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Abstract

This paper proposes an approach for the joint state and fault estimation for

a class of uncertain nonlinear systems with simultaneous unknown input and

actuator faults. This is achieved by designing an unknown input observer com-

bined with a set-membership estimation in the presence of disturbances and

measurement noise. The observer is designed using quadratic boundedness ap-

proach that is used to overbound the estimation error. Sufficient conditions for

the existence and stability of the proposed state and actuator fault estimator are

expressed in the form of linear matrix inequalities (LMIs). Simulation results

for a quadruple-tank system show the effectiveness of the proposed approach.

Keywords: Fault detection, fault isolation, quadratic boundedness, nonlinear

systems, bounded-error estimation, observer

1. Introduction

Fault detection and isolation (FDI) procedures have become a very attractive

topic in the last decades due to the increasing demand for safety and reliability
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in control engineering systems. However, the presence of nonlinearities in con-

trol systems still constitutes a major challenge to model–based FDI. In recent5

years, some results on FDI for nonlinear systems have been obtained. Some of

these works are based on nonlinear observers [1, 2, 3] while others are based

on parity space approaches [4]. The majority of these FDI approaches have

been derived only for some classes of nonlinear systems such as state affine [5],

R2#C3 =⇒ 10         input affine [6] or bilinear systems [7], among others.    Apart from analytical–

model–based solutions there is a solid line of research devoted to developing 

data–driven models for FDI. This can be realised, e.g., with linear parametric 

models [8], neural networks [9], fuzzy logic [10] or recursive kernel learning ap-

proach [11]. The last approach deserves special attention because, as reported

15 in [11], it outperforms neural networks and its computational framework has

several appealing properties. Moreover, its efficiency was proven in the soft 

sensors design [12], which can be directly applied for FDI purposes.

Another important issue is the fact that in real applications, it is not easy

to directly apply the existing FDI schemes because of the presence of uncer-

tainties, disturbances, and noise [13]. In addition, it is not always possible to20

get information about disturbances and noises acting on the system. A so-

lution to such cases can be obtained by assuming bounded uncertainties and

using set–membership (or bounded–error) methods [14]. In these methods,

noise, disturbances and uncertainties acting on the model parameters are as-

sumed to be unknown but bounded with a priori known bound. Using this25

bounded description, the set of state/parameter values that are consistent with

the measurements and the model structure can be calculated. Then, when-

ever a measurement is not consistent with any of the members of this set, a

fault is detected. The bounded–error approximations are achieved using dif-

ferent geometrical regions such as ellipsoids [15], parallelotopes [16], polytopes30

[17], orthotopes [18], zonotopes [19] or a combination of them. More recently,

set–membership fault detection techniques have been investigated by several

authors [20, 14, 21, 22, 23].

It should be also underlined that the use of on–line fault estimation is es-
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sential for all active fault compensation approaches. A number of suitable fault35

estimation methods, essentially observer–based [24, 25, 26, 27], Kalman filter–

based [28], or parameter identification–based [29] are used. In [30], a fault

estimation scheme for nonlinear systems that can be modeled in linear param-

eter varying form is presented. In [20], an observer scheme that simultaneously

estimate the state and the fault is considered. In [31], a robust fault estimation40

approach for nonlinear discrete–time systems using unknown input observer is 

R1#C1C2C3 presented.

=⇒ A class of nonlinear systems of special attention is the so–called Lipschitz

ones [32, 33], in which the mathematical model of the system satisfies the Lip-       

45       schitz continuity condition. Many observer–based FDI approaches have been

reported for this class of nonlinear systems, such as unknown input observers 

[34], adaptive observers [25], descriptor system approaches [35] and high–gain 

observers [36]. In [3] and [25], a fault diagnosis for Lipschitz nonlinear systems 

by using adaptive observer has been presented. In [37], a sliding mode observer

50 has been designed for nonlinear Lipschitz bounded systems and recently, non-

linear observers for one–sided Lipschitz systems have been considered, see, 

e.g.,[38, 39, 40].

A very interesting approach for simultaneous state and unknown input esti-

mation was proposed in [41]. In particular, the authors considered a Lipschitz

system with a nonlinearity split into known and unknown parts. It is also worth       

noting that the system output equation has a direct input feed–through. The 

design observer design procedure boils down to transforming the original system 

into an equivalent form without a direct feed–through, decoupling the effect of 

unknown nonlinearity and providing asymptotic estimates of the system input

60 and state. A similar approach was proposed in [42] for nonlinear time–delay 

systems. It is important to underline that the above work considers unknown 

but bounded delays, which constitute the main source of uncertainty, while the 

nonlinearity is treated as a disturbance, which is suitably decoupled. A fur-

ther extension of the above general framework was recently proposed in [32].

65 Contrarily to [41], the usual Lipschitz condition is replaced by one–sided and
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quadratically inner–bounded ones, which extends its applicability to a wider 

class of nonlinear systems. A similar strategy was employed for reduced–order 

observer in [33]. Taking into account the fact that the estimated unknown in-

put can be perceived as unknown faults, the above approach can be adapted for

70 simultaneous state and fault estimation.

The contribution of this paper is to propose a novel approach for simultane-

ous state and actuator fault estimation, which can be perceived as a fusion of

[42, 41] and the above–mentioned set–membership strategies. In the proposed 

strategy, a set–membership approach is used to provide a feasible set of states

75 and actuator faults that are consistent with the measurements supposing that     

the external system disturbances are unknown but bounded. This means that 

the main contribution of this work is the design of an unknown input observer 

combined with a set–membership estimation in the presence of disturbances 

and measurement noises. It is worth mentioning that the proposed technique

80         for state and fault reconstruction is different than the one presented in [31]

where the objective was to determine an optimal state and fault estimation in the 

sense of H∞ norm. In this work, the observer is designed using a quadratic 

boundedness (QB) approach that is used to overbound the estimation error. 

Sufficient conditions for the existence and stability of the proposed state and

85 actuator fault estimator are expressed in the form of linear matrix inequalities

(LMIs), which can be solved using available computational packages [43].

The paper is organised as follows: Section 2 presents task set–up regarding

the problem being considered. In Section 3, the joint state and fault estima-

tion approach is proposed. Section 4 provides the computational framework

used for obtaining a feasible state and fault set that is consistent with the90

current measurements. Section 5 presents the final procedure for the bounded–

error estimation. In Section 6, the application of the proposed approach to a

quadruple–tank system is presented. Finally, Section 7 concludes the paper.

Notation: The following notation will be used throughout this paper.

• k – sample index;95
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• t – time;

• Rn, Rr, Rm, Rq – n, r, m, q dimensional real vector space;

• xk ∈ Rn, x̂k ∈ Rn – system state vector and its estimate;

• zk ∈ Rn – observer state vector;

• uk ∈ Rr – input vector;100

• yk ∈ Rm – output vector;

• dk ∈ Rq – unknown input disturbance vector;

• fk ∈ Rr, f̂k ∈ Rr – actuator fault and its estimate;

• g (xk,uk) – continuous, differentiable nonlinear function with respect to

xk and uk;105

• wk ∈ Rn – exogenous disturbance vector;

• ek ∈ Rn, ef,k ∈ Rr – state and fault estimation error respectively;

• P � 0 (P ≺ 0) – positive definite (negative definite) square matrix;

• α > 0 (α < 0) – positive (negative) scalar;

• η – Lipschitz constant;110

• ρ – one–side Lipschitz constant;

• I – identity matrix;

• AT – transpose of matrix A;

• A−1 – inverse of matrix A;

• ν ∈ Eν , Eν = {ν : νTQνν ≤ 1}, Qν � 0 – ellipsoidal set;115
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2. Problem set–up

The system under consideration is described by a nonlinear discrete-time

state-space form

xk+1 = Axk +Buk +Ddk + g (xk,uk) +Bfk +W 1wk, (1)

yk = Cxk +W 2wk, (2)

where A, B, D, W 1, W 2, C are constant matrices of appropriate dimensions.

Note that the disturbance input vector wk, includes system disturbances, mea-

surements noises, etc. The function g (xk,uk) is nonlinear and is assumed to

be differentiable with respect to xk and uk. Using the differential mean value

theorem [44], it can be shown that

g (a,u)− g (b,u) = Mx,u(a− b), (3)

with

Mx,u =


∂g1
∂x

(c1,u)

...
∂gn
∂x

(cn,u)

 , (4)

where c1, . . . , cn ∈ Co(a, b), ci 6= a, ci 6= b, i = 1, . . . , n. Based on the fact that

xk is bounded, i.e., xk ∈ X ⊂ Rn, it is possible to show that

āi,j ≥
∂gi(x)

∂xj
≥ ai,j , i = 1, . . . , n, j = 1, . . . , n, (5)

where āi,j ≥ ai,j are known bounds.

Let us define the following set of matrices

M =
{
M ∈ Rn×n|āi,j ≥ mi,j ≥ ai,j , i, j = 1, . . . , n,

}
. (6)

that is useful in order to define the following assumption(s):

Assumption 1: There exists a matrix M ∈M such that:

(g (a,u)− g (b,u))
T

(a− b) ≤ (a− b)TMT (a− b)
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Assumption 2: There exists a matrix M ∈M such that:

(g (a,u)− g (b,u))
T

(g (a,u)− g (b,u)) ≤ (a− b)TMTM(a− b)

It is worth noting that, ifMTM = η2I then the relation underlying Assumption

2 (cf. [45, 46]) becomes a usual Lipschitz condition [37, 47, 48, 49] with η being

a Lipschitz constant. This appealing property makes the employed strategy120

more general than the ones presented in the literature [37, 47, 48, 49]. Moreover,

a significant progress was recently obtained in the observer design for nonlinear

systems by introducing the so-called one-sided Lipschitz condition [50], which

means that a wider spectrum of systems can be tackled with the new approach.

Indeed, if M = ρI, then the relation underlying Assumption 1 becomes a125

one–sided Lipschitz condition, which is imposed along with the usual Lipschitz

condition (see [50] for further details and explanations). Thus, it is evident that

this appealing property makes again the employed strategy more general than

those presented in the literature (see [50] and the references therein). Moreover,

for further analysis, three additional assumptions are considered for the system:130

Assumption 3:

εk = fk+1 − fk,

εk ∈ Eε , Eε = {ε : εTQεε ≤ 1}, Qε � 0.
(7)

Assumption 4:

rank(D) = rank(CD) = q, q ≤ m. (8)

Assumption 5:

wk ∈ Ew , Ew = {w : wTQww ≤ 1}, Qw � 0, (9)

Assumption 3 is required to attain a suitable fault estimation quality. The value

of εk is unknown but bounded in an ellipsoidal set [31]. Assumption 4 is used to

decouple the effect of an unknown input (see, e.g., [51, 52] for further details).

Finally, Assumption 5 states that the external disturbances are unknown but
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also bounded in an ellipsoidal set. Thus, the contribution of this paper can be135

associated with the so–called bounded–error or set-membership approaches [14,

53]. Contrarily to [31], where the objective was to obtain an optimal state and

fault estimator in the sense of H∞ norm, the idea is to obtain an estimator

that will provide a feasible set of states and faults that are consistent with the

measurements. This means that the proposed scheme gives knowledge about140

upper and lower bounds of the system states and faults that can be perceived

as worst–case situations. This information is especially important from the

viewpoint of fault-tolerant control [54, 55].

Given the above preliminaries and assumptions, the objective of the subse-

quent part of this paper is to recall the state and fault estimation strategy for145

the class of nonlinear discrete-time systems (1)–(2) that was recently proposed

by the authors in [31]. The approach proposed in the current paper will use

a similar estimation structure but its derivation and estimation objectives are

different. Furthermore, the proposed scheme will be extended to cope with the

bounded-error estimation, i.e., instead of a single estimate, a set of estimates150

that are consistent with current measurements is provided.

The general estimator structure proposed in [31] is as follows

zk+1 = Nzk +Guk +Lyk + TBf̂k + Tg (x̂k,uk) , (10)

x̂k = zk −Eyk, (11)

f̂k+1 = f̂k + F (yk −Cx̂k), (12)

where T = I +EC. Thus, under Assumption 4, it can be shown that for:

E = −D[(CD)T (CD)]−1(CD)T , (13)

and G = TB, the following relations can be formulated [31]:

TD = 0,

K =NE +L, (14)

N =TA−KC. (15)
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By defining the state and fault estimation errors as ek = xk−x̂k and ef,k = fk−

f̂k, the following augmented vectors can be introduced: ēk+1 =
[
eTk+1, e

T
f,k+1

]T
and vk =

[
wT
k , ε

T
k ,w

T
k+1

]T
. As a result, the joint state and fault estimation

error obeys [31]:

ēk+1 = Xēk + Y sk +Zvk, (16)

with sk = g (xk,uk)− g (x̂k,uk) where

X = Ā− K̄C̄ =

TA TB

0 I

−
K
F

[C 0
]
, Y =

T
0

 , (17)

Z = W̄ − K̄V̄ =

TW 1 0 EW 1

0 I 0

−
K
F

[W 2 0 0
]
. (18)

Given the general structure of the estimator along with its estimation error (16),

a novel design procedure will be presented in the subsequent section.

3. Novel observer design

The main objective of this section is to show the design procedure of an ob-155

server for the system (1)–(2) using the scheme proposed in the previous section.

To settle this problem, QB is employed [56, 57, 58]. The main idea behind using

this paradigm is the fact that the approach proposed in this paper has to provide

a feasible state and fault set that is consistent with the current measurements.

As demonstrated in [56], QB can be used efficiently for outerbounding the state160

estimation error. Thus, a suitable extension has to be developed in order to

with the problem defined above.

From (7) and (9) it can be observed, that vk ∈ Ev , where

Ev = {v : vTQvv ≤ 1},

Qv =
1

3
diag(Qw ,Qε ,Qw ).

(19)

For the purpose of further analysis, let P � 0, which makes it possible to for-

mulate the following definitions (cf. [56]):
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Definition 1. The system (16) is strictly quadratically bounded with P � 0165

for all allowable vk ∈ Ev , k ≥ 0, if ēTkP ēk > 1 implies ēTk+1P ēk+1 < ēTkP ēk

for any vk ∈ Ev .

This means that strict quadratic boundedness ensures that the Lyapunov

function Vk = ēTkP ēk decreases, i.e., Vk+1 < Vk, for (16) and any vk ∈ Ev when170

Vk > 1 (cf. [56]).

Before providing the main result of this section, let us remind the following

lemma [59]:

Lemma 1. The following statements are equivalent

1. There exist X � 0 and W � 0 such that

V TXV −W ≺ 0, (20)

2. There exist X � 0, W � 0 and U such that −W V TUT

UV X −U −UT

 ≺ 0. (21)

Theorem 1. The following statements are equivalent:175

1. The system (16) is strictly quadratically bounded with P � 0 for all al-

lowable vk ∈ Ev ;

2. There exists H, U , P � 0, 0 < γ < 1, α > 0, β > 0 such that for all

M ∈M the following condition is satisfied:

S1 −αV T 0 Ā
T
P − C̄T

HT V TMTUT

−αV −βI 0 Y TP 0

0 0 −γQv W̄
T
P − V̄ T

HT 0

PĀ−HC̄ PY PW̄ −HV̄ −P 0

UMV 0 0 0 βI −U −UT


≺ 0,

(22)

where S1 = −P + γP + αV T (M +MT )V with H = PK̄.
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Proof. Using Definition 1 and the fact that vTkQvvk ≤ 1 (cf. (19)), it is possible

to write:

vTkQvvk < ē
T
kP ēk, ⇒ ēTk+1P ēk+1 − ēTkP ēk < 0. (23)

As a consequence, using (16) and defining v̄k = [ēTk , s
T
k , v

T
k ]T , it can be shown

that

v̄Tk


XTPX − P XTPY XTPZ

Y TPX Y TPY Y TPZ

ZTPX ZTPY ZTPZ

 v̄k < 0. (24)

Following Assumption 1, it is evident that

sTk ek ≤ eTkMek =
1

2
eTk (M +MT )ek. (25)

Bearing in mind that

ek = V ēk =
[
I 0

] ek
ef,k

 , (26)

inequality (25) can be written as

sTk V ēk ≤
1

2
ēTk V

T (M +MT )V ēk,

which, for any α > 0, is equivalent to

αv̄Tk


V T (M +MT )V −V T 0

−V 0 0

0 0 0

 v̄k ≥ 0. (27)

Similarly, from Assumption 2 it can be shown that

sTk sk ≤ eTkM
TMek, (28)

which, for any β > 0, can be written as

βv̄Tk


V TMTMV 0 0

0 −I 0

0 0 0

 v̄k ≥ 0. (29)
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From (23), and in particular from vTkQvvk < ēTkP ēk, it is evident that for

γ > 0

γv̄Tk


−P 0 0

0 0 0

0 0 Qv

 v̄k < 0. (30)

Now, using the S-procedure [60] for (24), (27), (29) and (30), it can be concluded

that

v̄Tk


S2 XTPY − αV T XTPZ

Y TPX − αV Y TPY − βI Y TPZ

ZTPX ZTPY ZTPZ − γQv

 v̄k < 0. (31)

where S2 = XTPX − P + γP + αV T (M +MT )V + βV TMTMV .

Applying Schur complements [60] to (31) yields
S3 −αV T 0 XTP

−αV −βI 0 Y TP

0 0 −γQv ZTP

PX PY PZ −P

 ≺ 0. (32)

where S3 = −P + γP +αV T (M +MT )V +βV TMTMV . Applying Lemma

1 to (32) and then substituting

PX = PĀ− PK̄C̄ = PĀ−HC̄,

PZ = PW̄ − PK̄V̄ = PW̄ −HV̄ ,

where H = PK̄, lead to (22), which completes the proof.

4. Bounded-error estimation180

This section provides a computational framework that can be used for ob-

taining a feasible state and fault set that is consistent with the current mea-

surements. To solve the above problem, let us start with the following theorem:
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Theorem 2. If the system (16) is strictly quadratically bounded for all vk ∈ Ev ,

then the uncertainty intervals for the state and fault are given as follows:

x̂i,k − zi,k ≤xi,k ≤ x̂i,k + zi,k, i = 1, . . . , n. (33)

f̂ j,k − zi,k ≤fj,k ≤ f̂ j,k + zi,k, j = 1, . . . , r, i = n+ 1, . . . , n+ r. (34)

with

zi,k =
(
ζk(γ)cTi P

−1ci
) 1

2 (35)

ζk(γ) = (1− γ)kV0 + 1− (1− γ)k, k = 0, 1, . . . . (36)

where Vk = ēTkP ēk and ci is the ith column of an n+ r order identity matrix.

Proof. Theorem 1 guarantees that there exist γ ∈ (0, 1) and P � 0 such that

(34) holds. Moreover, from (24) and (31) it can be shown that for all M ∈M

Vk+1 < (1− γ)Vk − α
(
ēTk V

T (M +MT )V ēk − sTk V ēk − ēTk V
Tsk

)
− β

(
ēTk V

TMTMV ēk − sTk sk
)

+ γvTkQvvk, (37)

Subsequently, by (25) and (28) as well as by the fact that vTkQvvk ≤ 1, the

upper bound of Vk+1 defined by (37) can be overbounded with the non-strict

inequality of the form

Vk+1 ≤ γ + (1− γ)Vk. (38)

Following [56], by induction, inequality (38) yields

Vk ≤ ζk(γ), k = 0, 1, . . . , (39)

where the sequence ζk(γ) is defined by (36). Thus, from (39) it is evident that

for any vk ∈ Ev , ēk is contained inside the ellipsoid

ēTkP ēk ≤ ζk(γ). (40)

The maximum and minimum values of ēi,k can be computed by maximiz-

ing/minimizing cTi ēk under (40). Using the Lagrange approach, the following

Lagrange function can be formulated

h(ēk, λ) = cTi ēk + λ(ēTkP ēk − ζk(γ)), (41)
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where λ stands for the Lagrange multiplier. Differentiating (41) with respect to

ēk and λ yields

∂h(ēk, λ)

∂ēk
= cTi + 2λēTkP = 0, (42)

∂h(ēk, λ)

∂λ
= ēTkP ēk − ζk(γ) = 0. (43)

Thus, from (42), it can be shown that

ēTk = − 1

2λ
cTi P

−1. (44)

Substituting (44) into (43) leads to

λ = ±1

2

(
ζk(γ)−1cTi P

−1ci
) 1

2 . (45)

Finally, introducing (45) into (44) yields

−zi,k ≤ ēi,k ≤ zi,k, i = 1, . . . , n+ r. (46)

where zi,k is given by (35), which completes the proof.185

Remark 1. It can be easily shown that (36) can be written as

ζk(γ) = (1− γ)k(V0 − 1) + 1, k = 0, 1, . . . , (47)

which for γ ∈ (0, 1) converges exponentially to one. Moreover, the convergence

ratio depends on γ, i.e., a larger γ yields a faster convergence. It should also be

noted that the computation of ζk(γ) requires the knowledge of initial estimation

error ē0, i.e., V0 = ēT0 P ē0. However this can be relaxed by assuming that

V0 ≤ δ, δ > 0, which boils down to

ζk(γ) = (1− γ)k(δ − 1) + 1, k = 0, 1, . . . , (48)

5. Final design procedure

This section presents the final design procedure for the proposed bounded-

error estimator. As it was already mentioned in the previous section, ζk con-

verges exponentially to one, with a speed that depends on γ. Thus, the steady

14



state length of (33) and (49) depends solely on the eigenvalues of P , which190

describe the size of the ellipsoid. This means that, under constraints (22), the

following functions can be employed:

1. D - optimality criterion φ(P ) = det(P )

2. E - optimality criterion φ(P ) = λmax(P )

3. A - optimality criterion φ(P ) = trace(P )195

The determinant of P corresponds to the volume of the ellipsoid, while λmax(P )

stands for its largest axis. Finally, the trace of P corresponds to the sum of the

axes of the ellipsoid. In the context of the approach developed in this paper,

the A - optimality criterion is selected, such that the following optimization

problem is obtained

max trace(P ). (49)

Having the cost function, it is desirable to describe (22) in the linear matrix

inequality (LMI) form.

Remark 2. The set M, defined by (6), can be equivalently described by

M =

{
M(α) : M(α) =

N∑
i=1

αiM i,

N∑
i=1

αi = 1, αi ≥ 0

}
, (50)

where N = 2n
2

. Note that this is a general description, which does not take

into account that some elements of M may be constant. In such cases, N is

given by N = 2(n−c)
2

, where c stands for the number of constant elements of M .

Thus, solving (49) under (22) with respect to H, U , P , γ, α, β is equivalent

to max trace(P ) subject to (for i = 1, . . . ,N)

S1 −αV T 0 Ā
T
P − C̄T

HT V TMT
i U

T

−αV −βI 0 Y TP 0

0 0 −γQv W̄
T
P − V̄ T

HT 0

PĀ−HC̄ PY PW̄ −HV̄ −P 0

UM iV 0 0 0 βI −U −UT


≺ 0,

(51)

and then determining K̄ = P−1H.
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Remark 3. The problem of solving (51) boils down to bilinear matrix inequali-

ties, due to the product of γ and P in S1. However, by fixing a value for γ, (51)200

becomes a set of LMIs. Since γ is constrained to belong to the interval (0, 1),

an iterative algorithm can be easily implemented.

Finally, it should be underlined that when (51) is feasible, then all its diag-

onal elements should be negative definite. In particular,

−P + γP + αV T (M i +MT
i )V T ≺ 0. (52)

Thus, when V T (M i + MT
i )V T ≺ 0, then it is evident that the feasibility of

(51) can be obtained more easily than in the opposite case. However, when

V T (M i + MT
i )V T 3 0, then the optimization procedure will select α suf-205

ficiently close to zero in order to tackle this unappealing effect. A similar

property underlines the one-sided Lipschitz condition-based design procedure

proposed in [50]. However, as it was already mentioned, the proposed approach

is perceived as a generalisation of the former one.R2#C2 =⇒

210 To summarize, the following flowchart of the developed algorithm is pro-

posed:

Determine E by using (13) and then set T = I + EC and G = T B

Obtain matrices Mi (for i = 1, . . . , N) describing (50)

Select Qv describing (19)

Determine H, U , P , γ, α, β by solving (49) under constraints (51).

Calculate
[
K F

]T
=̄ K = P −1H

Calculate N using (15) and L with (14).
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6. Illustrative example

Let us consider a quadruple–tank system [61], as depicted in Fig. 1. The

dynamics of this system can be derived from mass balances and Bernoulli’s law

[62], yielding

dh1
dt

= − a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

v1 (53)

dh2
dt

= − a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

v2 (54)

dh3
dt

= − a3
A3

√
2gh3 +

(1− γ2)k2
A3

v2 (55)

dh4
dt

= − a4
A4

√
2gh4 +

(1− γ1)k1
A4

v1 (56)

where Ai, ai and hi, i = 1, 2, 3, 4, denote the cross-section of tanks, the cross-

sections of the outlet holes and the water levels, respectively. The voltage ap-215

plied to pump i, i = 1, 2 is vi, and the corresponding flow is kivi. The accel-

eration of gravity is denoted by g. The parameter values are given by: A1 =

A3 = 28 cm2, A2 = A4 = 32 cm2, a1 = a3 = 0.071 cm2, a2 = a4 = 0.051 cm2,

k1 = 3.235 cm3/V s, k2 = 3.320 cm3/V s, γ1 = 0.5650 and γ2 = 0.47.

a3 a4

a1 a2

A3 A4

A1 A2

(1− γ2)k2v2(1− γ1)k1v1

k2v2k1v1

γ2k2v2γ1k1v1

Figure 1: Quadruple–tank system
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By defining x = [h1, h2, h3, h4]T and u = [v1, v2]T , the nonlinear model

(53)-(56) can be reshaped in the quasi-linear form

ẋ = AQL(x)x+BQLu (57)

AQL(x) =


−a1

√
2gh1

A1h1
0 a3

√
2gh3

A1h3
0

0 −a2
√
2gh2

A2h2
0 a4

√
2gh4

A2h4

0 0 −a3
√
2gh3

A3h3
0

0 0 0 −a4
√
2gh4

A4h4



BQL =


γ1k1
A1

0

0 γ2k2
A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0


Eq. (57) is discretized using Euler method with sampling time Ts = 1 s, such

that it can be expressed as (1)-(2) around an equilibrium point xeq, as follows

xk+1 = A(xeq)xk +B(xeq)uk +Ddk + g (xeq,xk,uk) +B(xeq)fk +W 1wk,

yk = Cxk +W 2wk,

(58)

where A(xeq) and B(xeq) are the frozen system matrices at the equilibrium

point, while the non-linear function g (xeq,xk,uk) is defined as

g (xeq,xk,uk) = (A(xk)−A(xeq))xk, (59)

In particular, for input signals uk = [10, 10]T , the equilibrium point xeq =

[130.1, 172.6, 31.3, 38.8]T can be calculated, which corresponds to matricesA(xeq)

and B as follows

A(xeq) =


0.9902 0 0.0201 0

0 0.9946 0 0.0113

0 0 0.9799 0

0 0 0 0.9887

 ,B =


0.0653 0

0 0.0488

0 0.0628

0.0440 0

 .
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It will be assumed that h1, h2 and h3 are directly measured, such that

C =


1 0 0 0

0 1 0 0

0 0 1 0

 ,
and that the exogenous disturbance wk affects the output equation only, such220

thatW 1 = 0 andW 2 = I3. On the other hand, in order to show the decoupling

property of the proposed strategy, an unknown input acting on the third tank

is considered, i.e. D = [0, 0, 1, 0]T .

By varying each component of xk within its possible domain, which is as-

sumed to be h1, h2 ∈ [60, 280] and h3, h4 ∈ [5, 100], it is possible to obtain the

matrices

Mmax =


0.0065 0 0.0039 0

0 0.0033 0 0.0037

0 0 0.0144 0

0 0 0 0.0078

 ,

Mmin =


0.0026 0 −0.0144 0

0 0.0008 0 −0.0078

0 0 −0.0039 0

0 0 0 −0.0037

 .

R2#C1 =⇒

which contain all elements āi,j and ai,j , i, j = 1, . . . , n defining (6), respectively. 

Afterwards, taking into account all the possible combinations of elements in 

Mmax and Mmin, 64 matrices Mi are obtained (see (51)). Let the initial 

condition for the system and the observer be

x0 = [130, 170, 30, 40]T , z0 = [125, 165, 25, 35]T , fˆ
0 = 0

while the input

v1(k) = 10 + sin
(
k

50

)
, v2(k) = 10 + cos

(
k

80

)
and constant input disturbance dk = 0.1 are considered, and wk is chosen as 

225 a uniformly distributed random vector, where each element takes values in the

19



interval [−0.1, 0.1], which corresponds to Qw = 100I3. Let us consider the 

following fault scenarios, containing additive faults in both pump 1 and pump 

2, characterized as follows

Fault scenario FS1:

f1(k) =



0 0 ≤ k ≤ 1000,

−0.05k + 50 1000 < k ≤ 1100,

−5 1100 < k ≤ 3000,

0.05k − 155 3000 < k ≤ 3200,

5 otherwise,

f2(k) = 0.

Fault scenario FS2:

f1(k) =



0 0 ≤ k ≤ 1000,

−0.05k + 50 1000 < k ≤ 1100,

−5 1100 < k ≤ 3000,

0.05k − 155 3000 < k ≤ 3200,

5 otherwise,

f2(k) =



0 0 ≤ k ≤ 1000,

0.05k − 50 1000 < k ≤ 1100,

5 1100 < k ≤ 3000,

−0.05k + 155 3000 < k ≤ 3200,

−5 otherwise.

Once γ = 0.01 is chosen, LMIs (51) can be solved maximizing trace(P ) and

obtaining the following matrices

N =


0.6315 0.0275 0.0793 0

0.0262 0.7383 −0.0053 0.0113

−8.6 · 10−6 −2.1 · 10−6 4.8 · 10−5 0

−0.2542 0.0278 0.0511 0.9887

 , F T =


0.6107 −0.0632

−0.0306 0.5335

−0.1255 0.0129

 ,
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G =


0.0653 0

0 0.0488

0 0

0.0440 0

 , L =


0.3587 −0.0275 0.0201

−0.0262 0.2563 0

8.6 · 10−6 2.1 · 10−6 0

0.2542 −0.0278 0

 ,

T =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

 , E =


0 0 0

0 0 0

0 0 −1

0 0 0

 .

Figs. 2–7 present the real values of each state/fault (black lines), their

estimation (red lines) and the uncertainty intervals (green lines) obtained for230

the fault scenario FS1. In particular, in Figs. 2–5, the responses corresponding

to a simulation which lasts 5000 s are plotted alongside with two zooms, that

show the convergence of the estimation to the real value and the inclusion of the

state within the uncertainty intervals. From these results, it is evident that the

estimation is performed with a good quality. Similar results have been obtained235

in FS2, as shown in Figs. 8–13, which proves the effectiveness of the proposed

approach in dealing with multiple faults.
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Figure 2: Tank level h1 (black line), its estimate (red line) and its uncertainty intervals (green

lines) for the fault scenario FS1
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Figure 3: Tank level h2 (black line), its estimate (red line) and its uncertainty intervals (green

lines) for the fault scenario FS1
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Figure 4: Tank level h3 (black line), its estimate (red line) and its uncertainty intervals (green

lines) for the fault scenario FS1
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Figure 5: Tank level h4 (black line), its estimate (red line) and its uncertainty intervals (green

lines) for the fault scenario FS1
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Figure 6: Actuator fault f1 (black line), its estimate (red line) and its uncertainty intervals

(green lines) for the fault scenario FS1
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Figure 7: Actuator fault f2 (black line), its estimate (red line) and its uncertainty intervals

(green lines) for the fault scenario FS1
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Figure 8: Tank level h1 (black line), its estimate (red line) and its uncertainty intervals (green

lines) for the fault scenario FS2
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Figure 9: Tank level h2 (black line), its estimate (red line) and its uncertainty intervals (green

lines) for the fault scenario FS2
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Figure 10: Tank level h3 (black line), its estimate (red line) and its uncertainty intervals

(green lines) for the fault scenario FS2
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Figure 11: Tank level h4 (black line), its estimate (red line) and its uncertainty intervals

(green lines) for the fault scenario FS2
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Figure 12: Actuator fault f1 (black line), its estimate (red line) and its uncertainty intervals

(green lines) for the fault scenario FS2

7. Conclusions

This paper has proposed an estimator for the simultaneous estimation of

states and actuator faults in a class of nonlinear systems that satisfy a one-sided240

Lipschitz condition. The design approach for the estimator can be perceived as

a set-membership one, since the theory of quadratic boundedness is used to
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Figure 13: Actuator fault f2 (black line), its estimate (red line) and its uncertainty intervals

(green lines) for the fault scenario FS2

provide the set of states and faults that are consistent with the measurements,

assuming that the external sources of uncertainty (disturbances and measure-

ment noise) are unknown but bounded. Sufficient conditions for the existence245

and stability of the proposed state and actuator fault estimator have been ob-

tained and expressed in the form of linear matrix inequalities (LMIs), which

can be solved efficiently using available solvers. The application of the proposed

approach to a quadruple-tank system has allowed assessing its effectiveness.
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[10] J. Korbicz, J. Kościelny, Z. Kowalczuk, W. Cholewa (Eds.), Fault Diag-

nosis. Models, Artificial Intelligence, Applications, Springer-Verlag, Berlin,290

2012.

[11] Y. Liu, H. Wang, J. Yu, P. Li, Selective recursive kernel learning for online

identification of nonlinear systems with NARX form, Journal of Process

Control 20 (2) (2010) 181–194.

[12] W. Chen, A. Khan, M. Abid, S. Ding, Integrated design of observer-based295

fault detection for a class of uncertain non-linear systems., International

Journal of Applied Mathematics and Computer Science 21 (4) (2011) 619–

636.

[13] T. Floquet, C. Edwards, S. K. Spurgeon, On sliding mode observer for

systems with unknown inputs, International Journal of Adaptive Control300

and Signal Processing 21 (8) (2007) 638–656.

[14] V. Puig, Fault diagnosis and fault tolerant control using set-membership

approaches: Application to real case studies, International Journal of Ap-

plied Mathematics and Computer Science 20 (4) (2010) 619–635.

[15] G. Calafiore, L. El Ghaoui, Ellipsoidal bounds for uncertain linear equations305

and dynamical systems, Automatica 40 (2004) 773–787.

[16] A. Hero, Y. Zhang, W. Rogers, Tomographic feature detection and clas-

sification using paralletolpe bounded error estimation, IEEE International

Conference on Acoustics, Speech and Signal Processing 4 (1997) 2849–2852.

28



[17] G. M. Ziegler, Lectures on polytopes, Graduate texts in mathematics,310

Springer, New York, 1995.

[18] M. Milanese, G. Belforte, Estimation theory and uncertainty intervals eval-

uation in presence of unknown but bounded errors: Linear families of mod-

els and estimators, IEEE Transaction on Automatic Control 27 (1992) 408–

414.315

[19] J. Bravo, T. Alamo, M. Redondo, E. Camacho, An algorithm for bounded-

error identification of nonlinear systems based on dc functions., Automatica

44 (2008) 437–444.

[20] S. M. Tabatabaeipour, T. Bak, Robust observer-based fault estimation and

accommodation of discrete-time piecewise linear systems, Journal of the320

Franklin Institute 351 (1) (2014) 277 – 295.

[21] S.-A. Raka, C. Combastel, Fault detection based on robust adaptive thresh-

olds: A dynamic interval approach, Annual Reviews in Control 37 (1)

(2013) 119–128.

[22] I. Fagarasana, S. Ploix, S. Gentil, Fault diagnosis and fault tolerant con-325

trol using set-membership approaches: Application to real case studies,

Automatica 40 (12) (2004) 2099–2110.

[23] J. Blesa, V. Puig, J. Saludes, Identification for passive robust fault detection

using zonotope-based set-membership approaches, International Journal of

Adaptive Control and Signal Processing 25 (2011) 788–812.330

[24] C. Edwards, S. K. Spurgeon, R. J. Patton, Sliding mode observers for fault

detection and isolation, Automatica 36 (2000) 541–553.

[25] X. Zhang, M. Polycarpou, T. Prisini, Fault diagnosis of a class of nonlinear

uncertain systems with Lipschitz nonlinearities using adaptive estimation,

Automatica 46 (2) (2010) 290–299.335

29
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