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Abstract

The metric dimension of a graph G is the size of a smallest subset
L ⊆ V (G) such that for any x, y ∈ V (G) with x 6= y there is a z ∈ L such
that the graph distance between x and z differs from the graph distance
between y and z. Even though this notion has been part of the literature
for almost 40 years, prior to our work the computational complexity of
determining the metric dimension of a graph was still very unclear. In this
paper, we show tight complexity boundaries for the Metric Dimension
problem. We achieve this by giving two complementary results. First, we
show that the Metric Dimension problem on planar graphs of maximum
degree 6 is NP-complete. Then, we give a polynomial-time algorithm for
determining the metric dimension of outerplanar graphs.

1 Introduction

In this paper, we study the complexity of the Metric Dimension problem, in
particular on planar graphs. To define the Metric Dimension problem, we
need several supporting notions. Let G be a graph. We say that z ∈ V (G)
resolves two vertices x, y ∈ V (G) with x 6= y if the length of a shortest path in
G from z to x is different from the length of a shortest path in G from z to y.
Then a set L ⊆ V (G) is called a resolving set (or metric generator) of G if every
pair x, y ∈ V (G) with x 6= y is resolved by some z ∈ L. We sometimes refer to
the elements of a resolving set (or in fact, of any set of vertices that we hope
to extend to a resolving set) as landmarks. Now the metric dimension of G is
the cardinality of a smallest resolving set of G (such a smallest resolving set is
known as a metric basis). The problem of determining the metric dimension of
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a given graph G is called Metric Dimension, but is also known as Harary’s
problem or the rigidity problem. The problem was defined independently by
Harary and Melter [21] and Slater [29].

There are several reasons for studying the Metric Dimension problem.
The first reason is that, even though the problem is part of Garey and John-
son’s book on computational intractability [20], very little is known about the
computational complexity of this problem. Garey and Johnson proved thirty
years ago that the decision version of Metric Dimension is NP-complete on
general graphs [26] (another proof appears in [27]). Also it was shown that
there exists a 2 log n-approximation algorithm on arbitrary graphs [27], which
is best possible within a constant factor under reasonable complexity assump-
tions [3, 23]. Hauptmann et al. [23] showed hardness of approximation on sparse
graphs and on complements of sparse graphs. On the positive side, fifteen years
ago, Khuller et al. [27] gave a linear-time algorithm to compute the metric di-
mension of a tree (see also [29, 21]), as well as a characterization for graphs
with metric dimension 1 and several interesting properties of graphs with met-
ric dimension 2. Similar results were independently obtained by Chartrand et
al. [8]. Before we published a preprint of our work, no further results were known
about the complexity of this problem. It is thus interesting if the substantial,
long-standing gap on the tractability of this problem (between trees and general
graphs) can be bridged.

After a preprint of our work appeared, a large number of papers have ap-
peared that further investigate the complexity of Metric Dimension on graph
classes. On the negative side, Epstein et al. [13] provided NP-hardness results for
split graphs, bipartite graphs, co-bipartite graphs, and line graphs of bipartite
graphs. Hoffman and Wanke [24], based on the NP-hardness reduction for pla-
nar graphs given in this paper, were able to prove that the problem is NP-hard
on Gabriel unit disk graphs. More recently, Foucaud et al. [18, 19] showed that
the problem is NP-hard on permutation graphs and interval graphs. Fernau and
Rodŕıguez-Velázquez [15] showed that on general graphs there is no algorithm
running in O(|V (G)|O(1) 2o(|V (G)|)) time unless the Exponential Time Hypoth-
esis fails; this complements their algorithm running in O(|V (G)|O(1) 2|V (G)|)
time. Hartung and Nichterlein [22] settled the parameterized complexity for the
standard parameter (the size of the resolving set) on general graphs, by showing
that the problem is W[2]-complete even if the maximum degree is at most three;
they also give a strong approximation hardness result on such graphs.

On the positive side, Epstein et al. [13] presented polynomial-time algorithms
for a weighted variant of Metric Dimension on several graphs including paths,
trees, and cographs. Fernau et al. [14] gave a polynomial-time algorithm for
Metric Dimension on chain graphs, a subclass of bipartite graphs. Foucaud et
al. [18, 19] showed that Metric Dimension is fixed-parameter tractable for the
standard parameter on interval graphs. Belmonte et al. [4] generalized this result
to graphs of bounded treelength, which include not only interval graphs, but
also chordal graphs, permutation graphs, and AT-free graphs.

The second reason for studying Metric Dimension is that the problem has
received a lot of attention from researchers in different disciplines, in particu-
lar as a difficult graph theoretical problem (see e.g. [1, 6, 8, 23] and references
therein). For instance, a recent survey by Bailey and Cameron [1] notes an
interesting connection to group theory and graph isomorphism. It was also
shown to be applicable to certain cop-and-robber games [7] and to routing in
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networks [17]. Therefore it makes sense to continue the investigation on the com-
putational complexity of Metric Dimension and narrow the above-mentioned
complexity gap.

The third reason for studying Metric Dimension, particularly on planar
and outerplanar graphs, is that known techniques in the area do not seem to
apply to it. Crucially, it seems difficult to formulate the problem as an MSOL-
formula, without which we cannot apply Courcelle’s Theorem [9] on graphs of
bounded treewidth. Hence, there is no easy way to show that the problem is
polynomial-time solvable on graphs of bounded treewidth. Also, the line of re-
search pioneered by Baker [2], which culminated in the recent meta-theorems on
planar graphs using the framework of bidimensionality [11, 16], does not apply,
as Metric Dimension does not exhibit the required behavior. For example, the
metric dimension of a (two-dimensional) grid is two [27] (see also [6]), whereas
bidimensionality requires it to be roughly linear in the size of the grid. More-
over, the problem is not closed under contraction. This behavior of Metric
Dimension contrasts that of many other problems, even that of other nonlocal
problems such as Feedback Vertex Set. Hence, by studying the Metric
Dimension problem, there is an opportunity to extend the toolkit that is avail-
able to us on planar graphs.

Our Results In the present work, we significantly narrow the tractability
gap of Metric Dimension. From the hardness side, we show that Metric
Dimension on planar graphs, called Planar Metric Dimension, is NP-hard,
even for planar graphs of maximum degree 6. From the algorithmic side, we
show that there is a polynomial-time algorithm to find the metric dimension of
outerplanar graphs.

The crux to both of these results is our ability to deal with the fact that the
Metric Dimension problem is extremely nonlocal. In particular, a landmark
can resolve vertices that are very far away from it. The paper thus focusses on
constraining the effects of a landmark to a small area. The NP-hardness proof
does this by constructing a specific family of planar graphs for which Metric
Dimension is essentially a local problem. The algorithm on outerplanar graphs
uses a tree structure to traverse the graph, together with several data structures
that track the influence of landmarks on other vertices. As we show later, this
is sufficient to keep the nonlocality of the problem in check. We believe that
our algorithmic techniques are of independent interest, and could lead to (new)
algorithms for a broad class of nonlocal problems.

Overview of the NP-Hardness Proof As a corollary of the work by Dahlhaus
et al. [10], we prove a new version of Planar 3-SAT to be NP-complete. We
reduce this problem to Metric Dimension. This is done by constructing a
planar graph consisting of clause gadgets and variable gadgets. Let n be the
number of variables. Each variable gadget must have four landmarks: three
at known, specific locations, but for the fourth we have three different choices.
They correspond to the variable being true, false, or undefined. These 4n land-
marks are a resolving set if and only if they resolve all pairs of vertices in the
clause gadgets, which happens only if they correspond to a satisfying truth
assignment of the SAT-instance.
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Overview of the Algorithm Observe that the standard dynamic-programming
approach using a tree decomposition fails here, as the amount of information
one needs to maintain seems to depend exponentially on n, rather than on the
width of the decomposition. To overcome this fact we take a different approach.

We characterize resolving sets in outerplanar graphs by giving two necessary
and sufficient requirements for an arbitrary set of vertices to be a resolving set.
Then, taking as a base the duals of the biconnected components of the graph G,
we define a tree T . Vertices of T correspond to faces and cut vertices of G, and
edges of T correspond to inner edges and bridges of G. Note that each vertex
and edge of T corresponds to a separator of G. The algorithm uses dynamic
programming to process T , starting at the leaves and advancing towards the
root.

At first sight, this decomposition has the same problem as we had with tree
decompositions. Moreover, the size of a face might be arbitrarily big, leading to
a decomposition of arbitrary ‘width’. To overcome these obstacles, we introduce
two data structures, called boundary conditions and configurations.

• Boundary conditions track the effects of landmarks placed in the already
processed part of the graph and the possible effects of sets of landmarks
to be placed in the unexplored parts of the graphs.

• Configurations represent the main novelty in our algorithm. Configura-
tions control the process of combining the boundary conditions on edges
towards children of the current vertex v′ ∈ V (T ) into a boundary condi-
tion on the edge towards the parent of v′. The configurations depend on
the vertices of G represented by v′. Even though the number of vertices
of G represented by v′ may be unbounded, we show that the total number
of relevant configurations is only polynomial.

By combining boundary conditions and configurations appropriately in a dynamic-
programming procedure, we finally arrive at a polynomial-time algorithm.

The use of configurations presents a stark contrast with the techniques used
in bounded treewidth algorithms, where the combination process commonly is
a simple static procedure. A similar contrast is apparent in our tree structure:
whereas outerplanar graphs have constant treewidth [5], the tree structure used
in our approach actually leads to a decomposition that can have arbitrary width.

2 Preliminaries

For basic notions and results in graph theory, we refer the reader to any textbook
on the topic, e.g. Diestel [12]. All graphs are finite, undirected, and unless
otherwise stated, connected. The vertex and edge sets of a graph G are denoted
by V (G) and E(G), respectively. We use the notation (u, v) to denote an edge
from u to v. Given v ∈ V (G), N (v) denotes the set of neighbors of v in G. The
graph distance between vertices u and v is denoted by d(u, v).

A graph G has a cut vertex if the removal of that vertex disconnects the
graph into at least two components. A graph is a biconnected if it has no cut
vertices.

A planar embedding of a graph G is an assignment of V (G) to distinct points
in the plane and E(G) to Jordan curves (i.e. simple closed curves in the plane)
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such that the curve of each edge starts and ends at the points corresponding
to the endpoints of the edge, and no interior point on the curve is a point
corresponding to a vertex of G nor on a curve corresponding to another edge.
In other words, the vertices are points in the plane and the edges are drawn
between the points so that they do not intersect. A graph is planar if it has
a planar embedding. Equivalently, a graph is planar if and only if it does not
contain a subgraph that is a subdivision of K5 or K3,3.

An outerplanar embedding of a graph G is a planar embedding where all
points corresponding to the vertices of G border the outer (infinite) face. We
call the edges on the border of the outer face the outer edges of G, and we call
the other edges inner edges. Note that for each biconnected component B of G,
the outer edges of B form a Hamiltonian cycle of B. A graph G is outerplanar
if it has an outerplanar embedding. Equivalently, a graph is outerplanar if and
only if it does not contain a subgraph that is a subdivision of K4 or K2,3. If
an outerplanar graph is given together with such an embedding, it is called
outerplane.

We also repeatedly use the following observation about outerplanar graphs.
Given an outerplanar graph G and a cycle C of G, call a path C-disjoint if no
vertex of the path (except possibly its ends) belongs to C.

Proposition 2.1 Let G be an outerplanar graph, let C be a cycle of G, and let
u ∈ V (G) \ C. Then no three distinct vertices of C have C-disjoint paths to u.
Moreover, any two distinct vertices of C having C-disjoint paths to u must be
neighbors on C.

Proof: If three distinct vertices of C each have a C-disjoint path to u, then
these paths together with C contain a subgraph that is a subdivision of K4.
This contradicts the outerplanarity of G. If two distinct vertices of C that are
not neighbors on C each have a C-disjoint path to u, then these paths together
with C contain a subgraph that is a subdivision of K2,3. This contradicts the
outerplanarity of G.

In an outerplane graph G, any cycle of G corresponds to a Jordan curve.
Given two cycles C,C ′ of G, we say that C is topologically contained in C ′ if
the Jordan curve of C is contained in (the closure of) the interior of the Jordan
curve of C ′. Note that this is actually equivalent to stating that V (C) ⊆ V (C ′),
but the topological definition might be more intuitive.

Finally, given a set S, we denote by Pk(S) the set of all subsets of S that
have at most k elements.

3 NP-Hardness on Planar Graphs

We reduce from a variation of the 3-SAT problem. We first require some nota-
tion.

Definition 3.1 Let Ψ be a boolean formula on a set V of variables and a set
C of clauses. The clause-variable graph of Ψ is defined as GΨ = (V ∪ C,E),
where E = {(v, c) | v ∈ V, c ∈ C, v ∈ c}.

The notation v ∈ c means that variable v (or its negation) occurs in clause C.
Observe that GΨ is always bipartite.
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Theorem 3.2 ([10, p. 877]) The problem of deciding whether a boolean for-
mula Ψ is satisfiable is NP-complete, even if

• every variable occurs in exactly three clauses (twice positive, once nega-
tive),

• every clause contains two or three distinct variables, and

• GΨ is planar.

As a corollary of Theorem 3.2, we get the following result, which is the starting
point of our work.

Corollary 3.3 The problem of deciding whether a boolean formula Ψ is satis-
fiable is NP-complete, even if

• every variable occurs exactly once negatively and once or twice positively,

• every clause contains two or three distinct variables,

• every clause with three distinct variables contains at least one negative
literal, and

• GΨ is planar.

We call this decision problem 1-Negative Planar 3-SAT.

Proof: Let Ψ be a boolean formula satisfying the constraints of Theorem 3.2.
By modifying Ψ we will construct a formula Ψ′ that fulfills all the constraints
of the theorem statement and is satisfiable if and only if Ψ is satisfiable.

We only need to eliminate those clauses containing three positive literals.
Suppose that x ∨ y ∨ z is such a clause of Ψ with distinct variables x, y, z. Add
a new variable x′, and replace the original clause by the clauses x ∨ x′ and
¬x′∨y∨z. This completes the construction of Ψ′. As this construction replaces
some edges of GΨ with paths, it preserves planarity.

Given a satisfying truth assignment of Ψ, we get a satisfying assignment
of Ψ′ by setting x′ = ¬x. A satisfying assignment of Ψ′ implies a satisfying
assignment of Ψ. So Ψ′ is satisfiable if and only if Ψ is. The theorem now
follows straightforwardly from Theorem 3.2.

To prove that Planar Metric Dimension is NP-hard, we will give a reduc-
tion from 1-Negative Planar 3-SAT. The idea behind the graph constructed
in this reduction is the following. Given an instance Ψ of 1-Negative Planar
3-SAT, we first find a planar embedding of its clause-variable graph GΨ. We
then replace each variable vertex of GΨ by a variable gadget (see Figure 1),
and each clause vertex of GΨ by a clause gadget (see Figure 2). By identify-
ing vertices of variable gadgets and vertices of clause gadgets in an appropriate
way (see Figure 4), we obtain a planar graph HΨ that will be our instance of
Planar Metric Dimension.

We now describe our construction in detail. Consider a planar embedding
of GΨ, which can be found in linear time [25]. We first replace each variable
vertex of GΨ by a variable gadget. In Figure 1, the white vertices will be
identified with vertices from a clause gadget later on. There are three groups
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Figure 1: The variable gadget.
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Figure 2: The clause gadget for a clause with two variables (left), and the gadget
for a clause with three variables (right).
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Figure 3: Alternative planar embeddings of the the clause gadgets.

(connected components) of such vertices in the figure. The groups containing
vertices (t1, f1) and (t3, f3) will be identified with vertices in clause gadgets
where this variable appears positively in the corresponding clause; the group
containing (t2, f2) will be identified with vertices in clause gadgets where this
variable appears negatively. By rotating and contorting the variable gadget
appropriately, we can ensure that the three groups point into the right direction
(i.e. the negative-appearance group faces the clause vertex where the variable
appears negatively).

Next, we replace the clause vertices by clause gadgets. The exact gadget we
use depends on whether the clause contains two or three variables (see Figure 2).
We restrict our description to the three-variable case, as the two-variable case
is similar and simpler. In Figure 2, the white vertices will be identified with
vertices from a variable gadget. There are again three groups of such vertices,
one for each variable occurring in the clause.

Obviously, we will identify the t-vertex of a variable group with the t-vertex
of a clause group, and the same for the f -vertices. We call this matching. It
is not entirely straightforward to do this matching in a manner that preserves
planarity. Consider the way in which the groups and the t and f vertices ap-
pear on the boundary of the clause gadget. In Figure 2, the pairs appear in
order (t1, f1), (t3, f3), (f2, t2) clockwise starting from the top. As illustrated
in Figure 3, (t1, f1), (f3, t3), (f2, tt) is also possible. The remaining two alter-
natives, (t1, f1), (t3, f3), (t2, f2) and (f1, t1), (f3, t3), (f2, t2) are to be avoided.
This is accomplished by choosing a variable appearing negatively in the clause
and mirroring the corresponding variable gadget around the axis T1—F (see
Figure 1). This does not affect our ability to connect the variable to other
clauses.

This completes the construction. Call the resulting graph HΨ. Observe that
HΨ is planar, and has maximum degree 6: the individual gadgets have degree
at most 5, but in putting them together the vertex f1 gets degree 6. We remark
that each variable appears once negatively in Ψ, and once or twice positively. So
if the variable appears only twice, then (t1, f1) or (t3, f3) in the corresponding
variable gadget will not be identified with a group of vertices in a clause gadget.

In Figure 4 we can see an example of the reduction and the resulting planar
graph from the specific instance of 1-Negative Planar 3-SAT (¬x1 ∨ x2) ∧
(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x4 ∨ ¬x3) ∧ (¬x4 ∨ x3).

We now make several observations about the graph HΨ and the way vertices
of a resolving set need to be positioned on it.
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Figure 4: The planar graph obtained for (¬x1x2)(x1¬x2x3)(x2x4¬x3)(¬x4x3).

Each f -vertex is contained in a triangle, say with other vertices r, s. Observe
that r and s can only be resolved if r or s is part of the resolving set. We call
these forced landmarks. In fact, in any smallest resolving set, exactly one of r, s
will be a landmark. Then it follows by construction that HΨ requires exactly
3n forced landmarks, where n is the number of variables of Ψ.

Using the forced landmarks, we can resolve most pairs of vertices, as shown
by the following lemma. We say that T1, T2, N1, N2, and F are strictly inside
the variable gadget.

Lemma 3.4 Let x, y ∈ V (HΨ), such that {x, y} is not equal to {w1, w2} from a
single clause gadget or to {T1, T2}, {T1, N1}, or {T2, N1} from a single variable
gadget. Then the pair x, y is resolved by a forced landmark.

Proof: A relatively easy but tedious case analysis verifies the cases where both
x and y are in the same clause or variable gadget. There are two remaining
cases: either x, y are in different clause gadgets, or x is strictly inside a variable
gadget and y is outside that gadget.

Consider the first case, that is, x, y are in different clause gadgets. Denote
the gadget containing x by gx, and the gadget containing y by gy. Let zx be
a forced landmark that is closest to x, and let zy be a forced landmark that is
closest to y. Without loss of generality, d(x, zx) ≤ d(y, zy). We will show that
d(x, zx) < d(y, zx). Since x, y are in distinct clause gadgets, for any shortest path
P from y to zx there is a variable gadget g such that P enters g via one group
and leaves via another one (and the part in between is fully contained in g.) Let
w denote the vertex of both g and P that is closest to y and let (t, f) denote the
corresponding group of g (i.e. w = t or w = f). Let zf be the forced landmark
in the triangle connected to f . By the definition of g and the construction of the
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z3
z1

Figure 5: The graph in Lemma 3.4.

variable gadgets, we can say the following about the edges of P that appear after
w: if w = t, then at least two edges of g still appear plus at least one more edge
(possibly also in g) to reach zx; if w = f , then at least one edge of g still appears
plus at least one more edge (possibly also in g) to reach zx. Since d(zf , f) = 1,
d(zf , t) = 2, in both cases the inequality d(w, zf ) < d(w, zx) holds. Hence,
d(x, zx) ≤ d(y, zy) ≤ d(y, zf ) ≤ d(y, w)+d(w, zf ) < d(y, w)+d(w, zx) = d(y, zx).

Now consider the second case, and assume that x is strictly inside the variable
gadget part of the graph in Figure 5. If y is in the graph of Figure 5, it can be
readily verified that x and y are resolved by the forced landmarks of the variable
gadget. We claim that if y is outside of the picture, then d(z1, y) + d(z3, y) ≥ 7,
where z1 and z3 are the forced landmarks in the triangles attached to f1 and
f3 respectively. This implies that z1 or z3 is at distance at least four from y,
whereas the distance of z1 and z3 to x is at most three, implying that x and y
are resolved.

To prove the claim, note that if shortest paths from y to z1 and z3 both
contain f1, then d(z1, y) + d(z3, y) = d(z1, f1) + d(z3, f1) + 2d(f1, y) = 4 +
2d(f1, y) > 6. The same inequality holds when shortest paths from y to z1

and z3 both contain f3. Now consider the case where shortest paths from y
to z1 and to z3 contain f1 and f3 respectively. Since y is not in the picture,
a shortest path from f3 to y has at least two edges. If a shortest path from
f1 to y goes through the bottom group of the variable gadget in the graph of
Figure 5, then it has at least three edges. Otherwise, it only has two edges if y is
a neighbor of the top-left vertex of the left (partial) clause gadget of the graph
in Figure 5, but then a shortest path from f3 to y has at least three edges. This
gives d(y, f1) + d(y, f3) ≥ 5, and d(z1, y) + d(z3, y) ≥ 7.

It remains to analyze how the pairs excluded in Lemma 3.4 can be resolved.
This will rely on the satisfiability of Ψ, as described below, but the following
auxiliary lemma is crucial.
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Lemma 3.5 All pairs of vertices that are strictly inside a variable gadget are
resolved if and only if there is a landmark strictly inside the variable gadget.

Proof: It is easy to check that a landmark that is strictly inside a variable
gadget together with the forced landmarks resolves all pairs of vertices that are
strictly inside the gadget. If no landmark is strictly inside the variable gadget,
then from any landmark z there are shortest paths to T1 and T2 that both
contain t1 or t3. But then d(z, T1) = d(z, T2).

This lemma and the forced landmarks together imply that HΨ has metric
dimension at least 4n. With this fact in mind, we present the proof of the
NP-hardness result.

Theorem 3.6 Planar Metric Dimension is NP-complete, even on graphs
of maximum degree 6.

Proof: Let Ψ be an instance of 1-Negative Planar 3-SAT with n variables.
Construct the graph HΨ in the manner described before. Constructing HΨ

clearly takes time polynomial in the number of variables and clauses of Ψ.
We now claim that HΨ has metric dimension at most 4n if and only if Ψ

is satisfiable. Suppose that a satisfying truth assignment for Ψ is given. Place
the 3n forced landmarks. If a variable has value true, place a landmark on T1

in the corresponding gadget; otherwise, place a landmark on F . After applying
Lemma 3.4 and 3.5, we only need to check that pairs w1, w2 in clause gadgets
are resolved. But each such pair is resolved by the landmark strictly inside the
variable that satisfies the corresponding clause. Hence HΨ has metric dimension
at most 4n.

Conversely, suppose that HΨ has a resolving set of size 4n. We will con-
struct a satisfying assignment for Ψ. Each variable gadget contains exactly one
landmark, which is on Ti, Ni, or F . If the landmark is on Ti, set the variable
to true. If the landmark is on F , set it to false. Otherwise the variable can be
arbitrarily set to either true or false. It remains to show that because the pairs
w1, w2 are resolved, the truth assignment is satisfying. Note that a landmark z
resolves pair w1, w2 if a shortest path from a landmark to either of them enters
the clause gadget through some ti. Observe that a shortest path between z and
(say) w1 that enters some (clause or variable) gadget through an f -vertex, by
construction, will also leave that gadget through an f -vertex (if it leaves the
gadget at all). Hence, if a shortest path from landmark z to w1 or w2 intersects
more than one clause gadget, it leaves the first clause through an f -vertex, after
which it enters all subsequent ones through an f -vertex. But then w1, w2 in
the final clause are not resolved. It follows that a landmark z resolves w1 and
w2 only if it is in an adjacent variable gadget and the corresponding variable
satisfies the corresponding clause. This proves the claim.

Following the claim, the reduction should construct HΨ as the graph for the
instance of Planar Metric Dimension and set k to 4n.

4 Characterizing Resolving Sets of Outerplanar
Graphs

In this section, we characterize resolving sets of outerplanar graphs in a way that
lends itself to algorithmization. We present several intermediate results before
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giving the final characterization. First, we give a characterization of resolving
sets in trees by giving a necessary and sufficient requirement for a set of vertices
to be a resolving set. Making the step from trees to outerplanar graphs requires
a closer look at a certain type of cycles, called implied cycles. We then give a
sufficient requirement for a set of vertices to be a resolving set with respect to
such cycles. By generalizing this requirement, we end up with two requirements
(the one for trees and a new one) that will be necessary and sufficient for a set
of vertices to be a resolving set of an outerplanar graph.

Throughout the remainder of the paper, we may assume that each graph that
we consider is a connected graph, as a resolving set of a disconnected graph is
the union of resolving sets of its components1. We can also assume that each
graph has at least three vertices; otherwise, determining the metric dimension
is trivial.

We start by giving some definitions that will be used throughout the paper.

Definition 4.1 Let G be a graph. A bifurcation point associated with z, x, y ∈
V (G) is a vertex v ∈ V (G) farthest from z such that v is on shortest paths from
z to both x and y. More formally, v is a bifurcation point if it is on shortest
paths z ; x, z ; y, and if any two shortest paths v ; x, v ; y intersect only
in v.

Note that in an outerplanar graph the bifurcation point for each triple of
vertices is unique.

As a technical trick we sometimes treat the midpoint of an inner edge
e = (v1, v2) ∈ E(G) as an actual vertex. The distances from this midpoint
vertex ve are such that d(ve, v1) = d(ve, v2) = 1

2 and d(ve, x) = min{d(ve, v1) +
d(v1, x), d(ve, v2) + d(v2, x)}.

Definition 4.2 Let G be a connected outerplanar graph with at least three ver-
tices, let z ∈ V (G), and let C be either a single edge or a cycle. The repre-
sentative of z on C is the element of V (C) closest to z, if it is unique. If it
is not unique, then Proposition 2.1 implies that there are two closest vertices,
which are adjacent. In this case the representative is the midpoint of those two
vertices.

The cycle C in Definition 4.2 may have chords. Two kinds of cycles are
especially interesting: faces and biconnected components. Note that in the
latter case, the representative is never a midpoint.

We will frequently use the following result on representatives.

Proposition 4.3 Let G be a connected outerplanar graph with at least three
vertices, let C be a cycle, let z, p ∈ V (G), and let ẑ be the representative of
z on C. Suppose that there exists a shortest path z ; p that intersects C. If
ẑ ∈ V (G), then there is a shortest path z ; p that contains ẑ. Otherwise, i.e. if
ẑ is a midpoint of an edge of C, then there is a shortest path z ; p that contains
an endpoint of that edge.

Proof: Let P be a shortest path z ; p that intersects C. Let v denote the
vertex of C on P that is closest to z on P . If ẑ = v, then P satisfies the lemma.

1With one exception: isolated vertices. An edgeless graph of n vertices has metric dimen-
sion n− 1.
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Figure 6: Proof of Theorem 4.4.

So assume otherwise. Observe that the subpath of P from z to v is a C-disjoint
path. Since ẑ 6= v, there is another vertex u of C such that z has a C-disjoint
path from z to u. It follows from Proposition 2.1 that the vertex u is unique
and that u and v are neighbors on C. If ẑ is the midpoint of (u, v), then P
satisfies the lemma. If ẑ = u, then dist(z, v) = dist(z, u) + 1. Let Q be the
concatenation of a shortest path z ; u, (u, v), and the subpath of P from v
to p. Since dist(z, v) = dist(z, u) + 1, the length of Q is equal to the length of
P , and thus Q is also a shortest path z ; p. As Q contains u = ẑ, the lemma
follows.

4.1 A Characterization for Trees

In this section we provide a novel characterization of resolving sets for the case
in which G is a tree. We define the function g : V (G) × P(V (G)) → P(V (G))
as

g(v, L) = {w ∈ N (v) : d(z, w) = d(z, v) + 1 for all z ∈ L}.

In other words, a neighbor w of v is in g(v, L) if for every z ∈ L, v is on some
shortest path z ; w (but v is not necessarily on every such shortest path.)
Observe that any pair x, y ∈ g(v, L) is left unresolved by L. So any resolving
set L satisfies the following:

Requirement 1 Any vertex v ∈ V (G) must have |g(v, L)| ≤ 1.

We prove that Requirement 1 is also sufficient if G is a tree.

Theorem 4.4 Let G be a tree with at least three vertices. Then a set L ⊆ V (G)
is a resolving set if and only if it satisfies Requirement 1.

Proof: We have already seen that any resolving set satisfies Requirement 1.
Now assume that L satisfies Requirement 1. We pick any two vertices x, y ∈
V (G) and show that they are resolved.

Since G has at least three vertices, there is at least one vertex v ∈ V (G)
with degree at least 2. Since |g(v, L)| ≤ 1 < |N (v)|, L is not empty.

Choose any z ∈ L. If z resolves x, y, then we are done. Otherwise, let v be
the bifurcation point associated with z, x, y, and let v1, v2 be the successors of
v on the shortest paths v ; x, v ; y (see Figure 6). Since d(z, x) = d(z, y), we
have d(v, x) = d(v, y). By assumption, g(v, L) can not contain both v1 and v2.
Without loss of generality v1 6∈ g(v, L). Then there is a vertex z2 ∈ L whose
shortest path to v1 does not pass through v. Since G is a tree, the shortest
path from z2 to v2 passes through v1 and v, and thus d(z2, v1) < d(z2, v). As
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d(v1, x) < d(v, x) = d(v, y), it follows that d(z2, x) < d(z2, y), and thus z2

resolves x and y.

As stated earlier, the major difficulty of the metric dimension problem is
that it is non-local. This is why Theorem 4.4 is useful. Although stopping
short of giving an actual local characterization of resolving sets, it does make
the effects of a resolving set sufficiently local that it could be used to devise a
polynomial-time algorithm for trees.

4.2 Implied Cycles

Our algorithm relies on a generalization of Theorem 4.4 to outerplanar graphs.
The main difficulty in outerplanar graphs is to deal with cycles. Any resolving
set needs at least two representatives on any cycle. This, fortunately, is still
guaranteed by Requirement 1.

Lemma 4.5 Let G be a connected outerplanar graph with at least three vertices,
let C be a cycle of G, and let L ⊆ V (G) satisfy Requirement 1. Then L has at
least two representatives on C.

Proof: As in the proof of Theorem 4.4, L has to be nonempty. So there is a
z ∈ L. Let ẑ be the representative of z on C. We have two cases: either ẑ is a
regular vertex, or it is a midpoint.

If ẑ is a vertex of C, then let v1, v2 be the neighbors of ẑ on C. Since ẑ is
a vertex of C, dist(z, v1) = dist(z, v) + 1 = dist(z, v2). Hence, |g(v, {z})| ≥ 2.
Because |g(v, L)| ≤ 1 by Requirement 1, there is a z′ ∈ L \ {z} such that, say,
d(z′, v1) ≤ d(z′, ẑ). Then the representative of z′ can not be ẑ, and thus L has
at least two representatives on C.

Suppose then that ẑ is a midpoint of some edge e = (v1, v2) of C. Let w be
the bifurcation point of z, v1, v2. Then d(w, v1) = d(w, v2). Denote by s1 and
s2 the successor of w on a shortest path P1 from w to v1 and a shortest path P2

from w to v2 respectively. Observe that P1 and P2 are unique and that C \ {e}
together with P1 and P2 form a cycle C ′.

Since w is the bifurcation point of z, v1, v2, the definition of s1, s2 implies
that g(w, {z}) ⊇ {s1, s2} and thus that |g(w, {z})| ≥ 2. Then by Requirement 1,
there is a vertex z′ ∈ L \ {z} such that, say, d(z′, s1) ≤ d(z′, w). Let ẑ′ be the
representative of z′ on C ′. If ẑ′ is on C, then it is the representative of z′ on C.
Since e is not part of C ′, ẑ 6= ẑ′, and thus L has at least two representatives on
C. If ẑ′ = w, then d(z′, s1) = d(z′, w) + 1, a contradiction. Hence, w.l.o.g., ẑ′ is
on P1, but is not either of its endpoints. We claim that d(z′, v1) < d(z′, v2), and
thus L has at least two representatives on C. To see this, by Proposition 2.1, z′

has C ′-disjoint paths to at most two vertices of C ′. The position of ẑ′ implies
that all are on P1. Let x be the first vertex of C ′ on a shortest path z′ ; v2.
If x = w, then as ẑ′ 6= w, there is a vertex y on P1 such that d(z′, y) ≤
d(z′, x). Since d(y, v1) < d(x, v1), d(z′, v1) ≤ d(z′, y) + d(y, v1) < d(z′, x) +
d(x, v1) = d(z′, x) + d(x, v2) = d(z′, v2). If x 6= w, then as w is the bifurcation
point of z, v1, v2, d(x, v1) < d(x, v2). Hence, d(z′, v1) ≤ d(z′, x) + d(x, v1) <
d(z′, x) + d(x, v2) = d(z′, v2). In both cases, d(z′, v1) < d(z′, v2). The lemma
follows.
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Having at least two representatives on each cycle, however, is not enough to
guarantee that a set L of vertices is a resolving set. In fact, Requirement 1 is
not strong enough to guarantee this. For example, if G is an even cycle and L
consists of two antipodal vertices of the cycle, then Requirement 1 is satisfied,
but L is not a resolving set. Therefore, to give a characterization of resolving
sets of outerplanar graphs, we need a new requirement that deals with cycles. In
fact, the new requirement will deal with a special type of cycles, called implied
cycles. Consider the following lemma.

Lemma 4.6 Let G be a connected outerplanar graph and let z1, z2, x, y ∈ V (G)
be four distinct vertices such that neither z1 nor z2 resolves x and y, and that
no two shortest paths z1 ; x, z2 ; y intersect. Then there is a cycle C in G
such that any four shortest paths z1 ; x, z1 ; y, z2 ; x, z2 ; y contain all
vertices of C.

Proof: We start by proving that no two shortest paths z1 ; y and z2 ; x
intersect. Assume to the contrary that there is a vertex w that is on both a
shortest path z1 ; y and a shortest path z2 ; x. Then the assumptions and
the triangle inequality yield

d(z1, x) + d(z2, y) ≤ (d(z1, w) + d(w, x)) + (d(z2, w) + d(w, y))

= (d(z1, w) + d(w, y)) + (d(z2, w) + d(w, x))

= d(z1, y) + d(z2, x)

= d(z1, x) + d(z2, y).

Therefore, d(z1, x) = d(z1, w) + d(w, x), and w is on a shortest path z1 ; x.
Similarly, w is on a shortest path z2 ; y. This contradicts the assumption that
no two shortest paths z1 ; x, z2 ; y intersect.

Now let v be the bifurcation point of z1, x, y, and let t be the bifurcation
point of z2, x, y. Let s denote the bifurcation point of y, v, t, and let u denote
the bifurcation point of x, v, t.

The vertices v, t, s, u define the cycle C as follows. Let Pvx be a shortest
path v ; x that contains u. Note that Pvx is also a shortest path v ; x, as
u is the bifurcation point of x, v, t. Define Pvy, Ptx, and Pty similarly as Pvx.
Finally, let Pvs denote the subpath of Pvy until vertex s, and define Pvu, Pts,
and Ptu similarly. Figure 7 depicts these definitions.

We claim that Pvs, Pvu, Pts, and Ptu are pairwise internally vertex-disjoint.
This is clear for Pvs, Pvu and Pts, Ptu (as v and t are bifurcation points) and for
Pvs, Pts and Pvu, Ptu (as s and u are bifurcation points). If Pvs and Ptu share
a vertex, then there is a shortest path z1 ; y that intersects a shortest path
z2 ; x, a contradiction. Similarly, Pts and Pvu do not share a vertex. The
claim follows.

The proof of the claim actually implies that s, t, u, and v are distinct
vertices. In fact, if say s and v coincide, then d(t, x) = d(t, y) = d(t, v)+d(v, y) =
d(t, v)+d(v, x). Hence, there is a shortest path z1 ; y that intersects a shortest
path z2 ; x, a contradiction. Therefore, the combination of Pvs, Pvu, Pts, and
Ptu forms a cycle C.

Suppose now that there exist four shortest paths z1 ; x, z1 ; y, z2 ;

x, z2 ; y that do not contain a vertex w of C. Without loss of generality,
we assume that w ∈ Pvs. Let P be a shortest path z1 ; y that contains Pvs
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Figure 7: The cycle C implied by z1, z2, x, y (Lemma 4.6).

as a subpath, and let P̂ be a shortest path z1 ; y that does not contain w.
Suppose that w is an internal vertex of Pvs. Since P and P̂ are both shortest
paths z1 ; y and s is the bifurcation point of y, v, t, P̂ cannot contain an inner
edge of C. Then P , P̂ , and C contain a subdivision of K2,3 as a subgraph,
contradicting the outerplanarity of G. So suppose that w = s. Let Q be a
shortest path z2 ; y that contains Pts as a subpath, and let Q̂ be a shortest
path z2 ; y that does not contain s. In a manner similar as for P̂ , we can argue
that Q̂ cannot contain an inner edge of C. Then P , P̂ , Q, Q̂, and C contain a
subdivision of K2,3 as a subgraph, contradicting the outerplanarity of G. The
case that w = v is similar.

The lemma leads to the definition of an implied cycle.

Definition 4.7 Let G be a connected outerplanar graph. Given four distinct
vertices z1, z2, x, y ∈ V (G) that satisfy the conditions of Lemma 4.6, the cycle C
of G whose existence follows from Lemma 4.6 is said to be implied by z1, z2, x, y.
Given a set L ⊆ V (G) of vertices, we say that a cycle C of G is an implied
cycle of a set L if C is implied by some z1, z2 ∈ L and x, y ∈ V (G). The
bifurcation points v (of z1, x, y), t (of z2, x, y), s (of y, v, t), and y (of x, v, t)
are the defining representatives of the cycle.

Note that Lemma 4.6 shows that the implied cycle consists of the four defining
representative and the shortest paths between them (see Figure 7).

The following proposition shows that defining representatives indeed are
representatives according to Definition 4.2.

Proposition 4.8 Let G be a connected outerplanar graph, let x, y, z1, z2 ∈
V (G) be four distinct vertices, let C be a cycle of G implied by z1, z2, x, y.
Then the defining representatives of C are the representatives of z1, z2, y and x
on C.

Proof: Let v be the defining representative which is the bifurcation point of
z1, y, x. We will prove that it is the representative of z1 on C. The three other
cases are similar.

Suppose that z1 has a shortest path to C ending at a vertex w 6= v. Then w
is unique and has to be a neighbor of v by Proposition 2.1. Assume w.l.o.g. that
w is on Pvs, where Pvs is the shortest path from v to s. Then d(w, y) < d(v, y).
Since d(z1, w) ≤ d(z1, v), it follows that d(z1, w) + d(w, y) < d(z1, v) + d(v, y),
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contradicting that v is on a shortest path z1 ; y, and thus contradicting the
fact that v is the bifurcation point of z1, x, y. Hence, any shortest path from z1

to C ends at v, and v is the representative of z1 on C.

By definition, if L ⊆ V (G) is a resolving set of G and z1, z2 ∈ L, x, y ∈ V (G)
imply a cycle C, then L \ {z1, z2} contains a vertex to resolve x and y. In the
next subsections, we explore the properties of such a third vertex.

First, however, we give one important property of implied cycles.

Proposition 4.9 Let G be a connected outerplanar graph, let x, y, z1, z2 ∈
V (G) be four distinct vertices, let C be a cycle of G implied by z1, z2, x, y, and
let w be a vertex of C or the midpoint of an edge of C. Then d(w, y) 6= d(w, x),
unless w is the representative of z1 or z2 on C.

Proof: Let v, t, s, u be the defining representatives of C. Without loss of gen-
erality, w is on the shortest path from v to s. Note that w 6= v, because v
is the representative of z1 on C by Proposition 4.8. Since v is the bifurcation
point of z1, x, y, it follows that w is not on a shortest path v ; x, imply-
ing that d(v, x) < d(v, w) + d(w, x). By definition, d(v, x) = d(v, y). Since
d(v, y) = d(v, s) + d(s, y) by the definition of s and d(v, s) = d(v, w) + d(w, s),
we have that d(v, y) = d(v, w) + d(w, s) + d(s, y) ≥ d(v, w) + d(w, y), and thus
d(w, y) < d(w, x).

4.3 Three Representatives

In this section, we give a sufficient condition for a set L of vertices to be a
resolving set. Namely, the results of this section imply that if L satisfies Re-
quirement 1 and L has at least three representatives on all implied cycles, then
L is a resolving set. Note, however, that this condition is not necessary; in
particular, there are resolving sets that have only two representatives on some
implied cycles. Therefore, a more complicated requirement (Requirement 2) will
be stated in Section 4.5. Since the case when L has three representatives on an
implied cycle is an important case in the correctness proof of that requirement,
we still treat this situation here.

Lemma 4.10 Let G be a connected outerplanar graph, let L ⊆ V (G) be a set
of vertices, let z1, z2 ∈ L and x, y ∈ V (G) be four distinct vertices, and let C be
a cycle of G implied by z1, z2, x, y. If L has at least three representatives on C,
then L resolves x and y.

Proof: Let v, t, s, u be the defining representatives of C, and let Pvs be the
shortest path between v and s (see Figure 8). As proved in Proposition 4.8, v
and t are the representatives on C of z1 and z2 respectively. By assumption,
there exists a z ∈ L for which the representative ẑ on C is different from the
representatives of z1 and z2 on C (i.e. ẑ 6= v, ẑ 6= t). We will prove that z
resolves x and y.

Without loss of generality, ẑ lies on Pvs. Since ẑ 6= v, there is a C-disjoint
path from z to a vertex of V (Pvs) \ {v}. Then there is no C-disjoint path from
z to x, as such a path could be extended to a C-disjoint path from z to u,
contradicting Proposition 2.1. Hence, since ẑ 6= v lies on Pvs, Proposition 4.3
implies that there exists a shortest path z ; x for which the vertex r of C
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Figure 8: The set L has three representatives on the cycle C implied by
z1, z2, x, y and it resolves x and y (Lemma 4.10).

that is closest to z lies on Pvs. If r 6= v, then Proposition 4.9 implies that
d(r, y) < d(r, x), and thus d(z, y) ≤ d(z, r) + d(r, y) < d(z, r) + d(r, x) = d(z, x).
Hence, z resolves x and y. If r = v, then as ẑ 6= v, r has a neighbor r′ on Pvs such
that d(z, r′) ≤ d(z, r). Since r′ is on a shortest path v ; y, d(r′, y) < d(r, y).
Therefore, d(z, y) ≤ d(z, r′) + d(r′, y) < d(z, r) + d(r, y) = d(z, r) + d(r, x) =
d(z, x), and thus z resolves x and y.

In Corollary 4.12 we prove that a similar result holds under the condition
that L has at least three representatives on a face of the embedding. To this
end, we need the following auxiliary result.

Lemma 4.11 Let G be a connected outerplane graph and let C,C ′ be cycles of
G such that C ′ is topologically contained in C. If vertices z1 6= z2 of G have the
same representative v on C, then they have the same representative on C ′.

Proof: Suppose that v is a regular vertex. By Proposition 4.3, any vertex
of C has a shortest path to z1 that contains v. In other words, d(z1, c) =
d(z1, v)+d(v, c) for any vertex c of C. The same holds with respect to z2. Since
V (C ′) ⊆ V (C), the closest vertex (or vertices) of C ′ is the same for z1 and z2.
Hence, z1 and z2 have the same representative on C ′.

Suppose that v is the midpoint of an edge (v1, v2) of C. Then, by Proposi-
tion 4.3, any path from z1 or z2 to a vertex c ∈ V (C) contains v1 or v2. In partic-
ular, d(z1, c) = min{d(z1, v1)+d(v1, c), d(z1, v2)+d(v2, c)} = d(z1, v)+d(v, c)−1.
Using the same arguments as above, z1 and z2 have the same representative on
C ′.

Corollary 4.12 Let G be a connected outerplane graph and let C,C ′ be cycles
of G such that C ′ is topologically contained in C. For any integer k, if a set
L ⊆ V (G) of vertices has at least k distinct representatives on C ′, then L has
at least k distinct representatives on C.

This corollary, together with Lemma 4.10, implies the following.

Corollary 4.13 Let G be a connected outerplane graph, let L ⊆ V (G) be a set
of vertices, let z1, z2 ∈ L and x, y ∈ V (G) be four distinct vertices, let C be a
cycle of G implied by z1, z2, x, y, and let C ′ be a cycle of G that is topologically
contained in C. If L has at least three representatives on C ′, then L resolves x
and y.
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4.4 Two Representatives and Extreme Representatives

The previous section shows that if a set L has at least three representatives
on every implied cycle C, then any pair of vertices x and y are resolved by L.
Therefore, if we know that a set of vertices has three representatives on every
implied cycle, then it is not necessary to know exactly which vertices that set
contains. However, if a set L has two representatives on C, then we have to
look at L in more detail to determine whether it is a resolving set. In the theme
of providing “somewhat local” characterizations, we shall prove that there is a
representative that resolves x and y in a face F “close to” an implied cycle C.
In this section, we specify how to find F and this representative on F when L
and C ′ are given.

We need some auxiliary definitions, which are standard in graph theory.
We say that two faces are adjacent if they share an edge. Note that in an
outerplanar graph the vertices of such an edge actually form a separator of the
graph. The weak dual of an outerplane graph G is a graph that has the faces of
G (except the unbounded outer face) as vertices. Two vertices of the weak dual
are adjacent if and only if the corresponding faces are adjacent. Observe that
the weak dual of a biconnected outerplane graph is a tree, and that the weak
dual of an outerplane graph is a forest.

The weak dual immediately implies a distance metric on the set of faces of
the outerplane graph. We need this metric in the following definition.

Definition 4.14 Let G be a connected outerplane graph and let L ⊆ V (G) have
exactly one representative on a face C ′ of G. An extremal face of L and C ′ is
any face F of G on which L has at least two representatives and that is in the
same biconnected component as C ′. An extreme face of L and C ′ is an extremal
face F of L and C ′ such that there is no extremal face of L and C ′ on the path
in the weak dual of G between F and C ′.

Note that there might be a combination of a set L of vertices and a face C ′

that has no extreme faces.
We make the following observations about extreme faces.

Proposition 4.15 Let G be a connected outerplane graph and let L ⊆ V (G)
have exactly one representative on a face C ′ of G. Then L and C ′ have at most
two extreme faces.

Proof: Suppose for sake of contradiction that L and C ′ have three extreme faces
F1, F2, and F3. Consider the subtree of the weak dual induced by F1, F2, F3

and the shortest paths between them. By the definition of an extreme face, this
subtree contains a face D that has degree 3 in the subtree. Therefore, D has
three (inner) edges, say f1, f2, and f3, such that f1 separates F1 from F2 and F3,
etc. Since f1, f2, and f3 do not have a vertex in common and L can have only
one representative ẑ on D, one of the inner edges (say f3 = (v3, w3)) is such that
all vertices of L are in the connected component of G−{v3, w3} that contains ẑ.
Note that any path from a vertex z ∈ L to a vertex v ∈ V (F3) must contain a
vertex of f3 and thus a vertex of D. If ẑ is a regular vertex, then Proposition 4.3
implies that there is a shortest path from z to v that contains ẑ. Hence, L can
have only one representative on F3, a contradiction to the assumption that F3

is an extreme face. If ẑ is the midpoint of an edge e, then there can be two
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shortest paths from z to v that each contain a different endpoint of e. Still, L
can have only one representative on F3, a contradiction to the assumption that
F3 is an extreme face.

Proposition 4.16 Let G be a connected outerplane graph, let L ⊆ V (G) have
exactly one representative ẑ on a face C ′ of G, and let F be an extreme face of
L and C ′. Then there is a unique representative of L on F that is furthest from
ẑ.

Proof: Let F ′ denote the face adjacent to F on the path in the weak dual
between F and C ′ (note that possibly F ′ = C ′), and let e = (v1, v2) denote the
edge that F and F ′ share. Since F is an extreme face, F ′ cannot be extremal,
and thus L has exactly one representative ẑ′ on F ′. This implies that all vertices
of L − {v1, v2} are in the component of G − {v1, v2} that contains the vertices
of V (F − {v1, v2}) (we say that L is on the side of F ).

Suppose that ẑ′ is the midpoint of e. Then the only representative of L on
F is the vertex or midpoint that lies antipodal to ẑ′ on F . This contradicts the
assumption that F is an extreme face (and thus in particular that L must have
at least two representatives on F ). Hence, ẑ′ is not the midpoint of e. Without
loss of generality, ẑ′ = v1. Because L is on the side of F and ẑ′ = v1, every
representative of L on F is (strictly) closer to v1 than to v2. Since e separates
C ′ and F , any shortest path from ẑ to a vertex of F must contain v1 or v2, and
thus there is always a shortest path from ẑ to any representative of L on F that
contains v1. It follows that a representative of L on F that is furthest from ẑ
is the unique representative of L on F that is furthest from v1 (note that this
representative is strictly closer to v1 than to v2).

Proposition 4.17 Let G be a connected outerplane graph and let L ⊆ V (G)
have exactly one representative ẑ on a face C ′ of G. If L and C ′ do not have an
extreme face, then L has only one representative on the biconnected component
that contains C ′.

Proof: We prove the contrapositive: if L has two representatives on a bicon-
nected component X, then X contains an extreme face. In fact, it suffices to
prove that it contains an extremal face.

Let z, z′ ∈ L have distinct distinct representatives ẑ, ẑ′ on X. Then any
shortest path from z to z′ contains ẑ, ẑ′, and it contains at least one edge e of
X. Let F be a face that contains e.

If z, z′ have the same representative on F , then the same vertex of F has
minimal distance to both z, z′. This is not possible, since it contradicts the
fact that e is on a shortest path from z to z′. Therefore, L has at least two
representatives on F , and it is extremal.

Using extreme faces and the above propositions, we can define so-called
single-extreme representatives.

Definition 4.18 Let G be a connected outerplane graph and let L ⊆ V (G)
have exactly one representative ẑ on a face C ′ of G. Then a single-extreme
representative v of L and C ′ is the representative of L farthest from ẑ on an
extreme face of L and C ′, or if L and C ′ do not have an extreme face, then v is
the single representative of L on the biconnected component that contains C ′.
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Figure 9: An example of single-extreme representatives. The extreme faces of
L = {e1, z1, z2, z3} and the face C ′ are F1 and F2: L has one representative on
F but several on both F1 and F2. The single-extreme representatives of L and
C ′ are e1 and e2 (Definition 4.18). Note that e1 ∈ L but e2 6∈ L.

It follows from Proposition 4.16 and 4.17 that single-extreme representatives
are well defined. Figure 9 contains an example of single-extreme representa-
tives. Observe that Definition 4.18, in conjunction with Proposition 4.15, 4.16
and 4.17, implies that L and C ′ have at least one and at most two single-extreme
representatives.

We can extend Definition 4.18 to the case when L has two representatives
on a face C ′.

Definition 4.19 Let G be a connected outerplane graph and let L ⊆ V (G) have
exactly two representatives ẑ1, ẑ2 on a face C ′ of G. Then L can be partitioned
into two sets, L = L1]L2, such that L1 has exactly representative ẑ1 on C ′ and
L2 has exactly representative ẑ2 on C ′. The extreme representatives of L and
C ′ are the single-extreme representatives of L1 and C ′, and of L2 and C ′.

With this definition, L and C ′ have at least one and at most four extreme
representatives.

Extreme representatives play a crucial role in detecting whether the vertices
x and y of an implied cycle are resolved, as we show in the following lemma.
For an example of the lemma, see Figure 10.

Lemma 4.20 Let G be a connected outerplane graph, let L ⊆ V (G) be a set
of vertices, let z1, z2 ∈ L and x, y ∈ V (G) be four distinct vertices that imply a
cycle C of G such that L has exactly two representatives on C, and let C ′ be
any face that is topologically contained in C. If L is a resolving set, then one of
the extreme representatives of L and C ′ resolves x and y.

Proof: Let v, t, s, u be the defining representatives of C, and define L1, L2 as
in Definition 4.19 such that z1 ∈ L1. Since L is a resolving set, there is a z ∈ L
that resolves x and y. Without loss of generality, z has v as its representative
on C (and thus z ∈ L1) and d(z, y) < d(z, x). We will prove that (v, s) ∈ E(G),
that this edge separates the interior of C from an extreme face F of L1 and C ′,
and that the extreme representative of L1 and C ′ with respect to F resolves x
and y.

We start by proving that (v, s) ∈ E(G). If a shortest path z ; y intersects C,
then because v is the representative of z on C, Proposition 4.3 implies that there
is a shortest path z ; y that contains v, and thus d(z, y) = d(z, v) + d(v, y) =
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Figure 10: The set L = {z1, z2, z} has two representatives on the cycle C implied
by z1, z2, x, y. Neither z1 nor z2 resolves the pair x, y, but there is an extreme
representative of L and C that does resolve the pair, namely e, cf. Lemma 4.20
and Requirement 2 for C ′ = C.

d(z, v) + d(v, x) ≥ d(z, x), a contradiction. Therefore, no shortest path z ; y
intersects C. Then a shortest path z ; y can be extended to a C-disjoint path
z ; s. As v is the representative of z on C, there is also a C-disjoint path
z ; v. Proposition 2.1 then implies that v and s are adjacent.

Observe that the above paragraph implies that there is a face that is sep-
arated from the interior of C by (v, s). Call this face F . We claim that F is
an extreme face of L1 and C ′ and that the extreme representative of L1 and C ′

with respect to F resolves x and y.
As an intermediate result, we prove that the representative ẑ of z on F

resolves x and y. Observe first that any path z ; x contains v or s; otherwise,
there would exist C-disjoint paths from z to v, to s, and to a third vertex of C,
contradicting Proposition 2.1. Also, since F contains v and s, any path z ; x
intersects F .

Suppose that no shortest path z ; y intersects F . Let w be the last vertex of
F on a shortest path Pvy from v to y that contains s. Observe that in the union
of the assumed F -disjoint path z ; y and Pvy we can find an F -disjoint path
z ; w. By Proposition 2.1, this implies that d(ẑ, w) ≤ 1. Then (1): d(ẑ, y) ≤
1 + d(w, y) ≤ 1 + d(s, y) = 1 + d(v, y) − 1 = d(v, y). Applying Proposition 4.3
to z, x, and C, and to z, x, and F , we observe that (2): d(ẑ, x) ≥ d(v, x).
Since d(v, x) = d(v, y) by definition, the equality d(ẑ, x) = d(ẑ, y) holds only if
equality holds in both (1) and (2). Then w = s and ẑ = v. Moreover, as v is the
representative of z on C, d(z, v) < d(z, s) and d(ẑ, v) < d(ẑ, s). This, together
with the assumption that no shortest path z ; y intersects F and with the
definition of F , implies the existence of a subdivision of K2,3 as a subgraph, a
contradiction.

Suppose then that some shortest path z ; y intersects F . By Proposi-
tion 4.3, there is a shortest path z ; y that contains ẑ or, if ẑ is a midpoint
on an edge, contains one of the endpoints of this edge. By Proposition 4.3 and
the earlier observation that any path z ; x intersects F , the same holds for a
shortest path z ; x. Then 0 > d(z, y) − d(z, x) = d(ẑ, y) − d(ẑ, x). Hence, ẑ
resolves x and y. This proves the intermediate result.

We now claim that L1 has more than one representative on F . Let ẑ1 be
the representative of z1 on F . Note that by the definition of an implied cycle,
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z1 has a shortest path to x and to y that contains v. Since v ∈ F , there is a
shortest path from z1 to x and from z1 to y that intersects F . Hence, it follows
from Proposition 4.3 that if ẑ1 ∈ V (G), then there are shortest paths from z1 to
x and to y that both contain ẑ1; if ẑ1 is a midpoint of an edge of F , then there
are such shortest paths that both contain an endpoint of that edge. As z1 does
not resolve x and y, neither does ẑ1. Since ẑ does resolve x and y, ẑ 6= ẑ1, and
thus L1 has more than one representative on F .

To prove that F is an extreme face of L1 and C ′, we note that there is
a path in the weak dual between C ′ and F that contains only faces that are
topologically contained in C. Hence, it would suffice to prove that no face D
that is topologically contained in C has more than one representative of L1 on
it. Observe that L has at least two representatives on D by Lemma 4.5, since
L is a resolving set and thus satisfies Requirement 1. Moreover, L has at most
two representatives on this face by Corollary 4.12, as the face is topologically
contained in C and L has two representatives on C. Hence, L has two represen-
tatives on any face that is topologically contained in C; in particular, L1 and
L2 each have one representative on each such face. Therefore, F is an extreme
face.

Finally, we need to show that the extreme representative e of L1 and C ′ that
lies on F resolves x and y. Since e is on F , it has C-disjoint paths to both v
and s. Hence, e cannot have a C-disjoint path to x, as such a path could be
extended to a C-disjoint path to u, contradicting Proposition 2.1. Suppose that
there is a shortest path from e to x that contains s. Then, by Proposition 4.9,
d(e, x) = d(e, s) + d(s, x) > d(e, s) + d(s, y) ≥ d(e, y), and thus x and y are
resolved. Suppose then that there is a shortest path from e to x that contains v.
Recall that ẑ resolves x and y, and in particular that d(ẑ, y) < d(ẑ, x). Moreover,
as the representative of z on C is v and any path from z to C contains a vertex of
F , the representative of ẑ on C is v as well. Note that the definition of extreme
representative implies that e is furthest away from v among all representatives of
L1 on F . Therefore, the shortest path from e to x that contains v also contains
ẑ, and thus:

d(e, x) = d(e, ẑ)+d(ẑ, v)+d(v, x) = d(e, ẑ)+d(ẑ, x) > d(e, ẑ)+d(ẑ, y) ≥ d(e, y),

Hence, e resolves x and y.

4.5 A Characterization for Outerplanar Graphs

Using the notions and results of the previous sections, we can generalize The-
orem 4.4 to outerplanar graphs. This is a crucial result, since it characterizes
resolving sets in a manner that allows for the use of dynamic programming.

Let G be a connected outerplane graph. We will show that if L ⊆ V (G) is
a resolving set, then it satisfies the following requirement:

Requirement 2 Let z1, z2 ∈ L and x, y ∈ V (G) be four distinct vertices that
imply a cycle C of G such that L has exactly two representatives on C, and
let C ′ be a face that is topologically contained in C. Then one of the extreme
representatives of L and C ′ resolves x and y.

For example, Figure 10 satisfies the requirement with respect to L and C =
C ′, since the extreme representative e of L and C = C ′ resolves x and y.

This requirement leads to one of the central results of this paper.
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Theorem 4.21 Let G be a connected outerplane graph with at least three ver-
tices. Then a set L ⊆ V (G) is a resolving set of G if and only if it satisfies
Requirement 1 and 2.

Proof: To see that Requirement 1 and 2 are necessary, suppose that L is a
resolving set. It was argued before the statement of Requirement 1 that L
satisfies this requirement. The fact that L satisfies Requirement 2 is immediate
from Lemma 4.20.

We now show that Requirement 1 and 2 are sufficient. Suppose that L ⊆
V (G) satisfies Requirement 1 and 2, and choose any x, y ∈ V (G). We show that
there exists a z ∈ L that resolves the pair x, y. Suppose for sake of contradiction
that L does not resolve x, y.

Using the same arguments as in the proof of Theorem 4.4, L is non-empty.
Choose z1 ∈ L arbitrarily. As in Theorem 4.4, let v be the bifurcation point of
z1, x, y, and let v1, v2 be successors of v on some shortest paths v ; x, v ; y
respectively. By Requirement 1, there is a z2 ∈ L such that, without loss of
generality, d(z2, v1) ≤ d(z2, v). By assumption, neither z1 nor z2 resolves x, y.

Suppose that a shortest path z1 ; x intersects a shortest path z2 ; y on
a vertex w. Let w′ be the bifurcation point of w, x, y. Note that there exists a
shortest path z1 ; x that intersects a shortest path z2 ; y on w′. Using similar
arguments as in Lemma 4.6, it follows that w′ is also on a shortest path z1 ; y
and a shortest path z2 ; x. But then w′ is the bifurcation point of z1, x, y,
i.e. w′ = v. Moreover, since v is on a shortest path z2 ; x, d(z2, v1) > d(z2, v),
contradicting the choice of z2. Hence, no two shortest paths z1 ; x, z2 ; y
intersect.

It follows from Lemma 4.6 that the vertices z1, z2, x, y imply a cycle C. Let
v, t, s, u be the defining representatives of C. Let C ′ be any face that is topo-
logically contained in C. By Lemma 4.5, L has at least two representatives on
C ′, because L satisfies Requirement 1. Then L has at least two representatives
on C by Corollary 4.12.

If L has at least three representatives on C, then Lemma 4.10 shows that L
resolves x and y and the theorem follows. Hence, from now on, we assume that L
has exactly two representatives on C. Then from the statement of Requirement 2
there is an extreme representative ẑ of L and C ′ that resolves x and y. Let z ∈ L
be the corresponding vertex. It remains to show that z resolves x and y as well.

Let L1 ⊂ L be the set of vertices that have representative v on C (cf. Defi-
nition 4.19). Without loss of generality, z ∈ L1 and d(ẑ, y) < d(ẑ, x). Note that
ẑ does not lie on C: by assumption, L has two representatives on C, neither of
which resolves x and y.

We now show that L1 and C ′ has an extreme face. Suppose for sake of
contradiction that L1 has only one representative on the biconnected component
that contains C ′. Then this representative is the extreme representative of
L1 and C ′, and thus it is ẑ. Since any path from z to x and y contains ẑ,
d(z, x) = d(z, ẑ) + d(ẑ, x) and d(z, y) = d(z, ẑ) + d(ẑ, y). However, z does not
resolve x and y by assumption, whereas ẑ does, a contradiction. Therefore,
L1 has more than one representative on the biconnected component, and there
exists an extreme face of L1 and C. Denote the extreme face by F .

We need several auxiliary results.

Claim 1: Any path from z to C contains a vertex of F .
Proof: Let F ′ be the face adjacent to F that is between F and C ′ in the weak
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dual (note that possibly F ′ = C ′). By definition, some vertex z′ ∈ L1 has a
representative ẑ′ on F that is distinct from ẑ. Suppose that ẑ is on the edge
separating F and F ′ (the boundary). Then ẑ′ is also on the boundary, as by the
definition of an extreme representative it must be at least as close to the common
representative on C ′ as ẑ is. Observe that z and z′ have the same representative
on F ′. If this common representative does not lie on the boundary between F
and F ′, then Proposition 2.1 and Proposition 4.3 imply that any shortest path
from z or z′ to F intersects F ′. Hence, Proposition 4.3 implies that z and z′

have the same representative on F , a contradiction. Therefore, the common
representative does lie on the boundary. But then this common representative
equals ẑ and ẑ′. Thus, ẑ = ẑ′, a contradiction. Hence, ẑ is not on the boundary
between F and F ′. Suppose now that there is a path from z to C that contains
no vertex of F . Then it could be extended to F -disjoint paths from z to both
vertices on the boundary between F and F ′. Since ẑ is not on this boundary,
we obtain a contradiction to Proposition 2.1. The claim follows. #

Claim 2: There is a C-disjoint path from z to s.
Proof: Observe that Claim 1 together with Proposition 4.3 implies that the
representative of ẑ on C is v. Since d(ẑ, y) < d(ẑ, x), the reasoning in the second
paragraph of Lemma 4.20 implies that there is a C-disjoint path from ẑ to y.
There is also a C-disjoint path from z to ẑ, and combining them yields a C-
disjoint path from z to y. Using a shortest path from s to y, this path can be
further extended to a C-disjoint path from z to s. #

Claim 3: Any path from z to x must contain a vertex of F .
Proof: Suppose not, and consider a path from z to x that does not contain a
vertex of F . If this path is C-disjoint, then it can be extended to a C-disjoint
path from z to u. This path, together with the C-disjoint path from z to s
which exists by Claim 2, contradicts Proposition 2.1. Therefore, the path is not
C-disjoint. Then there is a path from z to C that contains no vertex of F , a
contradiction to Claim 1. So any path from z to x contains a vertex of F . #

We are now ready to prove the theorem. If ẑ is a regular vertex, then applying
Claim 3 and Proposition 4.3 implies that any shortest path from z to x contains
ẑ, so d(z, y) ≤ d(z, ẑ) + d(ẑ, y) < d(z, ẑ) + d(ẑ, x) = d(z, x), and thus z resolves
x and y. Similarly, if ẑ is a midpoint, then d(z, y) ≤ d(z, ẑ) + d(ẑ, y) − 1 <
d(z, ẑ) + d(ẑ, x) − 1 = d(z, x), and thus z resolves x and y. The theorem
follows.

5 Algorithm for Outerplanar Graphs

In this section, we prove that Metric Dimension can be solved in polynomial
time on outerplane graphs, and thus also on outerplanar graphs. We consider
first the data structures that support the algorithm. The algorithm will build
up a resolving set in a dynamic-programming fashion. Therefore, we need to
find a suitable order in which to process the outerplane graph. This order will
be given by a (rooted) annotated generalized dual tree, which is closely related
to the planar dual of the outerplane graph. The tree has in its vertex set all cut
and pendant vertices of the outerplane graph and all face vertices of the dual.
The precise structure and the way it is annotated is considered in more detail
in Section 5.1, together with its most crucial properties.
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When traversing the tree, we need to combine the information of the chil-
dren of a tree vertex and send this combination to the parent of that vertex.
Moreover, the tree vertex may expect certain vertices of the partial resolving
set to be present in the yet unprocessed part of the tree. These ‘requests’ must
also be sent to the parent vertex. The combined information of descendants and
requests to the parents are made through so-called boundary conditions, which
are defined in Section 5.2. We also need to properly combine the information
of the children of a vertex and to satisfy Requirement 1 and 2. This is mainly
accomplished by configurations, defined in Section 5.3. Several properties of
configurations are also proved there.

Finally, we give the algorithm in Section 5.4. The correctness of the algo-
rithm follows from the characterization of resolving sets in outerplane graphs of
Section 4.

5.1 Generalized Dual Tree

We describe the order in which the outerplane graph will be processed by the
algorithm. For this we use the generalized dual tree.

Definition 5.1 Let G be a connected outerplane graph. For each cut vertex c
and each nontrivial biconnected component C of G that contains c, let fc,C be
an arbitrary face of C that contains the cut vertex. Then a generalized dual
tree T = (V ′, E′) of G is defined as follows. V ′ is the union of the set of faces
of G (except the outer face), the set of cut vertices of G, and the set of vertices
of G of degree 1. There is an edge in E′ between

• two vertices corresponding to two faces if the faces share an edge of G;

• two cut vertices if these vertices are adjacent in G;

• two vertices of degree 1 if these vertices are adjacent in G;

• a cut vertex and a vertex of degree 1 if these vertices are adjacent in G;

• a cut vertex c contained in a nontrivial biconnected component C and the
vertex corresponding to fc,C .

Let an arbitrary vertex of T be the root, denoted by v′r.

Observe that a fixed outerplane graph might have many generalized dual trees,
depending on the choices made for the faces fc,C . For the purposes of this
paper, the precise faces fc,C chosen are immaterial. Therefore, without loss of
generality, we will speak of the generalized dual tree T of G. Figure 11 illustrates
the definition.

Note that the generalized dual tree of an outerplanar graph G contains the
weak dual as an induced subgraph, because the weak dual has the faces of G
(except the outer face) as vertices, and two faces are adjacent if they share an
edge of G. It then follows that the generalized dual tree is indeed a tree by
construction, because the weak dual of G is a forest. Moreover, according to
the definition of a generalized dual tree, a cut vertex is a vertex of both G and T .

We now annotate the generalized dual tree. We associate a subset of V (G)
with each vertex and each edge of T . If v′ ∈ V (T ) is a face, then the set s(v′)
consists of the vertices on the face. If v′ is a cut vertex or a pendant vertex,
then s(v′) consists of that vertex. Let e′ = (v′, p′) be an edge of T , where p′ is
the parent of v′. If s(v′) and s(p′) correspond to a cut or pendant vertex of G,
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Figure 11: An outerplane graph G and its generalized dual tree T . Note that
for v1, the faces fv1,C are F1, F5, and F6 respectively. The dashed line indicates
how G is divided to B(F1, v1) and B(v1, F1). The sets on the edges of T indicate
the values of s(e′).

then s(e′) = s(p′). Otherwise, at least one of s(v′), s(p′) is a face, and we set
s(e′) = s(v′) ∩ s(p′).

When traversing the annotated generalized dual tree, it will be useful some-
times to combine the sets s for all descendants or ancestors of a vertex of the
tree. To this end, we define the function B. Removing an edge (v′, w′) divides
T into two components, Tv′ and Tw′ , where Tv′ is the one containing v′. Define
B(v′, w′) as the subgraph of G corresponding to Tv′ . Formally, it is the sub-
graph of G induced by

⋃
u′∈V (Tv′ )

s(u′). Note that B(v′, w′) and B(w′, v′) are

two different subgraphs of G (see Figure 11). Moreover, if v′, w′ are adjacent
faces, then the subgraphs share two vertices and an inner edge; if v′ is a face and
w′ a cut vertex (or the other way around), then the subgraphs share one vertex;
otherwise, they do not intersect. To avoid this possibly nonempty intersection,
define B−(v′, w′) as the subgraph of G induced by V (G) \ V (B(w′, v′)). Then
we can divide G into two nonintersecting subgraphs, B−(v′, w′) and B(w′, v′).

Finally, the notion of representative can be extended to the generalized dual
tree. We can define the representative of z ∈ V (G) on v′ ∈ V (T ) or on e′ ∈ E(T )
as the representative of z on s(v′) or on s(e′), respectively.

We now state three important, straightforward lemmas about the generalized
dual tree and its annotation. The first lemma is immediate from the definitions.

Lemma 5.2 Let e′ = (v′, w′) ∈ E(T ). Then B(v′, w′) and B(w′, v′) are con-
nected subgraphs of G, and any path from B(v′, w′) to B(w′, v′) intersects s(e′).

The second lemma is also immediate from the definitions.

Lemma 5.3 Let e′ = (v′, w′) ∈ E(T ), let L be a set of vertices, and let Z be
the set of representatives of L ∩B(v′, w′) on e′. Then

• g(v, L)∩V (B(w′, v′)) = g(v, Z∪(L∩V (B(w′, v′))))∩V (B(w′, v′)) for any
v ∈ B(w′, v′);

• L resolves x, y ∈ V (B(w′, v′)) if and only if Z ∪ (L ∩ V (B(w′, v′))) does.

In the third lemma, we prove that if both endpoints and the midpoint of an inner
edge are representatives of a set of vertices, then we do not need to remember
that the midpoint is a representative.
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Lemma 5.4 Let e′ = (v′, w′) ∈ E(T ) correspond to an inner edge e = (v1, v2)
with midpoint ve, let L ⊆ V (G), and let {v1, v2, ve} be the set of representatives
of L ∩ V (B(v′, w′)) on e′. Then:

• g(v, L) ∩ V (B(w′, v′)) = g(v, {v1, v2} ∪ (L ∩ V (B(w′, v′)))) ∩ V (B(w′, v′))
for any v ∈ B(w′, v′);

• L resolves x, y ∈ V (B(w′, v′)) if and only if {v1, v2} ∪ (L ∩ V (B(w′, v′)))
does.

Proof: The first part follows from the fact that a shortest path from a vertex in
L∩V (B(v′, w′)) to a vertex v in B(w′, v′) contains either v1 or v2 by Lemma 5.2.

Consider the second part and suppose that x, y are resolved by ve, but not
by v1. Then d(v1, x) = d(v1, y) and w.l.o.g. d(ve, x) < d(ve, y). Then

1
2 + min{d(v1, x), d(v2, x)} < 1

2 + min{d(v1, y), d(v2, y)}.

Putting these equations together implies that d(v2, x) < d(v2, y), that is, x, y
are resolved by v2.

Following this lemma, if L ∩ V (B(v′, w′)) has representatives {v1, v2, ve} on
e′, where e′ corresponds to an inner edge e and ve is the midpoint of e, then
we can equivalently say that it has representatives {v1, v2}, without losing any
expressive power. That is, our ability to determine the function g restricted
to B(w′, v′) is unaffected, as well as our ability to determine which vertices are
resolved in B(w′, v′). We use this equivalence extensively later on and essentially
treat {v1, v2, ve} as being equal to {v1, v2}.

5.2 Boundary Conditions

We now define the ‘states’ or ‘indices’ of the dynamic-programming table in
our algorithm. We call these ‘states’ the boundary conditions. Throughout this
section, let G be a connected outerplane graph, let T be the generalized dual
tree of G rooted at an arbitrary vertex v′r, and let s be the annotation of T as
defined before.

Let v′ ∈ V (T ), let p′ be its parent, and let e′ = (v′, p′) ∈ E(T ). Define the
set Xe′ as follows: if e′ corresponds to an inner edge e of G, then let Xe′ be the
union of s(e′) and {ve}, where ve is the midpoint of e; otherwise, let Xe′ = s(e′).
Then a boundary condition can be defined as follows.

Definition 5.5 Let v′ ∈ V (T ), let p′ be its parent, and let e′ = (v′, p′) ∈ E(T ).
A boundary condition t of e′ is a tuple consisting of the following elements:

• tb, trl, tru ⊆ Xe′ ,

• tel, teu ∈ P2(V (G)) ∪ {0}, and

• tv1 , tv2 ∈ {0, 1},

where tv2 is included only if |Xe′ | > 1.

Given this definition, we need to define what it means for a (partial) solution
to satisfy the boundary condition.

28



Definition 5.6 Let v′ ∈ V (T ), let p′ be its parent, and let e′ = (v′, p′) ∈ E(T ).
We say that a set L ⊆ V (G) of vertices adheres to a boundary condition t of e′

if:

• tb is equal to the set L ∩ s(e′) if at least one of v′, p′ is a face, and tb is ∅
otherwise.

• trl is equal to the set of representatives of L∩V (B(v′, p′)) on s(e′). (Note
that tb ⊆ trl.)

• tel is equal to ∅ if at least one of v′, p′ is not a face. Otherwise, tel is equal
to:

– 0 if there is a set L′ ⊆ L ∩ V (B(v′, p′)) of size two such that L′ has
two representatives on e′ and shortest paths from L′ to e′ intersect a
face y′ on which L has at least three representatives;

– the representative on v′ furthest from the vertex in trl if L has at
least three representatives on v′ and |trl| = 1;

– the extreme representatives of L and p′ that are in B(v′, p′) otherwise.

• tru and teu are as trl and tel respectively, but with v′ and p′ interchanged.

• tvi = |g(vi, L)∩V (B(v′, p′))| for i = 1 if |X| = 1 and for i = 1, 2 otherwise.
(Note that this may depend on both L∩V (B−(v′, p′)) and L∩V (B(p′, v′)).)

For trl and tru we treat {v1, v2} as being equal to {v1, v2, ve}, as explained below
Lemma 5.4. Hence, if e′ corresponds to an inner edge, then tb, trl, tru ⊂ Xe′ .

The purpose of tel is to contain the extreme representatives that the algo-
rithm needs to verify Requirement 2. However, we can not simply say that
tel must be equal to the set of extreme representatives, as the algorithm does
not always know them. Therefore, we need the more complicated definition
given above. The following lemmas show that either tel contains the extreme
representatives, or Corollary 4.12 indicates that Requirement 2 is satisfied.

Proposition 5.7 Let v′, p′ correspond to faces that share an edge, let t be a
boundary condition of (v′, p′) with tel = 0, and let L ⊆ V (G) adhere to t. Then
any implied cycle of L that contains p′ or v′ satisfies Requirement 2.

Proof: Let C be an implied cycle of L that contains p′ or v′. Note that if L
has at least three representatives on C, then Requirement 2 is trivially satisfied.
Combined with the definition of an implied cycle, we may assume that L has
exactly two representatives on C. Since L adheres to t and tel = 0, by definition
there is a face y′ on which L has at least three representatives. If y′ is inside C,
then it follows from Corollary 4.12 that L has at least three representatives on
C, a contradiction. Hence, y′ is not inside C.

Face y′ and cycle C are a vertex and a connected component of the gener-
alized dual tree, so there is a unique path between them. Let (w′, u′) be the
last edge of this path so that u′ is inside C and w′ is not (note that possibly
(w′, u′) = (v′, p′)). Let L′ be as in the definition of the case tel = 0. Then L′

must have at least two representatives on (w′, u′)—otherwise, L′ would not have
two representatives on (v′, p′) (which corresponds to an edge or a chord of C).
Observe, however, that not all representatives of L on C are on the edge of C
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corresponding to (w′, u′). By Proposition 4.8 the representatives of L on C are
not adjacent, but have on a path between them one of the other two defining
representatives of the implied cycle C. Hence, L has at least three representa-
tives on C (two on (w′, u′), and a vertex among v, t that is not on the edge of
C corresponding to (w′, u′)), a contradiction. The proposition follows.

Proposition 5.8 Let v′, p′ correspond to faces that share an edge, let t be a
boundary condition of (v′, p′) with tel 6= 0, and let L ⊆ V (G) be a set of vertices
that adheres to t and that has less than three representatives on p′. Then tel is
equal to the set of the extreme representatives of L and p′ that are in B(v′, p′).

Proof: The definition of tel contains three cases when v′ and p′ are faces. We
have excluded the first case by assumption, and in the third case the proposition
follows by definition. Consider the second case, i.e. suppose that tel 6= 0, that
L has at least three representatives on v′, and that |trl| = 1. It suffices to show
that v′ is the relevant extreme face, i.e. that L contains two vertices that have
different representatives on v′ but the same representative on p′. Then it follows
by definition that tel contains the extreme representative.

Let Ls = {z1, z2, z3} ⊆ L have different representatives on v′ such that
tel contains the representative of z1 on v′. Then z1 ∈ V (B(v′, p′)). Since L
(and thus also Ls) has less than three representatives on p′ by assumption,
some of z1, z2, z3 have the same representative on p′. If z2 or z3 has the same
representative on p′ as z1 does, then the proposition follows. Otherwise, z2 and
z3 have the same representative on p′, which is different from the representative
of z1 on p. Since |trl| = 1, both z2 and z3 are in V (B−(p′, v′)). This contradicts
that z2 and z3 have different representatives on v′.

The following is needed to show that the algorithm runs in polynomial time.

Lemma 5.9 For any edge e′ of T , there are O(n4) boundary conditions. More-
over, all boundary conditions of e′ can be enumerated in polynomial time. Fi-
nally, any resolving set adheres to some boundary condition on e′.

Proof: Since |Xe′ | ≤ 3, there are at most 23 choices for each of tb, trl, and
tru. For both teu and tel there are O(n2) choices, and for both tv1 , tv2 there are
two choices. Multiplying gives that there are O(n4) boundary conditions. They
can be enumerated in the same time. The final statement of the lemma follows
immediately from Definition 5.6.

5.3 Configurations

The boundary conditions defined in the previous section define the states of the
dynamic-programming table. The main problem we are faced with now is to
compute the table entry for the boundary condition of an edge (v′, p′) using the
entries for the boundary conditions of the edges (w′, v′) of the children w′ of v′.
To this end, we define a new structure, called a configuration, that determines
what the solution for s(v′) looks like for each vertex v′ ∈ V (T ). The definition
of a configuration depends on whether v′ corresponds to a face (and what type
of face), or to a cut or pendant vertex of G (e.g. F1, v16 or v17 in Figure 11,
respectively). When v′ is a face, the definition splits into two different cases.
Recall that by Lemma 4.5, each face will have at least two representatives.
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Therefore, we distinguish two types of configurations for faces, depending on
whether a face has two representatives or more than two. This leads to a total
of three configuration types (two when v′ is a face, and one otherwise).

As before, throughout this section, let G be a connected outerplane graph,
let T be the generalized dual tree of G rooted at an arbitrary vertex v′r, and
let s be the annotation of T as defined before. Moreover, let v′ be an arbitrary
vertex of T .

We first introduce the following notion for the case when v′ corresponds to
a face.

Definition 5.10 Let z ∈ V (G) and let ẑ be the representative of z on v′, where
v′ is a face of G. Then the extended representative of z on v′ is the pair
(ẑ, w′), where w′ is v′ if z ∈ s(v′) and w′ is the neighbor of v′ in T such that
z ∈ V (B−(w′, v′)) otherwise.

Observe that for a fixed representative ẑ, there are at most four values of w′

such that (ẑ, w′) is a valid extended representative, namely v′, the at most two
faces that contain ẑ and share an edge with s(v′), and (if ẑ is a cut vertex) the
vertex of T corresponding to this cut vertex.

In the following subsections, we give the definition of each configuration
type.

5.3.1 Configurations of type I

First, we define a configuration for the case that s(v′) is a cut or pendant vertex
v. We note that we do not need to consider cut or pendant vertices when
satisfying Requirement 2, as this Requirement concerns only cycles and faces.
We only need to verify Requirement 1. Also, we need to know whether v is a
landmark or not.

Definition 5.11 Let v′ ∈ V (T ) correspond to a cut or pendant vertex v. A
configuration of type I on v′ consists of a boolean variable indicating whether v
is a landmark, and at most one vertex that is in g(v, ·). A set L ⊆ V (G) adheres
to a configuration of type I if v ∈ L if and only if the configuration specifies this,
and g(v, L) = ∅ if the configuration specifies this or g(v, L) consists of the single
vertex specified by the configuration.

Lemma 5.12 Let v′ ∈ V (T ) correspond to a cut or pendant vertex v, let C
be a configuration of type I on v′, and let L ⊆ V (G) adhere to C. Then C
determines the boundary conditions adhered to by L for all edges (v′, w′), where
w′ is a neighbor of v′ in T , and these boundary conditions can be computed
in polynomial time. Finally, all configurations of type I can be enumerated in
polynomial time.

Proof: Suppose that w′ is a child of v′ (similar arguments apply when w′ is the
parent of v′), and consider the boundary condition t of e′ = (w′, v′). Note that
s(e′) = s(v′) = {v}. If w′ is a face and C specifies that v is a landmark, then
tb = {v}; otherwise tb = ∅. Because v′ is not a face, tel = teu = ∅. Since g(v, L)
is known, it is easy to determine tv1

.
The component trl of t is {v} if v is a landmark and v ∈ B(w′, v′), or if

|g(v, L)∩V (B(w′, v′))| < |N(v)∩V (B(w′, v′))|; otherwise, |g(v, L)∩V (B(w′, v′))| =
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|N(v) ∩ V (B(w′, v′))| = 1 and trl is ∅. To see this, note that any vertex in
L ∩ B(w′, v′) has representative v on v′, so the question is whether there is a
vertex in L ∩B(w′, v′). A vertex w ∈ V (B(w′, v′)) is not in g(v, L) if and only
if there is a z ∈ L such that d(z, w) ≤ d(z, v) and thus z ∈ V (B(w′, v′)). A
similar argument holds for tru; however, if the configuration indicates that v is
a landmark, then tru = {v} regardless of g(v, L).

Finally, there are at most O(n) configurations of type I, and enumerating all
of these can be done in O(n) time.

5.3.2 Configurations of type II

Suppose that there are two representatives on v′. Then the algorithm has to
verify Requirement 2. We immediately run into two practical issues. First, the
algorithm does not know all landmarks yet, so how do we detect implied cycles
that could violate Requirement 2? Second, the boundary condition on (w′, v′)
for some neighbor w′ of v′ in T does not specify the extreme landmarks in all
cases. Can we verify Requirement 2 then? We address each of these issues in
turn.

We start by detecting implied cycles. For this, we can use extreme represen-
tatives.

Lemma 5.13 Let L ⊆ V (G), let z1, z2 ∈ L and x, y ∈ V (G) be four distinct
vertices that imply a cycle C of G such that L has exactly two representatives
on C, and let C ′ be a face that is topologically contained in C such that Require-
ment 2 is violated with respect to L and C ′. Then there are extreme represen-
tatives ze1, ze2 of L and C ′ such that C is also implied by ze1, ze2, x, y.

Proof: Let v, t, s, u be the defining representatives of C (see Definition 4.7 and
Figure 7). Let ze1, ze2 be any extreme representatives that have representatives
v and t, respectively, on C. By Proposition 2.1, there can not be C-disjoint
paths from ze1 to both x and y. So, without loss of generality, there is no
C-disjoint path ze1 ; x. Since ze1 has representative v on C, a shortest path
ze1 ; x contains v by Proposition 4.3, and d(ze1, x) = d(ze1, v) + d(v, x). Note
that there is a path ze1 ; y that contains v. If this is not a shortest path, then
d(ze1, y) < d(ze1, v) + d(v, y) = d(ze1, v) + d(v, x) = d(ze1, x), which implies
that ze1 resolves the pair, a contradiction. Hence, there exists a shortest path
ze1 ; y that contains v. By similar reasoning, there exist shortest paths from
ze2 to x and to y that contain t. Since ze1 and ze2 do not resolve x and y by
assumption, ze1, ze2, x, y also imply C.

We can now define a configuration for a face v′ that has two representatives,
a so-called configuration of type II. It specifies a set of extended representatives,
and possibly a set of extreme representatives. To be precise, there are two
subtypes:

Definition 5.14 Let v′ ∈ V (T ) correspond to a face. A configuration of type
IIa on v′ specifies a set R ⊆ s(v′)×NT [v′] that are valid extended representatives
for some set L ⊆ V (G) and |{ẑ : (ẑ, w′) ∈ R}| = 2, and a set X ⊆ V (G)
such that the extended representative of each vertex of X on v′ is in R. A set
L ⊆ V (G) adheres to a configuration of type IIa if there is a set L′ ⊆ L of size
two such that L′ has two representatives on a dual edge e′ = (v′, w′) for some
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neighbor w′ of v′ in T , and shortest paths from L′ to e′ intersect a face y′ on
which L has at least three representatives (cf. the case tel = 0 on e′); moreover,
R is equal to the set of extended representatives of L on v′ and X is equal to
the set of extreme representatives of L and v′ that are not in B(w′, v′).

The second subtype is complementary to the first subtype.

Definition 5.15 Let v′ ∈ V (T ) correspond to a face. A configuration of type
IIb on v′ specifies a set R ⊆ s(v′)×NT [v′] that are valid extended representatives
for some set L ⊆ V (G) and |{ẑ : (ẑ, w′) ∈ R}| = 2, and a set X ⊆ V (G)
such that the extended representative of each vertex of X on v′ is in R. A set
L ⊆ V (G) adheres to a configuration of type IIb if there is no set L′ ⊆ L of
size two such that L′ has two representatives on a dual edge e′ = (v′, w′) for
some neighbor w′ of v′ in T , and shortest paths from L′ to e′ intersect a face
y′ on which L has at least three representatives; moreover, R is equal to the
set of extended representatives of L on v′ and X is equal to the set of extreme
representatives of L and v′.

Both configurations of type II also specify their own subtype.
Recall that we are considering the case that there are two representatives on

v′, and thus both configurations of type II specify exactly two representatives
and thus at most eight extended representatives (i.e. |R| ≤ 8). Also, by the
definition of extreme representatives, it is clear that |X| ≤ 4.

The following lemma shows that with a configuration of type IIa or IIb, we
can verify Requirement 2 in polynomial time.

Lemma 5.16 Let v′ ∈ V (T ) correspond to a face, let C be a configuration of
type IIa or IIb on v′, and let L ⊆ V (G) adhere to C. Using only information of
C we can determine in polynomial time whether L and v′ violate Requirement 2.

Proof: Suppose that the configuration has type IIa, and let w′ be the promised
neighbor in the definition. Let t be a boundary condition on e′ = (v′, w′) such
that L adheres to t. Then tel = 0. It now follows from Proposition 5.7 that
Requirement 2 is not violated.

Suppose that the configuration has type IIb. If there is an implied cycle C
that violates Requirement 2, then by Lemma 5.13, C is implied by two extreme
representatives ze1, ze2 that have different representatives on v′, and by some
x, y ∈ V (G). Therefore, we can iterate over all pairs x, y and check for all
pairs of extreme landmarks ze1, ze2 that have different representatives on v′

whether ze1, ze2, x, y imply a cycle that topologically contains v′. If they do,
then we check whether some extreme representative in C resolves x and y. Since
bifurcation points and shortest paths can be computed in polynomial time,
implied cycles can be found in polynomial time. Hence, the algorithm runs in
polynomial time.

The following lemma is an analogue of Lemma 5.12 for configurations of type
IIa and IIb.

Lemma 5.17 Let v′ ∈ V (T ) correspond to a face, let C be a configuration of
type IIa or IIb on v′, and let L ⊆ V (G) adhere to C. Let t be a boundary
condition on (w′, v′) for some neighbor w′ of v′ in T , such that L adheres to t.
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Then C determines trl, tru, teu, tel, tb, and g(v, L) ∩ s(v′) for all v ∈ s(v′), and
all can be computed in polynomial time. Finally, all configurations of type IIa
and IIb can be enumerated in polynomial time.

Proof: Let ẑ1 and ẑ2 denote the two representatives of L on s(v′) as given by
the configuration. We first show how C determines the boundary condition on
e′ = (w′, v′). Suppose that w′ is a child of v′ (similar arguments hold when w′

is the parent of v′). Then tb is the set of all ẑ ∈ s((w′, v′)) for which (ẑ, v′) is
in the configuration; trl is union of tb and the set of all ẑ ∈ s((w′, v′)) for which
(ẑ, w′) is in the configuration; tru is the union of tb and the set of representatives
on s((v′, w′)) of all ẑ for which (ẑ, u′) is in the configuration with u′ 6= w′.

Suppose that C has type IIa, and let y′ be as in the definition. If |trl| = 2,
then y′ must be in B(w′, v′). Then tel = 0, and teu consists of the extreme
representatives in C. Now consider |trl| ≤ 1. Then tel contains the extreme
landmarks of C that are in B(w′, v′). Also, if |tru| = 2, then teu = 0. Else,
|tru| = 1 and teu = {ẑ1} or {ẑ2} depending on which one is further from the
vertex in tru.

Now suppose that C has type IIb. Then tel is the set of the extreme repre-
sentatives specified by C that are in B(w′, v′). If |tru| = 2, then teu is the set of
extreme representatives specified in the configuration, except those in B(w′, v′).
If |tru| = 1, then there are two subcases. If both ẑ1, ẑ2 have an extension (ẑi, u

′)
in C with u′ 6= w′, then teu = {ẑ1} or {ẑ2} depending on which one is further
from the vertex in tru. Otherwise, teu is the set of extreme representatives of C
that are not in B(w′, v′).

We observe that g(v, L) ∩ s(v′) = g(v, {ẑ1, ẑ2}) ∩ s(v′) for all v ∈ s(v′).
Moreover, we note that all the above computations take polynomial time.

As any face has at most four extreme representatives, the total number of
configurations is polynomial. Hence, they can be enumerated in polynomial
time.

5.3.3 Configurations of type III

Suppose that more than two representatives on the face v′ are necessary. Corol-
lary 4.13 implies that any implied cycle containing the face v′ satisfies Require-
ment 2. It would thus seem that a configuration for this case could just consist
of three representatives. However, in order to have properties along the lines of
Lemma 5.12 and 5.17, we need more information.

Definition 5.18 Let v′ ∈ V (T ) correspond to a face. A configuration of type
III on v′ is a set C ⊆ s(v′) × NT [v′] that are valid extended representatives
for some set L ⊆ V (G) such that the associated set Q = {ẑ : (ẑ, w′) ∈
C for some w′} satisfies 3 ≤ |Q| ≤ 6. We say that a set L ⊆ V (G) adheres
to a configuration C of type III if

(i) C is a subset of the set of extended representatives of L on v′.

(ii) g(v, L) ∩ s(v′) = g(v,Q) ∩ s(v′).

(iii) For any z ∈ L, the representative of z on v′ is on a shortest path between
some ẑ1, ẑ2 ∈ Q.
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(iv) Let w′ be a child of v′ and t be a boundary condition on (w′, v′) such
that L adheres to t. Let R be the set {ẑ : (ẑ, u′) ∈ C for some u′ 6= w′}
on (w′, v′). Then tru is equivalent2 to R. If w′ is the parent of v′, this
condition holds for trl instead of tru.

So essentially a configuration of type III determines the values of g(v, L) ∩
s(v′) and tru.

We start by showing that the number of configurations of type III is poly-
nomial.

Lemma 5.19 Let v′ ∈ V (T ) correspond to a face. The number of configura-
tions of type III on v′ is O(|V (G)|6), and they can be enumerated in polynomial
time.

Proof: By definition, 3 ≤ |Q| ≤ 6. Using the observation after Definition 5.10,
any vertex of Q has a choice of at most 4 extensions to an extended repre-
sentative, leading to 24 different possibilities. The bound on the number of
configurations follows. Enumerating them in polynomial time is straightfor-
ward.

Given a set L that has at least three representatives on a face v′, it is not
immediately clear whether there exists a configuration that adheres to it. We
shall show that L adheres to the configuration C = ConfIII(v′, L) computed
according to Algorithm 1. In order to prove this result, we first analyze some
properties of the set C computed by Algorithm 1. The intuition behind the
algorithm is that we try to find a set of representatives of L on v′ that are
spread well on s(v′). In the following, we denote the representatives in Q by ẑ1,
ẑ2, ẑ3, and (possibly) ẑ4, ẑ5, and ẑ6, following the notation in Algorithm 1.

Lemma 5.20 Let v′ ∈ V (T ) correspond to a face, let L ⊆ V (G) have at least
three representatives on v′, let L̂ be the set of representatives of L on v′, and let
Q be the set computed by Algorithm 1 on input v′, L. Then any ẑ ∈ L̂ is on a
shortest path ẑi ; ẑj for some i, j ∈ {1, 2, 3}.

Proof: If every representative is on a shortest path ẑ1 ; ẑ2, then the claim
holds. Otherwise, ẑ3 is selected so that it is not on a shortest path ẑ1 ; ẑ2.
Then the shortest paths ẑ1 ; ẑ2 and ẑ1 ; ẑ3 intersect only in ẑ1, because
otherwise d(ẑ1, ẑ3) > d(ẑ1, ẑ2), contradicting the choice of ẑ1 and ẑ2. Similarly,
the shortest paths ẑ2 ; ẑ1, ẑ2 ; ẑ3 intersect only in ẑ2. Hence, the shortest
paths cover all vertices in s(v′).

Let w′ be a child of v′ — the case where w′ is the parent is similar, and
not discussed separately — and let e′ = (w′, v′). Recall that tru must be the
set of representatives of L ∩ V (B(v′, w′)) on s(e′) and that R is the set of
representatives of {ẑ : (ẑ, u′) ∈ C for some u′ 6= w′} on (w′, v′). Let z ∈ L ∩
B(v′, w′) have representatives ẑ and v on v′ and e′, respectively. Since we have
the equivalence relation on tru motivated by Lemma 5.4, we can prove the
following.

2As explained after Lemma 5.4, we consider {v1, v2} equal to {v1, v2, ve}.
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Algorithm 1 ConfIII — Compute a configuration of type III

Input: Face v′, set L ⊆ V (G)
1: Let L̂ consist of the representatives of L on v′

2: Choose ẑ1, ẑ2 ∈ L̂ at maximal mutual distance.
3: Choose ẑ3 ∈ L̂\{ẑ1, ẑ2} which is, if possible, not on a shortest path ẑ1 ; ẑ2,

and under that condition if possible not within distance 1/2 of ẑ1 or ẑ2

4: Q← {ẑ1, ẑ2, ẑ3}
5: if the shortest path ẑ1 ; ẑ2 is not unique and both paths contain a vertex

of L̂ \ {ẑ1, ẑ2} then
6: Choose ẑ4 ∈ L̂\{ẑ1, ẑ2} which is on a different shortest path than ẑ3, and

under that condition if possible not within distance 1/2 of ẑ1 or ẑ2

7: Q← Q ∪ {ẑ4}
8: end if
9: for all i, j ∈ {1, 2, 3, 4} do

10: if dist(ẑi, ẑj) = (|s(v′)| − 1)/2 and on the shortest path ẑi ; ẑj there is

a ẑn ∈ L̂ but no vertex of Q then
11: Q← Q ∪ {ẑn}
12: end if
13: end for
14: Let C consist of all extended representatives of L on v′ which correspond to

elements of Q
15: return C

Lemma 5.21 Let v′ ∈ V (T ) correspond to a face, let L ⊆ V (G) have at least
three representatives on v′ and let C be the set computed by Algorithm 1 on
input v′, L. Let w′ be a child of v′ and let e′ = (w′, v′). Suppose some z ∈
L ∩ V (B(v′, w′)) has representative ẑ on v′ and representative v on e′. Then
there is a (ẑn, u

′) ∈ C such that u′ 6= w′ and ẑn has representative v on e′ or, if
e′ corresponds to an inner edge e = (v1, v2) with midpoint ve and v = ve, then
there are (ẑn, u

′), (ẑn′ , u
′′) ∈ C such that u′, u′′ 6= w′ and ẑn and ẑn′ together

have representatives {v1, v2} on s(e′).

Proof: We prove this result by case analysis.

Case 1: There is a ẑn ∈ Q with representative v on s(e′), and ẑn 6= v or ẑ = v.
Observe that if ẑn 6= v, then ẑn 6∈ s(e′) — or ẑn would not have representative
v on s(e′) — and the result immediately follows. If ẑ = v, then ẑn 6= v or
ẑn = v. The first case was just considered. In the second case, we recall that
z 6∈ V (B−(w′, v′)), and the lemma follows.

Case 2: e′ corresponds to an inner edge e = (v1, v2) and v is equal to the
midpoint ve of e.
The only two vertices of s(v′) that have representative ve on s(e′) are ve and
the vertex or midpoint antipodal to ve. Note that ẑ 6= ve, as z 6∈ V (B−(w′, v′)).
Hence, ẑ is antipodal to ve = v. If ẑ ∈ Q, then the result is immediate from
Case 1. So assume that ẑ 6∈ Q. By Lemma 5.20, ẑ is on a shortest path ẑi ; ẑj
for i, j ∈ {1, 2, 3}. If {ẑi, ẑj}∩{v1, v2} = ∅, then the claimed result is immediate.
Otherwise, w.l.o.g. ẑi = v1. Then ẑj is antipodal to ẑi and ẑi, ẑj are at maximal
distance, i.e. they are ẑ1 and ẑ2. The path from ẑ1 to ẑ2 via ẑ contains at least
one representative, namely ẑ, so Algorithm 1 includes a representative ẑk on
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that path in Q. Using ẑj and ẑk, the lemma follows.

Case 3: e′ corresponds to an inner edge e = (v1, v2) and v is not equal to the
midpoint of e (i.e. v ∈ V (G)).
Without loss of generality, v = v1. Let a′ be the vertex or midpoint antipodal
to v1 and let a be the vertex or midpoint antipodal to ve. Order the vertices
and midpoints of s(v′) such that v2 ≺ ve ≺ v1 ≺ · · · . Let ẑn be the vertex of
Q that appears first in this ordering and comes after v1. If ẑn comes after a′,
then ẑ is not on a shortest path ẑi ; ẑj for any i, j ∈ {1, 2, 3}, contradicting
Lemma 5.20. For the same reason, if ẑn = a′, then {ẑ1, ẑ2} = {a′, v1}. The
existence of ẑ implies that one of ẑ3, ẑ4 lies on the shortest path a′ ; v1 that
contains a, contradicting the choice of ẑn. If ẑn = a, then consider whether
v1 ∈ Q. If v1 ∈ Q, then either v1 = ẑ and the result holds by Case 1 or, as
d(v1, a) = (|s(v′)| − 1)/2 and ẑ is on the shortest path a ; v1, line 11 of ConfIII
implies that Q must contain a vertex or midpoint on this path, contradicting
the choice of ẑn. If v1 6∈ Q, then ve ∈ Q, or ẑ would not be on a shortest path
ẑi ; ẑj for any i, j ∈ {1, 2, 3}, contradicting Lemma 5.20. Then the choice of
ẑn implies that {a, ve} = {ẑ1, ẑ2}. Since ẑ is on a shortest path a ; ve, one of
ẑ3, ẑ4 is on the same shortest path. As v1 6∈ Q, this contradicts the choice of ẑn.
Therefore, ẑn 6= v1 has representative v1 on s(e′), and the lemma follows.

It remains to prove that the above three cases are exhaustive. Suppose that w′

is not a face, i.e. s(w′) = {v} is a cut vertex. Then any vertex or midpoint of v′

has representative v on e′. Since |Q| ≥ 3, there is a ẑn ∈ Q with representative
v on e′ such that ẑn 6= v. Hence, we get Case 1. We may thus assume that w′ is
a face and that e′ corresponds to an inner edge e = (v1, v2). Then we get Case 2
or Case 3. Therefore, the cases are exhaustive, and the lemma follows.

Finally, we can prove our main result about the existence of a type III
configuration C such that L adheres to C.

Lemma 5.22 Let v′ ∈ V (T ) correspond to a face and let L ⊆ V (G) have at
least three representatives on v′. Then there exists a configuration C of type III
such that L adheres to C.

Proof: Let L be as in the lemma statement and let L̂ be the set of rep-
resentatives of L on v′. We shall show that L adheres to the configuration
C = ConfIII(v′, L) (see Algorithm 1). We observe that C is a set of extended
representatives of L on v′. Let Q be as in Algorithm 1. Since L has at least
three representatives on v′, |Q| ≥ 3. Note that we only add a vertex to Q in
line 11 if two vertices among ẑ1, ẑ2, ẑ3, ẑ4 have distance (|s(v′)|− 1)/2 and there
is no vertex of Q on the shortest path between them. There are at most two
such pairs of vertices among ẑ1, ẑ2, ẑ3, ẑ4. Therefore, |Q| ≤ 6, and C indeed is a
configuration of type III.

We now prove that C satisfies properties (i)–(iv) of Definition 5.18. We
denote the representatives in Q by ẑ1, ẑ2, ẑ3, and (possibly) ẑ4, ẑ5, and ẑ6,
following the notation in Algorithm 1. Then C satisfies property:

(i) This follows directly from Algorithm 1.

(ii) Let w, v ∈ s(v′) be neighbors. We will show that w 6∈ g(v, L)∩ s(v′) if and
only if w 6∈ g(v,Q) ∩ s(v′). Suppose that w 6∈ g(v, L) ∩ s(v′). Then there

37



is a z ∈ L with d(z, w) ≤ d(z, v). By Lemma 5.20, the representative
of z on v′ is on a shortest path ẑi ; ẑj for some ẑi, ẑj , where i, j ∈
{1, 2, 3}. Then one of ẑi, ẑj , say ẑi, satisfies d(ẑi, w) ≤ d(ẑi, v). Hence,
w 6∈ g(v,Q) ∩ s(v′). Conversely, suppose that w 6∈ g(v,Q) ∩ s(v′). Then
there is a ẑ ∈ Q with d(ẑ, w) ≤ d(ẑ, v). Replace ẑ with any vertex z ∈ L
that has representative ẑ on v′, and the inequality still holds. Hence,
w 6∈ g(v, L) ∩ s(v′). Therefore, property (ii) holds.

(iii) This follows directly from Lemma 5.20.

(iv) Let w′ be a child of v′ — the case where w′ is the parent is similar, and
not discussed separately — and let e′ = (w′, v′). Recall that tru must be
the set of representatives of L∩V (B(v′, w′)) on s(e′) and that R is the set
of representatives of {ẑ : (ẑ, u′) ∈ C for some u′ 6= w′} on (w′, v′). Since
the configuration C consists of extended representatives of L, it is easy to
see that R ⊆ tru. Let z ∈ L ∩ B(v′, w′) have representatives ẑ and v on
v′ and e′, respectively. Observe that v ∈ tru and we thus need to show
that v ∈ R. Since we have the equivalence relation on tru motivated by
Lemma 5.4, Lemma 5.21 implies that v ∈ R. Therefore, property (iv)
holds.

The lemma follows.

We observe that the properties of a configuration of type III can all be derived
from the configuration output by Algorithm 1. Therefore, it would seem that
we could change the definition of adhering to a configuration of type III to “C is
the result of applying Algorithm 1 to v′ and L”. However, it is problematic to
ensure that this holds during the dynamic-programming algorithm given below
and still have all the properties that we need. Therefore, we stick with the
definition of configurations of type III using the properties that we need from
it.

As a final result in this section, we show that a configuration of type III
determines teu or tel of the boundary condition t of an edge (v′, w′), depending
on whether w′ is a child or the parent of v′, respectively.

Proposition 5.23 Let v′ ∈ V (T ) correspond to a face, let C be a configuration
of type III on v′, and let L ⊆ V (G) adhere to C. If w′ is a child of v′, then C
determines teu of any boundary condition t on e′ = (v′, w′) such that L adheres
to t. If w′ is the parent of v′, then C determines tel of any boundary condition
t on e′ = (v′, w′) such that L adheres to t.

Proof: Suppose that w′ is a child of v′ (the case that w′ is the parent is similar
and not discussed separately). If w′ is not a face, then teu = ∅. So w′ is a face.
We know that C determines tru by definition. If |tru| ≥ 2, then by definition
teu = 0. If |tru| = 0, then teu = ∅. Otherwise, |tru| = 1. Since L has at least
three representatives on v′, the element of tru cannot be a midpoint. Then, by
definition, teu is the set with the representative on v′ furthest from the vertex in
tru. It remains to determine this representative. Let s(e′) = {v1, v2}. Without
loss of generality, tru = {v1}. Let b be the vertex or midpoint antipodal to
v2. Since tru = {v1}, all representatives of L on v′ are on the path P from v2

to b via v1. Let ẑ1, ẑ2 be the representatives of L on v′ that are at maximal
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mutual distance—it follows from property (iii) of Definition 5.18 that they are
determined by C. In particular, ẑ1, ẑ2 are on P , and all representatives on v′

are on a shortest path from ẑ1 to ẑ2. Then teu = {ẑ1} or {ẑ2}, whichever is at
maximal distance from v1.

5.4 Algorithm

We now bring all the pieces of the previous sections together in the final algo-
rithm. The algorithm uses bottom-up dynamic programming over the general-
ized dual tree T , which is rooted at an arbitrary vertex v′r ∈ V (T ). The algo-
rithm consists of several subroutines, which we describe in turn below. Through-
out this section, let G be a connected outerplane graph, let T be the generalized
dual tree of G rooted at an arbitrary vertex v′r, and let s be the annotation of
T as defined before.

The main subroutine of the algorithm computes the table m[v′, t], where
v′ ∈ V (T ) \ {v′r} has parent p′ and t is a boundary condition on the edge
e′ = (v′, p′). The value of m[v′, t] is a smallest set L′ ⊆ V (B(v′, p′)) such that
for any set L ⊆ V (G) that satisfies L′ = L∩ V (B(v′, p′)) and that adheres to t,
the following holds:

1. Requirement 1 is satisfied for any vertex of V (B−(v′, p′));

2. Requirement 2 is satisfied for any face of B(v′, p′);

if such a set L exists. Otherwise, the value of m[v′, t] is nil. For notational
convenience, we define |nil| =∞ and nil ∪A = nil for any set A.

The values of m[v′, t] are computed in a recursive manner: the computation
of m[v′, t] uses the values of m[w′, rw

′
] for children w′ of v′. The basic idea

to compute m[v′, t] is to consider all configurations for v′. Each such config-
uration C may determine a set Lv′ ⊆ s(v′) of landmarks on s(v′). We then
use a dynamic-programming algorithm that determines for each child w′ of v′ a
boundary condition rw

′
that is compatible with t and the configuration C, such

that Lv′∪ (
⋃

w′ m[w′, rw
′
]) is the smallest set that adheres to C and that satisfies

all conditions that also hold for m[v′, t]. Iterating over all configurations then
gives m[v′, t]. We make this intuitive description more precise below.

Let v′ ∈ V (T ) \ {v′r} with parent p′ and let t be a boundary condition on
the edge e′ = (v′, p′). Observe that it follows from Lemmas 5.12, 5.17, and 5.19
that all configurations of v′ can be enumerated in polynomial time. Let C be a
particular configuration of v′. We need to use this configuration to verify that
Requirement 1 and 2 hold. For Requirement 1, we note that if v′ is a face, then
there are at least two representatives on v′ specified by the configuration, and
thus |g(v, L)∩ s(v′)| ≤ 1 and there is no violation of Requirement 1. If v′ is not
a face, then the configuration is of type I, and ensures that there is no violation.
For Requirement 2, note that if C is a configuration of type I (i.e. v′ corresponds
to a cut or pendant vertex) or if C is a configuration of type III (i.e. v′ is a face
with at least three representatives), then Requirement 2 is trivially satisfied. If
v′ is a face and C is a configuration of type IIa or IIb, then the algorithm must
verify that Requirement 2 indeed holds. Lemma 5.16 gives a polynomial-time
algorithm to do this.

When the algorithm considers a configuration C on a face v′ and boundary
condition t on edge (w′, v′), they must agree, in the sense that there must exist
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a set of vertices that adheres to both of them. (We assume that there is a
resolving set that adheres to t and a resolving set that adheres to C. Otherwise,
it is irrelevant whether C and t agree or not.) We say that C and t agree when
the following hold:

• The conclusions of Lemma 5.12 (if C is of type I), 5.17 (if C is of type IIa
or IIb), or Definition 5.18 and Proposition 5.23 (if C is of type III) hold.

• If the configuration specifies an extended landmark (ẑ, w′), then the bound-
ary condition t must have a ẑ ∈ trl if w′ is a child of v′, and ẑ ∈ tru if w′

is the parent. If the configuration specifies an extended landmark (ẑ, v′)
with ẑ ∈ s((w′, v′)), then ẑ ∈ tb.

• If C has type III and the boundary condition t specifies that B(w′, v′) has
a landmark with representative ẑ on v′, then ẑ and C satisfy point (iii) of
Definition 5.18.

• If w′ is the parent of v′ and tv1 = 0, then the configuration must specify
g(v1, L) ∩ s(v′) = ∅. The same holds mutatis mutandis for tv2 .

• If w′ is a child of v′ and tv1 = 1, then the configuration must specify
g(v1, L) ∩ s(v′) = ∅. The same holds mutatis mutandis for tv2 .

We now determine the boundary conditions rw
′

for all children w′ of v′.
Some components are specified by the configuration (see Lemmas 5.12, 5.17,
and Definition 5.18 and Proposition 5.23). For some others any value is valid, so
we choose one that minimizes L′. However, the components tv1 , tv2 for different
edges have to be compatible in order to satisfy Requirement 1, which makes
optimization more complicated.

Suppose that children w′ and w′′ share a vertex v, i.e. v ∈ V (B(w′, v′)) ∩
V (B(w′′, v′)). Then, by Requirement 1, |g(v, L)| = rw

′

v +rw
′′

v +|g(v, L)∩s(v′)| ≤
1 has to hold. We use an index of the dynamic-programming table to ensure
that this holds.

We now give the dynamic-programming algorithm. Let the vertices of s(v′)
be u1, . . . , u`, so that they appear in this order on the cycle s(v′) and, if v′ is a
face, then u1 ∈ s(p′) and u2 6∈ s(p′). Note that s((v′, w′)) for any child w′ of v′

consists of at most two consecutive vertices. Then this also induces an ordering
≺ on the children of v′, namely w′ ≺ x′ if for some i < j, s(w′) contains vertex
ui and s(x′) contains vertex uj . If v′ is a not a face, then ≺ can be chosen
arbitrarily. Using ≺, we can order the children of v′ as w′1, . . . , w

′
k. For each

child w′i of v′, we will use vi1 to denote the vertex ub of s(v′), where b is the
highest index such that ub ∈ s(w′i). If |s(w′i) ∩ s(v′)| = 2, then we use vi2 to
denote the other vertex of s(w′i) ∩ s(v′).

Consider the children of v′ according to the order given above. Let n[i, b] =

|
⋃i

j=1 m[w′j , r
w′j ]| (0 ≤ i ≤ l, b ∈ {0, 1}), where the rw

′
j are chosen so they

minimize n[i, b] among all choices for which Requirement 1 is not violated. Fur-

thermore, for any rw
′
j that contains r

w′j
vi
1

we have r
w′j
vi
1
≤ b. These values are

computed by a simple recursion. If vi1 = vi−1
1 , then

n[i, b] = min
rw
′
i ,b0

|m[w′i, r
w′i ]|+ n[i− 1, b0]
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where the possible values of rw
′
i agree with C and b0 + r

w′i
vi
1
≤ b. If vi1 6= vi−1

1 ,

then
n[i, b] = min

rw
′
i ,b0

|m[w′i, r
w′i ]|+ n[i− 1, b0]

where possible values of rw
′
i agree with C, and r

w′i
vi−1
1

+ b0 ≤ 1 (if the boundary

condition contains element r
w′i
vi−1
1

). Finally, n[`, b], where b is determined by the

boundary condition between v′ and its parent, equals the size of the smallest
set Lv′ ∪ (

⋃
w′ m[w′, rw

′
]) which agrees with the given configuration. From the

same computation we can also obtain the actual set, not only its cardinality.
We can apply the same algorithm, with minor modifications, to the root v′r.

This leads to our main result.

Theorem 5.24 The Metric Dimension problem on outerplanar graphs can
be solved in polynomial time.

Proof: The proof proceeds by induction. Assume that m[w′, rw
′
] has been

correctly computed for all children w′ of v′ and all valid boundary conditions
rw. Then, given a configuration C and boundary condition t, we can compute
(as described above) a smallest set Lv′ ∪

⋃
w′ m[w′, rw

′
] that adheres to C and t

and satisfies the relevant conditions. By iterating over all configurations C, we
get m[v′, t] in polynomial time. The set that is returned when the (modified)
algorithm is applied to the root v′r is a smallest set that satisfies Requirement 1
and Requirement 2. By Theorem 4.21, this is a minimum resolving set.

We give a rough estimate of the running time of the algorithm of Theo-
rem 5.24. If the outerplane graph G has n vertices, then the generalized dual
tree has O(n) vertices. Each face has O(n4) configurations of type II. For
each of them, verifying Requirement 2 following the approach of Lemma 5.16
can be done in O(n2) time with appropriate pre-calculated tables. Each face
also has O(n6) configurations of type III. With such configurations, verifying
Requirement 2 is not necessary. However, for each such configuration, the al-
gorithm enumerates O(n) boundary conditions independently, and there are
O(n4) choices for each of them per Lemma 5.9. So processing a face requires
max(O(n4) · O(n2), O(n6) · O(n) · O(n4)) = O(n11) operations, and processing
the entire generalized dual tree has time complexity O(n12). A more involved
analysis could lower this rough bound.

6 Conclusions and Open Problems

We have shown that Metric Dimension is NP-hard for planar graphs, even
when the graph has maximum degree 6 (an open problem from 1976). We also
gave a polynomial-time algorithm to solve the problem on outerplanar graphs.
Our algorithm is based on innovative use of dynamic programming which allows
us to deal with the non-bidimensional, global problem of Metric Dimension.

We pose some open problems about Metric Dimension. First, it would
be nice to extend our results to k-outerplanar graphs3. The main obstacle to

3Recall a graph is k-outerplanar if the graph has a planar embedding such that one can
obtain the empty graph by performing the following operation k times: remove all vertices
bordering the outer face. Note that this implies that outerplanar graphs are 1-outerplanar.
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extending the result is that the separators to be associated with nodes of the
computation tree should include faces and edges between consecutive levels. For
such separators we lose the crucial property that shortest paths between nodes
in different parts cross the separator only once.

Even if the problem turns out to be solvable on k-outerplanar graphs by
a polynomial-time algorithm, it is not clear that such an algorithm could be
used to derive a polynomial-time approximation scheme for Planar Metric
Dimension. The quest for such an approximation scheme or even for a constant-
factor approximation algorithm is an interesting challenge in its own right.

We briefly mention two graph classes that are related to k-outerplanar graphs
on which the complexity of Metric Dimension is open. First, a problem that
could be helpful on the way to understand the complexity of Metric Dimen-
sion on k-outerplanar graphs is Metric Dimension on irregular grids with
or without holes. Although Metric Dimension on bipartite graphs is NP -
complete [13], it seems to be open on grids. Second, a common generalization
of k-outerplanar graphs are graphs of bounded treewidth. What is the com-
plexity of Metric Dimension on such graphs? In particular, it would be very
interesting to find out whether Metric Dimension can be formulated as an
MSOL-formula.

Generalizing in a different direction, one could consider the weighted version
of Metric Dimension. In the paper by Epstein et al. [13], all the graph
classes for which the unweighted version can be solved in polynomial time are
also classes for which the weighted version can be solved in polynomial time.
Therefore, it is interesting whether the metric dimension of outerplanar graphs
can be computed in polynomial time when the given graph is weighted.

Another interesting line of research is the parameterized complexity of Met-
ric Dimension. Daniel Lokshtanov [28] posed this problem at a Dagstuhl sem-
inar on parametrized complexity. Moreover, he conjectured that the problem
could be W[1]-complete. As already mentioned, Hartung and Nichterlein [22]
recently showed that the problem is actually W[2]-complete for the standard
parameter (the size of the resolving set) on graphs of maximum degree three,
closing this problem. In contrast, Foucaud et al. [18, 19] showed that the prob-
lems is fixed-parameter tractable for the standard parameter on interval graphs,
and Belmonte et al. [4] generalized this to all graphs of bounded treelength.
However, the parameterized complexity on planar graphs remains open. We
hope that the insights of this paper can help to obtain results in this direction.
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