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ABSTRACT
Efficient management of a drinking water network reduces the economic costs related to water

production and transport (pumping). Model predictive control (MPC) is nowadays a quite

well-accepted approach for the efficient management of the water networks because it allows

formulating the control problem in terms of the optimization of the economic costs. Therefore, short-

term forecasts are a key issue in the performance of MPC applied to water distribution networks.

However, the short-term horizon demand forecast in a horizon of 24 hours in an hourly based scale

presents some challenges as the water consumption can change from one day to another, according

to certain patterns of behavior (e.g., holidays and business days). This paper focuses on the problem

of forecasting water demand for the next 24 hours. In this work, we propose to use a bank of models

instead of a single model. Each model is designed for forecasting one particular hour. Hourly models

use artificial neural networks. The architecture design and the training process are performed using

genetic algorithms. The proposed approach is assessed using demand data from the Barcelona water

network.
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INTRODUCTION
Drinking water is one of our vital resources; it is used in

almost every human activity (personal hygiene, cleaning in

general, manufacturing products, etc.). In fact, according

to Primary Health Care in Alma-Ata in 1978, safe water is

a main component for the World Health Organization

().

Usually, drinking water is brought from distant sites to

cities and its production and transportation is expensive.

Water is stored in temporary tanks and then throughout

the city. Water distribution systems consist of an intercon-

nected series of pipes, storage facilities, and components

that convey drinking water to meet the city water demand

(Alperovits & Shamir ). The economic costs associated
with drinking water production are due to chemicals, legal

canons, and electricity costs. Moreover, the transportation

of drinking water through the overall water network plays

an important role regarding electricity costs in pumping

stations. Improving water supply management means a

reduction in operating costs, avoiding the development of

new supplies and unnecessary expansion of infrastructure

(Stephenson ). It also reduces withdrawals from limited

freshwater supplies, reducing at the same time the negative

effect on the natural environment.

There are several strategies to manage the water supply

network efficiently. One of them is model predictive control

(MPC), an optimization-based control strategy applicable to
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a wide range of industrial applications (Ormsbee & Lansey

; van Overloop ; Ma et al. ). MPC provides suit-

able techniques to compute optimal control strategies ahead

of time for all the control elements of a water system supply.

The accuracy of MPC depends on the water distribution

model and the accuracy of the short-term forecasting of

the water demand. In water distribution networks, MPC

focuses on finding the best input control sequence for con-

trolling the water supply network for the next 24 hours. A

poor demand prediction may lead to a significant increase

in costs (for example, in Hippert et al. (), it is stated

that an increase of 1% in the error would imply a £10

million increase of operational cost).

In this paper, we address the short-term water demand

forecasting problem, in particular, the water demand fore-

casting for the next 24 steps ahead (hourly prediction). To

deal with this problem, we propose the fragmentation of the

forecasting model. Instead of having a unique forecasting

model of the next 24 hours, we explore the use of 24

models. Each model is specialized in one particular hour in

the 24 hour horizon and is independent from the other 23

models. That is, Model 1 provides the forecast for the next

hour ytþ 1, Model 2 provides the forecast for the 2 hours

ahead ytþ 2, and so on, until Model 24 that provides the fore-

cast for the 24 hours ahead ytþ 24. The idea of using multi-

models came from other methods of solution, such as solving

higher order systems, reducing them to their simplest form

(e.g., linearization of nonlinear systems by Seron & Bra-

slavsky ()). Also, if we compare a one-step optimization

function against multiple-steps ahead, it is clearly that the

one-step ahead is simpler than the case of multiple steps;

and therefore, the threshold of uncertainty and computational

time grows as the number of steps (McElroy & Wildi ).

Since each model is independent, it is necessary to

create, define, and train 24 models. Recent research activi-

ties on artificial neural networks (ANNs) have shown that

they have powerful pattern classification and recognition

capabilities. Inspired by biological systems, particularly by

research into the human brain, ANNs are able to learn

and generalize from experience. Currently, ANNs are used

for a wide variety of tasks in many different fields of

business, industry, and science (Zhang et al. ).

One major application area of ANNs is forecasting.

ANNs provide an attractive alternative tool for both
forecasting researchers and practitioners. Several dis-

tinguishing features of ANNs make them valuable and

attractive for a forecasting task (Zhang et al. ).

Given a time series, we need to provide a neural model

capable of producing an acceptable forecasting of the pro-

cess it represents. We explore the use of ANNs to define

each model. The use of an ANN as a forecasting method

has shown excellent performance in engineering appli-

cations. However, one of the drawbacks resides in the

difficulty of training the ANN model. The ANN optimiz-

ation modeling problems often lead to non-convex

optimization problems. This fact implies that global optima

cannot be guaranteed. Therefore standard gradient-based

algorithms can only guarantee suboptimal results. Hence,

the exploration of the gradient-free optimization algorithms

(such as genetic algorithm (GA)) is considered as a suitable

training method (Nocedal & Wright ).

The more information the ANN received (including both

qualitative and quantitative data), the more accurate the

output will be. A time series is a sequence of chronologically

ordered observations recorded at regular time intervals.

Water demand time series present different dynamic beha-

viors that might be seen as the change of different possible

unknown regimes. For example, the water demand behavior

during the holidays is different from that of working days, or

summer from winter days, but regular during these periods.

This fact motivates considering these behaviors by adding

the prediction of next qualitative behavior (mode) as an

input to the ANN.

In summary, we present a methodology that fragments

the simultaneous demand forecasting of the 24 hours

ahead into smaller subproblems (models), where each

model is independent from each other. The forecast is not

only a function of past observations; an external factor,

social behavior (called a pattern) is added. To estimate the

next pattern, first we detect the patterns in the time series,

then we label each day according to its pattern, to finally

be able to estimate the next pattern. The forecasting

method used in each model is based on an ANN. The

inputs of the ANN are the past observations plus the esti-

mation of the next day pattern. We design the architecture

of the net (number of inputs, hidden layers) using GAs; tra-

ditionally, this type of process is carried out by trial and

error. For the learning process, we use GA and compare



them with traditional methods (e.g., back propagation (BP),

Broyden–Fletcher–Goldfarb–Shanno (BFGS), etc.). GA

exhibited the best performance. Finally, we provide the

worst-case forecasting scenario by implementing the confi-

dence interval of each model, yielding a boundary of the

prediction. This worst-case scenario is important for the

MPC controllers to prevent a possible lack of the drinking

water resource.

After having presented the proposed approach, the rest

of the paper is organized as follows. ‘Related work’ surveys

the state of the art in general forecasting methods applied to

water demand. Next, ‘Case study’ describes the water distri-

bution system of Barcelona city. The following section

proposes the use of a set of models to forecast the next 24

hours. The final two sections discuss the results obtained

and the conclusions drawn.
RELATED WORK

In the literature regarding time series (i.e., Hamilton ;Wil-

liam & Shyong ), there is a strong effort to find the best

way to decompose time series into several simpler time

series to fit better models that improve the forecasting per-

formance. This is not an easy task since in many real cases

there is not an availablemodel that describes the dynamic fluc-

tuation of the data. In the early successful stage in statistics, the

divide and conquer strategy has been used; for example, the

decomposition into different basic components that might

explain the general dynamics of time series, such as trend, sea-

sonal, random, and cyclical components that are integrated in

the autoregressive integrated moving average (ARIMA) meth-

odology (Harvey ; Contreras et al. ).

Taieb et al. () perform a study of multiple steps

ahead of forecasting. They compare the iterated and direct

forecasting techniques. The iterated method uses a one-

step ahead predictor; once the predictor estimates the

future series value, this value is re-injected as an input to

the next prediction. The direct methods estimate the next

H steps, by the prediction of a set of H predictive models.

In their research, they conclude that direct methods often

require higher functional complexity than iterated ones,

but direct models present a better accuracy than iterated

ones.
Sorjamaa et al. () used direct forecast, using H

models to define the nextH steps ahead. This work is similar

to the methodology presented in Sorjamaa’s study, but dif-

fers in the way of modeling the time series and selecting

entries for the forecast. While we use ANN with GA, they

used least square support vector machines and k-nearest

neighbors (kNN) to discriminate certain entries.

Nowadays, with the growth of computational resources

and the development of machine learning and pattern recog-

nition algorithms (i.e., Olszewski ; Liao , ), it is

possible to analyze more complex time series. There are

practical cases where the single linear modeling approach

is not enough for systems that present different behaviors

along time (Martinez Alvarez et al. ; Kumar & Patel

; Benmouiza & Cheknane ; Quevedo et al. ).

These behavior changes might be produced by changes of

dynamical regimes. Although the multi-modeling approach

was born with the analysis of partially known real systems,

the same ideas can be adopted for time series forecasting,

where there is no knowledge about the system behind the

dynamics, as is the case of water demand time series.

In relation to water demand, different model method-

ologies for forecasting have been explored (Donkor et al.

). We found in the literature modeling methodologies

(i.e., based on Box–Jenkins, ANNs, Holt–Winters, ARIMA,

wavelets, etc.) that deal with this problem (Zhou et al.

; Alvisi et al. ; Al-Hafid & Al-maamary ; Que-

vedo et al. ; Tiwari & Adamowski ). Also, Melgoza

et al. () proposed a technique for prediction of electrical

demand based on multiple models; each model describes a

region of behavior of the system, called operation regime.

Adaptive oriented predictive methods are also found in

the literature, e.g., the algorithm proposed by Bakker et al.

(), which considers the last 2 days for predicting the

water demand of the next 2 days. The contribution of the

days is weighted and a fixed calendar is considered as an

additional input. After tuning the day weights, it derives

day factors and daily demand patterns weekly.

This paper is related to research in the area of ANN for the

task of time series forecasting in the works of Bakirtzis et al.

(); Jain et al. (), and Liu et al. (), but differs in

the way of creating the architecture of the ANN, and also the

way to train it. In previous works, Flores et al. (, ,

), have used evolutionary algorithms (EA) to define the



architecture of the ANN and train it; in these previous works

the forecast accuracy showed a better performance than tra-

ditional gradient-based training algorithms.

One of the inputs of the ANN is the mode (or regime) of

the next day to forecast. In previous works related to

regimes, the identification of regime behavior has used

qualitative information. Benmouiza & Cheknane ()

proposed the implementation of a global non-linear autore-

gressive (NAR) neural network predictor to estimate the

regimes associated with another local NAR neural network

predictor for the hourly global solar radiation. Kumar &

Patel () proposed a predictive algorithm using data clus-

tering and local training models that combined produce the

forecast. Martinez Alvarez et al. () used clustering to

group the days with similar patterns. Regarding the variation

of the water demand in working days and holidays, Quevedo

et al. () developed a daily seasonal ARIMA model com-

bined with an hourly pattern. In their approach, seasonal

ARIMA predicts total days’ consumption and a daily pattern

is selected according to a calendar for distributing the hourly

consumption of the day.

The work of Cutore et al. () is similar to our

approach. It uses an ANN as prediction model, and uses

human behavior (modes) as an input of the ANN, but the

modes are extracted from a calendar. Moreover, a network

training procedure is considered through the Shuffled Com-

plex Evolution Metropolis algorithm. In their work they also

consider climate variables, but these last ones, did not

improve the prediction results.

Also, our work is similar to the work of Romano &

Kapelan (), since both works split the forecast into 24

models, and use ANN as the forecast method, but they

differ in the kind of inputs and are completely different in

the learning process. Regarding the selection of inputs,

Romano & Kapelan () use a lag window of past

demand data, the day of the week, and the hour associated

with the forecast horizon. The day of the week and the

hour are used to associate the water demand time series

with human behavior patterns. In the literature, we found

works where these human patterns are incorporated into

the forecast methodology (e.g., Quevedo et al. ), but

each work differs in the way they are incorporated. In our

work, an intelligent method to estimate the next day pattern

is used. This method starts pre-processing the time series by
using the silhouette coefficient to define the number of pat-

terns (or modes). Each day is labeled in the training set

according to its pattern, and we estimate the next day pat-

tern using kNN in the validation set. We would like to

mention that in our previous works (Quevedo et al. ;

Lopez et al. a), we started exploring the use of a calen-

dar (days of the week, in terms of labor days and

holidays), but we found that this intelligent method

improves the calendar method (Lopez et al. b). Regard-

ing the learning process, it is performed in a completely

different way. Romano & Kapelan () used traditional

gradient-based learning algorithms (e.g., BP, conjugate gradi-

ent, Levenberg–Marquardt), while we use GA to perform

the learning process. In our work, we perform a comparison

with a single ANN performing one-step ahead forecasting,

using for the learning process: traditional methods (BP,

BFGS, conjugate gradient algorithm), and GAs. GAs outper-

formed the other methods, with respect to forecast accuracy.

Proofs of these experiments are provided later in the paper.

In summary, the proposed approach improves the use of the

calendar (day of the week) by using the estimation of the

next day pattern. Also, it improves the accuracy obtained

by using GA compared to the use of traditional gradient-

based learning methods (e.g., BP).
CASE STUDY

The Barcelona water network will be the case study used to

illustrate the proposed methodology. The Barcelona net-

work is managed by the company Aguas de Barcelona.

This company not only supplies water to Barcelona city

but also to the metropolitan area. The network supplies 23

municipalities in a 424 km2 area with 4,645 km of pipes in

order to meet the water demands of about three million

people (Sociedad General de Aguas de Barcelona ).

The sources of water are the rivers Ter and Llobregat

that are regulated at the head by some dams with an overall

capacity of 600 hm3. There are four drinking water treat-

ment plants which treat the underground flows. Also,

there are several underground sources (wells) that can pro-

vide water through pumping stations.

The different water sources currently provide a flow of

around 7 m3/s. Currently, a desalter plant has just been



put into production with a capacity of 60 hm3/year. This

plant is located at the end of the Llobregat river and pro-

duces drinking water by treating the sea water through a

desalinization process. This plant will become of prime

importance especially in drought periods since it will help

maintain the water supply.

Due to the geographical topology of Barcelona and its

surroundings, the water network supply of the metropolitan

area is structured in pressure zones. Indeed, the topology of

Barcelona, with a big difference in height between the sea

level and the highest point to be supplied which is about

500 m above the sea level, makes it necessary to homogen-

ize the pressure by intermediate tanks and pumping stations.

The complete transport network is composed of 63

storage tanks, three surface sources and seven underground

sources, 79 pumps, 50 valves, 18 nodes, and 88 demand sec-

tors (see Figure 1). The network is controlled through a
Figure 1 | Barcelona water network.
SCADA system with sampling period of 1 hour. For the

MPC control scheme, a prediction horizon of 24 h is

chosen for the model and demand forecasts. These forecasts

are updated every hour with the recently updated measure-

ments following the receding horizon philosophy used in

MPC, as discussed in the ‘Introduction’.

This case study has already been considered for demand

forecasting by Quevedo et al. (), with several time series

approaches (ARIMA, Holt–Winters, and BSM) being used

for the same purpose as the approach proposed in this

paper. The same case study and methods have also been

used for the validation and reconstruction of flow meter

data. Differently from these previous approaches, here a

bank of ANN models are trained using GA and used for

forecasting the demand in a 24 hour horizon with a time

scale of 1 hour in a way that can be easily integrated with

the MPC controller of the water network.



PROPOSED APPROACH

Water consumption for operational control of water net-

works in urban areas is usually managed on a daily basis,

because reasonably good hourly 24 hour ahead demand pre-

dictions may, in general, be available, and common

transport delay times between the supplies and the consu-

mer sites allow operators to follow daily water request

patterns. Therefore, this horizon is appropriate for evaluat-

ing the effects of different control strategies on the water

network, with respect to operational goals. However, other

horizons may be more appropriate in specific utilities. The

short-term forecast of the intraday series has a main feature:

the double periodicity (daily and hourly). Moreover, the con-

sumption of water demand changes between holidays and

working days and between summer and winter, but present

regular behaviors during these periods. Each behavior can

be represented by a regime that is characterized by a mode

(qualitative behavior). Figure 2(a) shows 1 month of qualitat-

ive behavior where the time series is segmented; each line of

the plot corresponds to 1 day. From Figure 2(a), we can

observe two qualitative patterns. In Figure 2(b), two unitary

prototypes or descriptors are plotted representing the two

main kinds of behaviors.

In the literature, we found a work that indicates the con-

ditions under which a multi input–multi output (MIMO)

ANN architecture is less accurate than a multi input–

single output (MISO) architecture (Chang et al. ). This
Figure 2 | Qualitative behavior of the water demand. From (a) we segment the time series pe

water demand patterns of p10012. (b) Daily distribution water demand patterns pro
is because the forecasting problem using MIMO architec-

tures becomes a multi-objective optimization problem.

Therefore, to address the water demand forecasting pro-

blem, we use MISO models.

In this work, we translate the problem of one MIMO

model into 24 single independent MISO models. We pro-

pose the use of a bank of 24 models, where each model is

independent and focuses specifically on the prediction of 1

hour (for example, Model 1 is specialized in the prediction

of ytþ1, Model 2 in ytþ2, and so on). Figure 3 shows that

the problem is split into different MISO models, where

each model receives multiple inputs (k past observations,

plus the next qualitative pattern behavior of the water con-

sumption) and one single output.

Each model receives as input the past observations of

the time series and the estimation of the next mode. The

independence of each model means that each model may

be defined arbitrarily (for example, one model may be

defined using ANN, another using Holt–Winters while the

others using ARIMA). Also, each model defines the

number of previous observations (that is the structure) to

use in the prediction. In our case, each model in the bank

of models (BM) is defined by a three-layer fully connected

ANN while the architecture and the training of the net is

performed by GAs. The inputs and the outputs of each

model are defined in Table 1.

Table 1 shows that every model is used to predict a par-

ticular step in the 24-step horizon; e.g., Model 1 defines ytþ1,
r days; in (b) we observe the two different behaviors (patterns) of (a). (a) Daily distribution

totypes of p10017.



Figure 3 | Fragmentation of the forecasting into a BM (24 models) where each model

corresponds to a different forecasting step.

Table 1 | Inputs and outputs of each model defined in the BM

Input Output

Model 1 {yt�k1, yt�k1þ1, yt�k1þ2, …, yt�1, yt, Mi} ytþ1

Model 2 {yt�k2, yt�k2þ1, yt�k2þ2, …, yt�1, yt, Mi} ytþ2

Model 3 {yt�k3, yt�k3þ1, yt�k3þ2, …, yt�1, yt, Mi} ytþ3

…

Model 23 {yt�k23, yt�k23þ1, yt�k23þ2, …, yt�1, yt, Mi} ytþ23

Model 24 {yt�k24, yt�k24þ1, yt�k24þ2, …, yt�1, yt, Mi} ytþ24

Figure 4 | MLP architecture with k inputs plus the next mode, m hidden neurons in the

hidden layer and one output (ŷtþi).
where yt is the observation at the time t, and ytþi is the next

observation that is going to be forecasted. Also, every model

receives a different number of inputs because the GA defines

for every case (model) the number of last observations (k) to

consider (e.g., Model 1 has k1 inputs).

In this paper, the ANN architecture used for this task is

a multi-layer perceptron (MLP). A MLP, as a universal

approximator, can learn any given function, as long as it

has enough neurons in the hidden layer. That fact allows

the network to capture the different forms of the function

to be modeled. An example of this kind of architecture is

depicted in Figure 4.

Figure 4 graphically observes the proposed network. It

has kþ 1 inputs, which are selected from the k previous

measurements, plus the next mode. The next mode is the

estimation of the next day qualitative behavior (i.e., labor

day or holiday). The process to estimate the next mode is

performed as described in the work of Lopez et al. (b).

The hidden layer has m neurons, the ANN has one output

(the corresponding predicted hour (y ̂tþi)), and the sigmoid

function as the activation function. In summary, the forecast
function to y ̂tþi is defined as:

ŷtþ1 ¼ f1
Xkþ1

l

wlxl

!

xl ¼ f2
Xm
j

wljyt�lj

0
@

1
A

(1)

where f1 and f2 are the activation functions, and w are the

coefficients (also known connection weights).

In this forecast problem, we need to provide an accurate

model that defines the behavior of the water demand. To

define the accuracy of each model, we use the minimization

of the mean square error statistical measure, which is

defined as:

MSE ¼
Xn
i¼1

ŷi�yið Þ2 (2)

To obtain an accurate y ̂, it is necessary to define the

number of inputs (past observations k), number of neurons

in the hidden layer (m), and the connection weights (wl)

of each ANN defined in the BM (for example, for one net

of 25 inputs and 50 neurons in the hidden layer, we have

the problem of determining more than 1,000 connection

weights (wl)). Thus, the determination of the optimal

number of neurons in the hidden layer is a crucial issue. If

the hidden layer is too small, the network cannot possess



Figure 5 | The chromosome of the ANN represented as a vector of reals. The first two

positions of the vector define the structure of the net, and the following data

correspond to the connection weights.
sufficient information processing power, and thus yields

inaccurate forecasting results. On the other hand, if it is

too large, the training process will be very long. The optim-

ization problem (2) is a non-convex problem, where it is

hard to reach a global solution, especially when using gradi-

ent-based algorithms, because it depends on the initial

conditions. Therefore, for the training process, we propose

the use of evolutionary computation (specifically GA),

already introduced in Flores et al. (, , ), showing

better performance than traditional methods (gradient

descent) according to the comparisons performed.

Training the ANN with GA

GA is an optimization technique inspired by Darwin’s prin-

ciple of evolution. That is, it mimics a simplistic version of

the process of biological evolution, which consists of creat-

ing a population of individuals, where each individual

represents a prospective solution of the problem being

solved. GA modifies this population using genetic operators:

selection, mutation, recombination, etc. This stage, called a

generation, repeats until a termination criterion is met. At

the end of the process, the best individual (i.e., the fittest

one) found during the evolution is returned as the solution

of the problem.

Determining the best ANN architecture for forecasting

is an optimization problem. In this paper, we use GA to

find the optimal ANN architecture and its connection

weights. GA defines the architecture of the ANN and the

weights of the neurons’ connections. Each individual (the

chromosome) is defined as a vector of real numbers,

where the first two values of the vector define the architec-

ture of the net. The first position defines the number of

previous measurements to use as an input, and the second

position defines the number of neurons in the hidden

layer. The following data are two sets of reals, corresponding

to the weight connections. The first set corresponds to the

weight connections from the input to the neurons in the

hidden layer; its size is (kþ 1)*m (k is the number of

inputs, and m is the number of neurons in the hidden

layer). The second set corresponds to the connection

weights from the neurons in the hidden layer to the output

neuron; its size is m. Figure 5 shows the structure of the

chromosome.
The chromosome vector is coded in values between zero

and one. To decode the vector, we use

DV ¼ ((LimMax� LimMin) � realDataþ LimMin) (3)

where LimMax is the upper limit and LimMin is the lower

limit to decode. For instance, if we want to test architectures

between 10 and 80 inputs, the upper limit and the lower

limit will be 80 and 10 respectively; and DV is the decoded

value. Notice that Equation (3) is based on a maximum and

a minimum value. This is because the first two positions of

the vector define the number of inputs and number of neur-

ons in the hidden layer (e.g., values between 10 and 80). The

next part of the vector corresponds to the weights of the con-

nections (with values between �1 and 1).

The regimes (or modes) are determined as defined in the

work of Lopez et al. (b). In this work, the regimes of a

water demand time series are obtained using k-means and

validated with the silhouette coefficient to select the

number of clusters. Once we have labeled every day with

a mode, we estimate the next mode using kNN.

The forecast is defined in two processes: the offline pro-

cess and the online process. The offline process defines the

modes and the 24 MISO models, forming the BM. In the

online process, we estimate the next mode and the next

day water demand (hourly periods) from the ANNs already

trained in the offline process.

Offline process

To perform a forecast, first we require to segment the time

series in prototypes or modes (see the work of Lopez et al.

(b)). Then, we need to define the architecture and the

connection weights of the 24 ANNs.

The process to define the ANNs in the BM is defined in

Algorithm 1. From this algorithm, we start defining the



number of prototypes or modes of the time series (Define-

TimeSeriePrototypes). Once the prototypes are obtained,

we label each day of the time series according to its proto-

types. This step is performed according to a previous work

(Lopez et al. b). The function LabelTimeSeries receives

as an input the time series and the prototypes defined

before. Using the function, we label each day according to

its pattern and return the vector of labels (or modes).

With the modes vector and the time series, we start defin-

ing each ANN contained in the BM. The parameters to define

each ANN are the number of past observations, number of

hidden neurons, and the connection weights. The function

TunningANNparameters optimizes these parameters, with

the consideration of each net specialized in forecasting only

the ModelNumber step ahead. This function returns a coded

vector (as in Figure 5) of reals that define each ANN.

Algorithm 1 Forecast 24 steps ahead (TimeSeries)

1: Prototypes ← DefineTimeSeriesPrototypes(TimeSeries)

2: Modes ← LabelTimeSeries(TimeSeries, Prototypes)

3: for i ← 1, i <¼ 24 do

4: ModelNumber← i

5: ANNModel ← TuningANNparameters(TimeSeries,

6: Modes, ModelNumber)

7: BM ← InsertInToBankOfModels(ModelNumber,

ANNModel)

8: end for

9: return BM

Algorithm 2 defines the architecture of the ANN and

performs the learning process based on GA. It starts by gen-

erating a random population by means of the function

GenerateInitialPopulation. Each individual in the popu-

lation is encoded using real numbers between 0 and 1

according to Figure 5. To decode the chromosome we use

(3). The next step is to evaluate each individual of the popu-

lation. The evaluation is performed according to the

optimization function (2).

Algorithm 2 Tuning ANN parameters (TimeSeries,

Modes, ModelNumber)

1: pop ← GenerateInitialPopulation()

2: pop ← EvaluateIndividuals(pop, ModelNumber)

3: while NOT Finish do

4: for j← 0, j< Length(pop) do

5: Parents ← SelectParents(pop)

6: offspring ← Crossover(Parents)
7: offspring ← Mutation(offspring)

8: offspring ← EvaluateIndividuals(offspring,

ModelNumber)

9: offspringList ← InsertInToDescendentList(offspring)

10: end for

11: if Convergence Criteria Achieved then

12: Finish← TRUE

13: end if

14: end while

15: return BestIndividual

After the evaluation of each individual the evolution

process is started, the parents are selected and, in our

case, we use tournament selection. With a certain prob-

ability we perform the crossover and the mutation giving

as a result two offspring. The offspring is evaluated and

inserted in the offspring list. This process is repeated until

a convergence criterion is achieved. In our case, the

search is limited to a predefined number of evolutions.
RESULTS

To provide an empirical proof of the effectiveness of our

approach, real water demand coming from the Barcelona

case study presented earlier is used. In particular, demand

time series obtained from flow meters p10017, p10012,

p10025, and p10031 are used. The experiments were divided

in two phases: the offline and the online. In the offline pro-

cess, we define the number of modes or patterns of the time

series; the time series per day is labeled according to its pat-

tern number, forming the mode vector. The mode of the next

day is used as an input of each model.

Once the mode vector is obtained, we split the problem

to produce 24 ANN models, where every ANN model fore-

casts only one of the 24 hours. For this part, we use

Algorithm 1. GAs are used in Algorithm 2 to automatically

define the architecture of the net, and perform the training

process. After performing the offline process, we perform

the forecast (online phase) by using the models already

trained. All the experiments were performed on the

Python platform (Python Software Foundation ), using

the GA Library of the package Distributed Evolutionary

Algorithms (Fortin et al. ).



Asmentioned before, we start performing the experiments

with traditional methods (gradient-based methods defined in

the Neurolabs Library). Table 2 shows a comparison between

the traditional methods defined in the Neurolabs Library and

GA. The experiments presented in this table were performed

using a water demand time series of the flow meter p10012.

From Table 2, we observe that GA presents a better perform-

ance in the validation set than the other three methods.

The following experiments were performed in a 30–60

day period (which give us a time series of 720–1,440

measurements). The training and validation sets were cre-

ated using 70% and 30% of these data, respectively. After

the training process, we obtained 24 trained nets. The GA

parameters used to perform the training process are shown

in Table 3. The inputs of the ANN contain between 10

and 70 past observations. This means that GA will search

within this range; the same case applies for the number of

neurons. In the case of the mutation probability, it means

that 55% of the offspring will mutate, but only less than

1% of its genes are mutated. The approximate time to train

a single net is about 90 minutes.

Once the parameters (number of inputs, hidden neur-

ons, weights connections) of the 24 models in the BM

have been tuned, we perform the forecast with the
Table 2 | Comparison between traditional methods versus GA

Method MSE training MSE validation

Gradient descent backpropagation 0.42883913 0.42747427

BFGS 0.0000124 0.00150682

Conjugate gradient algorithm 0.00159929 0.00292422

GAs 0.001002 0.0010163

Table 3 | GA parameters for ANN optimization

Parameter

Number of inputs 10–70

Number of hidden neurons 20–70

Initial population 250

Number of evolutions 350

Crossover probability 70%

Chromosome mutation probability 55%

Gene mutation probability 0.5%
validation set. Figure 6 illustrates the performance of 1 day

forecasting of the four considered demands. Each hour is

defined by one model in the set of models.

During the training process, theMSE function (2) is mini-

mized. After the training (offline) process and to assess and

compare the performance of the proposed approach different

statisticalmeasures (mean absolute error (MAE),mean absol-

ute percent error (MAPE), and root mean square error

(RSME)) were considered. Definitions of these statistical

measures are:

MAE ¼ 1
N

XN
i¼1

ŷi � yij j (4)

MAPE ¼ 100
N

XN
i¼1

ŷi � yij j
�y

(5)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
(6)

Figure 6 illustrates the performance of 1 day forecasting

of the four flow meters; the performance across the whole

validation set is shown in Figure 7. Figure 7 shows an

hour by hour comparison of the whole validation set in

terms of the square (MSE), absolute (MAE), and relative per-

centage (MAPE) errors. The figure contains three lines, each

one corresponds to the error magnitude in terms of MAE,

MAPE, and MSE of the flow meter p10017.

The proposed approach is compared against standard

methods (one single ANN, Holt–Winters, Naïve) and a pre-

viously developed method known as the Qualitative and

Quantitative Multi-Model Predictor with kNN (QMMPþ
kNN) proposed by Lopez et al. (b)). This methodology

is an improvement of the work of Quevedo et al. ().

Since the water demand time series is cyclic with a 24

hour period, we adopt the term of Naïve to refer the forecast

performed as Ytþ1¼Yt�24. To clearly observe the accuracy

of the BM compared with the Naïve method, Figure 8

shows a comparison between them.

The following tables (Tables 4–7) show the comparison

between the proposed method, the QMMPþ kNN, Holt–

Winters, ANN, and Naïve method, for the flow meters

p10012, p10017, p10025, p10031 of the Barcelona network.



Figure 6 | Twenty-four hour steps’ predictions of the demands p10012 (a), p10017 (b), p10025 (c), and p10031 (d). The solid line corresponds to the real data and the dashed line to the

forecast.

Figure 7 | Hour by hour comparison in term of MSE, MAE, MAPE error of the flow meter p10017.
From Tables 4–7, we can compare the results obtained

with the BM and standard methods (ANN, Holt–Winters,

Naïve). We can observe that the proposed method (BM) is

more accurate for the considered application. The methods

used for comparison re-inject the forecast data, to continue

the forecast, in predictions of two steps and forward. Carry-

ing on with this approach leads to increasing the
uncertainty. Thus, the longer is the forecast horizon, the

bigger the forecasting error will be.

To observe this behavior, a detailed comparison of the

forecasting results obtained with the re-injected ANN

versus the BM is performed. In Figure 9, there are two col-

umns of plots. The first column of Figure 9 corresponds to

the forecasts obtained using the set of models and the



Table 4 | Performance assessment in terms of MSE, MAE, MAPE, RMSE, with the

methods QMMP, Holt–Winters, ANN, and Naïve of flow meter p10012

Method MSE MAE MAPE RMSE

BM 0.0098 0.0727 25.30% 0.0991

ANN 0.0108 0.0767 22.21% 0.1042

Holt–Winters 0.0156 0.0757 19.20% 0.1078

QMMPþ kNN 0.0073 0.0603 15.30% 0.0790

Naïve 0.0137 0.0844 36.4% 0.1173

Table 5 | Performance assessment in terms of MSE, MAE, MAPE, RMSE, with the

methods QMMP, Holt–Winters, ANN, and Naïve of flow meter p10025

Method MSE MAE MAPE RMSE

BM 0.0069 0.0656 17.57% 0.0034

ANN 0.1198 0.2302 30.44% 0.3461

Holt–Winters 1.7455 0.0992 26.57% 0.1631

QMMPþ kNN 0.0081 0.0738 19.77% 0.0869

Naïve 0.0117 0.0773 23.09% 0.108333

Table 6 | Performance assessment in terms of MSE, MAE, MAPE, RMSE, with the

methods QMMP, Holt–Winters, ANN, and Naïve of flow meter p10031

Method MSE MAE MAPE RMSE

BM 0.0076 0.0661 14.17% 0.0872247

ANN 0.0131 0.0845 19.32% 0.1144

Holt–Winters 0.0083 0.0660 14.16% 0.0882

QMMPþ kNN 0.0136 0.0863 18.51% 0.1159

Naïve 0.0128 0.0810 17.37% 0.11349

Table 7 | Performance assessment in terms of MSE, MAE, MAPE, RMSE, with the

methods QMMP, Holt–Winters, ANN, and Naïve of flow meter 10017

Method MSE MAE MAPE RMSE

BM 0.0033 0.0452 11.90% 0.0579

ANN 0.0063 0.0762 15.71% 0.0793

Holt–Winters 0.0016 0.0253 6.64% 0.0340

QMMPþ kNN 0.0015 0.0238 5.83% 0.0310

Naïve 0.0087 0.0697 18.35% 0.0935

Figure 8 | Hour by hour comparison between the BM and the Naive method in terms of MSE error of the flow meter p10017.
second one when the re-injected net is used. In the first

column of Figure 9, the results obtained for the models cor-

responding to different prediction steps are shown: 8 (a), 16

(c), and 24 (e). In the second column, the plots correspond

to results obtained with re-injected net for the same steps:

8 (b), 16 (d), and 24 (f) steps ahead. From this figure, it
can be noticed that when the forecasting horizon increases,

the performance of the re-injected model becomes poorer

compared to the one obtained with the BM.

However, if we compare the proposed method with the

QMMPþ kNN, we find similar accuracy among the four

flow meters. The BM is more accurate in two of four flow



Figure 9 | The first column corresponds to the results obtained by the BM: Model 8 (a), Model 16 (c), and Model 24 (e). The second column shows the results obtained with the re-injected

net: ŷtþ8 (b), ŷtþ16 (d), and ŷtþ24 (f). If we compare the first column with the second one, we observe that the accuracy from the first column is better than the second column.
meters, and the accuracy difference is similar. Both methods

use the modes to forecast, but use them in a different way;

while the BM uses the next mode as one input, the QMMP

þ kNN uses the mode to define which prototype to select.

Finally, regarding the application of these forecasts to

the operative management of water networks using MPC,

it is very important to determine how uncertain the predic-

tions are (worst-case scenario). A bad estimation can lead

to higher production costs or the non-satisfaction of the

demand supply. For this the reason, the confidence intervals

(CI) of the forecasts provided by the BM are determined.

This allows to bound the forecasting uncertainty.

The use of a BM facilitates the creation of the uncer-

tainty bounds since the use of iterative prediction models

will imply that the CI will grow exponentially with the

number of steps forward to forecast. Figure 10 shows the
CI of the forecasted values for several flow meters using

the proposed approach. The CI quantify the model uncer-

tainty assuming that error follows normal distribution as

follows:

�x� 1:96
σffiffiffi
n

p < μ< �xþ 1:96
σffiffiffi
n

p (7)

where μ is interval with a 95% confidence, �x is the mean of

the error, σ is the standard deviation, and n is length of the

population.

In Figure 10, each plot has four lines, the black line cor-

responds to the real data, the dotted line corresponds to the

prediction, and the two dotted thinner lines (above and

under the real data) defines the boundary of the confidence

interval. With the CI, the MPC controller can know about



Figure 10 | A qualitative perspective of our proposed approach. It shows 24 steps predictions of the demands p10012 (a), p10017 (b), p10025 (c), and p10031 (d). The continuous line

corresponds to the real data and the dashed line to the forecast. The two dotted thinner lines define the boundary of the confidence interval.
the worst-case demand scenario, and prevent problems of

demand satisfaction.
CONCLUSIONS

When using MPC control for managing water distribution

networks, the water demand forecast is very important in

order to determine the best control sequence to apply to

pumping stations and valves. With an accurate control

sequence it is possible to reduce costs and improve econ-

omic and environmental benefits. In this work, we deal

with the forecasting problem using a BM; where every

model defined is independent and focused only in 1 hour

in particular. We use ANN to define each model, and GA

to obtain the best architecture, whereas traditionally this

process is performed by trial and error. In this work, we pro-

pose the use of GAs to design the architecture of the net. For

the training process, we start testing the experiments with

traditional methods such as BP or BFGS, among others,

and alternatively we use GA to define the connection

weights, given the last method has a better accuracy than

the traditional optimization methods. If we compare the

time that the learning process using the traditional methods

takes compared to GA, we found a huge difference
(1=minute to 45 minutes); but this process is performed off-

line. Once the connection weights are obtained, the

prediction is very fast.

In previous works, the short-term water demand fore-

cast is performed considering the previous measurements,

giving the opportunity to search if other factors like the

temperature, humidity, human behavior, among others,

have an influence on the water demand. In this work, we

consider the human behavior factor by adding a mode to

the input. The mode (or regime) concept comes from study-

ing the time series, especially the ones that come from

nature and the ones that came from human activities.

Nature and humans have behavior patterns (like the

weather in summer and in winter). With this assumption,

we focus on detecting the pattern and predict it. Also, if

an ANN has more information about the system, the more

accurate the forecast is going to be. In our proposal, we

identify the modes of the time series, we forecast the next

mode and use it as an input of the ANN.

Finally, all the predictions are not completely accurate,

there is always an error. The MPC controller needs to pre-

vent the worst-case scenario, anticipating in advance the

reaction in order to avoid problems of dissatisfaction of

the water demand. The BM facilitates the construction of

the confidence interval because in the forecast of the next



24 hours, we never consider estimated data to perform any

forecast. In this work, the CI will allow determination of

the worst-case scenario, so the MPC controller can antici-

pate in advance possible demand supply problems.

The system has been fully implemented in Python

(Python Software Foundation ), using distributed EA

(Fortin et al. ) (a Python plugin to perform GA) and

the graphics showed in this article were performed in Math-

ematica (Wolfram Research ). The methodology was

satisfactorily tested on the Barcelona water network.

As a future work, we plan to integrate this approach

with the MPC controller and provide a robust MPC design

methodology able to take into account the CI when comput-

ing the control actions to apply to the actuators. This idea

can be complemented with the work of Giustolisi et al.

() that considers a Bayes-based method to estimate the

predictive uncertainty based on the observed data. Also, it

is interesting to include a statistical validation that allows

detecting and minimizing structural errors following the

analysis included in the work of Hutton & Kapelan ().

We could also consider performing a spatial analysis by

consider other factors affecting the water demand, such as

temperature, humidity, etc.

Finally, we could consider the use of the BM in the vali-

dation and reconstruction of data. By splitting the forecast

into individual models, it will be easy to make a statistical

analysis of the data that will allow to data validation and

reconstruction to be carried out.
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