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Abstract. Among the severe plastic deformation techniques, the equal channel angular pressing 

(ECAP) has drastically improved the mechanical properties of the processed alloys. However, 

information regarding friction phenomenon, which modifies the deformation at the surface and the 

heterogeneity microstrain state produced by the process itself, is still scarce. In the present work, the 

deformation heterogeneity and the friction effect, at the surface in the bulk material of the 6061-T6 

aluminum alloy processed by ECAP, is presented and discussed. The residual stress (RS) 

measurements were performed by means of X-Ray diffraction. By means of synchrotron diffraction, 

volumetric sections of the ECAPed samples were characterized. Finite element analysis showed a 

good agreement with the experimentally obtained residual stress and microhardness mapping 

results. The study also showed that the highest deformation zones were located at the outer parts of 

the deformed samples (top and bottom), while the inner zone showed strain oscillations of up to 

49±2 MPa.  

Introduction 

The possibility of achieving ultrafine grain (UFG) microstructure in polycrystalline materials in 

solid state has been achieved through the severe plastic deformation (SPD) processes. Among these 

processes, equal channel angular pressing (ECAP) is one of the preferred techniques for grain 

refinement. At present, there is a well-defined idea about the mechanisms for grain refinement, 

generation of substructures and their macroscopic influence over the fatigue life, yield stress, UTS, 

ductility, etc. [1,2] Subgrain misorientation, low angle boundaries transformation (LAGB) into high 

angle grain boundaries (HAGB), dislocation multiplication and annihilation and texture evolution 

are the main contributors of the mechanisms for grain refinement and substructures generation of 

the highly deformed alloys [3,4].  

For a number of engineering applications, mechanical and structural proprieties i.e. 

microstructure homogeneity and hardness are very important. Therefore, several studies on ECAP 

for aluminum (Al) and Al-alloys have been reported [5-7].  

With the help of finite element analysis, the design of the die set can be evaluated. The results of 

such analysis can determine the geometry that could provide the lowest inhomogeneity coefficient, 

preserving a good relationship with a high shear deformation [8,9]. Besides, the determination of 

the residual stress state, in the vicinity of the die walls and the core of the sample, is highly 

pertinent [10-12], as the friction effects significantly change the microdeformations.  
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Based on this, the objective of the present investigation was to evaluate the deformation variation 

and the residual stress distribution in the ECAPed samples, including the surface and central part, 

using high energy synchrotron radiation and conventional XRD. The experimental results were also 

compared to the finite element analysis (FEA). 

Experimental 

A 6061-T6 aluminum alloy with 1.0%Mg, 0.6%Si, 0.7%Fe, 0.25%Cu, 0.15%Mn, 0.2%Cr, 

0.25%Zn and 0.15Ti% (in wt. %) was used for this study. The T6 condition was chosen in order to 

avoid a post-ECAP heat treatment. Several bars were cut in samples of 60 X10 mm (length and 

diameter). Just one ECAP pass was performed at room temperature, using a homemade steel die-set 

(Fig. 1). The geometrical configuration of the die-set had an outer angle ψ=37 and intersection 

angle of φ=90°, with an applied strain rate of 0.5 s
-1

. MoS2 compound was used as lubricant.  

 
Fig. 1. Experimental setup of the ECAP die-set. 

By means of a Proto iXRD diffractometer, the distribution of residual stresses, near the surface, 

was measured every 30° along the sample circumference (Fig. 2a). The measured peak (422) was 

obtained with a Cu tube, fitted with a Gaussian profile. It is important to point out that a collimator 

with an aperture of 2 mm in diameter was used. Ten ψ angles distributed within ψ = ±25° were 

measured, with a β = ±3°oscillation. The measurements were obtained with an instrumental 

geometry parallel to extrusion direction (ED).  

After electropolishing the ECAP processed samples down to 200 µm, the in-depth analysis was 

performed. High energy X-ray diffraction was used, as it has the capacity of measuring volume-

average lattice strain in bulk polycrystalline materials, [13]. At the European Synchrotron Radiation 

Facility (ESRF), the Synchrotron X-Ray diffraction experiments were performed on beamline 

ID15B. Standard transmission configuration, i.e. a monochromatic 87 keV beam (wavelength 

=0.1425 A), having a size of 0.5 x 0.5 mm
2
, was employed to carry out the diffraction experiments 

[14]. 

The sample was positioned accordingly to Fig. 2b, with the incident beam perpendicular to the 

normal (ND) and extrusion (ED) directions. Along the normal direction (ND), from -5 mm to  

+5 mm with a displacement step of 0.5 mm, the diffraction patterns were captured. By means of a 

2D detector (MAR 345, marXperts Gmbh, 22844 Norderstedt / Germany) with a pixel size of 150 x 

150 µm
2
, placed at a distance of 1277.85 mm from the center of the sample, the Debye-Scherer 

rings were obtained. The experimental information or data points were analyzed by FIT2D [15] and 

the experimental d-spacing were calculated using the values between the opposite points in the 

diffraction rings.  

 



 
Fig. 2. a) Proto and b) synchrotron experimental setup. 

The microhardness was taken using an MMT-X7A Matsuzawa equipment. The indentations 

were carried out parallel to the extrusion direction (ED), having a 0.5 mm square grid with a load of 

100 g for 10 s. By means of a commercially available finite element code “SIMULIA Abaqus®” 

[16], a three-dimensional finite elements analysis was developed in order to compare and correlate 

the results obtained from the different techniques used in this study. The ECAP was simulated using 

a die set channel similar to the one already introduced in this section.  

For the three-dimensional finite element analysis, the die set channel was assumed to be discrete 

rigid (R3D4) and the punch analytically rigid. The billet was modeled considering 3D stress 

analysis with eight-node linear hexagonal elements (C3D8R). In order to prevent any possible 

failure of the mesh due to severe deformations, and to reduce the computational time, mass scaling 

and adaptive meshing were used for all simulations.  

The global conditions given to the treated sample at the numerical analysis were the elasto-

plastic behavior and strain hardening, having the strain rate and temperature independent. In order 

to simulate the contact effects at the die-sample interaction, a standard Coulomb friction model was 

considered, i.e. µ=0.1 [17]. Finally, a lubricated process using MoS2 compound was assumed. 

Results and Discussion 

Fig. 3a shows the plot of the results of the microhardness analysis. As expected from the die 

geometry, a hardness gradient along the normal direction (ND) was found. It is clear that a 

heterogeneous deformation in the cross-section of the Al bar is produced during the first ECAP 

pass. The values of the microhardness range from 104 HV to 124 HV, where the highest and lowest 

values are located at the top and bottom parts of the hardness map, respectively. Approximately 

20% was the variation of the experimentally obtained hardness values, being consistent with the 

results reported in reference [18]. Fig. 3b displays the plastic equivalent deformation (PEEQ) 

predicted by FEA model. These results are in good agreement with the hardness mapping. It is 

worthy to mention that the Iwashashi et al.[19] formula, which calculated ε=1 for the geometry used 

in this study, in the first ECAP pass, is only valid for the central zone the ECAPed sample. 

 



 
Fig. 3. a) Hardness mapping and b) Equivalent plastic deformation estimated by finite element 

analysis for the cross-section of the deformed Al sample. 

The profile for the surface residual stress was taken along the extrusion direction (ED=σ11), as 

shown in Fig. 4. This displayed oscillating values between -50 and -250 MPa. Nevertheless, at in-

depth measurement, it was found a propensity to be less compressive. Above 100MPa, such stress 

variation should be considered significant, particularly with Al alloys. The results of the FEA 

simulations of the surface stress behavior and the obtained experimental data showed a good 

agreement. The difference could be attributed to the crystalline texture and grain size; such factors 

were not included into the numerical model. 

 
Fig. 4. Surface residual stress (σ11) distribution measured and calculated by FEA. 

It was observed that the middle region of the deformed sample has a symmetrical behavior 

between σ11 and σ22, being explained in terms of an isotropic hypothesis, taking the mean value of 

the stresses obtained for 6 different (hkl) planes: (111), (200), (220), (311), (222) and (331). 

Besides, the main role of the compressive residual stress distribution for σ11 (ED) and tensile for σ22 

(TD), were clearly observed. It is important to note that effect of the stress oscillations (around  

40 MPa) was considered not that critical, however it can no be taken as negligible. The values at the 

outer sides of the ECAPed Al samples, i.e. between ±4 and ±5 mm, showed a complex behavior 

that was the result of the deformation process and the friction effects convolution. Because of the 

cylindrical geometry of the sample, the analyzed irradiated volume at the surface of the Al ECAPed 

samples is relatively small, when compared to the central position (Fig 5), being drawn as dotted 

lines.  

Therefore, at the initial stages of the ECAP process, the generation of a heterogeneous 

deformation was rather evident. Moreover, with the addition of the friction effects and the afore-

mentioned heterogeneous deformation, the resulting residual stress distribution tended to be very 

complex. Taking into account the residual stress at the outer part of the deformed sample, the lowest 

compressive values took place between 150° and 210° (outer angle of the die). This result 

concurred with three-dimensional finite elements analysis developed for this work. 



 
Fig. 5. a) Position of the sample and b) Results of the residual stress obtained in the central zone of 

the highly deformed Al sample (σ11 and σ22). 

Conclusion 

It was found that the largest value for residual stress distribution was found at the surface of the 

ECAPed sample, with important oscillations along the circumference of the sample. A plausible 

explanation for this distribution was given in terms of the ECAP deformation process, which is 

thought to be pure shear deformation in the bulk, in addition to the contribution of the convolution 

of the friction effects. Significant variations of up to 50 MPa were observed within the central zone 

of the studied Al sample. Depending on the considered direction (σ11 or σ22), these variations could 

be either of tensile or compressive nature. The residual stress results of the numerical model and 

experimental measurements showed a good agreement. The hardness mapping and the calculated 

plastic deformation distribution displayed an analogous deformation gradient. Further investigation 

in terms of the evolution of the residual stress and (hkl) anisotropy, as a function of the depth, is 

highly pertinent. 
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