each hold an SPDC source; these schemes are
based on entanglement-swapping relays to perform the heralding operation. As
mentioned already, the entanglement swapping con�guration is naturally suited for
quantum repeater technologies, and has been experimentally demonstrated with
pulsed SPDC sources [PBWZ98] and lately in the continuous variable regime [HBG+07].
In all these SPDC-based proposals, however, the heralding signal �which for-

mally corresponds to one of the outcomes c of an auxiliary measurement C �
dramatically reduces the purity and �delity of the prepared state �ABjc . This is
a consequence of false-positive events in c , stemming from combinations of vac-
uum SPDC productions with other multi-photon states. In fact, the contribution
of false-positive events is inevitably large due to the highly ine�cient character
(nonlinearity) of the SPDC process. More precisely, the contribution of the target
maximally entangled state j abi that Alice and Bob wish to share upon success of
C occurs at the same order as other unwanted states. If the initial unnormalised
state prepared is j0i h0j+ p j abi h abj+ :::, then after transmission and heralding
(with heralding parameter T � 1), the unnormalised state is

�ABjc = (1� T ) j0i h0j+ T (1� T )p�t j abi h abj+ ::: (7.10)
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where additional terms of order p or higher are not written explicitly. For any �xed
T , since �t ! 0 exponentially with distance, the heralded state approaches vac-
uum, and is rapidly unable produce nonlocal statistics strong enough for DIQKD.
As such, SPDC-based proposals are out of experimental reach.
To eliminate false-positives and maintain the �delity of �ABjc , we propose a way

to suppress unwanted vacuum contributions by means of an architecture which
does not rely on ine�cient photonic entanglement production. Our scheme is
based on single-photon sources, a new generation of quantum technology whose
development has been boosted lately, achieving near-to-perfect �delity and inidis-
tinguishability values [DHD+16, SGDS+16, LBH+16, SMM+17]. Nevertheless,
single photon sources are an expensive resource relative to SPDC sources, and
hence it is desirable to consider schemes with �xed numbers of single-photon
sources, used in conjunction with SPDC.
To maintain generality and a degree of comparison with the SPDC paradigm 3,

we model each single-photon source with a quantum state containing an in�nite
tail of high-order contributions, and whose unnormalized expression in the photon-
number basis is (see App. A) � =

∑1
n=1 p

n�1, where p parametrizes the probability
to produce high-order terms 4. This source model does not assume any particular
underlying physical process, and thus provides broad insight on how imperfect
single-photon sources could perform in real DIQKD experiments, regardless of
speci�c implementation details.

DIQKD optical schemes The �rst scheme requires Bob to produce two single
photons with orthogonal polarizations H and V , while Alice has an SPDC source
which produces a pair of maximally entangled photons with probability p. It is
inspired by the qubit ampli�er scheme of Pitkanen et al. [PMW+11] and is ex-
plained in Fig. 7.4 (a). The photons produced by Bob enter a beam-splitter (BS)
of transmittivity T . The re�ected polarization components are combined with
a half-wave-plate (HWP) and then the resulting spatial mode is jointly analysed
with the mode sent by Alice with a QND, a partial Bell-state measurement (BSM)
denoted C. C triggers the heralding signal whenever the desired outcome c �two
detector clicks corresponding to orthogonal polarizations� is observed.
Provided that T � 1 the desired event c will only arise when exactly one photon

was re�ected, meaning that the photon of Alice has arrived. Furthermore, this
scheme is immune to false positive contributions which could occur in the case
where the two photons are re�ected; this instance is in fact the main limitation

3In particular our model can simulate an SPDC source for which one of the modes is used as

trigger.
4In the same manner, the quantum state of an SPDC source is parametrized by a parameter

which we also label p
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Figure 7.4.: DIQKD schemes. (Top, 2a): Re�ned qubit ampli�er scheme. The
SPDC source is kept close to Alice to avoid loss on her side of the
channel. Bob inserts two single photons encoded in orthogonal po-
larizations H and V into a BS of transmittance T . The re�ected
mode is jointly analyzed with the system sent by Alice by a partial
BSM: a partial BS of transmittance t, polarizing-BS (splitted squares)
and binary on/o� �non-photon number resolving� photodetectors
(half-circles). This scheme follows the DIQKD approach presented
at the top of Fig. 6.1. (Bottom, 2b): Single-photon sources scheme.

Alice and Bob couple two single photons encoded in orthogonal po-
larizations into a BS of transmittance T . A HWP (�

2
) combines the

transmitted polarization components, which are analayzed with a par-
tial BSM. This scheme follows the approach presented at the bottom
of Fig. 6.1. In both schemes, the output modes are measured by the
users with a polarization analyser: a sequence of a quarter-wave plate
(�
4
), a HWP, a polarizing BS and two binary detectors.

of the original proposal of Ref. [GPS10]. In this manner, the re�ected photons
are �prepared� by C with orthogonal polarizations, although the information about
their concrete direction is �erased� by the partial BSM. Thus, the partial BSM
prepares a polarization-entangled two-qubit state whose degree of entanglement
depends on the transmittance t. In fact, the unnormalized state shared by Alice
and Bob conditioned on c is:

�
(i)
ABjc =

p �tT (1� T )
2

j �
abih �

abj +O(p2) (7.11)
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where j t
abi := j �

abi + t j��abi is a coherent superposition of Bell states given,
in second quantization, by j �

abi = 1p
2
(ayHb

y
V � ayV byH) j0i and j��abi = 1p

2
(ayHb

y
H �

ayV b
y
V ) j0i. As mentioned, here p parametrizes the probability to produce a single

pair in the SPDC process.
The second scheme requires Alice and Bob both to produce two single photons

with orthogonal polarizations H and V , and is inspired by the entanglement dis-
tribution scheme of Lasota et al.[LRBT14]. Its detailed working is explained in
Fig. 7.4 (b). The initial state is �AB = �AH 
 �AV 
 �BH 
 �BV . The photons pro-
duced enter a BS of transmittivity T as illustrated in Fig. 7.4. The transmitted
polarization components are combined with a HWP and then the spatial modes
are analyzed again with a partial BSM denoted C.
Provided that T is kept small, the desired event c only arises when exactly one

photon was transmitted by each party, meaning that the other photon was re-
�ected. In this manner, the re�ected photons are �prepared� by C with orthogonal
polarizations, although the information about their concrete direction is �erased�
by the partial BSM. Thus, the partial BSM prepares a polarization-entangled two-
qubit state whose degree of entanglement depends on the transmittance t. In
fact, the unnormalized state shared by Alice and Bob conditioned on c is:

�
(i i)
ABjc =

�tT
2(1� T )2
2

j t
abih t

abj +O(p); (7.12)

Crucially, unlike in (7.10), in the above two schemes there are no vacuum terms
after heralding. As such, the states in (7.11) and (7.12) to �rst order are pure
and proportional to the transmission e�ciency �t . This guarantees that after
normalisation, the states are independent �t (to �rst order). Furthermore, the
state j t

abi = j �
abi+t j��abi is maximally entangled at t = 0, but becomes product

for t = 1. Hence, by adjusting the transmittivity t of the central BS we are able
to prepare any pure two-qubit partially entangled state in a heralded manner. The
high purity of �(i i)

ABjc constitutes our main achievement: in fact, j t
abi tolerates up to

one third of loss [Ebe93] in the limit t ! 1 for which loophole-free nonlocality has
already been experimentally certi�ed [GVW+15, SMSC+15]. These substantial
improvements allow us to achieve secret key rates as high and e�ciency thresholds
as low as never observed before within the experimental DIQKD framework.

Results In Table 7.1 we present a comparison of our single-photon sources-based
scheme against that of Pitkanen et al. [PMW+11], which is the state-of-the-art
scheme for DIQKD based on SPDC. The two schemes are depicted in Fig. 7.4.
To assess performance, by means of SDP techniques, we avoid truncation of the
in�nite tail of high-order terms in the SPDC state and in the single-photon sources
state, as explained in App. B. We also use the post-processing method developed
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DIQKD Scheme:
New Qubit

Ampli�er

Single

Photons

Noise robustness (nonloc.) 31.2% 35.7%

Loss robustness (nonloc.) 25.7% 30.8%

Loss robustness (diqkd) 8.9% 9.7%

Secret key bits 0.82 0.95

Table 7.1.: Performance of DIQKD schemes. The local loss robustness for
DIQKD is always lower than the one needed to certify nonlocality
since the former constitutes a more demanding task than the latter.
The number of secret bits are shown for the lossless case and under
the assumption that the heralding signal occured.

in Sec. 6.2 to deal with the negative impact that loss has on the information
reconciliation part of the protocol.
The single-photon sources-based scheme outperforms the qubit amplifer scheme

for all the �gures of merit considered. This can be readily understood by taking
a look at the perturbative prepared state �ABjc (7.12), which does not contain
spurious contributions at the order at which the scheme ideally works. This allows
Alice and Bob to share an almost pure partially entangled state, tolerating 35:7%

of maximally mixed noise in the lossless case. The nonlocality robustness to
loss is very close to the ultimate bound [Ebe93] (33:3%), which is assymptotically
reached by pure two-qubit partially entangled states. Outstandingly, in the lossless
case the scheme manages to certify 0:95 secret bits, very close to the limit allowed
by the quantum formalism for polarization (projective) measurements [AMP12].
Interestingly, the post-processing method for DIQKD allows to increase the loss

tolerance from 5:7% (not presented in Table 3.1) to 9:7% for the single photons
scheme. A similar increasing is also observed for the ampli�er-based scheme.
The intuition for such an increasing is the following: since almost no vacuum
productions occur at the level of the sources in the single-photons scheme, any
inconclusive event mostly stems from a loss process. This knowledge guaran-
tees that no information is lost when inconclusive outcomes are discarded, which
constitutes the main ingredient of the post-processing technique.
To compute the key rate in Fig. 7.5 we allow for 5% of local loss for Alice and

Bob. We take a channel attenuation length of Latt = 22 km�1, and an e�ciency
for the detectors used in the QND measurement (including both coupling and
detection e�ciency) of 85%. Upon optimization, we �nd that the parameters
T = 0:004 and t = 0:698 (T = 0:025 and t = 0:708 respectively) yield the
highest DIQKD rates for the single-photon scheme (with post-processing). Inter-
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Figure 7.5.: Key rates with 5% of local loss. The curves in red (blue) show the
key rates (in bits per second) attained by the central-heralding (side-
heralding) scheme. For the bottom curves the secret key is extracted
optimising the protocol within the standard DIQKD setting, while
the upper curves also include the post-processing technique that then
yields a considerable increase of the corresponding key rates. Each key
rate is adequately optimised over all adjustable physical parameters,
yet in the case of the single-photon sources impurity parameter the
lowest possible value is always favoured. Hence, we set p = 10�4

while computing all the solid curves while we choose p = 10�2 in case
of the dashed curve to more adequately refer to current experimental
implementations. In the latter case, only the CH scheme with post-
processing employed provides a positive and and a high key-rate. In
all cases we consider the repetition rate of photon production to be
100 MHz

estingly, the post-processing method outperforms the standard DIQKD approach.
In particular, for a distance L = 50 km, with p = 10�4 we certify 320:8 secret bits
per second with post-processing and 2:3 secret bits per second with the standard
approach.
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How imperfect the single-photon sources can be? Contrary to SPDC processes,
optimizing the value of the parameter p describing single-photon sources imperfec-
tions always leads the lowest allowed value. (With an SPDC source, the value of
p = 0 gives p(c) = 0 and hence the rate is zero). So far, our scheme outperforms
the ampli�er scheme, but the improvement is not so large. However, if we now
look for more realistic values, e.g. p = 10�2 (currently experimentally reachable)
for which higher order terms contribute more, our scheme turns to be the only one
to provide a positive key rate. In fact, for p = 10�2 we still manage to certify 112:4
bits per second over L = 50 km. We can see that our single-photons scheme is
robust to high values of p. Such values are in fact encouraging as they can be used
to tolarate lower photonic quality to increase extraction e�ciency [DHD+16].

Conclusion. In summary, we have presented two photonic DIQKD schemes
based on the use of single-photon sources, for which vaccum does not constitute
the leading term in the heralded state. This is a highly signi�cant improvement
with respect to previous optical proposals, for which no key can be generated after
a few kilometers. Our two proposals respectively follow the two known possible
solutions presented in the previous Chapter to avoid channel loss from opening the
detection loophole. We found that the scheme relying on single-photons outper-
forms the qubit ampli�er proposal, and furthermore is robust to impurity in terms
of high-order contributions at the level of the sources. We applied the post-
processing technique to avoid loss a�ecting the information reconciliation part of
the protocol, and this turned to be bene�cial both to increase the loss robustness
and the key-generation rate of the two schemes. We believe that our results will
foster new research ideas for the experimental implmentation of DIQKD.

7.4. Discussion

In this Chapter we have proposed and analysed physical implementations for
DIQKD, based on heralding solutions to avoid opening the detection loophole
at long distances. The �rst implementation that we presented in Sec. 7.2 is hy-
brid as it based on light-matter interaction, while the two proposals presented in
Sec. 7.3 are purely optical and rely on the use of single-photon sources. While the
hybrid proposal bene�ts from high local detection e�encies when reading-out the
matter systems, the optical proposals allow for higher repetition rates since the
photons are measured directly and no re-initialization of any system is required at
each round. This trade-o� was exposed at the beginning of this Chapter, and it
was illustrated with the concrete proposals studied then.
To make a comparison let us take a concrete example. For a distance L = 50
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km, on the one hand the hybrid proposal certi�es � 10�5 bits per second in
units of repetition rate (see Fig. 7.3), both with the symmetric and asymmetric
version. On the other hand, for the same distance the scheme based on single-
photons with 5% of local loss certi�es up to 10�6 bits per second, also in units of
repetition rate Fig. 7.5. It is worth to consider the two following key points: 1)

We originally set the repetition rate to be frep = 100 MHz for both the hybrid and
the purely optical proposals, but we believe that this number is less realistic for
the hybrid scheme, which necessitates additional time to re-initialize and read-out
the spins. 2) We considered 5% of local loss for the optical schemes, which is
promising given the progress of optical Bell experiments, but this number remains
today out of experimental reach (current experiments may achieve around 25%

of loss [GVW+15]). We therefore conjecture that near future development of
either photo-detectors or faster �uorescent methods for matter systems could
lean the balance in favor of either purely optical systems or matter-based ones to
implement DIQKD.
Moreover, we applied the techniques for DIQKD developed in the previous

Chapter to the two optical schemes that were presented in Sec. 7.3. On the
one hand, the technique to deal with high-order contributions from light sources
turned to be e�cient and not over-pessimistic, in the sense that for the values of
the parameter p considered, the estimate of the constructed behavior was found to
be already very close to the real one. On the other hand we also applied the post-
processing technique for DIQKD and we found considerable improvements, as the
robustness to losses, the number of secret key bits and the total key rate were
enhanced when using this technique. We expect that these two techniques could
be applied and foster research in other DIQKD setups and to other experimental
proposals not necessarily related to DIQKD.
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In This Thesis we worked on the development of quantum information theory
towards the experimental implementation of protocols based on the minimalist,
user-friendly, black-box paradigm. Our work tackled fundamental problems as the
one of �nding an adequate measure of nonlocality or probing the ultimate limits of
certifying randomness with quantum resources. At the same time, we managed to
propose realistic solutions to develop protocols for entanglement detection, ran-
domness certi�cation and quantum key distribution within the black-box paradigm.
In some cases, we even achieved the ultimate objective of turning the theory into
reality by going to the laboratory and successfully demonstrate the usefulness of
such protocols in proof-of-principle experiments. In this last Chapter we shall recall
all these results achieved, and we shall as well overview new directions for future
work that this Thesis has opened.

Entanglement with uncharacterised devices We developed and implemented
semi-de�nite programming (SDP) techniques to experimentally certify the pres-
ence of all kinds of entanglement on a three-qubit photonic W state in the steering
scenario. The experimental W state revealed both genuine multipartite entangle-
ment (GME) and entanglement in all of its reduced states, being therefore a
�exible resource for quantum networks. We showed that all types of entangle-
ment of the W state can in fact be certi�ed in all tripartite steering scenarios in
a scheme where each party applies the same set of measurements. In this way,
each party can certify all types of entanglement without the need to rely on any
characterisation of the measurement devices used by the others. It is still an open
question whether the reduced state of the W state can violate any Bell inequality,
although in this Thesis we managed to show �both in theory and in practice�
that it does present steering. It would be highly desirable to assess this question
in the near future, and also to adapt our techniques to other states and to larger
networks. In particular, in the past two years new techniques based on few body
correlators have emerged to probe the nonlocality of many particles.
We proposed a natural and operational measure of nonlocality which acts di-

rectly at the level of the quantum states and which simultaneously encompasses
all Bell inequalities. With this measure we showed that no anomalies of nonlocality
occur for two-qubit states for scenarios based on full-correlator inequalities. We
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showed that this result generalises to the multipartite case for an even number of
parties. We also provided numerical evidence suggesting that our measure does
not reveal anomalies in scenarios with systems of higher dimension or in scenarios
with inequalities involving marginal terms. Our results con�rmed the numerical
�ndings of other references working along the same direction, and it would be
highly desirable to explore the possibility of have an analytic proof of our �ndings
for any type of inequality, any dimension and any number of parties. Our results
enabled interesting operational implications beyond the fundamental study of en-
tanglement and nonlocality. In the same manner as some authors have developed
an operational framework for entanglement and nonlocality, such an operational
framework is still awaited to analyse measures of nonlocality which act directly at
the level of the quantum state, like ours. We believe that proving local unitary
invariance of our measure was a �rst step towards that direction. Our measure
was then attempted to be adapted to the steering framework, but in this case the
equivalence between steering and non-joint-measurability implied that our mea-
sure trivially yields a unit value for the probability to demonstrate steering from
randomly sampled measurements for any pure entangled state of any dimension.
It remains an open question for the future to study the existence of anomalies
between entanglement and steering, or even between steering and nonlocality. It
remains also an open question to assess mixed states with our measure.

Genuine random number generation In this Thesis have presented the �rst
proof-of-principle experiment demonstrating one-sided DI random number gener-
ation. This was achieved by analysing the bipartitions of the W state. We found
that the number of random bits certi�ed (0:26 random bits) in this experiment
was very distant from the theoretic value (1:58 random bits), which motivated
us to introduce methods to increase genuine randomness in experiments by tai-
loring the measurements and avoiding post-processing of the observed data. The
performance of these methods was �rst theoretically applied to bipartite optical
Bell experiments, increasing the number of random bits certi�ed by up to four
times. Second, the methods were experimentally used in an ultra-high visibility
setup, where we managed to implement an extremal POVM with high �delity,
which allowed us to experimentally certify more than one bit of randomness from
one entangled bit. From the fundamental perspective, this probed the ultimate
limits for randomness certi�cation using quantum resources. From the practical
perspective our scheme o�ers an advantage over standard Bell experiments based
on projective measurements of up to 30% in the number of bits certi�ed. Upon
optimization of the physical parameters and of all possible Bell inequalities, our
optical experiment based on polarization-entangled photons certi�es 1:17 � 0:08

full DI random bits. We further increased this number by assuming that the other
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qubit in the experiment was trusted; in this case, we certify 1:27� 0:15 semi-DI
random bits.
It would be interesting to apply our machinery to optimize the number of ran-

dom bits and to deal with experimental problems, such as the presence of signalling
in �nite statistics, to the other Bell-type randomness generation setup based on
SPDC, which considers path entanglement and displacement measurements. It
would also be desirable to compare the performance of our methods to the newer
genuine random number generation techniques that have recently been exposed
to deal with the problem of �nite statistics. In particular, protocols secure against
classical side information that rely on the estimation of an arbitrary number of
Bell expressions or even directly on the experimental frequencies of measurement
outcomes have been introduced recently. Also, this year new protocol secure
against nonsignalling eavesdroppers which performs well in experimental regimes
characterized by low violation of Bell inequalities has been introduced and exper-
imentally demonstrated. Finally, other estimates in the i.i.d. regime converging
to the underlying quantum distribution faster than the relative frequencies of the
experiment have also been presented lately.
Given that the random number generation task with uncharacterized devices

is perhaps the device-independent quantum technology with highest chances to
directly impact our society soon, it would be very interesting to explore the current
industrial aspect of quantum random number generation: namely, to understand
the needs of the market as well as the current limitations encountered. This could
help to spot opportunities for which device and semi-device independent random
number generation could bring a competitive edge to the market.

Device-independent quantum key distribution Unlike DI and semi-DI random
number generation, DIQKD is still experimentally awaited because of the cumber-
some problem of closing the detection loophole at long distances and achieving
a high �delity on the distributed state. We presented two architectures based on
heralded preparation, which circumvent the problem of closing the detection loop-
hole at long distances. While the �rst architecture requires an auxiliary system
�which in practice might need be initialized at each round� the second architec-
ture requires a third party. It is di�cult to forecast which of these two solutions
would be more advantageous in the future development of DIQKD technologies,
but the second one is the only one that has managed to close the detection (and
the locality, actually) loophole, and unlike the �rst architecture it is naturally suited
for quantum repeater extensions.
We proposed physical implementations (one hybrid and two purely optical) for

DIQKD, based on the developed heralding architectures to avoid opening the de-
tection loophole at long distances. While the hybrid proposal bene�ted from high
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local detection e�ciencies when reading-out the matter systems, the optical pro-
posals allowed for higher repetition rates since the photons are measured directly
and no re-initialization of any system is required at each round. A comparison
revealed that the performance of the schemes was comparable, and we conjecture
that near future development of either photonic sources and photo-detectors or
faster �uorescent methods for measuring matter systems could lean the balance in
favor of either purely optical systems or matter-based ones to implement DIQKD.
As implementations remain awaited, experimental modelling is necessary though

not easy due to the di�culty to consider all potential mismatches and imperfec-
tions into account. We presented an SDP method to e�ciently and safely discard
imperfections not accounted for in the modeling of an experiment, by granting this
lack of knowledge into power to the eavesdropper to her own bene�t. The method
was applied to the optical DIQKD proposals developed in this Thesis in order to
deal with high-order contributions from light sources. The method turned to be
e�cient and not over-pessimistic, in the sense that for the experimental values
considered, the estimate of the constructed behavior was found to be already very
close to the real one. Since the method is general, we believe that it could have
interesting applications to the modelling of other experiments in the context of
DI and semi-DI quantum information.
We revealed how loss negatively a�ects the information reconciliation step of

any QKD protocol. We showed how this issue can be alleviated by evaluating the
optimal amount of randomness from the post-processed data of conclusive rounds,
which was a direct application of methods recently developed by other authors.
This post-processing technique for DIQKD found considerable improvements when
applied to the optical setups: the robustness to losses, the number of secret key
bits and the total key rate were in fact enhanced when using this technique. It
would be highly desirable to write a formal security proof for this method. It would
also be useful to apply this technique to other potential setups in the future, and
also to compare it with the only reference that we could �nd in the literature to
be aware of this issue, which demonstrated a generic way of making use of the
knowledge of the positions within the data string that have been assigned random
values due to inconclusive results.
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A. Quantum optics components

In this section we present realistic modeling of experimental components required
to implement DIQKD with linear quantum optics circuits, photons and photon-
number non-resolving detectors. In Sec. A.1 we model SPDC sources and single-
photon sources. In Sec. A.2 we present linear quantum optics transformations.
These transformations are the building blocks of quantum circuits enabling inter-
ference between distinct output modes from the sources. In Sec. A.3 we model
photodetection. Finally, in Sec. A.4 we analyze loss e�ects.

A.1. Sources

SPDC sources. The �rst sources that we consider are SPDC based. Ideally, they
produce polarization entangled pairs of photons in two distinct spatial modes, and
have been the workhorse of DIQKD proposals so far [GPS10, CM11, MSBB+13,
STS15]. Concretely, the unnormalized state produced per laser pulse by such an
SPDC source in two output spatial modes a and b may be written as [KB00,
CVSB+15]:

1∑

n=0

n + 1

2n
pn j	nih	nj = j0ih0j + p j	1ih	1j + :::; (A.1)

where j	ni = 1
n!
p
n+1

(
ayHb

y
V � ayV byH

)n
j0i denotes the state of n down-converted

photon pairs and p is the probability to produce a single pair in the process.
Here ayH, a

y
V , b

y
H and byV are bosonic creation operators for which H and V denote

orthogonal polarization directions, while j0i denotes the vacuum state of all modes.
Experimentally, the parameter p is kept small (below 10�2) and it may be ad-

justed with squeezing techniques [GVW+15, SMSC+15]. Large values of p in-
crease the production rate of maximally entangled states of two photons j	1i,
which correspond to the target production of the SPDC process. But large values
of p also increase the relative contribution of spurious, higher-order, terms j	n>1i,
which constitute one of the main limitations for scalable photonic quantum com-
munication, e.g. with quantum repeater technologies [MKL+14].
Typically, in order to take the contribution of high-order terms into account,

one truncates the SPDC state (B.1) up to a (small) total number of photon
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pairs [GPS10, CM11, MSBB+13]. However, this approximation may not always
be naively pursued within the DI approach to quantum protocols. Therefore, in
order to provide a solution to this issue, we develop in Chap. 6 a technique that
gives Eve full power to control high-order contributions which then do not have
to be taken into account without opening loopholes.
Single-photon sources. The second type of sources that we consider ideally

produce on-demand single photons in some desired output spatial mode and po-
larized along some adjustable direction. Such single photon sources have just
been demonstrated with quantum dot micropillar systems achieving nearly perfect
�delity and inidistinguishability [DHD+16, SGDS+16, LBH+16]. We model each
single-photon source with a quantum state containing high-order imperfections,
and whose unnormalized expression in the Fock basis is:

1∑

n=1

�pn�1 jnihnj = j1ih1j + �p j2ih2j + ::: (A.2)

Note that, contrary to the SPDC state presented in (B.1), here the quantum state
produced does not contain vacuum contributions. �p is an experimental parameter
quantifying high-order imperfections, but the model is kept general in the sense
that no underlying physical process is assumed. Instead, the model provides a
general perspective and insight on how imperfect single-photon sources should be
expected to perform in real DIQKD experiments, regardless of the speci�c physical
process used in the implementation.
Just as for the SPDC source modeling, instead of simply truncating expression

(A.2) up to a maximal number of photons, we often employ the technique dis-
cussed in Chap. 6 that does not compromise the DI approach, as all higher-order
contributions are assumed to be manipulated by Eve to her own bene�t.

A.2. Linear quantum optics

The photonic state produced by a certain collection of sources described in the
previous paragraph, undergoes a unitary evolution which allows to transform each
output mode individually (e.g. rotate their polarization), but it also enables co-
herent interference between two (or more) output modes stemming from di�erent
sources. Physically, such unitary evolution can be implemented with optic-�ber-
based linear circuit technology, built from concatenations of optical components
such as: partial beam-splitters (BS), of given transmittivity which we parame-
terise as cos(�=2); polarizing beam-splitters (PBS), which are assumed to always
transmit (re�ect) horizontally (vertically) polarized light; and arrangements of
wave-plates (WP), which generally yield the following transformation for a given
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A.3 Photodetection

pair of orthogonal polarization modes aH and aV and a given pair of real parameters
(�a; �a): 



ayH �! cos

(
�a
2

)
ayH + ei�a sin

(
�a
2

)
ayV

ayV �! �e�i�a sin ( �a
2

)
ayH + cos

(
�a
2

)
ayV :

(A.3)

A.3. Photodetection

Photodetectors are placed at the output modes of linear quantum optics circuit.
These photodetectors are assumed to be non-photon number resolving. In other
words, they produce each time one out of only two possible outcomes (�bucket�
detectors): �click� and �no-click�. They are assumed to be 100% e�cient. (We
will model photodetection ine�ciency and other types of loss in the next sec-
tion). Hence, the quantum measurement process at each output mode of the
linear circuit is modeled with a 2-outcome projective measurement with elements
Mno-click = j0ih0j (projection into the vaccum state) and Mclick = 1� j0ih0j.

A.4. Overall loss and e�ciencies

Transmission loss. Transmission loss in the circuit is presumed to increase expo-
nentially as a function of distance for each mode. This is modeled with a �lossy�
BS of transmittivity �t = exp(�L=Latt) (the re�ected mode is traced-out), where
L denotes the spatial length of the given mode and Latt denotes the attenuation
length of the optic �ber. Note that the exact location of the BS within a given
mode is irrelevant, as such lossy BS commutes with linear unitary operations.
Photodetection ine�ciencies. Photodetection e�ciency is de�ned as the prob-

ability for a photodetector device to produce the conclusive �click� outcome, given
the presence of exactly one photon at the input port of such a measurement de-
vice. Photodetection e�ciency is denoted �d and modeled with a lossy BS of
transmittivity �d placed before each detector. (Here, again, the exact location of
the BS is redundant).
Coupling loss. In a similar fashion, coupling losses may be modeled with a lossy

BS as well. But placing two lossy BS in a given mode amounts to placing only one
lossy BS whose transmittivity is given by the product of the former two. Thus, it
is legitimate to regard coupling loss implicitly accounted for in the parameter �d ,
which encompasses all modes, since photodectors are placed in all of the circuit
output modes. More generally, �d accounts for both photodetection, coupling
ine�ciency and any other possible circuit loss (except transmission loss), and we
will simply call �d the local detection e�ciency.
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B. Assessment of uncharacterized

imperfections

Realistic modelling of a quantum experiment is a delicate task since imperfections
not accounted for in the model may lead to overestimations about the perfor-
mance of the protocol, which in some cases can be completely misleading. The
situation is even more dramatic in the DI framework, where such uncharacterized
imperfections could be exploited by an eavesdropper. For this reason, in this Sec-
tion we introduce a method which allows to assess imperfections which are known
to be existent but which �for simplicity or for computational reasons� are not
accounted for in the model. Concretely, it is assumed that any uncharacterised
e�ect can be exploited by Eve to hack the protocol. The method can assess in
principle any uncharacterized imperfection, but as a concrete example, we anal-
yse the problem of dealing with the in�nite tail of contributions of the quantum
state produced by SPDC sources (5.2). Indeed, all DIQKD proposals so far rely
on the use of several SPDC sources to produce photonic entanglement or single
photons [GPS10, CM11, MSBB+13, MBA13, PMW+11]. Since no coherence
between di�erent number of photons components are observed, the unnormalized
single mode SPDC state (5.2) can be written as a convex mixture:

1∑

n=0

n + 1

2n
pn j	nih	nj = j0ih0j + p j	1ih	1j + :::; (B.1)

where j	ni = 1
n!
p
n+1

(
ayHb

y
V � ayV byH

)n
j0i denotes the state of n down-converted

photon pairs and p is the probability to produce a single pair in the process. ayH, a
y
V ,

byH and byV are bosonic creation operators for which H and V denote orthogonal
polarization directions, while j0i denotes the vacuum state of all modes. The pa-
rameter p = 2 tanh(g)2 parametrizes the probability for high-order contributions.
Typically, in the model one truncates the global state produced by all sources up
to a certain order n, keeping only the terms of order O(pn).
Nevertheless, this perturbative approximation may yield misleading conclusions

about the nonlocal character of the observed correlations and compromise DIQKD
security for a given setup. In fact, one has to guarantee that contributions not
considered in the truncation will not contradict the conclusions about the nonlocal
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B. Assessment of uncharacterized imperfections

character of the behavior in question. To avoid this problem, our method based on
SDP techniques will allow to assume that all high-order contributions (> n) that
are not taken into account are fully controlled by E to her bene�t. This may seem
too conservative, but the method turns to be e�cient and not overpessimistic as
the contribution of high-order terms becomes irrelevant for su�ciently low values
of p, as illustrated in the next Chapter.
The key idea is to conceive higher-order contributions as producing an unknown

and uncharacterized quantum behavior pQ prepared by Eve for Alice and Bob. If
pestn denotes the estimation of the behavior of A and B constructed in the model
to the order n, then the �rst step of the method is to write the observed behavior
p as a convex decomposition: p = (1� �n)pestn + �npQ.
Indeed, at the quantum level, the total state produced by a given collection

of sources producing a perturbative state such as (B.1) may be written as a
convex mixture p(t)�t + p(�t)��t , where �t is the truncated state according to
the estimation made at some order n. ��t is thus the remaining �tail� of high-
order contributions, and p(�t) = 1 � p(t). Moving to the level of probability
distributions, linearity of Born's rule with respect to � implies that the elements of
the observed behavior p conditioned on the outcome c of the QND measurement
(see previous Section) may be decomposed in a similar fashion: P (a; bjc) =

p(tjc)P (a; bjc; t) + (1 � p(tjc))P (a; bjc; �t). The probabilities P (a; bjc; t) are
nothing but the elements of the estimated behavior pestn to the order n. Using
Bayes rule, it is possible to re-write p(tjc) as:

p(tjc) = p(c jt)p(t)
p(c)

: (B.2)

The numerator in (B.2) is known, since in particular p(c jt) is merely the esti-
mated probability of c assuming the truncation at the level of the sources. The
denominator is unknown as it corresponds to the probability of c without assuming
any truncation. However, it is possible to set an upper bound on p(c) (which in
turn will correspond to a lower bound on p(tjc)):

p(c) =

1∑

~k=~0

p(~k)p(c j~k) �
~Kn∑

~k=~0

p(~k)p(c j~k) +
1∑

~k>~Kn

p(~k) := p~Kn
(c); (B.3)

where the vector of variables ~k = (k1; k2; :::; ks) describes the possible number of
photons produced by each of the s sources. Concretely p(~k) gives the distribution
of each of the possible combinations of photons (or pairs of photons) produced by
the sources. ~Kn is the maximum number of photons that each source can produce
and depends on the chosen order n, as expected. Using the bound (B.3) in (B.2),
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one gets p(tjc) � p(cjt)p(t)
p~Kn (c)

, which in turn yields the desired bound:

�n = 1� p(c jt)p(t)
p~Kn

(c)
: (B.4)

�n is thus a �xed real number which goes to zero as the order n increases andn
the limit n !1, pestn becomes a better estimate of p.
With this, the second step is now to de�ne, in an analogous way to (2.21), the

device-independent guessing probability to the order n as:

Gp(n)(x
�) = max

fpeg

∑

e

p(e; a = ejx�) (B.5)

s.t.
∑

e

pe = (1� �n)pestn + �npQ;

pQ 2 Q and pe 2 Q̃; 8 e 2 OA:

Here Q (Q̃) denotes the set of (un)normalized quantum behaviors. In fact, ex-
pression (B.5) is similar to (2.21), the only di�erence being that now Eve is not
obliged to reproduce the input behavior of the program with her collection of
unnormalized behaviors fpe je 2 OAg. Instead, she possesses a supplementary
quantum behavior pQ that she can tailor to reproduce the statistics of the input
pestn and guess the outcome of Alice's box in the best possible way, for a given
�xed value �n.
We stress the fact that the methods presented here are quite general as they

can be applied to any other uncharacterized imperfection parametrized by �, such
that its action arises as convex decomposition of the form p = (1� �)pest + �pQ.
For instance this occurs when one convexly adds an unknown noise at the level of
the quantum state.
As we can see in Chap. 7, the method performs well when modelling exper-

iments based on quantum optics circuits. We note that recently ref. [STS15]
introduced a method based on Gaussian operations which allows to take into ac-
count the contribution of all SPDC terms from (B.1), without any truncation or
approximation, for an entanglement swapping based setup.
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