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Abstract. Decision tree learning algorithms have been successfully
used in knowledge discovery. They use induction in order to provide
an appropriate classification of objects in terms of their attributes, in-
ferring decision tree rules. This paper reports on the use of ID3 to Web
attack detection. Even though simple, ID3 is sufficient to put apart a
number of Web attacks, including a large proportion of their variants.
It also surpasses existing methods: it portrays a higher true-positive de-
tection rate and a lower false-positive one. The ID3 output classification
rules that are easy to read and so computer officers are more likely to
grasp the root of an attack, as well as extending the capabilities of the
classifier.

1 Introduction

In order to stay in business, many companies have a Web site, through which
they promote or offer their products and let a candidate customer compute
prices, compare product features, and so on. While profitable, these kinds of
Web sites come along with a serious security problem, which is often approached
via a standard protection schema: a firewall allowing HTTP(S) traffic. This
schema is certainly not enough. According to S21SEC, 1320 public security
vulnerabilities, out of the 2113 found only from June to November 2003, 62.5%,
had their root in a Web application.

To better protect their resources, companies have strengthened their secu-
rity mechanisms by incorporating clear and force-able security policies and by
including other mechanisms such as an Intrusion Detection System (IDS). Intru-
sion is any action that puts on risk the integrity, confidentiality and availability
of the company information. An IDS is a system that aims to detect intrusions
on the fly while identifying the source of the attack.

Depending on its characterisation of intrusion, an IDS is of either of two
types: i) misuse, and ii) anomaly. A Misuse IDS (MIDS) annotates as an at-
tack any known pattern of abuse. MIDSs are very effective in detecting known
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attacks; they exhibit a high true positive detection rate. Yet, they are bad at
detecting novel attacks. An Anomaly IDS (AIDS) annotates as an attack any ac-
tivity that deviates from a profile of ordinary behaviour. Unlike MIDSs, AIDSs
are capable of detecting novel attacks. However, they frequently tag ordinary
behaviour as malicious, yielding a high false positive detection rate.

Depending on the activity it observes, an IDS can be placed at either of
three points: a host, a network or an application. A host IDS usually audits the
functionality of the underlying operating system, but can also be set to watch
critical resources. An application IDS scrutinises the behaviour of an applica-
tion. It commonly is designed to raise an alarm any one time the application
executes a system call that does not belong to a pre-defined set of system calls,
built by some means, an object-code analysis. An network IDS analyses network
traffic in order to detect mischievous activities within a computer network. A
denial of service attack resulting from flooding a network with packets can be
pinpointed only at this level.

Current IDSs are easy to bypass: there is a number of means to get full
access to a Web service. Tools have even been developed to go around IDSs,
e.g. nikto, fragroute, ADMutate. The main problem of existing IDSs is that they
cannot detect new kinds of attacks or even variations of existing ones (so-called
mimicry attacks). This problem prevails in well known IDSs, like snort. To get
around this problem, IDS researchers have turned their attention to machine
learning techniques, including classification rules and neural networks.

Current IDSs are also easy to overrun, due to the staggering amount of
information they must analyse. The root of the problem is that in a computer
site there usually is one IDS: the omnipotent, global sensor. For example, it is
a standard practise to have only one NIDS to analyse all the traffic generated
over a company network, yielding an increase in the false positive detection
rate. To get around this problem, IDS researchers have recently suggested one
should have one sensor for each company site service, such as HT'TPS, making
an application IDS more specialised. Service-oriented IDS have the advantage of
specialisation: they produce a low rate of both false positives and false negatives,
but at the expense of having a number of small IDSs, possibly working without
any coordination. So far, there are only a few publicly available service-oriented
IDS [10].

In this paper, we introduce an IDS for protecting a Web application with
a low missing alarm and false alarm rates. This IDS makes use of ID3, a well-
known classifier that builds a decision tree from a fixed set of examples. Each
input example is a Web application query; it has several attributes and belongs
to a class, either attack or normal. As we shall see later on in this paper, ID3
requires only that the Web application queries be slightly pre-processed before
application. Unlike a neural network, ID3’s decision tree can be easily explored
to find out the rules applied by the classifier. In our experiments, ID3 was able
to successfully classify unseen Web application queries as an attack. If the data
base training is growing up because of new vulnerabilities, ID3’s performance
does not change at all. Unlike neural networks, ID3’s output is easy to read
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by computer officers without having previous knowledge about decision trees
techniques. Our hypothesis is that ID3 suffices to generalise on specifying a
wide range of Web attacks, provided it is given a sufficiently large set of attack
examples.

Paper Overview In what follows, we briefly describe related work, §2, and then
characterise the kinds of attacks we want to detect, §3. Then, after outlining
ID3 and the requirements it imposes on input data, §4, we show how to apply
ID3 to build a decision tree for intrusion detection, §5. We recap and assess
the results obtained throughout our experiments on validating our intrusion
detection method, §6. Finally, we discuss the conclusions withdrawn from this
research work.

2 Related Work

There are many IDSs currently available, ranging from commercial products to
unprofitable ones. We briefly describe some of them below.

Rule Induction The application of inductive learning to intrusion detection has
a long history in computer security. In 1990, e.g., Teng et al. [11] applied a
time-based induction machine in order to characterise an audit trail as chunks
of temporally co-related entries, yielding rule-based sequential patterns suitable
for anomaly detection.

Cohen’s RIPPER [4] is the crux for intrusion detection in JAM [10]. JAM is
a distributed IDS that uses a collection of agents to form a number of intrusion
detection models. These models are all merged into one, from which a meta-
classifier is extracted. This meta-classifier is then used to detect intrusions; it
can be combined with the meta-classifiers built in other sites and can migrate
along them.

MADAM ID [5] is a framework that applies induction techniques (classifiers,
association rules, frequent episodes, etc.) to build models for intrusion detection.
It builds two kinds of models; one is about normal behaviour and the other
about intrusions. Data is first pre-processed in order to find a representation
where each event is normalised to a fixed number of attributes. Techniques are
then used to find patterns of frequent occurrence, represented via association
rules (connecting event features) and frequent episodes (connecting events).

Bayesian Classifiers Bayesian networks have proved to be very powerful to
build decision models that operate under uncertainty conditions. When they
are used to approach intrusion detection, an IDS amounts to a set of relations
of conditional probabilities, as opposed to a set of classification rules. EMER-
ALD [13], an IDS developed at SRI, includes a module, called eBayes TCP,
that applies Bayesian networks to analyse traffic explosions.

ADAM [2] also uses a Bayesian network to build a profile of normal network
activity. On operation, ADAM uses a sliding window to take observations from
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the last D connections. These observations are then compared against the profile
of normal behaviour, filtering-out items taken to be normal. The remaining data
is then passed onto the misuse, naive Bayes classifier. ADAM performs especially
well with denial of service and probe attacks.

Amor et al. [1] compared naive Bayes against decision tree algorithms at
detecting intrusions at a host level, using the DARPA attack repository as a
testbed. Both methods showed a similar detection rate (the latter technique
being slightly better than the former one.) As expected, the construction of a
nalve Bayes classifier is much faster than the construction of a decision tree
one.

Support Vector Machines A Support Vector Machine (SVM) is a technique that
has been used widely for both supervised and unsupervised learning. Mukka-
mala et al. [6] used 5 SVMs to approach intrusion detection. One SVM was
used for separating normal traffic and the other ones for identifying each of the
4 attacks involved in the data test set of the 1999 KDD cup. Mukkamala et
al. showed that SVMs surpass neural networks on this classification task.

Neural Networks More related to ours is Torres’s work on Web intrusion detec-
tion [12]. His method, IDS-ANN, which uses an Ellman neural network, analyses
data using a layered approach and, thus, it is very time-consuming. A neural
network is a black box and so it is difficult to extract general knowledge about
intrusion detection.

In this paper, we aim to test how well standard data mining techniques are
up to characterise malicious Web application queries. We propose to use ID3, a
decision tree technique, instead of a Bayesian network. This is because, accord-
ing to Amor et al’s results (see above), in this problem decision tree techniques
perform slightly better at the expense of requiring more computational efforts.
This extra cost is an issue when the objects to be classified are large, which is
not our case (Web application queries are rather short sequences of symbols.)
So we have chosen to favour ID3.

As we shall see later on in this paper, ID3 needs only that the Web ap-
plication queries be pre-processed before being used. ID3 is able to correctly
classify unseen Web application queries as an attack. If the data base training is
growing up because of new vulnerabilities, ID3’s performance does not change
at all. Unlike neural networks, ID3’s output is easy to read by computer offi-
cers without having previous knowledge about classification techniques. ID3 is
widely available and is not difficult to implement.

In the next section we survey the flaws commonly exploited in a Web attack.

3 Web Attacks

SecurityFocus? analysed 3,000 security incidents related with Web servers, CGIs
and other Web applications. They concluded that the exploits or other tech-

2 http://www.securityfocus.com
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niques used to perpetrate these attacks took often advantage of security vul-
nerabilities already published. This was either because the vulnerabilities were
never fixed through a patch, or because the patch was not able to detect small
variations of the exploits.

Thus, there are no radically new types of vulnerabilities that the exploits
take advantage of. The exploits we want to detect are of four kinds: i) SQL In-
jection; Cross Site Scripting (XSS); iii) Code injection; and Directory Traversal.

3.1 SQL Injection

SQL injection is a kind of vulnerability where the attack tries to manipulate
data base applications by issuing crafted SQL queries. The source usually is an
incorrect escaping of dynamically-generated string-literals embedded in SQL
statements.? The effect is that the SQL statement may do more than the ap-
plication author intended.

For example, in a Web site, a user usually needs to type in his login and his
password in order to get access to some application. With SQL injection, it is
possible to send a crafted SQL query in order to bypass this kind of authenti-
cation:

http://localhost/login.cgi?id_user=vh’;%20--

The fault exploited by this attack query has to do with the double hyphen (--).
SQL ignores anything following a double hyphen, and thus the application, if
not properly written, may take the user as valid, granting him full access.

3.2 Cross Site Scripting

Cross site scripting (XSS) is a vulnerability of Web applications that can be
used by an attacker to compromise the same origin policy of client-side scripting
languages, like JavaScript. XSS occurs when a Web application unknowingly
gathers malicious data on behalf of a user, usually in the form of a hyperlink.
Usually the attacker will encode the malicious portion of the link to the site so
the request looks less suspicious. After the data is collected by the Web appli-
cation, it usually creates an output page for the user containing the malicious
data that was originally sent to it, but in a manner to make it appear valid
content from the website.?

Using XSS and social engineering, an attacker could steal information about
credit cards numbers or other personal data. The following link is for public use
when testing for XSS:

http://www.vuln-dev.net/<script>document.location="http://www.repository.
com/cgi-bin/cookie.cgi? ’J%20+document.cookie </script>

3 http://en.wikipedia.org/wiki/SQL_injection
4 http://en.wikipedia.org/wiki/Cross-site_scripting
5 http://199.125.85.46/articles/xss-faq.shtml
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3.3 Code Injection

Code injection is a kind of vulnerability of Web server applications that can be
used by the attacker to make the Web application execute arbitrary code. It is a
cracking technique used to obtain confidential information or get unauthorised
access to a system. These are two example code injection queries:

1. http://localhost/scripts..%c0%afwinnt/system32/cmd.exe?/c+dir
2. http://host/index.asp?something=..\..\..\..\WINNT\system32\cmd.exe?
/c+DIR+e: \WINNT\*. txt

3.4 Directory Traversal

Directory traversal is one of the most common attacks. It aims to traverse
the directory structure of a Web server to access files that may not be public.
Directory traversal exploits insufficient security validation of user supplied input
file names, so that special characters used to traverse to a parent directory are
passed through to the file APIs.® Two examples of directory traversal attacks
are:

1. http://host/cgi-bin/vuln.cgi?file=../../../../etc/motd
2. http://host/cgi-bin/vuln.cgi?page=../../../../bin/1s%20-al%20/etc]|

The second query, for example, requests for a full directory listing of the “etc”
directory within a Unix system. It is possible to make different variations on these
attacks in order to fool conventional IDSs.

These kinds of attacks are all Web application queries. They take the form of well
defined strings. In what follows, we briefly describe the ID3 algorithm and, in the next
section, we show how to apply it in order to recognise attack queries.

4 ID3

ID3 is a simple inductive, non-incremental, classification algorithm [7]. Using a top-
down, greedy search through a fixed set of examples, it builds a decision tree, which is
then applied for classifying future samples. Each example has several attributes and
belongs to a class. Each non-leaf node of the decision tree is a decision node, while
each leaf node corresponds to a class name.

ID3 extends the concept learning system algorithm adding a feature selection
heuristic. Feature selection is used to identify the attribute that best separates the set
of input examples, called the training set. If the selected attribute completely classifies
the training set, then we are done. Otherwise, ID3 is recursively applied, in a greedy
fashion, to identify the next best attribute.

When deciding which attribute is the best, ID3 uses a measure called information
gain. Information gain is defined in terms of the amount of information portrayed by
an attribute, called entropy in information theory. This attribute selection method is
very powerful. ID3 is well-established in both industry and academia.

5 http://en.wikipedia.org/wiki/Directory_traversal
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ID3, however, operates only on examples described by the same attributes. At-
tributes must take values from a fixed, finite set. ID3 is not tolerant to noisy or missing
attributes. Classes must be sharply defined.

4.1 Other Inductive Classification Algorithms

CN2 [3] is other inductive, classification algorithm, which outputs an (un)ordered list
of classification rules, instead of a decision tree. When first proposed, CN2 also used
information entropy as a feature selection heuristic. Later, the use of the Laplacian
error estimate was suggested as an alternative evaluation function.

C4.5 is a decision tree generating algorithm [8]. It extends ID3 in two main re-
spects: 1) it handles training data with missing attribute values; and ii) it handles
attributes that take values from an infinite, continuous range.

We ruled out the application of C4.5 to detecting attacks in Web application
queries. This is both because Web application queries have no missing attribute values,
and because attributes take values from a discrete range. CN2 is just as good as
a choice for our problem. Indeed, one advantage of using CN2 over ID3 is that a
computer officer would not have to explore the ID3 decision tree in order to obtain
the rules applied by the intrusion detection method. In what follows, we show how to
apply ID3 (or CN2) to our intrusion detection problem.

5 Generating a Decision Tree for Intrusion Detection

In this section, we describe how to build a decision tree for Web attack detection using
1D3.

5.1 Normalisation of URL Locations

Given that they do not fulfil the ID3 data requirements, Web application queries need
to be transformed, prior to the application of ID3. A Web application query involves
a specific Uniform Resource Locator (URL) and a collection of reserved symbols. An
URL is a string, conforming to a standardised format, that is used for referring to
resources on the Internet, by their location.” The location is irrelevant from an attack
formation perspective.

Thus, our first step is to transform every Web application query so that each of its
attributes takes a value from a fixed, finite set. This is accomplished by parsing every
input query so as to divide it into substrings, using “.” and “/” as terminal symbols.
Then, for each substring, if it does not match one string that we have previously
marked as reserved, we replace it with the string “@Q”. Otherwise, the substring is
left unmodified. For example, the following Web requirement:

B?variableB=something&variableB2=../dir
is transformed to:
@70=0%0=../0@
Here, 7, &, = and .. are assumed to be reserved symbols.

" http://en.wikipedia.org/wiki/URL
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5.2 Handling Queries of Different Size Using a Sliding Window

The resulting Web application queries cannot yet be input to ID3 since they are not
specified by the same attributes. Queries, as illustrated in Section 3, are of different
size. We get around this problem using a sliding window. The sliding window is slided
one by one, thus this way we get examples with the same number of attributes. After
experimenting with a window of different sizes (5, 8, 10, 12, 15), we chose to use a
sliding window of size 10, since it proved to build a decision tree that more precisely
captured a subset of our examples.

5.3 The Training Data Set

We gathered 400 Web application attack queries from three security vulnerability
lists: i) Securityfocus, iii) Unicode ITS Bugtraq,® and iii) Daily’s Dave vulnerability
disclosure list.® We also gathered 462 Web application non-attack queries. Non-attack
queries were gathered from the Apache log files of 3 servers.'® Each query was then
given one of five classes: i) SQL injection, ii) cross site scripting, iii) code injection,
iv) directory transversal and v) normal.

We apply the sliding window strategy to the 862 example training set. Then, the
resulting objects were input to ID3 and so we built a decision tree. The decision tree
was made classify a number of not previously considered Web application queries. The
results of this validation step are reported below.

6 Validation Stage: Experimental Results

Once built, the ID3 decision tree was used as an intrusion detection method, we call
ID3-ids. We tested 1d3-ids against a collection of real Web application queries. The
attacks were output by two attack generation engines: i) nikto and ii) nessus. The
attacks were input to ID3-ids via a Web proxy cache, Squid. Squid accepts any kind
of Web query and then redirects it to a custom Web server. We compared ID3-ids
with snort and IDS-ANN.

Tables 1—4 summarise the results obtained throughout experimentations. They
indicate both the false alarm rate and the missing alarm rate, considering two sets of
attacks. One set of attacks, generated by nikto, contains 1771 examples. The other,
generated by nessus, contains 14594 examples. ID3-ids surpasses snort. IDS-ANN is
slightly better than ID3-ids at distinguishing the kind of attack under considera-
tion. However, the detection rate of ID3-ids (considering only attack or non-attack)
is slightly better.

These results show that ID3 is a competitive alternative for detecting Web appli-
cation attack queries.

8 http://www.securityfocus.com
9 http://www.immunitysec.com
10 wttp://wuw.zionn.org,http://www.ganexx.org,http: //www.badc0d3d.org.ar/
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Table 1. ID3-ids vs snort performance on attacks generated by Nikto

1771 Nikto generated attacks
Method undetected Detection
name |detected|missing|false rate
alarms |alarms
snort |1282 329 160 72.3%
ID3-ids |1650 77 44 93.2%

Table 2. ID3-ids vs snort performance on attacks generated by Nessus

14594 Nessus generated attacks
Method undetected Detection
name |detected|missing|false rate
alarms |alarms
snort |10256 |2789  [1549 70.27%
ID3-ids 13668 686 240 93.65%

Table 3. ID3-ids vs IDS-ANN performance on attacks generated by Nikto

1771 Nikto generated attacks
Method undetected Identification|Detection
name detected|missing|false rate rate
alarms |alarms
IDS-ANN|1680 41 50 83.8% 94.86%
ID3-ids [1650 77 44 77.25% 93.2%

Table 4. ID3-ids vs IDS-ANN performance on attacks generated by Nessus

14594 Nessus generated attacks
Method undetected Identification|Detection
name detected|missing|false rate rate
alarms |alarms
IDS-ANN|13200 |989 405 78.5% 90.44%
ID3-ids [13668 |686 240 77.25% 93.65%

7 Conclusions and Further Work

ID3 is an effective means for detecting and classifying web application attack queries. It
yields a 4.7% missing alarm (false positive detection) rate and a 1.6% false alarm (false
negative detection) rate. One major drawback of ID3-ids is that it is non-incremental.
So the decision tree has to be built on a regular basis, using an updated attack signa-
ture database. Unlike a neural network, the ID3 decision tree can be easily explored
and so intrusion detection rules can be further refined by a computer officer. CN2 is as
applicable as ID3 to this problem. Actually, we also conducted these experiments us-
ing the CN2 toolbox.!! As expected, we obtained similar results using the information

" nttp://wuw.cs.utexas.edu/users/pclark/software.html
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gain feature selection. The false negative and false positive detection rate, however,
worsen when the Laplacian error estimate was selected.

Further work involves applying CN2 or ID3 to masquerader detection [9]. We plan
on further validating ID3-ids with other attack generating frameworks, like canvas
and core impact.

The attack database, the decision tree and the code developed within this research
work are at available at http://webdia.cem.itesm.mx/ac/raulm/pub/id3-ids/.
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