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Abstract—Due to the growth of computational capabilities and
the proliferation of field-programmable gate arrays (FPGA),
the utilization of model predictive control (MPC) for embedded
applications in the industry has become a possibility and a fact.
This paper presents and discusses the possibilities of the use of
online MPC, embedded in an educational device from National
Instruments, using two different optimization algorithms and
code generators, which have come out in recent years by the
academia: CVXGEN, which implements a primal-dual interior-
point algorithm, and qpOASES, which relies on the online active-
set strategy algorithm. Both algorithms have been tested both in
simulation and in real-time experimentation to control a four-
tank pilot plant.

I. INTRODUCTION

Numerous modern control approaches depend on solving an
optimization problem that is updated with information of the
system, which progresses in time, while dealing with real-time
control constraints. In this context, real time (in the control
context) refers to the fact that, to apply the control approach,
it must be taken into account that there is a small time window
to gather the data from the system, compute the control signal,
and, finally, update the system. The key issue therefore is how
to deal with this time window since, if not done with caution,
the optimization problem embedded in the controller may be
out of date in the face of the evolution of the real system if
the controller is delayed, or perform unnecessary calculations
if the controller is advanced. The suitability of a controller
should not be evaluated just in a single optimization from
the optimality sense, but should be evaluated according to the
controller-system behavior over time [10].

One of the optimization-based control techniques that has
captured the interest, both from academia and industry, has
been model predictive control (MPC). This technique allows
to deal with (i) multivariable systems, (ii) optimal inputs and
(iii) system constraints [12]. This control approach usually
involves the resolution of a Quadratic Programming (QP)
problem. This type of problem has been extensively studied
by the academia and, as a result, numerous resolution solvers
have been presented and, thanks to the computational speed
of the used algorithm, MPC can be embedded in either a
microcontroller or an FPGA to solve online optimization
problems managing to meet the real-time constraints. Lately, a
lot of open-source solvers have been introduced by researchers,
e.g., CVXGEN, FORCES, FiOrdOs, qpOASES. Moreover,
some of these solvers are also code generators with the goal

of providing optimized code to build embedded applications
[11].

The MPC controller can be implemented in two different
ways: the explicit and online way. Explicit MPC prevents the
need of solving an optimization problem online to compute the
control signal at each time instant, allowing to solve offline the
optimization problem for a range of operating conditions of
interest [1]. Usually, this MPC approach ends up by mapping
the system dynamics into a table of linear gains. With this
method, the most costly computational operation (the solution
of the optimization problem) is done offline without the need
for the embedded controller to solve online the optimization
problem at each time instant.

On the other hand, online MPC should solve an optimization
problem at each step, which requires an important computa-
tional power. To deal with this problem, the academia has
focused on mathematical algorithms to solve QP problems in
a reliable and fast way, e.g., [18][20][6].

Embedded optimization, used to design and implement real-
time MPC controllers, is becoming a frequent approach in
different industrial applications, e.g., robotics, automotive,
aerospace. For example, in [3] an energy management ap-
proach using MPC for hybrid vehicles is proposed. In [7],
a control of a step-down DC-DC converter using an hybrid
model and solving a constrained optimal control is proposed.
Besides microprocessors and FPGAs, programmable logic
controllers (PLCs) have been studied for the implementation
of optimization-based controllers given their ability to work
in harsh industrial and environmental conditions, e.g., [8]
implements an online linear MPC controller embedded in a
PLC to control a pilot-scale distillation column.

The aim of this paper is to illustrate the practical imple-
mentation of an online MPC controller, embedded in a device
composed of both an FPGA and a microprocessor, using two
different QP solvers: CVXGEN (also a code generator) and
qpOASES1, which implement a dual interior-point and an
online active set strategy, respectively, and perform a com-
parative assessment between the resolution algorithms about
their influence over the closed-loop performance.

The remainder of this paper is structured as follows: in
Section II, the background on MPC and the QP solvers used

1FiOrdOs [19] was also tested, but due to computational aspects no valid
experimental results could be obtained. Refer to Section IV to get a closer
look.



are briefly explained. In Section III, the problem statement
studied along this document is presented and complemented
with some simulation results. In Section IV, the real im-
plementation is presented along with the used plant, the
used device and the explanation of embedding the controller.
Finally, the conclusions are drawn in Section V.

II. PRELIMINARIES

A. Model Predictive Control

Model predictive control (MPC) relies on the idea of using a
dynamic model of the plant intended to be controlled to predict
the system behavior and optimize it to obtain the best possible
decision towards reaching a control objective while satisfying
system constraints [17]. The model is, therefore, a central
key for this control technique, and the final performance
of the controller relies on the model used since it can be
deterministic or stochastic, linear or nonlinear, continuous
or discrete or hybrid. The choice of one model or another
resides on the computational possibilities and the accuracy
level wanted. Normally, the models used in simulations are
intended to be the most accurate as possible while the models
used in control normally are not that accurate because of
computational aspects.

To compute the best possible decision, a cost function is
defined. This cost function is used to define the goals that
the controller needs to achieve, e.g., tracking a set-point or
minimizing the use of a resource. Therefore, the optimal
input minimizes the cost function: at the current time k,
an optimization problem is solved along a finite prediction
horizon and a set of control signals is calculated, but just the
first control input of the optimal sequence is applied (receding
horizon idea) [12].

This paper is restricted to the study of the linear MPC
(LMPC). Since linear control theory is going to be applied,
from now on the system will be represented as a discrete-time
state-space linear model of the form

xk+1 = Axk +Buk, (1a)
yk = Cxk +Duk, (1b)
xk0

= x0, (1c)

where x ∈ Rnx are the states, u ∈ Rnu are the inputs, y ∈ Rp

are the outputs and A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rp×nx ,
D ∈ Rp×nu are time-invariant matrices defining the dynamics
of the system.

The optimal control problem (OCP) behind the MPC im-
plemented in this paper has the form

min
uk|k, . . . , uk+Hp−1|k

Hp∑
i=1

||xk+i|k − xr||Q +

Hc−1∑
i=0

||∆uk+i|k||R

s.t. xk+i+1|k = Axk+i|k +Buk+i|k,

uk+i|k ∈ U ,
xk+i|k ∈ X ,

(2)
where xr ∈ Rnx is a constant desired set-point. Matrices
Q ∈ Rnx×nx and R ∈ Rnu×nu are penalization weights

assigning prioritization for the control objectives. Both states
and inputs are subject to some physical and operating con-
straints defined as X , {x ∈ Rnx : x ≤ xk ≤ x̄, ∀k} and
U , {u ∈ Rnu : u ≤ uk ≤ ū, ∀k}, respectively, where x
and x̄ correspond to the lower and upper limits for the states,
respectively. Similarly, u and ū are the lower and upper limits
for the control signals, respectively. Moreover, Hp and Hc

refer to the prediction and control horizons respectively. It is
assumed that each state is measurable, if not, a state observer
should be implemented. Note that the cost function does not
include the input uk itself, but the changes ∆uk (slew rate)
defined as

∆uk+i|k = uk+i|k − uk−1, (3)

where uk−1 ∈ Rnu is the control input applied to the system
in the previous iteration. This change is done with the aim of
obtaining control actions with a smoother behavior [12].

Finally, the MPC relies on the Receding Horizon Strategy
defined in Algorithm 1.

Algorithm 1 Receding Horizon Strategy

1: measure the state xk at the time k
2: compute u∗k(xk) :=

[
u∗

>

k|k, . . . , u
∗>
k+Hp−1|k

]>
3: apply the first element u∗

>

k|k to the system
4: proceed to time step k + 1
5: go to 1

B. QP Solvers

The optimization problem presented in (2) can be addressed
as a QP problem of the form

min
z

1

2
z>Hz + g>z

s.t. alb ≤Λz ≤ aub
(4)

where H ∈ R(nx+nu)×(nx+nu) is the Hessian matrix defined
as semi-definite positive, i.e., it defines a convex optimization
problem and, therefore, any locally optimal solution is also a
globally optimal [2], and z ∈ Rnx+nu is the decision vector
defined as z = (x> u>)>. Moreover, alb, aub ∈ Rnx and
Λ ∈ Rnx×(nx+nu) define the feasible set and g ∈ Rnx+nu is
the gradient vector.

To solve the QP problem presented in (4), two different
QP solvers have been implemented and tested: CVXGEN and
qpOASES.

1) CVXGEN: CVXGEN is a code generator for convex
optimization problems developed by Jacob Mattingley and
Stephen Boyd at Standford University [14]. CVXGEN uses
a high-level and powerful language to define the optimization
problem to be solved and automatically generates C flat code
that can be compiled into high-speed solvers for the family of
problems defined.

Once the optimization problem has been defined in the
online interface at www.cvxgen.com and parsed into a
canonical form used by CVXGEN to make the computations,
CVXGEN implements a standard primal-dual interior point



method to find the solution. The main numerical algorithm
was presented by Lieven Vandenberghe [2].

The CVXGEN website generates five main files in flat
C. The core file is solver.c, where the main solver rou-
tine is implemented. Other important files are generated like
matrix_support.c, allowing matrix and vector filling,
util.c, where different useful functions are declared, or
ldl.c, where the Karush-Kuhn-Tucker (KKT) factorization
and solution are computed.

Besides, CVXGEN adds some files to interface the solver
with MATLAB. In this paper, the controllers have been
designed and simulated using this interface, while an interface
with LabVIEW has been created (compiling the main C files
into a Dynamic-Link Library (DLL)) for simulation and real-
time implementation purposes.

2) qpOASES: qpOASES is a C++ based open-source tool
for quadratic program resolution using a lately algorithm
proposed: online active set strategy [6]. This software was
initially released by the KU Leuven within the Optimization
in Engineering Center. The resolution algorithm used by
qpOASES relies on the active set strategy [5] and incorporates
an interface for third-party software such as MATLAB and
Simulink. For the performed simulations, the interface with
MATLAB has been used, while for the embedded task, a
version of qpOASES, named qpOASES_e, has been tested
since the latter is a plain C translation of the C++ based version
and it is more suitable for being embedded into the device.
As with CVXGEN, qpOASES e has been compiled into a
DLL to interface the main functionalities with LabVIEW for
implementation purposes.

III. PROBLEM STATEMENT

A. Simulation and control models

The case study considered throughout this paper is the
quadruple-tank process, presented by Karl H. Johansson [9] as
a multivariable control process, ideal for educational purposes.

The quadruple-tank setup consists of four interacting tanks,
two pumps, four level sensors and two valves (three-way
valves) as shown in Figure 1. The goal is to control the water
level of the two lower tanks (Tank 1 and Tank 2) while the
inputs of the process are the voltages applied to the pumps
(v1 and v2).

Tanks 1 and 2 are positioned below Tanks 3 and 4 and
receive water from these latter by the gravitational action. A
reservoir placed below Tanks 1 and 2 serves to accumulate
the water from the tanks while the two pumps extract water
from it. The water flow is split by two three-way valves whose
position gives the ratio of how the flow rate is divided between
upper and lower tanks.

The dynamic model is the result of applying mass balances
and Bernoulli’s law [9] and is represented by the following
continuous-time differential equations:

Tank 3 Tank 4

Tank 1 Tank 2

y1 y2

y3 y4

Pump 1 Pump 2

v1 v2

Figure 1: Schematic diagram of the quadruple-tank process

dh1(t)

dt
= − a1

A1

√
2gh1(t) +

a3
A1

√
2gh3(t) +

γ1k1
A1

v1(t), (5a)

dh2(t)

dt
= − a2

A2

√
2gh2(t) +

a4
A2

√
2gh4(t) +

γ2k2
A2

v2(t), (5b)

dh3(t)

dt
= − a3

A3

√
2gh3(t) +

(1− γ2)k2
A3

v2(t), (5c)

dh4(t)

dt
= − a4

A4

√
2gh4(t) +

(1− γ1)k1
A4

v1(t), (5d)

where
Ai cross-section of Tank i,
ai cross-section of the outlet hole of Tank i,
hi water level of Tank i,
g acceleration of gravity,
γi constant of Valve i,
ki gain of the pump i.

To control the experimental setup, an identification of the
nonlinear model has been made. The model parameters γi, ki
have been adjusted using a nonlinear least squares algorithm
of the form

min
Ŷi

n∑
i=1

||Yi − Ŷi||2, (6)

where Yi is the data measured and Ŷi is the value predicted
at the i-th data point [13] and the sampling time of the
identification has been set to 0.1 s.

The resultant parameters from the identification procedure
are summarized in Table I.

Table I: Identified and used parameters

Parameter Value

Ai [cm2] 138.9
ai [cm2] 0.5027

k1 [cm3/Vs] 26.00
k2 [cm3/Vs] 22.94

γ1 0.836
γ2 0.897

g [cm/s2] 981

Note that the problem is not symmetric since the two pumps
do not have the same gain ki, just like the constants referring
the overture of the valves γi do not have the same value.



The system behavior according to (5) has nonlinear dy-
namics, whose model will act as the simulation oriented
model (SOM). Since an LMPC will be designed, the model
in (5) should be linearized and discretized in order to obtain
the corresponding control oriented model (COM). Finally,
an implementation for simulation and experimental purposes,
comparing the performance of the closed loop when two
different solvers are used to solve the optimization problem
behind the MPC controller, is done.

The COM, once linearized at the operating point xop, uop
where

xop =
[
10 10 0.0892 0.3156

]
, (7)

uop =
[
2.9336 2.8140

]
, (8)

with a sampling time of 1.430 s, has the form of (1) with

A =

0.9644 0 0.3127 0
0 0.9644 0 0.1811
0 0 0.6812 0
0 0 0 0.8154

 , (9)

B =

0.2198 0.0041
0.0041 0.2081

0 0.0202
0.0397 0

 , (10)

where the states are the heights of the tanks, the control inputs
are the voltages applied to the pumps and the outputs are the
states themselves since a full-state feedback is implemented
and no state observer is designed (four level sensors are used).
Finally, the LMPC controller implemented should solve at
each time instant the following optimization problem:

min
uk|k, . . . , uk+Hp−1|k

Hp∑
i=1

||xk+i|k − xr||Q +

Hc−1∑
i=0

||∆uk+i|k||R

s.t. COM,

uk+i|k ∈ U ,
xk+i|k ∈ X ,

(11)
where the physical and operating constraints are summarized
in Table II.

Table II: Simulation parameters

Parameter Value

x [cm] 0
x̄ [cm] 25
u [V] 0
ū [V] 5
Hc, Hp 10

B. Simulation results

The tuning parameters for the controllers are the weighting
matrices Q and R. The control objective is to track a height
set-point, therefore Q must be greater than R (in the sense
of the magnitude of its entries). In this case, after running
some simulations, it has been set Q=100diag[1 1] and
R=10diag[1 1]. The simulation results are summarized in
Figure 2.
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(a) hi results for the two solvers implemented
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Figure 2: hi and ui solution by the different solvers in
simulation

The heights of the Tanks 1 and 2 reach and track the desired
set-point thanks to the greater weight given by Q as expected.
It is more remarkable to take a look at the computational time
spent by each solver, since it can give an idea about which
solver will have faster performance into the real-time setup.
For this simulation experiments, 300 iterations of the online
MPC have been run by each solver, running five times the
online MPC problem with the respective solvers and taking
the minimum time spent among the simulations carried out,
giving the results summarized in Table III.

Table III: Computational time spent by the considered solvers
in simulation.

Solver Time [s]

CVXGEN 0.084
qpOASES 0.103

CVXGEN and qpOASES have a similar performance re-
garding the execution time. Remember that the qpOASES
versions used for simulation and implementation are not the
same one. The simulations have been performed using a PC
with 8 GB of RAM and a core-i7 processor running MATLAB
2015a.



Figure 3: myRIO device. Photography taken from [15]

CVXGEN
C files

qpOASES e

.so

RTOS Layer

Figure 4: Embedding process scheme

IV. EXPERIMENTAL SETUP

A. Pilot Plant

The plant to be controlled is the Coupled Tanks System
33-230 [4] from Feedback Instruments Ltd. The scheme in
Figure 1 and the real setup differ in the valves since the model
identified implements two three-way valves and the real plant
uses two two-way valves. This difference has impact in the
identification process performed.

B. Controller Device and Embedding process

The hardware used to implement the MPC controller is
the NI myRIO-1900 from National Instruments [15] shown
in Figure 3. This device has an FPGA that uses the LabVIEW
FPGA operating system, and a microprocessor that uses the
LabVIEW Real-Time Operating System (LRTOS). The LRTOS
is responsible of managing the hardware resources and hosting
the applications defined by the user. This operating system is
designed to run applications with highly-precise timing, fact
that is crucial in real-time applications, adding an important
degree of reliability. In terms of the controller embedding
process, the LRTOS has a C and C++ code compiler whereby
the QP solvers will be compiled into DLLs and embedded in
the real-time processor layout. In this case, the RTOS is linux
based, then the embedded QP solvers must be compiled as
.so libraries (Figure 4). These libraries will have two main
functions: the former is to compute the optimal control inputs
for the pumps once the set-point defined by the user is given
and the latter is to exchange the data from both analog inputs
and outputs with the host PC. The FPGA layout is in charge
of scaling both input and output values obtained by the A/D
converter.

Finally, a low-pass filter is placed at the A/D converter
output in order to obtain noise attenuation.

C. Experimental results

To make sure that the embedded controller is performing
properly, a test for the two QP solvers implemented has

been run with the device disconnected from the plant, just
to estimate the capabilities of the myRIO to run the respective
solver. The first aspect that was tested was that the optimizers
solved the problem correctly. Once verified its suitable opera-
tion, the computational time spent by each algorithm to solve
an optimization problem was measured yielding the results
summarized in Table IV.

Table IV: Computational time spent, by each solver embedded
in the real-time device, to perform a closed-loop iteration.

Solver Time [ms]

CVXGEN 300
qpOASES e 1430

FiOrdOs 3480

These results show that the device used can not ensure the
correct performance of the online LMPC problem with the
FiOrdOs solver, since its computation time per iteration is
more than three seconds, producing an oscillating behavior
of the system outputs around the given set-point.

The implemented strategy is collected in Algorithm 2.

Algorithm 2 Synchronous strategy implemented

1: give the desired set-point to be tracked
2: read the analog inputs from the four tanks
3: compute u∗k(xk) :=

[
u∗

>

k|k, . . . , u
∗>
k+Hp−1|k

]>
4: take the first element u∗

>

k|k
5: perform the A/D conversion carried out by the FPGA
6: apply the result of the conversion to the system
7: go to 1

In terms of execution time capabilities of the device used,
the myRIO can use a sampling rate of the analog inputs
(height reads) between 1 kHz and 30 kHz, more than enough
to ensure that the online MPC is updated correctly. The
experiment performed, for both solvers, has been to make set-
point changes that the Tanks 1 and 2 should track. The results
are shown in Figures 5a and 5b for CVXGEN and qpOASES,
respectively.

CVXGEN and qpOASES have shown a similar performance
in spite of the different execution time, thanks to the chosen
synchronous strategy, with which the two solvers execute the
closed-loop at the same rate. It should be mentioned that
when the problem grows in dimensions (Hp or the number of
decision variables increase), CVXGEN becomes much slower
than qpOASES, while the latter is more robust in terms of
runtime and then it seems to be more suitable for being applied
in large-scale problems.

V. CONCLUSIONS

In this paper, the use of an online LMPC controller, em-
bedded in an educational device composed of both an FPGA
and a microprocessor, has been proposed and discussed using
two different QP solvers of which one offers code generation
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Figure 5: Tracking task performed by both considered algo-
rithms

(CVXGEN), while to embed the other, more advanced C and
compilation notions are required.

A nonlinear identification of the system model has been
performed to adjust the unknown parameters (grey-box iden-
tification). A linear discrete-time state-space model has been
obtained linearizing the previous model around an operating
point towards the design of the LMPC controller. Despite the
limitations of the used device (it is an educational instrument),
an online LMPC has been embedded using two different
numerical algorithms that, in this paper, demonstrate similar
behaviors. FiOrdOS has also been tested, but a reliable im-
plementation has not been achieved due to the computational
time spent by the fast-gradient algorithm [16].

The considered solvers, capable of being embedded in
real-time applications, can be great tools in case that the
needs of both execution and computational time can be met,
and they can be used instead of stablished toolboxes, e.g.,
Control Design and Simulation Module from LabVIEW or
the Model Predictive Control Toolbox from MATLAB, since
these latter are black-box-based tools leaving few possibilities
of interaction between the user and the problem defined.
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