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Abstract 

Title 

Inventory control of finished goods for the aftermarket. 

Authors 

Sercan Eminoglu  

Joan Esteve Magrané 

Supervisors 

Peter Berling, Faculty of Engineering, LTH 

Hannu Kauppinen, TitanX Engine Cooling AB 

Niklas Möller, TitanX Engine Cooling AB 

Background 

TitanX Engine Cooling is a global supplier of powertrain cooling solutions to commercial 

vehicles, both for OEMs and the independent aftermarket. The company with annual sales of 

over 1.6 billion SEK (US$ 192 million) has some 800 employees worldwide. TitanX is 

headquartered in Gothenburg, Sweden and has manufacturing sites in Sweden, USA, Brazil, 

China and Mexico. 

Its manufacturing facilities are designed and operated with a strong and continuous application 

of lean manufacturing principles, and they perceive themselves as a very flexible supplier. The 

production sites have a high level of vertical integration, including the manufacturing of key 

critical components to ensure the highest quality results. The production operations are 

continuously adjusted to meet variations in customer demand. The vision is to be the number one 

global supplier of powertrain cooling solutions to the commercial vehicle industry.  

The facility in Sölvesborg consists of three zones; a raw material warehouse, a shop floor, and a 

finished goods warehouse. TitanX generally keeps high inventory levels of raw material and 

finished goods. An important reason for this is the marketing strategy to increase the current 

market share above 30% of the independent aftermarket for truck engine cooling systems. 

Therefore, high customer service levels and high efficiency are key performance measures that 

drive high capacity and stock levels. 
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Purpose 

The purpose of the degree project is to analyze the finished goods inventory for independent 

aftermarket products to provide both more accurate forecasting methods and a scientific 

approach for controlling these inventories by finding the reorder points for a given service level 

and considering trade-offs between the production lead times and the safety stock needed for 

those. 

Methods 

Liebermann & Hillier (2001) described all the major phases of a typical operations research (OR) 

modeling approach used to conduct the research in this project. 

Quality assurance was done by a process of validation and verification based on Banks, Carson 

II, Nelson, and Nicol, (2005)  

Data collection was done using semi-structured interviews, direct observation, literature review 

and data provided by the company. 

By using those, a new forecasting model and inventory control tool have been developed and the 

results have been compared to the older model provided by the company to observe the level of 

improvement obtained. 

Conclusions 

New forecasting model improves upon the results of the previous one by 21,2% in terms of 

forecasting accuracy for a specific available sample. 

The implemented inventory control tool is a new advancement that the company previously did 

not possess and remarkably diminishes the required safety stock levels by 59% which accounts 

for 279.783,5 €/year. 

Finally, the tools provided will save planning time and will allow for the comparison of different 

scenarios. 

Keywords 

Aftermarket products, forecasting, operations research, intermittent demand patterns, inventory 

control. 
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List of abbreviations, variables and parameters 

 

List of variables and parameters 

P Average inter-demand interval  

CV2 Squared coefficient of variation of the 

demand size 

𝐶𝑉2
𝐷𝐷𝑇𝐿  squared coefficient of demand size variation 

during the lead time 

L Lead time 

Λ Mean number of arrivals per time unit 

N Number of periods with demand 

ti Period i=1…T 

Σ Standard deviation of the historic demand 

data 

µ Mean of the historic demand data 

µ0  Initial value of the mean demand 

µτ  Mean demand size of the periods where 

demand has occurred, only considering the 

first τ periods 

Τ Number of periods used for initialization 

Q Time until the next demand during the current 

iteration of the forecast iteration 

T Last period in the historic data 

𝑋𝑡 or 𝑦𝑡 Real demand in period t 

𝑝𝑡  Expected inter-demand interval in period t 

𝑧𝑡  Expected demand size in period t if the 

demand is positive 

𝐹𝑡  Forecast in units/period 

𝛼𝑖  Smoothing constant for p 

𝛼𝑠  Smoothing constant for z 

𝑆𝑡  Simple Exponential Smoothing forecast in 

period t 

Α Smoothing constant for Simple Exponential 

Smoothing 

MAD  Mean Absolute Deviation 

N Number of periods used in the forecast 

S1 Probability of no stock out per order cycle 

S2 “fill rate”- Fraction of demand that can be 

satisfied immediately from stock on hand 

S3 “ready rate”- Fraction of time with positive 

stock on hand 

R or s Reorder point 
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Q Batch size 

S Maximum inventory level 

𝑃(𝑘)  Probability of having k customers in one 

period 

𝑓𝑗  Probability of demand size j 

Var Variance 

D(t) Demand of period t  

P(D(t)=X) Probability of the demand of a period being X 

P Success probability in each experiment 

R Number of failures until the experiment is 

stopped  

𝜇′  Mean expected demand during the lead time 

σ′  Standard deviation of the forecasts during the 

lead time  

𝑔(𝑥)  Density function of the Gamma distribution 

𝛤(𝑟)  Cumulative probability distribution of the 

Gamma distribution 

r (gamma distr.) Parameter from the gamma distribution 

𝛷  Probability distribution function of the 

standardized normal distribution 

𝜑  Probability density function of the 

standardized normal distribution 

G(x)  Loss function of the normal distribution 

F(x) Probability distribution function of demand 

size x 

RU Upper bound of the reorder point used in the 

inventory control iterative process 

RL Lower bound of the reorder point used in the 

inventory control iterative process 
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1. Introduction 

This chapter presents a degree project that is performed at TitanX Engine Cooling AB in 

production management. First the general background of the problem will be introduced, 

followed by the problem description, purpose of the project, company overview, research 

questions, research limitations, and potential contributions to knowledge will also be explained. 

1.1. Background  

TitanX manufacturing facilities are designed and operated with a strong and continuous 

application of lean manufacturing principles, and they perceive themselves as a very flexible 

supplier. The production sites have a high level of vertical integration, including the 

manufacturing of key critical components to ensure the highest quality results. The production 

operations are continuously adjusted to meet variations in customer demand. The vision is to be 

the number one global supplier of powertrain cooling solutions to the commercial vehicle 

industry.  

The company has three distinct types of customers which are Original Equipment Manufacturer 

(OEM), Original Equipment Supplier (OES) and Independent AfterMarket (IAM).   

● The OEM segment is the biggest in terms of demand, and it consists of finished cooling 

systems sold to a number of manufacturers to be used in their production of new trucks. 

The demand for these customers is high and repetitive and it is known well in advance. 

Orders from these customers can thus be made-to-order. 

● The products in the OES segment are spare parts (mostly chargers and radiators) sold to 

the same customers as the previous segment (OEM). The demand in the OES have a lot 

of resemblance to the OEM segment and are thus easy to plan.  

● Finally, the customers in the IAM segment also orders spare parts, but they are very 

different than the OES customers. IAM customers are independent distributors that sell 

the spare parts to smaller truck repair shops. Due to the smaller nature of the customers in 

this segment, order sizes are usually smaller and more unpredictable, making them harder 

to control. 

The facility in Mjällby consists of three zones; a raw materials warehouse, a shop floor, and a 

finished goods warehouse. TitanX generally keeps high inventory levels of raw material and 

finished goods. An important reason for this is the marketing strategy to increase the current 

market share above 30% of the independent aftermarket for truck engine cooling systems. High 

customer service levels and good availability are key to achieve this.  
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1.2. Problem description 

To figure out what are the challenges of the company that can be the focus of this project, the 

supervisors at the TitanX factory in Mjällby were approached, and the collected information is 

provided.  

When a customer places its order, TitanX is committed to ship those products within 14 days. 

This time span is defined as an order to delivery lead time. However, the company is often able 

to supply the products before the requested time. In fact, most products can be sent immediately 

and in larger quantities than ordered, even though when an additional amount is shipped with the 

regular order, the sales department will need to offer a discount. On the other hand, if they 

cannot ship the items in 14 days, this might cause penalties and/or lost sales. 

TitanX also measures dock to dock lead time, this refers to the time an item spends in the system 

from the time it enters as raw material until it is shipped as a finished good. Today, dock to dock 

lead time is much higher than the time for order to delivery. The average value for dock to dock 

lead time is 86 days in total, respectively; 52 days in the raw material warehouse, 19.6 hours of 

work-in-process, and 33 days in the finished goods warehouse.  It is sensed that the total time in 

the system (86 days) quite long, and the total amount of stock is also pretty high. On the other 

hand, 19.6 hours work in process is often not sufficient. This since inventory buffers between 

operations provoke halting of the job and longer time as work in process. Those numbers 

represent the averages, however, TitanX keeps both OEM and aftermarket stocks. The demand 

for aftermarket products is rising, moreover, the company sells high variety of the aftermarket 

products to different distributors. Hence, TitanX would like to have a better understanding of 

appropriate inventory levels at the finished goods warehouse to meet for the increasing sales of 

aftermarket products. 

The increasing interest of the company in its Independent Aftermarket (IAM) segment started 

during the 2008 crisis when a new source of income was needed in order to compensate for the 

decreasing demand tendencies at the time. A new sales team was created to launch this product 

segment to market and to make it grow. The sales team is making a good job and this segment is 

continuously growing. Currently, the company wants to increase the ratio of offered IAM 

products from 65% of their potential market to a goal of 80%, increasing their market share until 

stabilizing at a desired value of 35% of the global market. These ambitious goals will not come 

without growing pains in the supply chain of the company. 

The Independent Aftermarket (IAM) segment, entail added difficulties compared to the original 

range of customers. Here are several of the issues that define this new market: 

● Customers do not place their orders well in advance, but rather when they need the 

products. 

● Customer orders are very unpredictable. 
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● The market has not stabilized yet. New customers are appearing and demand in general is 

still in a growing stage. 

● Smaller customer orders. 

● Quick response (14 days) is expected 

Thus, demand needs to be forecasted and stock must always be at hand. 

In terms of production, IAM orders introduce many challenges to the company. If one tries to 

match the customer orders with production orders, productivity issues will arise. This is due to 

an increase of the total number of setups which will also make production planning harder to 

optimize. Also, the fact that many products sold in the IAM segment are quite old means that 

older and more manual machines need to be used, resulting in extra time for the operators and, 

for the same reason, decreasing part standardization, making production even more complex. 

Finally, in terms of inventory management, this relatively new branch of products is also 

introducing new challenges due to the need of forecasting methods, the space constraints caused 

by the consistent growth in demand and the inventory control difficulties created by the 

increasing number of offered products. 

To comprehend the problems correctly a cause-effect diagram was drawn as seen in Figure 1.1. 

 
Figure 1. 1 - Cause and effect diagram for IAM products. 
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1.3. Purpose 

The purpose of the degree project is to analyze the finished goods inventory for independent 

aftermarket products to provide both more accurate forecasting methods and a scientific 

approach for controlling these inventories by finding the reorder points for a given service level 

and considering trade-offs between the production lead times and the safety stock needed for 

those. 

1.4. Research questions 

The research questions of the thesis are the following: 

● RQ 1. How to forecast the demand of the products sold in the independent aftermarket 

segment with sporadic patterns? 

● RQ 2. How to control inventory levels of the same group of products? 

1.5. Research limitations 

As it can be inferred from the research questions, this project will limit its scope to what the 

company calls Independent Aftermarket products. This is because the spare parts sold to the 

IAM customers currently use very rudimentary and intuition based planning methods and their 

sporadic demand patterns make them especially hard for the company to control. Even though 

the focus market is challenging, TitanX is enriching the product portfolio to gain a bigger market 

share because of the profitable nature of the aftermarket products. Another limitation of this 

project is the consideration of only the (R, Q) inventory policy as well as the order 

quantities/batch sizes (Q) used by the company. 

1.6. Contribution to knowledge 

This degree project will have practical contributions by understanding how the company should 

set the reorder point for these products with very specific characteristics and high variation under 

fast growing market conditions. To do so, a new forecasting tool specific for this special kind of 

products will be the focus and contribution provided in this project. 

It will also support a more theoretical contribution to the issue of spare part management, since 

this subject has a limited number of conducted studies, by providing guidance for the application 

in similar cases as the one being studied of categorization and forecasting methods for erratic 

and/or intermittent demand products, some of which may also be presenting seasonality.  

Finally, on a personal level an improvement in problem-solving skills is expected, especially 

within mathematical modelling of inventory control problems, and will also acquire project 

management abilities. 
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2. Methodology 

As the need for a systemic approach to help carry out and structure the project’s efforts arises, 

the merits of a more deductive approach to research in contraposition to the more inductive one, 

become apparent. Deductive reasoning is the process of reasoning from one or more general 

statements regarding what is known to reach a logically certain conclusion (Johnson-Laird, 

2000); (Rips, 1999); (Williams, 2000), and since the company is interested in finding applicable, 

empirical results that can improve the current forecast and inventory control systems for IAM 

products, taking advantage of the already existing literature seems the fastest and safest way to 

do that. Thus, the inductive task of reasoning from specific facts or observations to reach a likely 

conclusion that may explain the facts Johnson-Laird (2000) is not going to be the most prevalent 

in this thesis. 

In the following lines, the different methods used during this project will be mentioned and 

explained. Qualitative approaches will have their representation in the use of interviews, and 

quantitative ones will have theirs in Mathematical Modeling. 

For the reason cited in the first paragraph, this chapter also explains “Operations Research” as 

the approach used to discretize the project into a sequence of steps to reach the project’s final 

goals. These steps will be covered in more detail in section 2.1. 

Eventually, the methods used to gather the required data will be exposed and expanded upon, to 

better explain the particularities of their application in this project. 

2.1. Research method 

To study the illustrated case methodically, a quantitative model-driven empirical research 

method will be practiced. 

Kotzab et al. (2005) explained that quantitative model-driven empirical research deals with real 

life data as well as situations and offers. The same authors noted that empirical model-driven 

quantitative research is crucial when more practically relevant problems are considered. It is also 

emphasized that this type of research can be used to validate operations research models in real-

life supply chain processes. Thus, operations research approach will be applied to solve the real-

life problem that was specified in the first chapter. Winston and Goldberg (2004) defined the 

operations research as simply a scientific approach to decision making that seeks to best design 

and operate a system, usually under conditions requiring the allocation of scarce resources. 

Liebermann & Hillier (2001) described all the major phases of a typical operations research (OR) 

modeling approach as the following: 

1. Define the problem of interest and gather relevant data.  

In general, OR teams receive the description of encountered problems in an imprecise 

way. So, primarily it must be studied the relevant system and developed a well-defined 

statement of the problem. This involves specifying the appropriate objectives, constraints 
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on what can be done, interrelationships between the area to be studied and other areas of 

the organization, feasible alternative courses of action, and time limits for deciding. This 

effort enables the developers to find the relevant conclusions of the study. 

The important thing to be aware of is that an OR team needs to work in an advisory 

capacity. This means that team members are considered not only as problem solvers but 

also as advisers of the company’s management team. Therefore, the team should analyze 

the problem in detail and then present the recommendations. The report will determine 

the alternatives that are specifically attractive under different assumptions or over a 

different range of values of some policy parameters that are comprehensible only for 

managers. Management will make the final decision through evaluation of the study and 

the recommendations considering a variety of intangible factors. Thus, the OR team must 

agree on the same perspective with managers to build a support for the improvement. 

Data collection can be considered as an initial phase to provide the mathematical model. 

Much of the needed data will not be available at the beginning of the study, since it is 

possible that required data never has been kept or data at hand is outdated or kept in the 

wrong form. Thus, it is recommended to install a new computer-based management 

information system to gather required data continuously and in the needed form. On the 

other hand, the OR team may face too much available data, so that it is measured in 

gigabytes or terabytes. Under this circumstance, a technique that is called data mining 

would be a solution to process the relevant data. 

2. Formulate a mathematical model to represent the problem. 

Once the decision maker defines the problem, the next phase will comprise the 

reformulation of the stated problem in a form that is convenient for analysis. Usually, the 

OR approach is to develop a mathematical model that reflects the essence of the problem. 

Mathematical models refer to idealized representations, including mathematical symbols 

and expressions like F = ma in physics. The mathematical model for a business problem 

also describes the essence of the problem with the system of equations and related 

mathematical expressions.  

Basically, mathematical models contain decision variables, an objective function, 

constraints and parameters. If there are n related quantifiable decisions to be made, 

decision variables (say, x1, x2, …, xn) are used to represent those values that need to be 

determined. The measure of performance will be expressed as a mathematical function of 

these decision variables (e.g. P = x1 + 3x2 + … + 5xn), and it is called objective function. 

If there is any restriction on the values that would relate to these decision variables they 

are mathematically expressed with inequalities or equations (e.g. 2x1 + 4x1x2 + 6x2 ≤ 8) 

and these kinds of expressions for the restrictions often are called constraints. The 

constants in the constraints and the objective function are named as the parameters of the 

model. The mathematical model might then indicate that the problem intents to choose 



7 
 

the values of the decision variables to maximize the objective function subject to the 

specified constraints.  

Model building can be started with a very simple version, and then it can be modified 

toward more elaborate models to reflect the complexity of the real problem. This process 

is called model enrichment and lasts if the model remains tractable. 

3. Develop a computer-based procedure for deriving solutions to the problem from the 

model.  

In OR study, the model formulation phase will continue with developing a procedure 

(usually a computer-based procedure) for deriving solutions to the problem from the 

model. This step might be considered relatively simple, since a proper algorithm of OR is 

applied in one of the available software packages. The OR study investigates an optimal 

or best solution; however, it must be noted that the optimal solution is valid only with 

respect to the model being used just because the formulated model represents the 

idealized form of the problem. Therefore, it is not guaranteed that the optimal solution for 

the model will be the best possible solution to implement for the real problem. However, 

once the model is well formulated and tested, it will give a resulting solution that offers a 

good approximation to an ideal course of action. 

After finding an optimal solution, postoptimality analysis should be conducted. This 

process is sometimes verbalized as what-if analysis because it is an ongoing process 

based on the following question, what would happen to the optimal solution if different 

assumptions are made about future conditions. Moreover, sensitivity analysis is 

considered as part of the postoptimality analysis to determine which parameters of the 

model are most critical. Those sensitive parameters of the model require exceptional care 

to avoid distorting the output of the model. 

4. Test the model and refine it as needed.  

When a large mathematical model is developed, it must be expected to develop a large 

computer program in some way. The initial version of the computer program naturally 

contains many bugs, so it must be tested successively to seek out and correct as many of 

them as possible. At the end of the continuous improvement process, the programmer 

needs to feel that the final program is giving reasonably valid results. Of course, some 

minor bugs may not be detected, however, the major bugs have been eliminated and 

hence the program can reliably perform. 

In addition to bugs, the initial version of the computer program typically contains many 

flaws that originate from relevant factors or interrelationships which have not been 

incorporated into the model. Furthermore, some parameters that are accounted 

inaccurately will also cause the flaws. Thus, before applying the model, it must be tested 

carefully to detect and eliminate as many flaws as possible. Once the model is improved 
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sufficiently, the OR team can claim that the current model is now giving reasonably valid 

results. This testing and improvement process is commonly called model validation. The 

model validation process differs depending on the nature of the problem at hand and the 

formulated model. However, the OR team would start the model validation with an 

overall observation to check the model for obvious errors or oversights. It is 

recommended that the controlling group should include at least one individual who did 

not participate in the model building process. The definition of the problem might be 

reexamined and further it can be compared with the model to reveal the mistakes. It 

should also be considered whether all the mathematical expressions are dimensionally 

consistent in the units used. Lastly, the model can be validated through changing the 

values of the parameters and/or the decision variables while observing the model 

behavior.  

5. Prepare for the ongoing application of the model as prescribed by management.  

When the testing phase has been completed with an acceptable model, it must be installed 

a well-documented system for applying the model as prescribed by the manager which 

helps to use the model repeatedly, which will consist of an instruction handbook with the 

steps for application as well as explanations of the components found in the input and 

output interfaces. The required system will consist of the model, solution procedure 

(including postoptimality analysis), and operating procedures for implementation. This 

system be computer-based. Indeed, several computer programs often need to be used in 

harmony, such as databases and management information systems may contribute up-to-

date input to run the model each time. One another program is applicable to the model for 

generating the implementation of the results automatically. In other cases, a decision 

support system can be installed to help managers use data and models while supporting 

the decision-making process. It also exists a program to create managerial reports that 

interpret the output of the model and its implementations for the application. 

6. Implement.  

When a system is developed for the model, the last phase of an OR study will be the 

implementation of the system as prescribed by management. The benefits of the study are 

only occurred here, so that the OR team should participate into the implementation phase 

to check how the model solutions are accurately translated to an operating procedure and 

to eliminate any flaws in the solutions that have not handled yet. To carry out this phase 

successfully, the OR team needs to gain the support of both top management and 

operating management. Therefore, the OR team should inform management and further 

encourage the management’s active guidance throughout the course of study to ensure 

that the study matches with their requirements and they have a greater sense of 

ownership. 
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The following steps can be used for the implementation phase. First, the OR team 

explains to operating management how the new system will be adopted and how it relates 

to operating realities. Then, both parties need to collaborate to develop the procedures 

required to put this system into operation. After that, operating management monitors that 

a detailed indoctrination is given to the personnel involved, and the new course of action 

is initiated. If the new system works successfully, it may be used for years in the same 

form. Although the system works well the OR team must track the initial experience with 

the course of action taken to find required modifications that should be attained in the 

future. 

2.2. Quality Assurance 

In the previous section, it is explained how to test the model as part of the OR approach. 

Nevertheless, this assessment should be elaborated in detail having both a verification and 

validation plan.  

2.2.1. Validation 

Validation is executed when the developers need to compare the behaviors of the model and the 

real system. Thus, this process allows to make some adjustments through comparison of the real 

system and the model. Banks et al. (2005) emphasized a three-step approach for the validation 

process: 

1. Build a model that has high face validity.  

In this study, the model will be developed in Excel environment, therefore it is possible 

to illustrate the input and output clearly.  

2. Validate model assumptions.  

It will be done through observation of real scenarios and if time allows it, by statistical 

testing. Required assumptions will be specified in the following chapters. 

3. Compare the model input-output transformations to corresponding input-output 

transformations for the real system.  

This approach will be applied for analyzing the results of the model.    

2.2.2. Verification 

Model verification enables the developers to assure if the conceptual model (representation of 

real system) is reflected accurately in the operational model (computerized representation). The 

conceptual model usually comprises some degree of abstraction regarding system operations or 

some amount of simplification of actual operations. Therefore, it should be investigated whether 

the conceptual model (assumptions about system components and system structure, parameter 

values, abstractions, and simplifications) is represented properly by the operational model. 

(Banks et al., 2005)   
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The same source provided the following considerations to verify the model that will be 

developed in this study. The only consideration that will not be used is verifying that what is seen 

in the animation imitates the actual system, due to the operational model not being animated. 

1. Have the operational model checked by someone other than its developer.  

The model is going to be shown to the supervisors at the company throughout the project. 

2. Make a flow diagram that includes each logically possible action a system can take when 

an event occurs, and follow the model logic for each action for each event type.  

A full decision making diagram of the inventory control model will be prepared.  

3. Closely examine the model output for reasonableness under a variety of settings of the 

input parameters. Have the implemented model display a wide variety of output statistics, 

and examine all of them closely.  

Reasonableness will be examined by comparing the model outputs with current numbers 

together with the company expertise. Moreover, the model behavior will be observed 

multiple times with the applications of different adjustments over input data and 

coefficients.   

4. Have the operational model print the input parameters at the end of the simulation, to be 

sure that these parameter values have not been changed inadvertently.  

The input parameters will be kept in an Excel worksheet (Appendix I).   

5. Make the operational model as self-documenting as possible. Give a precise definition of 

every variable used and a general description of the purpose of each submodel, 

procedure (or major section of code), component, or other model subdivision.  

During the model building process each variable, submodel and procedure will be 

defined within the program.  

6. The Interactive Run Controller (IRC) or debugger is an essential component of successful 

simulation model building.  

The debugging tool will be used to check if any errors exist. Besides the code can pause 

to check the status of the variables.   

7. Graphical interfaces are recommended for accomplishing verification and validation. 

The graphical representation of the model is essentially a form of self-documentation. It 

simplifies the task of understanding the model.  

The interface is an Excel file that shows the input and output data as well as buttons to 

choose the confidence interval for the forecasted values, and to run the code. 
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2.3. Data collection 

2.3.1. Interview 

The semi-structured interview seeks to obtain descriptions of the interviewee’s point of view 

with respect to interpreting the meaning of the described phenomenon; it will have a sequence of 

themes to be covered, as well as some suggested questions (Kvale, 2011). To understand the 

current forecasting and inventory control system of the case company, semi-structured interviews 

will be conducted together with the following departments: logistics and supply chain, 

production and sales.  

The procedure by Kvale (2011), is the following: 

1. Setting the interview stage (briefing). 

Creation of an environment in which the interviewee feels comfortable to explain their 

point of view. It is done by allowing them to have a grasp of the interviewer and the 

nature of the conversation, and by the interviewer showing respect and interest and 

listening actively. 

2. Scripting the interview. 

Development of two lists of questions: one with the project's main research questions in 

academic language, and another with the research questions translated into interview 

questions that can be understood by the interviewee. 

3. Conducting the interview. 

The interview must have a sequence of themes to be covered as well as some prepared 

questions, yet at the same time, there should be openness to changes of sequence and 

question forms to follow up the answers and stories given. At the same time the quality of 

the interview relies on the interviewer’s ability to apply different techniques such as 

allowing a pause for the interviewee to continue an answer, probing for more information 

and attempting to verify the answers given. 

4. Analysis of results. 

Finally, notes or other material obtained from the interview must be analyzed and 

relevant conclusions must be drawn. 

The interviews conducted throughout the project with the purpose of data collection, will mainly 

be using a semi-structured style and sometimes unstructured. For the semi-structured case, the 

following steps will be used most often: 

Preparation of the interview: 
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1) Scripting the interview by preparing which questions to ask and which language to use. 

2) Prioritization of questions by putting first those questions with higher importance.   

3) Setting up premises for the interviewee to know what type of answers are expected from 

him. 

Development of the interview: 

4) Actively listening and showing respect towards the interviewee. 

5) Asking questions simultaneously between the two interviewers with room for 

improvisation. 

6) Allowing the interviewee to lead the conversation towards other topics if deemed 

interesting. 

Debriefing of the interview: 

7) Further discussion between the interviewers to agree on conclusions. 

2.3.2. Direct observation 

Direct observation is a method of collecting evaluative information in which the evaluator 

watches the subject or activity unfold in its usual environment without altering it (Holmes, A. 

2013), and will be carried out by visiting the TitanX production facilities in Mjällby.  

The procedure is the following: 

1. Planning. 

Preparation of an observational form, allowing the observer to record the occurrence of 

different activity categories. This must be done after a period of unstructured observation 

to have a good grasp of the situation. 

2. Observation. 

During this step, the observer must write down or capture in some way all the relevant 

information for further analysis.  

3. Data analysis. 

Treatment of the raw data from the direct observational studies, for example by counting 

frequencies or durations of different activities. 

2.3.3. Literature review 

A literature review is an account of what has been published on a topic by accredited scholars 

and researchers (Taylor, D., & Procter, M. 2008).  

The procedure is explained by Liston, K. (2011) in the following lines: 
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1. Find resources related to the topic of interest. 

Sources of information must be obtained regardless of format impact or presentation of 

the information. 

2. Exploration. 

During this step, the found resources must be read and relevant information must be 

outlined, structured and analyzed. 

3. Focus review. 

Discussion of the scope of the research and contributions to the work. 

4. Refine review. 

Documentation and organization of the information used, and explanation of how the 

review has affected the project’s research. 

2.3.4. Data provided by the company 

For this type of data, the company will provide the information already collected and stored in 

their databases during the last two years (2015 and 2016). The processing of the information into 

understandable structures for further use will be carried out using different approaches. 

One of them will be data mining from the company’s main software to extract valuable data sets 

for further use in the project. This process will be carried out by the supervisors at TitanX.   

Once this information has been extracted, another approach that will be used is the manual check 

of the data found in the excel files which will be further explained in the empirical data chapter. 

The purpose of this second approach is the elimination of errors and the adjustment for possible 

missing data.  

Finally, another approach will be the use of Python programming language to prepare data for its  

later use in the forecasting tool. 
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3. Theory 

The theory chapter is divided into two main groups; forecasting and inventory control.  

Particularly, forecasting has a focus on items with intermittent demand pattern, while inventory 

control covers the single echelon systems. Forecasting will be used to provide a better insight on 

the demand patterns that the different IAM products are expected to have as well as to feed the 

inventory control tool created in this project and inventory control will be used to know the 

different reorder points as well as to gain better insight on the leverage of lead times compared to 

the necessary safety stocks to meet the desired service levels. 

3.1. Forecasting 

For this project, several forecasting approaches have been taken into consideration, such as the 

use of Bootstrapping methods reviewed by Smith, M., & Babai, M. Z. (2011) or the use of neural 

networks (Kourentzes, N., 2013). These are not going to be explained because of their 

complexity and lack of relation to this project. A categorization procedure for forecasting 

purposes was chosen as it is an alternative that has been studied and reviewed by many authors. 

For instance, Bucher and Meissner (as cited in Altay and Litteral, 2011), provide a satisfactory 

performance for the group of items that is being studied and is accessible to the company in 

terms of its simplicity.  

In this chapter, demand categorization schemes are explained first. The one used for this project 

is expanded and its parameters and their respective calculations are also shown. Next, a five-step 

process for the implementation of a demand categorization scheme is presented, the possibility of 

seasonal and trended demand patterns is considered and finally, the chosen forecasting methods 

are mentioned together with their procedures and formulas. 

3.1.1. Demand patterns 

The company was interested in analyzing the historical demand data of their products to find 

possible patterns that would give a better understanding of them as well as to improve the 

accuracy of the forecast and inventory control tools being developed. Mainly two types of 

patterns were expected by the supply chain team: seasonal effect and trend. 

Seasonality is a repeated pattern of spikes or drops in a time series associated with certain times 

of the year (Bozarth and Handfield, 2008). Time-series plots, seasonal subseries plots, box plots 

and autocorrelation plots will also be used as they help visualize seasonal patterns (6.4.4.3. 

Seasonality, 2017). 

Trend represents a long-term movement, up or down, in a time series. (Bozarth and Handfield, 

2008). For this case, the same analysis as the one explained in the previous paragraph is carried 

out. 
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Aside from those items with the special demand patterns mentioned in the previous paragraphs 

and where alternative methods and more careful attention will be required, Bucher, D., & 

Meissner, J., (2011), authors of the five-step process for the implementation of a demand 

categorization scheme explained in the following paragraphs, noted a configuration of the 

forecasting categorization scheme which considers four different patterns based on the mean 

inter-demand interval (p) and squared coefficient of variation of the order sizes (CV2), as seen in 

Figure 3.1: 

Smooth: Short time between orders and low variance of the order sizes. 

Slow: Long time between orders and low variance of the order sizes. 

Erratic: Short time between orders and High variance of the order sizes. 

Lumpy: Long time between orders and High variance of the order sizes. 

As you can see in Figure 3.1. smooth and erratic categories have more demand points in historic 

data, conversely slow and lumpy ones have many periods with zero demand. In addition, the 

similar structure exists for demand variation where high variation occurs for erratic and lump 

categories as well as more consistent demand size for smooth and slow products.   

 

 
Figure 3. 1 - Graphic representation of different demand patterns. 

3.1.2. Demand segmentation 

The classification of the various products within the portfolio of a company is a topic that has 

attracted many studies in the past. The main objective here is to help identify the regions that 

differ in suitable method for forecasting in order to improve the forecasts which in turn should 

lead to cost reductions and/or service level improvements. 
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One of the first categorization schemes, and still to this day a very popular one, is the ABC-

analysis (Dickie, 1951), that classifies products in one of three categories (A, B or C) in a 

decreasing fashion, according to the benefit they report to the company or the size of the 

demand. This analysis is currently being used in the company with the purpose of prioritizing the 

production of the different items and will also be used later in this project to obtain the 

production lead times of the various products as shown in the empirical data section of chapter 4. 

Even though ABC analysis is applicable for demand pattern categorization, it is not the main 

purpose of this method, since it does not consider any information regarding demand patterns, 

but it is mentioned as a precursor to other categorization schemes that appeared during the 

decades after.  

Williams (1984) was the first author to examine intermittent demand patterns in his 

categorization by using the concept of variance partition. In his work, he calculates the squared 

coefficient of the variation of demand during the lead time as seen in Equation 3.1 

𝐶𝑉2
𝐷𝐷𝑇𝐿 =

1

𝜆𝐿
+

𝐶𝑉2

𝜆𝐿
                  (3.1) 

where L: lead time; 𝐶𝑉2
𝐷𝐷𝑇𝐿: squared coefficient of demand size variation during the lead time; 

CV2: the squared coefficient of variation of the distribution of the demand sizes; λ: Mean number 

of arrivals per time unit.  

The first term represents the mean number of lead times between demands whereas the second 

term relates to the lumpiness of demand, and both parameters are later used to categorize a 

product sample. 

Johnston and Boylan (1996) showed that the Croston forecasting method outperforms the 

exponentially weighted moving average (EWMA) method robustly over a wide range of 

parameter settings, when the average inter-demand interval is greater than 1.25 forecast revision 

periods. This study showed the importance of intermittence as a parameter to consider when 

setting up a categorization scheme for your products. 

Eaves (2002) took the categorization made by Williams one step further, adding a parameter to 

consider lead time variability. Since then, lead time variability has remained as a topic for further 

research. 

Finally, the categorization used in this project is the one by Syntetos et al. (2005), who were the 

first to create a categorization scheme close to achieving universal validity, using the inter-

demand interval (p) and the coefficient of variation of the demand size (CV2), which will be 

touched on later (not to be confused with 𝐶𝑉2
𝐷𝐷𝑇𝐿 from Williams (1984)). 

Formulas of p and CV2 can be seen in Equation 3.2 and Equation 3.3. The calculation of p is an 

approximation used by the authors of this project based on the interpretation of the same article 
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and is explained in the following lines (n: number of periods with demand; ti: period i=1...T; σ: 

standard deviation; µ: mean). 

𝑝 =
∑ ti

𝑛−1
𝑖=1

𝑛−1
=

𝑇

𝑛−1
              (3.2) 

𝐶𝑉2 =
𝜎2

𝜇2                     (3.3) 

Bucher, D., & Meissner, J., (2011) developed the basic steps for the implementation of a demand 

categorization scheme. This framework is especially interesting for organizations that keep a 

high number of SKUs and so desire to increase both the level of automated inventory 

management and the overview of their inventories, by grouping spare parts using factors in line 

with a single-echelon system configuration. The following five steps are defined to be a guide 

especially for the considerations of categorization. The framework for the implementation of a 

categorization scheme can be seen in Figure 3.2. 

 

 
Figure 3. 2 - The framework for the implementation of a categorization scheme (Bucher, D., & Meissner, J., 2011). 

1. In this step, the historic demand data should be collected for all SKUs of the spare parts 

inventory. Commonly, this information can be gathered from reports of the corporate 

ERP system. 

2. The authors formed the first categorization factor by considering the status of an item in 

the product life cycle and those are normal, new and old SKUs. The reason is to 

differentiate new and old SKUs as they are usually very difficult to predict with 

parametric forecast. Then they would be managed either manually or with other best 

practice methods. On the other hand, distinguishing each SKU is a time consuming 

manual process. Thus, a factor can be assigned, such as the cumulative demand of the last 

12 months might be compared to the cumulative demand of the last 36 months to detect 

either decreasing or increasing demand trend. Lack of historic demand records indicates 

that it might be a newly introduced item. 



19 
 

3. When the normal SKUs differentiated from new and old ones, the average inter-demand 

interval p and the squared coefficient of variation of demand size CV2 can be determined 

from historic demand data for each item.  

4. The values that are calculated in the previous step will be used to categorize the SKUs 

according to the illustrated scheme. Afterwards, the single-echelon inventory system can 

be configured for each SKU with respect to the assigned methods.  

5. Eventually, it is recommended to re-group the products on a yearly or a more frequent 

basis. This process is important to keep the results as trustable especially when SKUs 

change over from new to normal and from normal to old. 

3.1.3 Forecasting methods 

The forecasting methods for a categorization scheme of intermittent demand products 

recommended by Bucher, D., & Meissner, J., (2011) are Croston and the Syntetos and Boylan 

Approximation (SBA). The methods chosen in this project will be motivated during the analysis 

chapter. 

In the following lines, the theoretical iterative processes for the different forecasting methods 

used are explained.  

Croston and SBA method: 

Step 0: Initialization of the process using the first τ periods.  

For initialization purposes, the initial value for the size of the estimated demand (𝑧0), is equal to 

the initial value of the mean demand (µ0) which is calculated as the mean demand size of the 

periods where demand has occurred, only considering the first τ periods. The initial value of p 

(𝑝0) is also the one calculated for the first τ periods. Finally, q is the time until the next demand 

during the current iteration, and is initialized to zero. µ0 =  µτ; 𝑧0 =  µ0; 𝑝0 = 𝑝τ; 𝑞 = 0. If there 

is no demand then µ0 =  1; 𝑧0 =1; 𝑝0 = τ; 𝑞 = 0. 

Step 1: Start of the iterative method at period τ +1 (until period T). 

For period t = τ +1 to T: 

 

If 𝑦𝑡 = 0: 

  𝑝𝑡 = 𝑝𝑡−1 

  𝑧𝑡 = 𝑧𝑡−1 

  𝑞 = 𝑞 + 1 

Else: 

  𝑝𝑡 = 𝑝𝑡−1 + 𝛼𝑖(𝑞 − 𝑝𝑡−1) 

  𝑧𝑡 = 𝑧𝑡−1 + 𝛼𝑠(𝑋𝑡 − 𝑧𝑡−1) 

  𝑞 = 1  
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where 𝑝𝜏and 𝑧𝜏 denote the estimates of inter-demand interval and demand size.  

Step 2: Forecast. 

Once 𝑧𝑇 and 𝑝𝑇 are obtained, the iteration ends. Finally, the forecast in units/period (𝐹𝑡) is 

defined in Equation 3.4 and Equation 3.5 are calculated:  

● Croston: 𝐹𝑡 =
𝑧𝑇

𝑝
𝑇

⁄                    (3.4)  

● SBA: 𝐹𝑡 = (1 −
𝛼𝑖

2
) ·

𝑧𝑇
𝑝

𝑇
⁄                   (3.5) 

where α: smoothing coefficient; 𝐹𝑡: forecast in demand/period. 

Simple Exponential Smoothing (SES): 

Step 0: Initialization (Using the first month) 

The output of the first iteration of the SES algorithm (𝑆0) will be equal to the demand of the first 

period.  

𝑆0 = 𝑋0  

Step 1: Iterative method. 

The forecast for the following periods will be calculated with Equation 3.6: 

𝑆𝑡 = 𝛼 · 𝑥𝑡 + (1 − 𝛼) · 𝑆𝑡−1                 (3.6) 

where 𝑆𝑡 and 𝑋𝑡 denote the forecast and the real demand in period t. Further, 𝛼again refers to the 

smoothing coefficient. 

Step 2: Forecast. 

Once the iterative method ends, the demand forecast for the next period as well as variance (as 

seen in Equation 3.7) are calculated: 

𝑉𝐴𝑅 =
∑ (Xt−St−1)2𝑇

𝑡=1

𝑇−2
                                                                                                          (3.7) 

where T is the total number of periods.  

On the other hand, the company believes that products with a certain increasing/decreasing trend 

as well as seasonality exist within the company’s aftermarket portfolio. The Holt-Winters 

method is a promising option to forecast these products since it adapts to both additive and 

multiplicative seasonality and/or trend, all in one method. Additive seasonality or trend for 

monthly data assumes that the difference between the January and July demand values is 

approximately the same each year, while the multiplicative case implies that the July value is the 

same proportion higher than the January value in each year (Time series forecasting: 
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understanding trend and seasonality, 2014). The analysis conducted in chapter 5 proved that 

there is no perceivable seasonality and that there are a very limited number of products with a 

trend pattern. Therefore, the application of this method is not necessary for this project.  

Aggregation level 

In addition to the application of the methods, and to improve their performance, following 

recommendations by Nikolopoulos et al. (2011), for each data set there is a certain level of 

aggregation of the data into time buckets which may improve forecast accuracy. For example, 

the same authors recommend the review period plus the lead time as a promising alternative, 

since in a practical inventory setting, it would make sense to set this aggregation level, as 

cumulative forecasts over that time horizon are required for stock control decision making 

(Nikolopoulos et al., 2011).  

To be able to compare errors for different aggregation levels, Axsäter (2006) suggested Equation 

3.8. If the assumption of normal distribution of the forecasting errors is accepted, Equation 3.9 is 

valid (Axsäter, 2006) and therefore Equation 3.8 can be applied for the case of MAD resulting in 

Equation 3.10. Therefore, if the effects of auto-correlation are not taken into consideration, 

monthly MAD can be converted to weekly dividing by √4𝑤𝑒𝑒𝑘𝑠. 

𝜎(𝐿) = 𝜎𝑡√𝐿                   (3.8) 

𝜎 = √𝜋
2⁄ 𝑀𝐴𝐷 ≈ 1,25𝑀𝐴𝐷             (3.9)  

𝑀𝐴𝐷(𝐿) = 𝑀𝐴𝐷𝑡√𝐿             (3.10) 

Exponential smoothing coefficient (α) 

Axsäter (2006), recommended the use of Equation 3.11 to calculate the smoothing coefficient, 

which implies that α changes based on the aggregation period, as, for example, a data set of 12 

months (N=12) will now have an N of 52 if the aggregation is changed from monthly to weekly.  

𝛼 = 2
(𝑁 + 1)⁄                 (3.11) 

Where N: number of periods used in the forecast. 

By using Equation 3.11 the average age of the used data is ensured to be the same for both SES 

and Simple Moving Average (SMA) forecasting procedures with a rolling horizon of N (Axsäter, 

2006). 

It is also important to note that a smaller α has the effect of putting relatively more emphasis on 

old values of demand. 
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Forecast accuracy 

The most common way to describe variations around the mean is through the standard deviation 

(σ). In the case of forecast errors, the widespread practice by most of the forecasting software is 

to use the Mean Absolute Deviation (MAD), as seen in Equation 3.12 calculated as the expected 

value of the absolute deviation from the mean. This tradition came from the fact that originally, 

MAD simplified the computations in comparison to other estimators like σ and σ2. Nowadays, 

this is not the case anymore, but due to MAD and σ giving a very similar picture of the variations 

of the mean in most cases, a need for change has not appeared. (Axsäter, 2006). 

 

𝑀𝐴𝐷 = 𝐸[|𝑋 − µ|]             (3.12) 

Aligning with the conventional procedures in this field, the measurement of forecasting error 

used will also be MAD. 

3.2. Inventory control 

According to Axsäter (2006), an inventory control system has a function to determine when and 

how much to order. It considers the stock situation, the anticipated demand and different cost 

factors. Therefore, this section will cover primarily different ordering systems, followed by the 

single echelon systems in terms of resolving the reorder points. It should be noted that this study 

does not cover determination of the batch size since a certain batch size has already been 

assigned to each product by TitanX.    

A suitable safety stock or reorder point can be determined based on either a prescribed service 

constraint or a certain shortage or backorder cost. Service level can be defined differently: 

(Axsäter, 2006) 

S1= probability of no stock out per order cycle, 

S2= "fill rate"- fraction of demand that can be satisfied immediately from stock on hand, 

S3 = "ready rate"- fraction of time with positive stock on hand.  

The first definition of service level (S1) does not take the batch size into account. Therefore, it 

might not be able to represent the real service level or situation. Instead, in this study, a sufficient 

reorder point R is investigated to satisfy a given ready rate S3 (which in the cases of Normal, 

Poisson and Gamma distributions will be equal to the fill rate S2 according to Axsäter (2006)). It 

must be recalled that a continuous review (R, Q) policy is the concern in this study and further 

the batch quantity Q for each item is given by the case company.   
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3.2.1. Different ordering systems 

According to the 5-steps framework for the categorization of intermittent demand patterns 

described in section 3.1.2, the periodic review system is recommended for all categories even 

though other systems are also applicable. Moreover, the dynamic (t, S)-policy will naturally be 

the choice considering the context of spare parts management, where the order-up-to level S 

needs to be recalculated in every order period (t) in which demand occurs. Meanwhile, in general 

the selection of the order-policy does not affect significantly to the inventory performance for 

intermittent demand. (Bucher, D., & Meissner, J., 2011) 

In this section, different ordering policies in terms of continuous and periodic review will be 

explained. Specifically, continuous review and (R, nQ) policy will be elaborated more in detail, 

since that is the desire of the company.  

Continuous or periodic review 

An inventory control system can be designed based on either continuous or periodic review. 

Before emphasizing the difference between the two, it is necessary to describe the inventory 

position and the inventory level. Normally the stock situation implies stock on hand, however, 

when it comes to an ordering decision, it should also be regarded the outstanding orders that 

have not yet arrived, and backorders. This explains why the stock situation needs to be 

represented by the inventory position. (Axsäter, 2006)  

It is illustrated as seen in the following expression: 

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑠𝑡𝑜𝑐𝑘 𝑜𝑛 ℎ𝑎𝑛𝑑 + 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟𝑠 −  𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠  

A parenthesis can be opened here for the event that the customers can reserve units for later 

delivery. This reserved units should be subtracted from the inventory position unless delivery 

time is too distant. Inventory position is related to make ordering decisions, but instead the 

inventory level becomes applicable to reveal holding and shortage cost. (Axsäter, 2006)  

It is formulated: 

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 =  𝑠𝑡𝑜𝑐𝑘 𝑜𝑛 ℎ𝑎𝑛𝑑 − 𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠  

For some cases, the holding costs should also include holding costs for outstanding orders. This 

would be easily obtained as the average lead time demand. (Axsäter, 2006)  

After a brief explanation of the inventory position and the inventory level, we can return to the 

review systems. The continuous review system refers that the inventory position is monitored 

continuously and when it is sufficiently low an order is triggered. This order will be delivered 

after a lead-time which starts once the ordering decision has been made and finishes when the 

ordered amount is placed on a shelf. Along with the transit time from an external supplier or the 
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production time for an internal order, the lead-time also contains order preparation time, transit 

time for the order, administrative time at the supplier, and time for inspection for the received 

order. (Axsäter, 2006)  

Alternatively, the inventory position can be assessed only at certain given points in time. This 

approach is called as periodic review and it offers advantages, especially when it is needed to 

coordinate orders for different items. Besides, periodic review helps to reduce the costs for the 

inventory control system specifically for items with high demand. But since the case company 

evaluates the inventory level several times within a week, continuous review will prevail in this 

study. Furthermore, it is common to use continuous review for items with low demand in 

practice and it reduces the needed safety stock. (Axsäter, 2006)  

Different ordering policies 

Axsäter (2006), expressed the two most common ordering policies about inventory control, 

namely (R, nQ) and (s, S) policy. The case company prefers to use the (R, nQ) policy since it has 

been an exercised method until today. As a required alternative, this policy is chosen to build an 

inventory control solution.  

The reorder point-R regulates the ordering decision, meaning that when the inventory position 

declines to or below the reorder point R, a batch quantity of size Q is ordered. In case that the 

inventory position is dramatically dropped, it may be necessary to order more than one batch to 

get above R. (Axsäter, 2006)  

The second policy is also like the (R, nQ) policy. Now the reorder point is represented by s and 

when the inventory position decreases to or below this number, it is ordered up to the maximum 

level-S. If the reorder point is hit exactly (continuous review and continuous demand), the two 

policies can be considered as equivalent provided s = R and S = R + Q. (Axsäter, 2006)  

3.2.2. Single-echelon systems determining reorder points 

The purpose of this study is developing a model to find the reorder points or safety stocks for a 

given service level, which helps to test the effect of different service conditions on safety stock. 

Furthermore, with an inventory control model, reorder points can be evaluated for lead-time 

changes easily. To formulate this problem, the demand distribution of the products must be 

shown. In forward part, inventory level distributions will also be described since it is needed in 

the service level calculation. 

Demand distributions 

Axsäter (2006) suggested the use of different theoretical demand distributions to model the real 

demand distributions seen for each of the products. 



25 
 

The demand during a certain time is a discrete stochastic variable as it is nearly always a 

nonnegative integer. If the demand is reasonably low, it is then natural to use a discrete demand 

model, which resembles the real demand. On the other hand, when the demand is relatively 

large, it is more practical to use a continuous demand model as an approximation. (Axsäter, 

2006) 

According to Bucher, D., & Meissner, J., (2011), different theoretical distributions are 

recommended to approximate the empirical demand distributions. It is expected that the normal 

distribution will bring a good description of the empirical distributions for the erratic and smooth 

categories. Furthermore, Boylan et al. (2008) used the Poisson distribution for the slow category 

and the negative binomial distribution for the lumpy category. Finally, the single-echelon 

configurations for each category can be seen in Figure 3.3.  

 

 
Figure 3. 3 - Categorization scheme for a single-echelon inventory configuration (Bucher, D., & Meissner, J., 2011). 

For the discrete demand case, first the pure Poisson together with the compound Poisson demand 

will be described, and later it will be shown the logarithmic compounding distribution. In 

stochastic inventory models, it is commonly assumed that the cumulative demand can be 

modeled by a non-decreasing stochastic process with stationary and mutually independent 

increments. It is possible to represent this process as a limit of an appropriate sequence of 

compound Poisson processes. Consequently, the demand is often assumed that it follows a 

compound Poisson process. In depth, the customers arrive corresponding to a Poisson process 

with a certain intensity 𝜆. Further the size of a customer demand is also a stochastic variable. 

(Axsäter, 2006) 

Demand distribution formulas 

The probability of having only one customer is expressed as 𝜆𝛥𝑡 for a brief time interval 𝛥𝑡,at the 

same time the probability for more than one customer can be disregarded. Eventually, the 

number of customers in a time interval of length t has a Poisson distribution and the probability 

for the k customers is represented with Equation 3.13. (Axsäter, 2006) 

𝑃(𝑘) =
(𝜆𝑡)𝑘

𝑘!
𝑒−𝜆𝑡,      𝑘 = 0, 1, 2, ….                 (3.13) 
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The average and the variance of the number of customers are calculated through 𝜆𝑡. Compound 

Poisson demand denotes that the size of a customer demand indicates also a stochastic variable 

which does not depend on the other customer demands and the distribution of the customer 

arrivals. The distribution of the demand size determines the compounding distribution. It can be 

assumed that each customer requires an integral number of units. Probability of demand size j is 

illustrated by 𝑓𝑗 (for j = 1, 2, ...), when 𝑓1= 1 the demand process degenerates to pure Poisson 

demand. In this case, the demand will equal to the number of customers and the demand 

distribution will be as shown by Equation 3.13. (Axsäter, 2006) 

Another discrete distribution is the logarithmic compound distribution. When the demand size 

has a logarithmic distribution, the probability of the demand size j can be represented as seen in 

Equation 3.14.  

𝑓𝑗 = −
𝛼𝑗

ln(1−𝛼)𝑗
  𝑗 = 1, 2, 3, …                (3.14) 

where 0 < 𝛼 < 1. The mean and the variance of this distribution are respectively given in 

Equation 3.15 and Equation 3.16. (Axsäter, 2006) 

𝐸(𝐽) =
𝛼

(1−𝛼)ln (1−𝛼)
 ,              (3.15) 

𝑉𝑎𝑟(𝐽) = −
𝛼(ln(1−𝛼)+𝛼)

(1−𝛼)2(ln(1−𝛼))2 .             (3.16) 

The distribution of the demand D(t) during the time t can be determined with a simpler way 

compared with the compound Poisson process. Because now it is acceptable to show that D(t) 

has a negative binomial distribution. The initial probability is 𝑃(𝐷(𝑡) = 0) = (1 − 𝑝)𝑟𝑝𝑘 , and the 

rest can be calculated with Equation 3.17. (Axsäter, 2006) 

𝑃(𝐷(𝑡) = 𝑘) =
𝑟(𝑟+1)…(𝑟+𝑘−1)

𝑘!
 (1 − 𝑝)𝑟𝑝𝑘  ,     𝑘 = 1, 2, …         (3.17) 

The parameter r is any positive number while p is restricted between 0 and 1. The negative 

binomial distribution represents E(D(t)) = rp/(1 - p) and 𝑉𝑎𝑟(𝐷(𝑡)) =
𝑟𝑝

(1−𝑝)2,. Therefore, for the 

given mean and standard deviation during the lead time (𝜇′ = µ𝐿 and σ′ = 𝜎𝐿), the unknown 

parameters can be figured as illustrated in Equation 3.18 and Equation 3.19. (Axsäter, 2006) 

𝑝 = 1 −
𝜇′

(𝜎′)2 =  𝛼 ,             (3.18) 

    

𝑟 = 𝜇′ (1−𝑝)

𝑝
 .                          (3.19) 

The Poisson distribution is computationally efficient in practice; however, it is valid only if   

(𝜎′)2

𝜇′ = 1. In theory, it is recommended to use the Poisson distribution for 0.9 ≤
(𝜎′)2

𝜇′  ≤ 1.1. If 
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(𝜎′)2

𝜇′
> 1.1. then it is efficient to apply to the negative binomial distribution, which refers 

compound Poisson demand with a logarithmic compounding distribution. (Axsäter, 2006)  

For continuous demand models, the normal and gamma distributions are applicable. The normal 

distribution is commonly used for many reasons. The central limit theorem shows that a sum of 

many independent random variables will have a distribution that is approximately normal which 

is convincing under very general conditions. (Axsäter, 2006) 

The demand generally comes from several independent customers. That makes the normal 

distribution to be a reasonable representative. In addition, the discrete demand from a compound 

Poisson process will become approximately normally distributed when the considered period is 

long enough. Furthermore, because of its simplicity the normal distribution seems appealing, 

however it has also an issue since there is always at least a small probability for negative 

demand. Therefore, some results which are exact for compound Poisson demand will be only 

approximately true for normal demand. (Axsäter, 2006)  

The gamma distribution does not include negative demand and its density function is expressed 

in Equation 3.20 (Axsäter, 2006).  

𝑔(𝑥) =
𝜆(𝜆𝑥)𝑟−1𝑒−𝜆𝑥

𝛤(𝑟)
 , 𝑥 ≥ 0.             (3.20) 

The two parameters r and 𝜆 can only take positive values, and 𝛤(𝑟)-the gamma function is 

denoted in Equation 3.21 (Axsäter, 2006). 

𝛤(𝑟) = ∫ 𝑥𝑟−1𝑒−𝑥∞

0
𝑑𝑥 .             (3.21) 

Its mean and variance are respectively expressed as r/𝜆, r/𝜆2. Moreover, when µ′ and σ′, are 

given, it can be easily calculated the corresponding unique parameters r and 𝜆 as seen in 

Equation 3.22 and Equation 3.23. (Axsäter, 2006)  

 𝑟 = (
𝜇′

𝜎′
)2,                                (3.22) 

𝜆 =
𝜇′

𝜎′2                   (3.23) 

Distribution of the inventory level 

The corresponding relationship is derived for normally distributed demand. The continuous 

inventory position is assumed uniformly distributed on the interval [R, R + Q] in case the 

probability of negative demand is negligible. Furthermore, 𝜇′ = µ𝐿 and 𝜎′  = 𝜎𝐿1/2are 

respectively gives the mean and the standard deviation of the lead time demand. It should also be 

noted f(x) and F(x) denote the density and the distribution function of the inventory level in 

steady state. The distribution function then is formulated in Equation 3.24. (Axsäter, 2006)  
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𝐹(𝑥) = 𝑃(𝐼𝐿 ≤ 𝑥) =
1

𝑄
∫ [1 − 𝛷 (

𝑢−𝑥−𝜇′

𝜎′ )]
𝑅+𝑄

𝑅
 𝑑𝑢 .                                                                (3.24) 

If the inventory position u at time t, the inventory level at time t + L is less or equal to x when the 

lead-time demand is at least u - x. From this point, the loss function G(x) is introduced as shown 

in Equation 3.25. (Axsäter, 2006)  

𝐺(𝑥) = ∫ (𝑣 − 𝑥)𝜑(𝑣)𝑑𝑣 = 𝜑(𝑥) − 𝑥(1 − 𝛷(𝑥)) .
∞

𝑥
                                                              (3.25) 

Besides, the below Equation 3.26 allows a modification on the distribution and density function 

(Axsäter, 2006).  

𝐺′(𝑥) = 𝛷(𝑥) − 1 ↔  −𝐺′(𝑥) = 1 − 𝛷(𝑥) ,                                                                                                  (3.26)                              

By using the above expression in Equation 3.24, the distribution function is restructured as:  

𝐹(𝑥) =
1

𝑄
∫ [−𝐺′ (

𝑢−𝑥−𝜇′

𝜎′ )]
𝑅+𝑄

𝑅
 𝑑𝑢 =

𝜎′

𝑄
[𝐺 (

𝑅−𝑥−𝜇′

𝜎′ ) − 𝐺 (
𝑅+𝑄−𝑥−𝜇′

𝜎′ )] .                               (3.27) 

(Axsäter, 2006). 

Lastly the density function is obtained from the same expression as given in Equation 3.28. 

(Axsäter, 2006) 

𝑓(𝑥) =
1

𝑄
∫

1

𝜎′

𝑅+𝑄

𝑅
𝜑 (

𝑢−𝑥−𝜇′

𝜎′ ) 𝑑𝑢 =
1

𝑄
[𝛷 (

𝑅+𝑄−𝑥−𝜇′

𝜎′ ) − 𝛷 (
𝑅−𝑥−𝜇′

𝜎′ )]                                      (3.28) 

On the other hand, it can be explained the other set of formulas for discrete demand distributions. 

To generate inventory level distribution, it will be revised compound Poisson demand, which has 

the following Equation 3.29. (Axsäter, 2006) 

𝑃(𝐼𝐿 = 𝑗) =
1

𝑄
∑ 𝑃(𝐷(𝐿) = 𝑘 − 𝑗)       𝑗 ≤ 𝑅 + 𝑄𝑅+𝑄

𝑘=max {𝑅+1,𝑗}  ,                                               (3.29) 

It is proven that the inventory level at time t + L can never exceed the inventory position at time 

t, in other words  𝑘 > 𝑗(Axsäter, 2006). 

For an individual item the probability of having a certain inventory level should be calculated 

associated with its defined demand distribution. That means 𝑃(𝐷(𝐿) = 𝑘 − 𝑗) will vary based on 

a demand distribution, e.g. it will provide a different result for the Poisson than negative 

binomial distribution.    

Determining service level 

For continuous normally distributed demand S3 can be obtained through the probability of 

positive stock as shown in Equation 3.30. (Axsäter, 2006) 

𝑆2 = 𝑆3 = 1 − 𝐹(0) = 1 −
𝜎′

𝑄
[𝐺 (

𝑅−𝜇′

𝜎′ ) − 𝐺 (
𝑅+𝑄−𝜇′

𝜎′ )]                                                          (3.30) 
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For a fixed service level, it is introduced a simple bisection search to find the smallest R giving 

the required service level. In this method, R value will take lower and upper bound. First the 

lower bound should be set to RL = -Q, and an upper bound RU, which gives a service level that 

exceeds the target service level. After that it can be considered R = (RL + RU)/2. If the obtained 

service is too low, R can be replaced with RL, otherwise RU  displaces R values instead. This step 

should be repeated until the gap between RU and RL is sufficiently small. (Axsäter, 2006) 

Service level for compound Poisson demand is similarly the probability for positive inventory 

level, which denotes the ready rate 𝑆3 = 𝑃(𝐼𝐿 > 0). Apart from that determining the ready rate, 

fill rate- S2 is a little more complicated because of the varying demand size. Anyway, service 

level determination for compound Poisson demand is not the interest of this study, but instead 

the special case of Poisson demand where f1 = 1, and S2 = S3. It is obvious that service levels will 

increase with an increment of the reorder point R. Furthermore, the following inequality can be 

always considered “R > -Q”, otherwise the stock is never positive and both S2 and S3 are zero. To 

resolve the reorder point, R can be increased by one unit at a time starting from R = -Q until 

calculated service level hits the target rate. It is also noted that for each value of R, the 

probabilities of having positive inventory level 𝑃(𝐼𝐿 = 𝑗) should be recalculated. For the case of 

discrete distributions, a bisection process is not performed since it is recommended for normal 

distributions. (Axsäter, 2006) 
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4. Empirical data 

In this chapter, the case company will be briefly introduced. After that, the current system will be 

described in terms of inventory control processes together with the forecasting step. Lastly, the 

collected data will be exhibited and explained.  

4.1. Company overview 

TitanX Engine Cooling is a global supplier of powertrain cooling solutions to commercial 

vehicles, both for OEMs and the independent aftermarket. The company with annual sales of 

over 1.6 billion SEK (US$ 192 million) has 800 employees worldwide. TitanX is headquartered 

in Gothenburg, Sweden and keeps its manufacturing activities in Sweden, USA, Brazil, China 

and Mexico. (About TitanX, 2017) 

4.2. System description 

TitanX produces engine coolers that include both a radiator and a charger. The main components 

are side plates, header plates, tubes, and fins as it can be seen in Figure 4.1 

 
Figure 4. 1 - Engine cooling module. 

The flow in the Mjällby facility can be seen in Figure 4.2. Everything begins with received items 

that are stocked in the raw material warehouse. First the quality check is carried out once a batch 

arrives, then operators put it away to a consigned area. In this step TitanX does not own the 

materials, but further each batch will be picked and distributed around the dedicated stock places 

so that the ownership will be switched. When an internal order is placed, the needed batch will 

be delivered to the buffer area where the replenishment of workstations takes place. The different 
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components seen in Figure 4.1, except the tanks, are manufactured simultaneously by using 

press machines at different workstations as illustrated in Figure 4.2. Afterwards both the 

radiators and the chargers are formed in the building machine. The next step is the brazing 

process that takes place in the furnace to fasten the tubes and the fins. Then, the plastic tanks are 

assembled to the radiators through the crimping process, similarly the aluminum tanks are also 

assembled to the chargers in the welding machine, but additionally this process requires the 

leaking test to check tightness.  

 Lastly, the mounting process is performed to link a charger and a radiator, distinctly the 

aftermarket products are demanded as independent parts either only a charger or a radiator. 

Therefore, the mounting process is skipped for the aftermarket products and those are directly 

sent to the finished goods warehouse.  

To manage the production, a master production schedule (MPS) is prepared each Tuesday within 

the supply chain department by gathering input data from the customers via the MAC-PAC ERP 

system, paired with demand forecasting for those products without customer orders information. 

Then, once the schedule is attained, a production planner evaluates the security stock while 

Figure 4.2 -   Figure 4. 2 - Internal flow. 
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comparing the current stock levels with the amounts that had been demanded to notice if the 

current safety stock needs an adjustment. At the end of MPS procedure, the ready schedule will 

be delivered to the production department through the same program (MAC-PAC). These 

processes can be seen in Figure 4.3.  

It should be emphasized that the demand data does not exist for the independent aftermarket 

products. Therefore, TitanX should estimate the future demand for this market segment to 

generate input data for the planning process.  

 

 
Figure 4. 3 - A flow chart for the MPS procedure. 

4.3. Empirical data sets 

In this section, the different data sets used for the project are explained together with the most 

relevant information found in them. To get a better understanding, head to Appendix II. 

Shipments 15-16 

This is the main file used during this project, which consists of a query from the MAC-PAC 

software at the company that contains all orders shipped in the years 2015 and 2016. The file 

gives the following key information about each of the shipments: 
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● Factory: 001 = Linköping; 002 = Mjällby. 

● Order number 

● Name of the part 

● Customer name 

● Market segment: IAM = Independent aftermarket… 

● Shipping date 

● Order quantity 

● Invoice date 

This file is not usable in its initial state for two main reasons: 

1) There are some orders that provide a negative demand due to defective products, shipping 

of wrong items or excessive quantities that the customer does not agree to keep. 

2) Item numbers can appear written with different endings due to the coding policy of the 

company, e.g., 100304410 (stocked in Mjällby), 100304410Z (stocked in Mjällby for 

customer Valeo service), 100304410AM (stocked in the warehouse in Krakow), 

100304410KAM (same as AM but including a kit). 

To solve the first problem, the data has been carefully cleared always making sure to compensate 

the elimination of the negative demand orders with the elimination of the positive demand 

quantities associated to those returns. For the second one, the item names have been standardized 

to only one name for each item, and the demand for each of the former codes has been 

aggregated to have a true representation of the total demand of each product. 

1701_January_SIOP_IAM_takt_time 

Another important Excel file that has been provided by the company is the one containing their 

previous forecasting procedure used for the IAM segment. The file gives the following key 

information about each of the products: 

● Total demand of the product for each of the last three months prior to the forecast. 

● The sales in SEK from the demand of each of the last three months. 

● The kind of product: Radiator, Radiator w/o frame, Radiator core, Intercooler, Intercooler 

core, Oil cooler and Condenser. 

● Field: Truck, Bus, both. 

● Brand. 

● Price 

● ABC categorization based on two parameters (Volume and Easiness of production). 
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● A forecast of the demand as well as the sales in SEK in the format of next thirteen weeks 

and next three months which comprise the planning horizon. The calculation consists of a 

moving average of the last three months multiplied by a weekly or monthly seasonal 

coefficient.  

● Monthly indexes are calculated as the index of that same month for the previous year 

divided by the average of the monthly indexes for the previous three months. The weekly 

indexes take the value of the monthly index for the month they are in. 

The ABC categorization is of special importance here, since the company defines the production 

lead times of its IAM products following the logic in Table 4.1. It must be noted that the 

company does not have an ABC categorization for all the products, therefore, the forecast will 

still be available to all products, but some products will not be eligible for inventory control, and 

will be incorporated to the system as soon as the supply chain team at the company categorizes 

them. 

It is also important to explain the forecasting method used due to its use in the forecasting 

section of the analysis chapter. The tool forecasts demand based on a simple moving average 

procedure with a three-month rolling horizon and monthly seasonal weights. This should not be 

confused with a weighted moving average procedure which dedicates a specific weight to each 

period within the average to account for their relative importance to the forecast. The three-

month rolling horizon means that products which have not experienced any demand for the past 

three months will not be available for forecasting calculations. Finally, the seasonal coefficients 

are calculated as the seasonal index of the same month in the previous year divided over the 

mean of the seasonal indexes for the previous three months. 

Table 4. 1 - Lead time of products based on ABC categorization. 

 

Batchqty IAM 

This file contains the following information for most IAM items: 

● Initial batch quantity: The minimum number of units in a row to produce of a certain item 

to minimize order and setup costs. 

● Minimum quantity increase after the initial batch: the minimum number of units by 

which you can increase your production amount once the initial batch quantity has been 

covered. This information has not been considered in this project since the company 

would like to always increase the produced quantity by a multiple of the initial batch 

quantity.  
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It is important to mention that not all products have the information of their batch sizes available.  

To solve this issue, Boylan et al. (2008) recommends determining it as the cumulative forecast 

over the lead time using the SBA method. Due to the specific nature of the IAM products at 

TitanX, the use of such a broad assumption could lead to an error during the analysis phase 

making the rendered results be less than optimal. For this reason, the decision has been made to 

keep the analysis to only those products with a defined batch size. 

IAM history 

This file shows the IAM products aggregated sales of all months for years 2011 to 2016 and the 

expected demand during 2017.  

LDPM - Mar week 1609 - 1613 (service levels company)  

This last data set provides information for the service level based on customer and market 

segment. In this case, the only data of interest is the service level of the company for this random 

week and only for IAM products, since it is used as a benchmark of the service level that the 

company is working at.  
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5. Analysis 
This chapter shows the analysis that has been conducted with the data collected throughout the 

project to provide an improved forecasting system and a new tool for automatic inventory control 

which was previously lacking for the products in the IAM segment at TitanX. To do so, a code 

was written in Visual Basic for Applications (VBA) environment for Microsoft Office Excel 

2007. Moreover, the developed program was run in a personal computer which has Intel® 

Core™ i5-3210M CPU @ 2.50GHz (4 CPUs) feature. 

5.1. Forecast 

In this section, the different decisions made in this project to implement an adapted version of 

the 5-step guideline for the categorization of the demand mentioned in section 3.1.1. (Demand 

segmentation) are exposed as well as the analysis applied to reach the conclusions. 

5.1.1. Seasonality and trend 

The company feels that depending on the time of the year, demand increases or decreases, to the 

point where their previous forecasting tool includes seasonal coefficients for every month. As 

mentioned during chapter 3, before the categorization of the demand patterns, it is important to 

detect if the historic demand data of the products object of the analysis may have any underlying 

patterns that, if left untreated, can suppose a decreased performance of the different forecasting 

methods used. The most common of these patterns is trend, which is the effect seen in the 

demand pattern of a product during the beginning (growing trend) or the end (declining trend) of 

its life cycle. Another one would be seasonality, which is described as the correlation between 

certain periods of time repeating with a defined frequency (usually one year) and the volume 

demanded of a product.  

An initial test is conducted by aggregating the demand during one year for all the IAM products, 

by product and year, as well as the aggregated trend throughout the years. This can be seen in 

Figures 5.1, 5.2 and 5.3. Further analysis is still required since the demand of each product is 

masked, and the application of the same seasonal indexes for the entire range of IAM products 

done in the company’s previous forecasting tool could decrease the forecast performance in 

many cases. 
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Figure 5. 1 - Yearly demand (Units) aggregated for all products. 

Figure 5. 2 - Yearly demand (Units) aggregated for all products and years. 
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                      Figure 5. 3 - Aggregated trend (Units) aggregated for all products throughout the years. 

On Figure 5.2, a clear increase in the demand during the months of July, August and September 

can be appreciated, which makes the possibility of seasonal data a real consideration. On the 

other hand, Figures 5.1 and 5.3 show a gradual increase in demand throughout the years that 

seems to indicate an undeniable upward trend in demand as the company also suggests, although 

the reason could be the gradual increase of the width of the product portfolio, which is 

completely disguised in this data set. 

To conduct a more in-depth analysis, the Forecast library from R software is utilized to test for 

additive and multiplicative seasonality assumptions from the Holt-Winters method on every 

single IAM product. The data sets used (Appendix II) are two: 

1) The same data set used to forecast the future demand, which consists of the historic order 

quantities shipped in the years 2015 and 2016. 

     2) Due to the need of having multiple years of data to be able to dismiss the possibility of the 

results obtained being merely a momentary coincidence, and instead a real case of seasonality or 

trend, a new data set is used providing data from 2014 until 2016. In this case, the data provided 

are also the shipped quantities instead of the actual demand orders. 

The program provides, between many other parameters, information about the type of trend and 

seasonality (N: None, A: Additive, Ad: Additive damped, M: Multiplicative) that better fits the 

historic demand of a certain product. In Table 5.1, the results for both data sets can be seen. 
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Table 5. 1 -  Items with observed seasonality and/or trend patterns. 

 

From Table 5.1, it can be observed that a total of 323 items, five of them on the first data set and 

seven on the second, have some type of additive trend, while none of the products present any 

seasonality. 

After this first analysis, a graphical analysis consisting of a time-series plot, seasonal subseries 

plot, box plot and autocorrelation and partial autocorrelation plots for each product in Table 5.1 

is done to verify the previous findings visually, which has helped to confirm the negligible 

existence of trend (Appendix III). 

5.1.2. Demand segmentation 

Since p-value in many occasions cannot be calculated due to not having the first demand point at 

the time when the data horizon starts, a simplification is applied which says that the time 

between the last demand point before the beginning of the horizon and the first demand point 

equals to the time between the beginning of the horizon and the first demand point plus the time 

between the last demand point and the end of the horizon as seen in Figure 5.4. 
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As shown in the theory part, the recommended forecasting methods are Croston and the Syntetos 

and Boylan Approximation (SBA) for those products with observable intermittence in their 

demand (p>1). For products that historically have had demand every month (p=1), Simple 

Exponential Smoothing (SES) is going to be used as a natural alternative. The reasons why these 

methods are the ones that have been finally chosen are the following: 

● SBA and Croston are used for intermittent demand patterns such as the ones that appear 

on the aftermarket products being studied. 

 

● On the topic of service parts management Bucher and Meissner (as cited in Altay and 

Litteral, 2011) provide a thorough review of most literature relating to demand 

forecasting methods for the spare part categories mentioned in the previous section and 

recommends the use of SBA and Croston in the same way as Syntetos et al. (2005), as 

seen in the 5-step process for the implementation of a categorization scheme suggested in 

that chapter and explained in later paragraphs of this document. Their claim is that these 

methods are almost universally validated as the ones performing best in the given 

circumstances. 

 

● SBA and Croston consider both the CV2 and p values. These factors represent demand 

size variability and demand arrival variability, which the company specifically asked to 

be considered when applying the new forecasting method. 

 

● SES is chosen because it is the fundamental method underlying both the SBA and 

Croston forecasts, but also because SES is one of the simplest and at the same time best 

performing methods to forecast continuous demand patterns. 

As mentioned previously, the two main parameters used to create the different forecasting 

categories are the mean inter-demand interval (p) and the squared coefficient of variation of 

demand size (CV2). On the other hand, a variation of the Mean Absolute Deviation (MAD) error 

measurement defined in Equation 3.12, has been introduced in Equation 5.1 to measure the 

effect of changes on the cut-offs of the parameters with respect to forecast accuracy. 

𝑀𝐴𝐷 = ∑
𝑋ℎ+1

𝑞ℎ+1
⁄ −𝑌ℎ

𝐻−1

𝐻
ℎ=1               (5.1) 

H: Number of periods with demand without counting those during the initialization process. 

𝑋ℎ+1: Real demand of period t+1. 

Figure 3.2 -   Figure 5. 4 - Graphic representation of the mean inter-demand interval (p). 
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𝑞ℎ+1: Number of periods between t+1 and the previous demand occurrence. 

𝑌ℎ: Production forecast of units per month to satisfy the next order (𝑋ℎ+1). 

To produce a demand pattern categorization for forecasting purposes, the exponential smoothing 

parameter (𝛼), the cut-off points 𝑝 and CV2, the forecasting methods used in each region, and the 

aggregation level of the demand (weekly or monthly) must be decided. The conducted analysis 

to evaluate the different choices is shown below. 

Exponential smoothing parameter (𝜶) 

To choose α, different possibilities are tested by calculating the MAD for each product. The 

calculation is done considering the forecasting method (SBA or Croston) that provides the lowest 

error to each specific product. 

The results of this analysis, shown in Table 5.2 indicate that all products have errors of 

comparable size, and the chosen alpha is not really going to have much of an impact. Therefore, 

the chosen alpha was calculated with Equation 3.11. When N=54 weeks, the obtained result is 

α≈0,04.  

Table 5. 2 - Sensitivity analysis of alpha value for weekly demand. 

 
For the case of Simple Exponential Smoothing, α is not improved, analyzed since in the case of 

weekly demand aggregation the probability of having demand in every period for the group of 

IAM products is extremely low.  

Forecasting methods used in each region 

To decide which forecasting method to use for each of the categories, comparisons between the 

number of products that have SBA or Croston as their optimal forecast has been done for 

multiple cut-off points. The cut-offs have been chosen based on Figure 5.5 and the results 

(Appendix III) have proven unanimously that SBA should be used for erratic products, but 

instead, Smooth, Slow and Lumpy products give better results using Croston. 

Cut-off points (p and CV2) 

To choose the right and for this project, an initial choice was made (p and CV2) based on 

theoretical evidence provided by Syntetos et al. (2005). Further cut-off points are chosen by 
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looking at Figure 5.5, that shows each product in terms of its p and CV2 and it also says which 

forecasting method works best for it based on the given color scheme.  

 

 
Figure 5. 5 - Representation of products based on (p, CV2) and optimal forecasting method. 

An iterative procedure that compares the number of products that are going to be forecasted with 

their optimal forecasting method based on the given cut-offs is implemented, and since the 

optimal forecasting method is found by comparing the MAD obtained by the different forecasts, 

the products with a difference between MADs of the forecasts lower than 0,01 have been 

excluded from the analysis to give more importance to those products that can suffer the most 

from a sub-optimal categorization. Finally, close to optimal cut-offs have been found at p=2,9 

and CV2=0,7. These results are appreciably different from the ones by Syntetos et al. (2005). 

This may be due to the change of the error formula from a theoretical Mean Squared Error or 

MSE, which is calculated through an assumption of the demand occurring as a Bernoulli process 

therefore having a geometrically distributed inter-demand interval to an empirical calculation of 

MAD. Another reason may be the change from a monthly aggregation level to a weekly one 

which in turn has repercussion on the calculation of the smoothing coefficient and the error 

calculation as will be seen in the time aggregation portion of this section. Finally, one last reason 

may be the use of a small sample (323 items) from a very specific industry, in comparison to the 

more than 3000 items used in the mentioned article. With these values, the number of products 

contained in each category is shown in Table 5.3. 

Table 5. 3 - Number of items categorized in each region. 
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Time aggregation level (Weekly or Monthly) 

As referred to in section 3.1.3. Nikolopoulos et al. (2011) talk about using specifically the review 

period plus lead time as a promising option, but due to the specifications made by TitanX and the 

important effort in terms of time required to do an analysis of this kind, the chosen options are 

reduced to a total of two (weekly and monthly demand). All the analysis in this section is done 

for the weekly demand case, but it has been repeated for the case of monthly demand as well, 

ending up with a different optimal α value, different methods used in each category, and different 

cut-off points. To see the results obtained for the monthly case, go to Appendix III.  

The MADs obtained using the optimal configurations for the weekly and monthly with the cut-

off points forecasting methods and α values found in the previous analysis have been compared, 

transforming the MAD calculated for the monthly case by using Equation 3.10 as 𝑀𝐴𝐷𝑤𝑒𝑒𝑘𝑙𝑦 =
𝑀𝐴𝐷𝑚𝑜𝑛𝑡ℎ𝑙𝑦

√4
 .              

Finally, Table 5.4 shows how the MAD calculation is smaller for the case of weekly demand, 

and for that reason, it is chosen before the monthly one.  

Table 5. 4 - Sum and mean of errors for weekly and monthly aggregation levels. 

 

The reason for this result may lay in the fact that greater aggregation levels imply a loss of 

precision in the calculation of p, since having a demand occurrence every 4 weeks would imply 

p=4 for a weekly aggregation, while it would seem like there is continuous demand (p=1) for the 

monthly case. Another reason that could explain this is the fact that using a smaller aggregation 

period, the probability of having two customers in one period is lower, therefore the variation of 

the demand of each period will be generally lower. 

5.1.3. Comparing with the previous forecast 

Now that the final forecasting model has been revealed, it is the time to test the results of this one 

compared to the tool that the company is currently using to produce their forecasts, to then see if 

one of the two main purposes of this project has been reached. (For reference, the forecasting 

model from the company is explained in section 4.3). 

To do this test, the followed procedure is the calculation of the MAD error indicator explained 

previously for both the current forecasting software of the company as well as the one developed 

throughout this project.  
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Due to restrictions with information availability from the forecasting tool the company is using 

coming from their forecast being done using monthly seasonal coefficients and information of 

these coefficients for each of the months being missing, the historic data sample chosen is 

comprised only by the months of November and December of 2016, for which all the data is 

already available. The MAD for the new forecasting method will be calculated as the mean of 

the absolute value of the difference between the real order sizes divided by the time interval 

since the last demand occurrence and the value of the forecast for that period (expected demand 

per week 𝑌𝑡), taking only the last nine weeks (months of November and December) into 

consideration for this calculation. For the current forecast, MAD will be calculated as the 

absolute value of the difference of the real demand of each of the last nine weeks minus the 

expected demand calculated by the forecasting tool.  The results of this analysis are provided in 

Table 5.5. 

Table 5. 5 - Sum of errors and number of optimal items for each forecasting tool. 

 

The first and most obvious conclusion to take from Table 5.5 is that the new forecasting tool 

provides better results compared to the previous one, for most of the products as well as an 

overall decrease in MAD of 21,2% for this specific sample. This value is not going to be the 

same for all error calculations but it is still useful as an indicator of the superior performance of 

the new method. 

The first thing to be observed is the short rolling horizon used by the current forecast. As 

mentioned previously, this implies that it will not be possible to obtain a forecast for those 

products that have not experienced any demand in the past three months. This issue has been 

shored up by the new forecasting procedure based on exponential smoothing that in theory has 

an arbitrarily long horizon even though most weight are put on the most recently observed 

demand. In practice, a horizon of 106 weeks is used (equivalent to two years of data). The first 

52 weeks where used to initiate the forecast and for the remaining weeks the forecast was 

updated as described in section 3.1.3. Having a low N on their rolling horizon (three months), the 

company aims to have a high capacity of quickly adapting to significant fluctuations in the 

demand pattern from one period to the next one. Nevertheless, this implies that the forecast is 

more vulnerable to the influence of random variations that should not be considered. On the 

other hand, the choice of a higher N value will cause that even though, random effects are going 

to be filtered, the forecasts present a slow adaptation in front of significant fluctuations of the 

more recent data, since such prediction will take into consideration the value of older data points 

as well. An efficient way to solve that is to use exponential smoothing as done in the new 

method, since this method will also consider all previous observations, but with a greater 
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emphasis on the newer data. By adjusting the smoothing coefficient α, the importance of the 

newer data in comparison to the older one can be changed to obtain a smoother or more 

responsive forecast. 

Another factor that may be causing worse results for the old model is the use of seasonal indexes, 

since traces of a possible seasonality pattern can only be found if the demand of all products is 

aggregated, as mentioned in section 4.3, while evidence of it in a product basis has been found to 

be lacking, thanks to the seasonality and trend tests already explained in the same chapter. 

Instead, the old forecast applies seasonal indexes to all its products, which means that most 

products are being treated as seasonal when they are not. 

Finally, to end the comparative analysis of both models, it is important to mention that the new 

forecast lets the user know when is the next demand expected to occur thanks to the introduction 

of p as another forecast. Meanwhile, the old forecast only provides information for the demand 

during the month and then disaggregates that amount equally through its constituent weeks, 

making it harder for the planning team at TitanX to anticipate the weeks in which the orders 

should arrive.   

Finally, the new forecast provides a new feature, in comparison to the previous one, that 

calculates the confidence intervals of the forecasts 𝑝𝑡 and 𝑧𝑡 based on the level of confidence 

chosen by the user. The normal distribution has been used as an approximation of the real 

distributions of the aforementioned parameters, so the bounds obtained will have a certain 

margin for that reason. The results for the different confidence intervals available are portrayed 

in Table 5.6. 

Table 5. 6 - Upper & lower bounds for different conf. intervals as well as distance to the expected value. 

 

Analyzing Table 5.6., the upper and lower bounds increase their distance from the expected 

value as the confidence intervals demanded grow, while the expected value will of course remain 

the same for all cases. Another thing to be observed is that each time the confidence interval is 
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increased the bounds increase by a bigger margin, since the shape of the normal distribution has 

a tail at each end which gets thinner towards the edges, going towards a probability of zero 

asymptotically. The lower and upper bounds are separated equally from the expected value due 

to the symmetrical shape of the normal distribution. It can also be seen how the bounds required 

for the same confidence interval are bigger for 𝑝𝑡 in absolute terms, and even bigger relative to 

their expected values, which indicates that 𝑝𝑡 is a parameter with a higher variability for TitanX, 

and therefore the most problematic out of the two. 

5.2. Inventory control 

In this section, an alternative inventory control model, the purpose of which is to provide 

accurate calculations of the reorder points and safety stock of the IAM items, for a given service 

level. Further, a comparison to the company’s current calculations of service level and safety 

stock will be introduced. 

5.2.1. Inventory control model  

The essential motivation for developing a better forecasting model is due to supporting the 

inventory model with more accurate data. In the previous section the findings of the developed 

forecasting model were shown. Namely, this model produces the forecasted values for the future 

demand containing also its variance. The prior describes the expected mean of the order size 

while the further denotes the standard deviation. It should be perceived a variance/standard 

deviation is obtained based on a comparison between the observed demand and the obtained 

prediction at a time. Since the developed model is iterative and has an estimate for each demand 

occurrence, variances can be easily calculated as seen in Equation 5.2 

𝑉𝐴𝑅 = ∑
(𝐷𝑖−𝐹𝑖)2

𝑛−1

𝑛
𝐼=1                                                                                                            (5.2) 

where Di and Fi refer respectively to the demand and the forecast value in time i. The variance 

can be translated to the standard deviation by taking the square root of its value. After capturing 

the standard deviation and the average demand, those values should be expressed in lead-time 

doing simple multiplication (𝜎′ = 𝜎 · √𝐿 and µ′ = µ · 𝐿). It is worthy to mention that a lead-time 

must have the same time dimension with a mean and its standard deviation, for instance in this 

study all are described weekly. Another parameter in the developed inventory model is called as 

a batch size and this data was collected from the company and placed in the interface like the 

other inputs. As mentioned before the batch size optimization is not considered in the inventory 

model, instead given values are directly used. The definition process is an ongoing project in the 

company, therefore some items do not have a specified batch size. As a result, those items were 

evacuated from the product list. The last parameter is the target fill rate which might be given by 

a customer or alternatively figured by the case company.    
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A crucial point to notice is that the order sizes should be rescaled owing to the discrete nature of 

Poisson and negative binomial distribution. In fact, a variance and a mean must be determined by 

the normalized order sizes for only distinguishing the distribution type. This transaction can be 

conducted with a certain method that finds first the average order size then rescales each demand 

point dividing its certain value by the mean. The introduced process is called normalization and 

it can be assimilated through the following example in Table 5.7. 

Table 5. 7 - Weekly demand for an artificial item. 

 
 

The average order size for this given sample is calculated as 𝜇 =
20+30+25+10+35

5
= 24 𝑢𝑛𝑖𝑡𝑠. As it 

was explained this number is used to normalize the order size. Finally, the demand points are 

rescaled as seen in following Table 5.8. 

Table 5. 8 - Resized weekly demand for an artificial item. 

 
 

This normalization is needed to obtain a new variable equivalent to the average order size (the 

new unit can be called a box for a more visual interpretation). When the order sizes are rescaled, 

the demand values will characterize how many multiples of the average box size has the 

customer ordered in a period. If it is always one (or close to it) the demand can be considered as 

Poisson with the re-scaled unit size (box) being equal to the average number of units, that means 

the customer always (or almost always) orders a box of µ. 

In Figure 5.6 the statistical distribution of each product based on these conditions can be seen 

and a clear pattern shows up, where the items with a Poisson distribution tend to be below those 

with NBD, which seems to have little to do with the categorization parameters (p and CV2).  
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Figure 5. 6 - Representation of products based on (p, CV2) and optimal inventory distribution. 

As explained in the categorization scheme in Altay, N., & Literal, L., (2011), normal demand 

distribution suits both erratic and smooth products, on the other hand Poisson and negative 

binomial demand distribution fit slow and lumpy items respectively. However, it is obvious that 

not all products might have the same distribution in a specific category. In other words, a 

specified demand distribution may not represent all items, e.g., in the smooth product category 

some items might have a demand distribution different than the normal one. To eliminate that 

weakness the demand distribution of each item can be defined individually, in this manner each 

item will be represented by its real distribution. This will improve the performance of the 

inventory model, but of course the problem will be harder to manage in most cases due to the 

high number of products. 

Now it will be introduced how the inventory model is considering input data and which decision 

points it contains.  

Step 0: First, the batch size and lead time of the products are checked. In the case the value of 

one of these parameters is missing, that item will not be considered. 

Step1: Each item has a certain distribution as seen in Figure 5.6.  In this step, all items should be 

treated individually, this approach enables the model to use true distributions. An item might 

have the following distributions: 
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As normal distribution has a chance of having negative demand, if mean is much greater than 

standard deviation, this chance will be sufficiently small to consider this distribution for this 

problem (no negative demand is observed). 

For those products not meeting the previous condition, the next logic can be used: 

If: 0.9 ≤ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒/𝑚𝑒𝑎𝑛 ≤ 1.1 >>Poisson  

Else if: 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒/𝑚𝑒𝑎𝑛 > 1.1 >> Negative binomial 

Else: 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒/𝑚𝑒𝑎𝑛 < 0.9 >> Gamma (Gamma is capable to fit many cases so that it is 

assigned to the remaining cases, ratio < 0.9) 

Step 2: Once the demand distribution is shown, then the reorder point can be optimized for a 

given service level. The reorder point definition procedure was introduced in the theory chapter. 

This iterative process is translated into a computer program in Visual Basic for Applications 

(VBA) and its algorithm can be illustrated by Figure 5.7 (the algorithm for the Poisson 

distribution will use all parameters in the resized variable and will change back to the original 

variable after the result is obtained). For the first iteration, the reorder point is assigned to the 

negative of the batch size “R= -Q”. After that, the code reads all input data from the interface, 

they are a lead time, a standard deviation, a mean order size, a batch size and a target fill rate. In 

the third step the probability of inventory level j (1,2, …, R+Q) is iteratively calculated. For each 

positive inventory level the code calls a function that includes one of the probability distribution 

to compute demand during the lead time. Such as initially the probability of inventory level at j = 

1 is determined by using the related demand distribution. The sum of all iterations illustrates a 

service level for the current reorder point. This number will be compared with the target fill rate 

in the next step to decide whether the current R is sufficient to achieve the target fill rate. If the 

calculated service level, e.g. P(IL=1 to 10, where R=-5) is lower, then the procedure should be 

repeated for the new R value which was increased 1 unit e.g. R= -4. Once the service level 

reaches the target level the program will be stopped and the last reorder point is defined as the 

optimal. After all, the code can perform to write this result into the defined Excel worksheet. 

This illustrated process is valid and quite similar for the service level calculation of a normal 

distribution, but as explained in section 3.2.2., it needs a simple bisection search as a difference.  
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Figure 5. 7 - Algorithm to find the reorder point. 

 

The developed program was run for only 226 unique items, since the remaining items do not 

have either the batch size and/or the lead time defined. It is apparent that before running the 

inventory model first the forecasting model was performed to extract the mean and standard 

deviation. Then after that the inventory model was tested for different service level target: 80%, 

85%, 90%, and 95%. It should be expected that run time will be longer in the case of higher 

service level. The underlying reason is the system needs to keep more inventory under a strict 

condition. This means that the model will be working for more iterations. The results 

demonstrate computational times, the total number of items that entails positive reorder point, 

furthermore, it shows the total amount of safety stock as seen in Table 5.9. 

Table 5. 9 - Analysis of reorder points for each service level. 

 
 

Case company 

Service level (%) 80 85 90 95 80-85

Computation time (sec) 517.36 635 1449.24 3293.39 28,800

Safety stock 1041 1682 2778 5008 3333

Developed model

155
Total number of items with 

positive R 
97 136 150 170
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Finally, another investigation was conducted to analyze the effect of the lead time changes. The 

given lead times was used for the initial solution, later they were increased by half and its current 

values as shown in Table 5.10. The considerations are the same with the previous analysis. 

Table 5. 10 - Analysis of reorder points for different lead times. 

.  

The increase of the lead time of the products will suppose an increment in safety stock to be able 

to satisfy the same demand patterns with a longer lead time until the products are finished. 

Something else to mention is that even though the total number of items with positive R 

increases less for each increment of lead time (𝛥𝑟+
1 = 45, 𝛥𝑟+

2 = 8), the total number of SKUs 

to keep as safety stock increases more (𝛥𝑠𝑠1 = 1456, 𝛥𝑠𝑠2 = 1481). 

5.2.2. Comparison to previous model 

The new model gives quick results when compared to the current method of specifying safety 

stocks, even though its computation time tends to rise when high service levels are forced. That 

means the company will be available to test and analyze different scenarios quickly. Moreover, 

the outputs from the model are based on a scientific method which provides the best solution, 

while the current system is running intuitively depending on the employee's expertise. As well as 

time advantage, the developed model offers lower safety stocks while promising to reach the 

same target service level. Numerically it is around 1362 units for 80-85% target rate while it is 

3333 units in the current system. That indicates if the company reduces the current safety stocks, 

they can still satisfy their customers with less inventory as seen in the following Figure 5.8. The 

products have an average price around 1670 €, if it is assumed that TitanX has a 15% profit 

margin, then the production cost can be calculated as 1419,5 €. Moreover, 10% of the production 

cost is estimated as a good representative of yearly inventory holding cost, so it is roughly equal 

to 141,95 €/year. Therefore, the company might save 279.783,5 €/year when using the new tool.  

 

 

 

 

 

 

 

 

Lead time (week) current 1.5*current 2*current 

Service level (%) 80 80 80

Computation time (sec) 517.36 2009.59 4485.14

Safety stock 1041 2497 3978

97
Total number of items with 

positive R 
142 150
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Figure 5. 8 - Comparison of safety stock for the old and new forecasting models. 

 

It should be mentioned that the safety stock of 1362 units found for the developed model in 

Figure 5.8 is calculated as the mean of the safety stocks for service levels of 80% and 85%. 
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6. Discussion 

In this chapter, this project is going to be compared to the rest of work done in the fields of spare 

part forecasting and inventory control to observe in what way it has built upon the existing 

theory and on the other hand, what have been the contributions made from a theoretical and 

practical standpoint. Future work that can be done within the context of the company to improve 

upon the work done in this project is motivated and personal opinions and recommendations 

from the authors are also shared. 

In the field of forecasting, the work has been based mainly on the theoretical background built up 

by Syntetos, Boylan and Croston, but due to the empirical nature of this project, many additional 

changes have been made to better adapt to the reality at TitanX. From a theoretical standpoint, 

the project looks to broaden the available literature in the field of intermittent demand forecast 

and inventory control. Moreover, it provides another empirical case with a set of products for the 

independent aftermarket segment of a truck provider company in which to test and evaluate the 

study by Syntetos et al. (2005) on the optimal categorization of demand patterns and their 

association with certain forecasting methods. From a practical standpoint, the provided 

contribution is an easy to use forecasting tool with higher accuracy rates for the company’s IAM 

items as well as two additional forecasts in the form of 𝑝𝑡 and 𝑧𝑡 that allow to present the 

forecast as its different components (time until the next order and size of the order), as well as 

the calculation of the lower and upper bounds of their desired confidence intervals.  

In terms of inventory control, Bucher, D., & Meissner, J. (2011) already warn the reader that the 

categorization scheme suggested by them does not constitute an approach of universal validity in 

a technical sense. Nevertheless, the application of best practices for the choice of both the 

statistical distributions of the items as well as the inventory control policies should lead to 

adequately configured inventory systems in many industrial settings. This case has not been 

different, since the plotting of the items in the (p, CV2) Figure 5.5 shows a very specific pattern, 

and seeing how it cannot seem to be categorized by the demand categories defined for the 

forecasting categorization, the decision has been made to base the categorization on another 

parameter which is the variance over the mean (as explained in section 5.2). Therefore, a 

theoretical contribution to inventory control made by this project is the confirmation that if there 

is an intention of obtaining more accurate reorder points and service level calculations from your 

inventory control tool, the categorization scheme used during the forecasting stage, and in 

particular the use of the same cut-off points for forecasting and inventory control which does not 

have any base in the theory, should generally not be used to fit  the inventory control 

categorization. On the other hand, a practical contribution of this project in terms of inventory 

control is an automatic inventory control tool based on scientific on assigning the inventory level 

of each item to the statistical distribution that suits it best and then calculates the reorder point 

based on the desired batch size and Service level using the formulas by Axsäter (2006). 
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Another potential obstacle, when implementing this approach is that it might create a black box 

of how every SKU is managed. Therefore, it is important for the inventory management 

personnel to understand the applied forecast and inventory methods and to question their 

appropriate application in the company’s inventory system. Another study by Syntetos et al. 

(2009) shows that the combination of parametric forecast methods with managerial judgement 

often leads to a considerable improvement of the inventory performance. Therefore, it is worth 

mentioning that manual managerial judgements are often important in the context of spare parts 

management, as a wide range of information may be very important. 

Parting from the findings of this project, further investigation could be done to improve even 

more the performance of the management of items in the finished goods warehouse. One 

possibility could be the use of pt and zt in the inventory control tool to more fully utilize the 

advantages of having a forecast that is able to provide information about the time of arrival of the 

next demand, as well as the size of such demand, which due to the time constraint for this 

project, as well as the request for an (R, Q) policy coming from the company, has not been 

implemented. Another possibility would be to study more in depth what is the optimal temporal 

aggregation level of the data set as recommended by Nikolopoulos et al. (2011) by comparing 

the results obtained by the different forecasting methods when many different aggregation levels 

are used, starting by the recommended lead time plus review period, and so on. Another way to 

further improve upon this project’s research would be to optimize the smoothing coefficients (α). 

In this project, the smoothing coefficients are chosen to be equal for the mean inter-demand 

interval (𝑝𝑡) and mean demand size (𝑧𝑡), and only a sensitivity analysis is performed by checking 

the performance of the forecasting methods by a given range of α values. Instead, it could be of 

interest to try the separate optimization of both smoothing coefficients (𝛼𝑖and 𝛼𝑠)  and to also 

use a better optimization procedure; both of those things explained in Syntetos (2009). Another 

improvement could be the addition of a bisection search for the reorder point calculation of the 

discrete distributions, as is already used in the normal one, always taking into consideration the 

integer constraint. On a different note, there are still many challenges to tackle throughout the 

supply chain at TitanX Mjällby, as mentioned in the introductory chapter of this project. 

Therefore, the improvement of the planning, sequencing and machine assignment processes 

within the production lines as well as the optimization of inventory levels and stock keeping 

times at the raw materials warehouse possibly by adapting the inventory model used maybe 

taking advantage of the already created inventory model for the finished goods warehouse. 

Finally, some tips learnt throughout the project are shared for future research in this field to be 

conducted more efficiently: 

Plan what is going to be the required data and collect it, since scarcity of information is a very 

widespread problem in real world cases, and therefore, the sooner this is known, the more time 

there is to solve the potential issues. 
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Another recommendation is to look for possibilities of extrapolating conclusions from smaller 

data samples. Data sets can be quite big in size, making an analysis of every specific product 

very time consuming. Looking for similarities in the products allows for the possibility of 

extracting conclusions without having to test certain assumptions on all of them. For the case of 

trend and seasonality, a program had to be created to run an analysis for all products which 

ended up being very time consuming. Instead, due to the glaring similarities of the various 

products, a proper sampling process could have saved a significant amount of time. 

Trust the findings until evidence against them arises. A critical point of view is always 

important, but too much skepticism on the findings may have a paralyzing effect which will not 

allow for the project to move forward. 

Finally, the use of the software created in this project is recommended for further improvement, 

since it contains a scientific base, it is thoroughly explained throughout this document and it will 

save a lot of time compared to a clean start of the problem (Appendix III).  
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7. Conclusion 

TitanX is a prime truck engine cooler supplier with a growing independent aftermarket segment. 

The demand of IAM products is known with little advance due to customers being smaller 

independent suppliers that do not have the same level of integration to the supply chain at TitanX 

as the big truck producers and the demand of these products has an intermittent and erratic 

nature. For these reasons, a forecasting and inventory control tool for IAM products has been 

developed to be implemented at the Mjällby production facility and the Krakow central 

warehouse respectively.  

The two research questions, 

● RQ 1. How to forecast the demand of independent aftermarket products with sporadic 

patterns? 

● RQ 2. How to control inventory levels of the same group of products? 

have been answered throughout this project, and the obtained results will be commented.  

The new forecasting tool provided in this project is showing better results for the tests conducted 

with the historical data at hand.  It is also important to note that for several products, the old 

forecast seems to still perform better. The reason is the stochastic nature of the demand, which 

implies that there is not one single forecasting approach that is going to perform better in every 

single iteration of the forecast. In the case where the assumptions of the old forecast are met by 

the empirical evidence of the real data, then the old forecast will inevitably outperform the new 

one.  Nevertheless, the assumptions taken by the new model are generally better when referring 

to this set of items, as seen in the analysis chapter, meaning that its application will provide 

better results when looking at the set of products. 

The new inventory control tool provided in this project is a clear improvement over previous 

practices by the company, since an inventory control tool that provides automatic reorder 

points/safety stocks by considering the desired service level and batch size and reading the 

output coming from the forecasting tool. However, this solution had not yet been implemented at 

TitanX. 

As a summary, the purpose of this project was the analysis of the finished goods inventory for 

the IAM segment to provide a more accurate forecast and an inventory control approach that 

shows how various levels of safety stock affect the balance between holding, ordering and 

backordering costs. Looking back, the goals of the project have been met for the most part. On 

the other hand, due to the lack of accurate calculations of the inventory keeping, ordering and 

backordering costs, an alternative inventory control tool has been created using a service level 

calculation (calculated as the ready rate/fill rate) to determine safety stock and reorder point, and 
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an additional feature has been added which allows to see the relations between the inventory 

level to be kept of each item and the lead time in which TitanX can afford to produce them.   

Finally, this project has been very enriching at an educational level. From knowledge into the 

general techniques in the theory of forecasting and inventory control, to those more specific to 

intermittent demand products or greater familiarization with the common practices and 

procedures used in the field of spare parts management. From a professional standpoint, very 

valuable experience has been obtained in the industry of large vehicle suppliers by being able to 

see the inside of the TitanX production plant in Mjällby as well as working on it and having 

contact with the supply chain management team. Finally, from a personal point of view, this 

project has helped abilities such as planning, communication and the interpersonal skills 

necessary to work efficiently in a group setting. 
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