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Abstract: In this paper, actuator fault diagnosis of singular delayed linear parameter varying (SDLPV) systems is 

considered. The considered system has a time varying state delay and its matrices are dependent on some parameters that 

are measurable online. It is assumed that the measured parameters are inexact due to the existence of noise in real 

situations. The system with inexact measured parameters is converted to an uncertain system. Actuator fault diagnosis is 

carried out based on fault size estimation. For this purpose, the system is transformed to a polytopic representation and then 

a polytopic proportional integral unknown input observer (PI-UIO) is designed. The proposed observer provides 

simultaneous state and actuator fault estimation while attenuating, in the 


H  sense, the effects of input disturbance, output 

noise and the uncertainty caused by inexact measured parameters. The design procedure of PI-UIO is formulated as a 

convex optimization problem with a set of LMI constraints in the vertices of the parameter domain, guaranteeing robust 

exponential convergence of the PI-UIO. The efficiency of the proposed method is illustrated with an electrical circuit 

example modeled as a SDLPV system. 

 

 

1. Introduction 

Modern systems are becoming more complex and 

consequently the need for safety, reliability and higher 

performance has motivated the research on fault diagnosis 

systems. Early and correct detection, isolation and estimation 

of the sizes of the faults are needed to perform suitable fault 

tolerant actions in order to prevent highly sophisticated 

systems from being stopped, damaged or causing hazards to 

human operators. Fault diagnosis methods are categorized into 

model-based and model-free methods. In model-based fault 

diagnosis, the system operation is compared with what is 

expected from its non-faulty model exploiting the existing 

analytic redundancy. Observer-based methods are very 

common in the category of model-based methods which have 

attracted much attention in the recent years. Several kinds of 

observers have been applied in the field of fault diagnosis. 

Unknown Input Observers (UIOs)[1-3] can provide faulty 

situation indicators called residuals decoupled from unknown 

inputs (disturbances) to carry out fault detection. Fault 

isolation can be carried out based on a suitable bank of UIOs, 

each decoupled from a subset of faults. The use of these 

observers for fault estimation has just recently been proposed 

[4, 5]. Fault estimation (reconstruction) is important for 

adjusting fault tolerant actions in the system also providing a 

straightforward approach for fault diagnosis that could avoid 

the fault detection and isolation steps. The Proportional 

Integral (PI) observer has been used to estimate the sizes of 

the faults. This observer has been used for sensor fault 

estimation in [6] and for actuator fault estimation in [7]. 

Actuator and sensor faults have been simultaneously 
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reconstructed by the PI observer in [8] with the aid of the 

descriptor approach. The authors in [9] have modified this 

observer to include multiple integral actions in order to 

estimate the fault derivatives but the proportional multiple 

integral (PMI) observer suffers from higher noise sensitivity. 

Singular systems (which are also called descriptor 

systems, generalized systems, differential-algebraic systems 

and semi-state systems in the literature) arise from a natural 

approach in system modeling when as e.g. static mass/energy 

balances are involved [10]. They are successfully used to 

model various electrical, mechanical, economical, chemical 

and biological systems (see [10, 11] and references therein). 

Actuator fault diagnosis of linear and nonlinear singular 

systems have been performed in [12] and [13], respectively. 

Linear parameter varying (LPV) systems which can provide a 

good approximation of nonlinear systems have attracted the 

attention of the researchers. LPV representation which has 

been originated from the gain-scheduling control systems, 

allows the use of linear systems methodologies in nonlinear 

systems. In particular, singular LPV systems, which can model 

nonlinear systems with algebraic constraints, have been used 

in modelling different processes [14, 15]. Actuator fault 

reconstruction has been developed for LPV systems based on 

learning observers in  [16]. Constant and time varying actuator 

fault diagnosis of singular LPV systems have been considered 

in [7] and [14], respectively, considering both PI and adaptive 

observers with the assumption that the exact knowledge of the 

parameters is available for observer scheduling. Fault 

diagnosis of singular LPV systems in the case of an 

unmeasurable set of parameters is considered in [15] with the 

descriptor system approach to estimate sensor faults and in 

[17] with the 
 

/H H  approach to simultaneously guarantee 

the fault sensitivity and robustness requirements of the fault 

diagnosis observer.  

Delay appears in the dynamics of many real processes (as 

e.g., when considering transport phenomena or 

communications networks) being the cause for instability and 

performance degradation. Fault diagnosis of delayed systems 

is an active research area. Fault estimation is a direct method 

for fault diagnosis that can be addressed with several methods. 

Fault estimation in delayed systems has been carried out with 

the sliding mode observer (SMO) [18], descriptor system 

approach [19], adaptive observer [20] and PI observer [21]. 

Singular delayed linear parameter varying (SDLPV) systems 

have been recently considered. Robust stability and filtering of 

continuous-time SDLPV systems are considered in [22, 23] 

while the stability and stabilization criteria for discrete-time 

counterparts are considered in [24]. In [25], the authors have 

designed UIO for these systems in the case of exact measured 

parameters and have used the proposed observer for actuator 

fault detection and isolation purposes. The problem of fault 

diagnosis in SDLPV systems with inexact measured 

parameters has not been considered yet to the best of the 

authors’ knowledge. 

The goal of this paper is to design a polytopic PI unknown 

input observer (PI-UIO) to address the problem of actuator 

fault estimation for SDLPV systems in the case of inexact 

measured parameters. Because the measured parameters that 

are used for the observer scheduling are inexact, some 

uncertainty is induced in the estimation process. The 

inexactness of the parameter measures is taken into account 

with representing the system by an uncertain system 

formulation. The designed observer can also be used for 

simultaneous state and actuator fault estimation. The fault 

estimation error dynamics is obtained with the assumption that 

the actuator faults are constant or slow varying and then it is 

augmented with state estimation error dynamics. The stability 

of this augmented system and the attenuation of the effects of 

disturbance, noise and the uncertainty caused by inexact 

parameters is addressed with a related Bounded Real Lemma 

(BRL) for SDLPV systems. The design procedure of PI-UIO 

is formulated as a convex optimization problem with a set of 

LMI constraints in the vertices of the parameter domain 

polytope. This paper is the extension of the results of [7] to the 

case which delayed dynamics is present in the singular LPV 

system. Another important contribution of this paper is that it 

considers inexact measured parameters which is more realistic 
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than in [7, 25] where the case of exact parameter measures is 

assumed. The preliminary results of this paper (PI-UIO design 

for SDLPV systems with exact measured parameters) are 

presented in [26].  

This paper is structured as follows: In Section 2, the 

problem under consideration is formulated. A suitable PI-UIO 

for SDLPV systems is proposed in Section 3. In Section 4, the 

design procedure of PI-UIO and the fault diagnosis with this 

observer is presented. In Section 5, the effectiveness of the 

proposed method will be illustrated and discussed with an 

electrical circuit example and Section 6 draws the paper 

conclusions. 

Notation: The notation used in this paper is standard. R is the 

set of real numbers. nI  is the n -dimensional identity matrix. 

For a matrix X , 
TX indicates its transpose.  

1X is the inverse 

and 
X  is the pseudo inverse of X . *  is used to show the 

elements induced by symmetry in a symmetric matrix. 

{ }sym A  is a short notation for  TA A . For a symmetric 

matrix X , 0X  ( 0X ) shows that it is positive (negative) 

definite. For a square integrable function ( )x t , its 2L -norm is 

defined as 


 2 0
( ) ( ) ( ) .Tx t x t x t dt  

 

2. Problem formulation 

In this paper, a SDLPV system with the following 

formulation is considered: 

  

  

 

 

 

   


  
  


 
  


   

( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ) ( ( )) ( ) ( ( )) ( )

( ) ( ) ( )

0 ( )

( ) 1

( ) ( ) 0

d

m

m

Ex t A t x t A t x t t

B t u t R t d t F t f t

y t Cx t Dd t

t

t

x t t t

  (1) 

where ( ) nx t R , ( ) uku t R , ( ) my t R ,  ( ) dkd t R and 

( ) fkf t R  are state vector, input vector, output vector, 

disturbance vector and actuator fault vector, respectively. In 

(1), 
 n nE R  is a constant square matrix that may have rank 

deficiency (  rank( )E r n ). ( ( ))A t , ( ( ))dA t , ( ( ))B t , 

( ( ))R t  and ( ( ))F t are matrices with appropriate dimensions 

which depend affinely on the time varying parameter vector 

 ( ) lt R that is real time measurable. C  and D  are two 

constant matrices with appropriate dimensions. ( )t  is a time 

varying state delay. m  and   are the maximum values of the 

delay and its rate of change. ( )t  is a continuous vector-

valued initial function. 

Assumption 1. The time varying parameter vector belongs to 

the hyperbox   defined as follows: 

       ( ) ( ) 1, ,m M
k k kt t fork l   (2) 

in which  m
k and  M

k  represents the minimum and maximum 

values of each parameter. 

Definition 1 [10]. The matrix pencil ( , )E A  is regular if 

det( )sE A  is not identically zero. 

Definition 2 [10]. The matrix pencil ( , )E A  is impulse-free if 

 deg(det( )) ( )sE A rank E . 

Definition 3 [23]. System (1) is regular and impulse-free if the 

matrix pencils ( , ( ( )))E A t  and  ( , ( ( )) ( ( )))dE A t A t  are 

regular and impulse-free for all the values of ( )t  in the 

domain defined in (2). 

Definition 4 [23]. System (1) is admissible if it is regular, 

impulse free and stable. 

Assumption 2. System (1) is assumed to be admissible. 

Assumption 3. In system (1), 
 

 
 

E
rank n

C
. 

Assumption 4. It is assumed that the faults are constant or 

slow varying ( ( ) 0f t ). 
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System (1) can be formulated in the following 

polytopic form: 

  



  




  
  


1

( ) ( ( ))[ ( ) ( ( ))

( ) ( ) ( )]

( ) ( ) ( )

h
d

i i i
i

i i i

Ex t t A x t A x t t

B u t R d t F f t

y t Cx t Dd t

  (3) 

where 2lh  is the number of subsystems in the polytopic 

representation. iA ,
d
iA , iB , iR  and iF  for 1, ,i h  are 

matrices describing the dynamics of the subsystem in the 
thi  

vertex of the hyperbox.  ( ( ))i t  for 1, ,i h  are different 

subsystem weights which satisfy the following convex 

property: 

 

  0 ( ( )) 1i t       (4) 

 



1

( ( )) 1.
h

i
i

t       (5) 

Remark 1. The polytopic representation matrices iA ,
d
iA , iB , 

iR  and iF  and the subsystem weights  ( ( ))i t  for 1, ,i h  

can be computed with the method presented in [27] with any 

number of parameters in the SDLPV system (1).    

 

3. PI-UIO formulation and preliminaries 

In order to estimate the states and actuator faults in system 

(3), the following PI-UIO is proposed: 

  



 








  


     

  




   



   





1

2

1

ˆ( ) ( ( ))[ ( ) ( ( ))

ˆ( ) ( ( )) ( ) ( )]

ˆ( ) ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( ( )) ( ( ) ( ))

( ) 0 0

h
d

j j j
j

d
j j j j

h

j j
j

m

z t t N z t N z t t

L y t L y t t G u t W f t

x t z t H y t

y t Cx t

f t t y t y t

z t t

  (6) 

where ˆ( ) nx t R , ˆ( ) my t R , ( ) nz t R and ˆ( ) fkf t R  are 

state estimate, output estimate, observer state and fault 

estimate, respectively. jN , 
d
jN , jL , 

d
jL , jG , jW ,  j and 2H

are observer matrices with appropriate dimensions such that the 

procedure for calculating them will be presented in the 

following. In this paper, it is assumed that the measured values 

of the parameters ( ̂( )t ) are different from real values of the 

parameters (( )t ) which are unknown. The observer (6) is 

scheduled with  ̂( ( ))j t  calculated based on the measured 

values of the parameters. The difference between the 

scheduling functions of system (3) and observer (6) imposes an 

uncertainty in the estimation procedure. Thus, the goal is to 

design observer (6) robust against these uncertainties in 

addition to noise and disturbance. In order to consider the 

uncertainty induced by inexact measured parameters and 

facilitate the PI-UIO design, the method proposed in [28] is 

extended. This is done by means of some manipulations of 

system (3) that allow reformulating it as an uncertain system as 

follows: 

   



 







    
  


1 1

ˆ( ) ( ( )) ( ( ))[ ( )

( ( )) ( ) ( ) ( )]

( ) ( ) ( )

h h

i j ij
i j

d
ij ij ij i

Ex t t t A x t

A x t t B u t F f t R d t

y t Cx t Dd t

  (7) 

where the following notation is used: 

    , ,ij j ij ij i jA A A A A A   (8) 

    , ,d d d d d d
ij j ij ij i jA A A A A A   (9) 

    , ,ij j ij ij i jB B B B B B   (10) 

    , .ij j ij ij i jF F F F F F   (11) 

The state estimation error is: 

  ˆ( ) ( ) ( )e t x t x t   (12) 

that according to (6) and (7) becomes: 
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   

   

2 2

2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).n

e t x t z t H Cx t H Dd t

I H C x t z t H Dd t
  (13) 

If there exists a matrix 
1
n nH R that satisfies the 

following condition: 

 1 2 ,nH E I H C   (14) 

then (13) is converted to 

  1 2( ) ( ) ( ) ( )e t H Ex t z t H Dd t   (15) 

and the error dynamics is described by means of 

  1 2( ) ( ) ( ) ( ).e t H Ex t z t H Dd t   (16) 

Substituting (6) and (7)  in (16) and by considering the 

convex property of scheduling functions (5) and the relations 

(8)-(11), the following equation is obtained: 

   



 

 

  

    

    

    

    

 1
1 1

1

1 1

1 2

ˆ( ) ( ( )) ( ( ))[( ( ) ( )

( ) ( ( )) ( )

( ( )) ( ) ( ( ))

( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )]

h h

i j j ij
i j

d d
j ij j

d d
j j j

j ij j i

j ij j

e t t t H A A x t

H A A x t t N z t

N z t t L y t L y t t

H B B u t G u t H R d t

H F F f t W f t H Dd t

  (17) 

After some manipulations, (17) can be reformulated as 

follows: 

    





 

  

    

   

      

     




1 1

1 1 1

1 1

1 1 1

1 1

1

ˆ( ) ( ( )) ( ( ))[ ( ) ( ( ))

( ) ( ) ( )

( ) ( ( ))

( ( )) ( ) ( ) ( )

ˆ( ) ( ) ( ( ) ( )) ( )

(

h h
d

i j j j
i j

j j j ij

d d d
j j j

d
ij j j ij

j j j ij

e t t t N e t N e t t

H A L C N H E x t H A x t

H A L C N H E x t t

H A x t t H B G u t H B u t

H F W f t W f t f t H F f t

H



 

   

2

2 2

) ( )

( ) ( ( )) ( )].

i j j

d d
j j

R N H D L D d t

N H D L D d t t H Dd t

  (18) 

If the following conditions are satisfied: 

 1 2 nH E H C I      (19) 

  1 1 0j j jH A L C N H E  (20) 

  1 1 0d d d
j j jH A L C N H E  (21) 

 1j jG H B   (22) 

 1j jW H F   (23) 

then the observer error dynamics can be written as 

   

 



 

  

    

    

  

   

 1
1 1

1

1 1

1 2

2 2

ˆ( ) ( ( )) ( ( ))[ ( ) ( )

( ( )) ( ( ))

( ) ( ) ( )

( ) ( )

( ) ( ( )) ( )]

h h

i j j ij
i j

d d
j ij

ij j f ij

i j j

d d
j j

e t t t N e t H A x t

N e t t H A x t t

H B u t W e t H F f t

H R N H D L D d t

N H D L D d t t H Dd t

  (24) 

where ( )fe t  is the fault estimation error defined as: 

  ˆ( ) ( ) ( ).fe t f t f t   (25) 

By introducing the following two variables: 

  2 ,j j jK L N H   (26) 

  2 ,d d d
j j jK L N H   (27) 

the conditions (20)-(21), can be rewritten respectively as 

follows: 

 1j j jN H A K C   (28) 

 1
d d d
j j jN H A K C   (29) 

and the error dynamics (24) is reduced to: 

   

 



 

  

      

    

  

 1
1 1

1 1

1 1

2

ˆ( ) ( ( )) ( ( ))[ ( ) ( )

( ( )) ( ( )) ( )

( ) ( ) ( ) ( )

( ( )) ( )].

h h

i j j ij
i j

d d
j ij ij

j f ij i j

d
j

e t t t N e t H A x t

N e t t H A x t t H B u t

W e t H F f t H R K D d t

K Dd t t H Dd t

  (30) 
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Assuming that the faults are constant or slow varying (

( ) 0f t ), according to (25) the fault estimation error 

dynamics is given by: 

  ˆ( ) ( )fe t f t   (31) 

and according to (6), (31) is written as: 

 


   
1

ˆ( ) ( ( ))[ ( ) ( )].
h

f j j j
j

e t t Ce t Dd t   (32) 

In order to analyze the convergence of the state 

estimation error dynamics (30) and the fault estimation error 

dynamics (32), the following augmented system is 

constructed: 

     

 



 






  

 


1 1

ˆ( ) ( ( )) ( ( ))[ ( )

( ( )) ( )]

( ) ( )

h h

i j ij
i j

d
ij ij

E t t t A t

A t t R d t

e t C t

  (33) 

where the augmented state ( )t , augmented input ( )d t  and 

the output ( )e t  are respectively defined as: 

    ( ) ( ) ( ) ( )
TT T T

ft e t e t x t   (34) 

   ( ) ( ) ( ) ( ( )) ( ) ( )
T

T T T T Td t u t d t d t t d t f t   (35) 

   ( ) ( ) ( )
TT T

fe t e t e t  (36) 

and the matrices of system (33) are as follows: 



   
   
    
   
    

 
 

     
 
 

1

1

0 0

0 0 , 0 0 ,

0 00 0

0

0 0 0 , 0 ,

0 0

f

f

n j j ij

k ij j

i

d d
j ij

d
ij n k

d
i

I N W H A

E I A C

AE

N H A

A C I

A

 

     
 

  
 
 

1 1 2 1

0 0 0 0 .

0 0

d
ij i j j ij

ij j

i i i

H B H R K D K D H D H F

R D

B R F

 

Now, a lemma is introduced that will be used to 

guarantee the robust convergence of PI-UIO (6) in terms of 

robust stability of augmented error dynamics (33): 

Lemma 1. The following SDLPV system is considered: 

  



  





  


1

( ) ( ( ))[ ( ) ( ( ))

( )]

( ) ( ) ( )

h
d

i i i
i

i

Ex t t A x t A x t t

B w t

z t Cx t Dw t

  (37) 

in which ( )w t  is a 2L –norm bounded exogenous input and 

( )z t is the measured output and all the matrices are with 

compatible dimensions. m  and  1  are the maximum 

values of the delay and its rate of change. For a given  0 , if 

there exist matrices P  and 0Q  such that the following 

conditions hold for 1, ,i h : 

 0T TP E E P          (38) 







 
 

    
 
 

  

11

2

2

* (1 ) 0 0
0

* *

* * *

m

i T d T T
i i

i

T

P A P B C

e Q

I D

I

 (39) 

    11 2i T T T
i iP A A P P E Q .  

then, system (37) is exponentially stable with the decay rate of 

 0  for ( ) 0w t  and the attenuation condition 


2 2

( ) ( )z t w t  holds for zero initial conditions. 

Proof. The following Lyapunov-Krasovskii functional is 

considered: 

 


  


  

2 ( )

( )
( , ) ( ) ( ) ( ) e ( )

t
T T T t

t t t
V t x x t P Ex t x Q x d   (40) 
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in which  0T TP E E P ,  0TQ Q and  : (t )tx x  where 

  [ ,0]m . Consider the index: 




 
2

0
[ ( ) ( ) ( ) ( )] .T TJ z t z t w t w t dt   (41) 

For proving 
2 2

( ) ( )z t w t  under zero initial 

conditions, it should be shown that 0J  holds in this case. 

The index J  is transformed as follows: 

 







 

   

  





2

0

00

[ ( ) ( ) ( ) ( ) ( , ) 2 ( , )]

2 ( , ) ( , ) ( , ) .

T T
t t

t t tt t

J z t z t w t w t V t x V t x dt

V t x dt V t x V t x
 (42) 

in which 



0
( , ) 0t t
V t x  and 


( , ) 0t t

V t x  holds, thus: 







  




2

0
[ ( ) ( ) ( ) ( ) ( , )

2 ( , )] .

T T
t

t

J z t z t w t w t V t x

V t x dt
  (43) 

The time derivative of the Lyapunov-Krasovskii 

functional (40) is: 



 



 

 

  

 













   

  

   







1

2 (t)

2 ( )

( )

( , )

( ( ))[ ( ) ( ) ( ) ( )

( ) ( (t)) ( (t))( ) ( )

( ) ( ) ( )( ) ( )] ( ) ( )

(1 (t)) ( (t)) ( (t))

2 ( ) e

t

h
T T T T

i i i
i

T T d T T d T
i i

T T T T T T
i i

T

t
T t

t t

V t x

t x t P A x t x t A Px t

x t P A x t x t P A x t

x t P B w t w t P B x t x t Qx t

x t e Qx t

x Q x  ( )d

   (44) 

Considering the convex property of the weighting 

functions (5) and the maximum bound of the delay derivative: 

   




 0
1

( ( )) ( ) ( )
h

T i
i

i

J t t t dt   (45) 

where     ( ) ( ) ( ( )) ( )
TT T Tt x t x t t w t  and  







  
 

    
  

11

2

2

* (1 ) 0 ,

* *

m

i T d T T
i i

i

T

P A P B C D

e Q

D D I

  (46) 

     11 2 .i T T T T
i iP A A P P E Q C C  

 0i
 assures 0J  such that by using the Schur 

Complement Lemma leads to (39), so the 


H  performance is 

guaranteed. The exponential stability of (37) is deduced from 

the negative definiteness of the following submatrix of
i
: 





 

   
 

  
2

2

* (1 ) m

T T T T d
i i iP A A P P E Q P A

e Q
  (47) 

which results in  ( , ) 2 ( , ) 0t tV t x V t x  in the non-actuated 

case. Therefore, the LMIs (38)-(39) are the sufficient 

condition for robust exponential stability of the system (37). 

  

Remark 2. If system (37) satisfies 0D , then LMI (39) in 

Lemma 1, becomes 







 
 

     
  

11

2

2

* (1 ) 0 0

* *

m

i T d T
i i

i

P A P B

e Q

I

  (48) 

     11 2i T T T T
i iP A A P P E Q C C   

by considering 0D  in (46). 

 

4. PI-UIO design and fault diagnosis 

4.1. Description 

To obtain the PI-UIO matrices, (19) is reformulated 

in the following form: 

 


 
 

 
1 2 n

H
Y

E
H H I

C
  (49) 

where 
  ( )n n mH R , 

  ( )n m nY R .  

Remark 3. The matrix equation (49) is solvable if 

 
 

 
( )

Y
rank rank Y  which is equivalent to 
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 
 

 

E
rank n

C
           (50) 

Thus, under Assumption 3, the solution of (49) is: 

 


  ( )n mH Y K I YY            (51) 

where 
  

( ) ( )dn hk n mY R  is the pseudo-inverse of Y . The term 




( )n mK I YY  adds an additional degree of freedom to the 

solution which helps to design a suitable PI-UIO. Equation          

(51) can be partitioned as: 

    

 

     

  

10 20

1 2 1 2 1 2

1 1 2 2[ ]
H H

H H H Y Y K V V

Y KV Y KV   (52) 

in which 
 1 1Y Y T  , 

 2 2Y Y T  , 1 1V VT   and 2 2V VT  are 

calculated based on  
1 0

T

n n mT I ,  
2 0

T

m n mT I  and 




 n mV I YY .  

4.2. Main results 

Using the material introduced so far, the following 

theorem can be stated. 

Theorem 1. Considering system (3), if there exist symmetric 

positive definite matrices 1P , 1Q  and 2Q , matrices
 2P , M , jM  

and 
d
jM  for 1,...,j h  and positive scalar   obtained as the 

solution to the following optimization problem: 


1 2 1 2, , , , , ,

min
d

j jP P Q Q M M M
  (53) 

subject to the following LMIs for 1,...,i h  and 1,...,j h : 

 2 2 0T TP E E P   (54) 

  
 

   
  

11 15

55

* 0

* *

ij ij

ij

ij

  (55) 

where  

  


 
      

 

   

10 10
11 1 1 1

1 1

{
0 0

0 } 2
f

ij j j
j j

j n k

H A H F
sym P M V A V F

M C P Q I

 

 
    

 

10
12 1 1

0
ij ij

ij

H A
P MV A  

 
 

       
 

10
13 1 1

0
0 0

0 0

d
ij d dj

j j

H A
P M V A M C  

 
    

 

10
14 1 1

0

d
ij dij

ij

H A
P MV A  

    
         

   

   
        

    

10 10
15 1 1 1 1

20 10
1 2 1 1

0 0

0 0

ij ij i
ij i j

d ij
j ij

H B H R
P MV B P MV R M D

H D H F
M D P MV D P MV F

 

     22 2 2 2 23{ } 2 , 0ij T T ij
isym P A P E Q  

      24 2 25 2 2 2, 0 0ij T d ij T T T
i i i iP A P B P R P F  

 
      

2

33 1 34 35(1 ) , 0, 0mij ij ije Q  

 

 
       

2

44 2 45 55 3(1 ) , 0,m

u d f

ij ij ij
k k ke Q I  

then, PI-UIO (6) with exponential decay rate  and the best 

achievable attenuation level    for attenuating 

disturbance, noise and the uncertainty induced by inexact 

parameter measures exists. The matrices K , jK ,  j  and 
d
jK  

for 1,...,j h  are calculated with 





  
       

1 0
f

n

k n

I
K P M                 (56) 

 


 
 

1
10

fj n n k jK I P M   (57) 

 


  
 

1
10

f fj k n k jI P M   (58) 
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



  
       

1 0
f

nd d
j j

k n

I
K P M          (59) 

Then, the matrices 1H , 2H , jN , 
d
jN , jL , 

d
jL , jG and jW  are 

calculated based on (52), (52), (28), (29), (26), (27), (22) and 

(23), respectively. 

Proof. In the matrices of the augmented system (33), based on 

the relations (23), (28), (29) and (52), the following 

reformulations are applied to the blocks corresponding to the 

dynamics of ( )e t  and ( )fe t : 

 

     
              

 
  

 

10 10
1 10 0 0 0

0

j j j j
j j

j

j

j

N W H A H F K
V A V F

C

K
C

  (60) 

 

     
         

    

 
  
 

10
1

0 0
0

00 0 0 0

0
0

d d
dj j
j

d
j

KN H A
V A

K
C

      (61) 

      
       

     

1 10
1

0 0 0
ij ij

ij

H A H A K
V A      (62) 

      
       

    

1 10
1

00 0

d d
dij ij
ij

KH A H A
V A      (63) 

     
 

  

         
                      

         
              

         

1 1 2 1

10 10
1 1

20 10
2 1

0 0 0 0

0 0 0 0

0 0 0 00

d
ij i j j ij

j

jij i
ij i

j

d
ijj

ij

H B H R K D K D H D H F

D

KH B K H R K
V B V R D

H D K H F KK
D V D V F

  (64) 

Now, by considering the following block diagonal matrices for 

the Lyapunov-Krasovskii functional: 

 
  
 

1

2

0

0

P
P

P
  (65) 

 
  
 

1

2

0

0

Q
Q

Q
  (66) 

where 
  


( ) ( )

1 1, f fn k n k
P Q R  and 

2 2, n nP Q R , Lemma 1 is 

applied to the augmented system (33). The condition (38) in 

this lemma is equivalent with  2 2 0T TP E E P  and  1 1 0TP P  

for system (33). By substituting the system state space 

matrices (33) in the LMIs (48) and using the formulation (60)-

(64), a set of nonlinear matrix inequalities are obtained due to 

multiplicative terms of some variables. By using the following 

change of variables: 

 
  

 
1 ,

0

K
M P   (67) 

 
  

 
1 ,

j

j
j

K
M P   (68) 

 
  

 
1 ,

0

d
d j
j

K
M P   (69) 

  2
  (70) 

the nonlinearities are resolved and the set of LMIs (55) is 

obtained which assures the robust exponential convergence of 

the PI-UIO (6). When the optimization problem (53) under 

LMI conditions (54) and (55) is solved, then the unknown 

matrices of the observer can be calculated. By considering 1P  

as  1 11 12P P P , (67) is transformed to: 



 
   

  
11 1( ) .

0
f

n

k n

I
M P K P K   (71) 

So, K  is calculated based on (56). 
d
jK  is calculated in a 

similar manner based on (59). According to (68): 


 

 
 

1
1 .

j

j
j

K
P M                (72) 

Consequently, jK  and  j  are calculated from (57)-(58), 

respectively. With these variables, other unknown matrices of 
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the observer can be calculated with the equations stated in the 

theorem the formulations of which have been derived in the 

previous sections. 

   

Remark 4. Theorem 1 involves the non-strict condition 

 2 2 0T TP E E P which contains equality constraint and may 

result in numerical problems. To avoid such problems, by 

parameterizing 2P  as  22 P E SX  where 2 0P  and 

  ( )n r nX R  are the parameters and 
  ( )n n rS R is any full 

column rank matrix which satisfies 0TE S [29], the 

following corollary can be proposed. 

Corollary 1. Considering system (3), if there exist symmetric 

positive definite matrices 1P , 2P , 1Q  and 2Q , matrices
 
X ,M , 

jM  and 
d
jM  for 1,...,j h  and positive scalar   obtained as 

the solution to the following optimization problem: 


1 2 1 2, , , , , , ,

min
d

j jP P Q Q M M M X
  (73) 

subject to the following LMIs for 1,...,i h  and 1,...,j h : 

  
 

   
  

11 15

55

* 0

* *

ij ij

ij

ij

      (74) 

where all blocks of 
ij

 are identical with the corresponding 

blocks of 
ij

defined in Theorem 1, except the following 

blocks: 

     22 2 2 2{( ) } 2 ( )ij T T
isym P E SX A P E SX E Q  

  24 2( )ij T d
iP E SX A  

   

 

25 2 2

2

( ) ( )

0 0 ( )

ij T T
i i

T
i

P E SX B P E SX R

P E SX F
 

in which
  ( )n n rS R is any full column rank matrix which 

satisfies 0TE S . Then, PI-UIO (6) with exponential decay 

rate   and the best achievable attenuation level    for 

attenuating disturbance, noise and the uncertainty induced by 

inexact parameter measures exists. The matrices K , jK ,  j  

and 
d
jK  for 1,...,j h  are calculated via (56)-(59) and the 

matrices 1H , 2H , jN , 
d
jN , jL , 

d
jL , jG and jW  are calculated 

based on (52), (52), (28), (29), (26), (27), (22) and (23), 

respectively. 

  

Remark 5. In system (1), the SDLPV system with a single 

delay is considered for the simplicity of notation. However, 

the results obtained could be extended to the case with 

multiple delays with the methodology being stated in [25]. 

Remark 6. This paper focuses on the SDLPV systems with 

inexact measured parameters. It is notable that the obtained 

results can also be used in the case of polytopic systems 

scheduling according to unmeasurable parameters such as [9, 

17]. In this case, system (3) is scheduled according to 

 ( ( ))i x t  and PI-UIO (6) is scheduled according to  ˆ( ( ))j x t . 

Considering the substitution of  ( ( ))i t  and  ̂( ( ))j t  

respectively with  ( ( ))i x t  and  ˆ( ( ))j x t  in the relevant 

equations, the results obtained are also valid for the SDLPV 

systems with unmeasurable scheduling functions. 

4.3. Fault diagnosis 

The designed PI-UIO provides actuator fault 

estimates in addition to state estimates. Fault diagnosis is 

directly achieved via the fault estimates. In this direct fault 

diagnosis methodology, there is no need to first compute the 

residual signals and then evaluate them in order to detect the 

faults in the system. Fault isolation is also achieved directly 

with each of the fault estimated values. By eliminating the 

need of constructing a bank of observers and evaluating their 

residuals, the complexity of the design and computational 

burden of the fault diagnosis unit is reduced. Fault estimates 
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and state estimates provided by this observer can be used to 

design the fault tolerant controller for SDLPV systems. 

4.4. Summary of the method 

The summary of the proposed method for designing 

PI-UIO for SDLPV systems in the case of inexact measured 

parameters is presented in Algorithm 1. 

Algorithm 1. PI-UIO design for SDLPV systems with 

inexact measured parameters 

Step 0. Check the conditions of Assumptions 2 and 3. 

Step 1. Calculate
  10 1 1H Y Y T , 

  20 2 2H Y Y T ,  1 1V VT

and 2 2V VT . 

Step 2. Calculate
  ( )n n rS R with full column rank and 

satisfying 0TE S . 

Step 3. Solve the convex optimization problem (73) under 

LMI constraint (74) and obtain matrices 1P , 2P , 1Q , 2Q ,M , X ,

jM  and 
d
jM  (for 1,...,j h ).

 

Step 4. CalculateK , jK ,  j  and 
d
jK  (for 1,...,j h ) from               

(56)-(59), respectively. 

Step 5. Calculate 1H  and 2H  from (52). 

Step 6.  Calculate jN and 
d
jN  (for 1,...,j h ) from (28) and 

(29), respectively. 

Step 7. Calculate jL  and 
d
jL  (for 1,...,j h ) from (26) and 

(27), respectively. 

Step 8. Calculate jG and jW  (for 1,...,j h ) from (22) and 

(23), respectively. 

 

5. Illustrative example 

5.1. Description 

For illustrating the efficiency of the proposed 

method, an electrical circuit example with four meshes 

borrowed from [14] as shown in Fig. 1 is considered. In this 

circuit, there are eight resistors 1R ,…, 8R , two inductors 1L , 

2L  and two voltage sources 1V , 2V . The values of the 

resistors and inductors are the same as [14]  which are given in 

Table 1. Note that 1R  and 6R  are variable resistors for which 

the resistances vary according to the change of parameters 

1( )t  and 2( )t , respectively. The range of variation of these 

two parameters are   1( ) [ 0.5,0.5]t and   2( ) [ 1,1].t  1i

,…, 4i  are the currents corresponding to the four meshes in the 

circuit. 

The voltage sources have some delay to act since the input 

commands are sent through a communication network that 

presents some delays. This circuit is modeled using the 

Kirchhoff voltage law (KVL) leading to the following 

equations: 

 


     




     

      


     
   

  

  

5

7

4

1
1 1 1 3 1 3 5 1 4

2
2 7 2 4 4 2 3 6 2

2 3 1 4 3 2 3 3 1

8 4 2 5 4 1 7 4 2

1 5 4 1

2 7 4 2

1 4 2 3

( ) ( ) 0

( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( )

( ) ( )

( ) ( )

R

R

R

di
L R i R i i R i i
dt

di
L R i i R i i R i
dt

R i v t R i i R i i

R i v t R i i R i i

y t v R i i

y t v R i i

y t v R i i






  (75) 

The state vector is selected as 

  1 2 3 4( ) ( ) ( ) ( ) ( )
T

x t i t i t i t i t  , the voltage source vector 

 

Fig. 1 An electrical circuit with four meshes 
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is   1 2( ) ( ) ( )
T

v t v t v t  which has a delay ( )t  associated to 

the input commands, so  ( ) ( ( ))v t u t t . The delay value is 

  ( ) 0.6 0.4sin( )t t . The output vector is 

  1 2 3( ) ( ) ( ) ( )
T

y t y t y t y t . The circuit’s model is: 

     


 

( ) ( ( )) ( ) ( ( )) ( ) ( )

( ) ( ) ( )

Ex t A t x t Bu t t Rd t Ff t

y t Cx t Dd t
  (76) 

where the matrices of the system are given by: 

     
     
        
     
     
     

1 0 0 0 0 0 0

0 1 0 0 0 0 0
, , ,

0 0 0 0 1 0 0.7

0 0 0 0 0 1 0.2

E B F R  






 
 
 
 

  
 
 
 

  

3 511 1

1 1 1

22 2 4 7

2 2 2

3 4 33

5 7 44

( )
0

( )
0( ( )) ,

0

0

R RR t

L L L

R t R R
A t

L L L

R R R

R R R

 

   
   

  
   
      

5 5

7 7

4 4

0 0 0.2

0 0 , 0.1 ,

0 0 0.5

R R

C R R D

R R

 

where 

     11 1 3 5 22 4 6 7, ,R R R R R R R R  

     33 2 3 4 44 5 7 8, .R R R R R R R R  

The model of the circuit is a singular LPV system with input 

delay. To use the approach presented in this paper for state 

delayed singular LPV systems, the two inputs are considered 

as additional states. By choosing 

  1 2 3 4 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )
T

x t i t i t i t i t u t u t  and 

  1 2 3 1 2( ) ( ) ( ) ( ) ( ) ( )
T

y t y t y t y t u t u t , the following 

SDLPV system is obtained: 

     


 


 

( ) ( ( )) ( ) ( ( )) ( )

( ) ( )

( ) ( ) ( )

dEx t A t x t A x t t Bu t

Rd t Ff t

y t Cx t Dd t

  (77) 

where 




    
          

( ( )) 00 0
, ( ( )) , ,

00 0 0 0
u

d

k

A tE B
E A t A

I
 

        
            

        

0 0
, , , , .

00 0 0
u uk k

CR F D
B R F C D

I I
 

System (77) is a SDLPV system with state delay in the form of 

(1). This system can be converted to polytopic representation 

(3) with the methodology recalled in Remark 1. There are two 

parameters in the system (77), thus there are four subsystems 

in the polytopic representation. The gain matrices of these 

subsystems are calculated as follows: 

   

   

   

   

 

 

 

 

 

 

 

 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

( ) ( )1 2
( ) ( )

( ) ( )3 4
( ) ( )

( ( )) , ( ( )) ,

( ( )) , ( ( ))

m M

m m

m M

M M

t t

t t

t t

t t

A A t A A t

A A t A A t
  (78) 

where iA  for 1, ,4i  is the corresponding matrix in the 

subsystem i  and the other matrices are constant as defined in 

(77).  The corresponding time varying weights of the four 

subsystems in representation (3) are calculated as follows: 

       

       

   

   

1 1 2 4 1 2

2 1 2 3 1 2

( ( )) ( ) ( ), ( ( )) (1 ( ))(1 ( ))

( ( )) (1 ( )) ( ), ( ( )) ( )(1 ( ))

t t t t t t

t t t t t t
 (79) 

where
 


 






1 1
1

1 1

( )
( )

M

M m

t
t and 

 


 






2 2
2

2 2

( )
( )

M

M m

t
t . 

Table 1 - The values of circuit components 

Component Value 

1R   1(10 ( ))t  

2R  17  

3R  3  

4R  5  

5R  2  

6R   2(27 ( ))t  

7R  8  

8R  10  

1L  0.3H  

2L  0.65H  
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5.2. Results 

Now, a PI-UIO is designed for the system according to 

Algorithm 1. The convex optimization (73) is solved with the 

SeDumi solver [30] via the YALMIP toolbox [31]. The 

parameter  is set to 0. The PI-UIO matrices are calculated 

based on the steps of Algorithm 1. Although there are four 

subsystems, only the results for the first subsystem are 

presented here due to space limitation: 






 





1

  38.6072  135.6684  -89.4444

-148.7445 -178.2624  164.4025

  63.6216  171.8490 -129.9844

-165.2371 -215.7886  211.3339

  -0.0000   -0.0000    0.0000

  -0.0000    0.0000    0.0000

 -77.1500  -0.0000  -0.0000

N











  88.5234  -0.0000  -0.0000

 -109.4459  -0.0000  -0.0000

 115.5447   0.0000  -0.0000

  -0.0000  -1.5179  -0.0000

  -0.0000  -0.0000  -1.5179








  





5
1

-0.0600    0.5673   -0.0094

 0.0037    0.7598   -0.0874

 0.0491    0.6150   -0.1118
10

-0.0565    0.7623   -0.0342

 0.0723   -0.0181   -0.0622

 0.0302    0.1079   -0.0388

   -0.4978    0.607

dN











1    0.4274

   -0.6761    0.8031    0.6186

   -0.5524    0.5325    0.3155

   -0.6717    0.8111    0.7277

    0.0081    0.0111    0.0586

   -0.0993   -0.0038   -0.0764

1

 4.6566    1.9341  -10.8717    0.0000    0.0000

 7.6451    2.1753   11.7865   -0.0000   -0.0000

-1.6557    0.6966  -10.3958   -0.0000   0.0000

22.5861    0.1105    7.5244    0.0000   -0.0000

-0.0000   

L

 
 
 
 
 
 
 
 
  

 0.0000    0.0000   -0.0000   -0.0000

 0.0000   -0.0000    0.0000   -0.0000   -0.0000

1

 0.0000   -0.0000    0.0000   -1.7732   -0.9096

 0.0000   -0.0000    0.0000    2.6749   -1.0496

 0.0000   -0.0000    0.0000   -1.6660    0.1801

 0.0000   -0.0000    0.0000    1.8106   -1.6813

 0.0000 

dL

 
 
 
 
 
 
 
 
  

  -0.0000    0.0000    0.0000    0.0000

-0.0000    0.0000    0.0000    0.0000    0.0000

 

 
   

 
1

-0.1036   -1.6934    0.7416   -0.0000   -0.0000

11.3989   -0.5570   -7.2003   -0.0000   -0.0000
 

The other PI-UIO matrices are constant and their values are: 



 
 
 
 

   
 
 
 
  

11

-0.0000   -0.0000

 0.0000    0.0000

 0.0000   -0.0000
10

-0.0000    0.0000

 0.1599    0.0000

 0.0000    0.1363

G ,

 
 
 
 

  
 
 
 
  

-1.7732   -0.9096

 2.6749   -1.0496

-1.6660    0.1801

 1.8106   -1.6813

 0.0000    0.0000

 0.0000    0.0000

W  

2

 0.0065   -0.0016   -0.0000         0         0

 0.0538   -0.0135    0.0000         0         0

 0.5711   -0.1428   -0.2000         0         0

-0.0108    0.1277    0.0000         0         0

-0.0000  

H

 
 
 
 
 
 
 
 
  

  0.0000    0.0000    1.0000     0

-0.0000    0.0000    0.0000         0    1.0000

 

5.3. Simulation 

System (77) with the PI-UIO that was designed in the 

previous section has been simulated.  1( ) 5 cos(3 )u t t  and 

2( ) sin(2 )u t t are applied as the system inputs. The 

parameters’ variation are  1( ) 0.5sin(0.3 )t t  and 

 2( ) cos(0.5 ).t t  The parameter measures are corrupted with 

two zero-mean noises with standard deviations equal to 0.2 

and 0.3, respectively. The disturbance input is a zero mean 

noise with standard deviation of 0.2. Different scenarios are 

used for testing the proposed approach in the considered case 
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study. In the first scenario, abrupt faults occur on the two 

sources in the time intervals [40,100] and [120,180] seconds, 

respectively. The state estimation errors are shown in Fig. 2. It 

can be seen that the estimation error is robustly bounded in 

spite of input and output noises and uncertainty induced by 

inexact parameter measures. The fault estimation results are 

depicted in Fig. 3. As it can be observed from this figure, the 

constant faults on the actuators are detected and estimated 

without steady state error. The abrupt change that occurs in 

one fault causes a small distortion on the other fault estimate. 

This distortion occurs because when sudden faults happen in 

the system, the assumption of slow varying faults ( ( ) 0f t ) 

is not satisfied. At such moments, the derivative of the fault is 

very large and the coupling which exists in the system 

dynamics causes such a distortion. Some approaches have 

been proposed in the literature for time varying faults such as 

the PMI observer [9] and adaptive observer [14]. However, 

these approaches cannot eliminate the distortion caused by 

abrupt changes in the fault because they assume that the fault 

derivative is bounded which is not the case when faults with 

sudden changes are considered. 

The second scenario considers the case of incipient 

faults occurring in the system. The faults on the first and 

second actuators start to grow in t=40 s and t=120 s, 

respectively. The faults and their estimates are shown in Fig. 

4. It can be observed that the incipient faults are also detected 

and isolated directly based on their estimated values as they 

start to grow in the system. Early diagnosis of incipient faults 

helps to activate the fault tolerant action before it leads to any 

serious damage. 

In the third scenario, time varying sinusoidal faults 

with frequency of  0.1  rad/s occur on the two actuators. 

The result of fault estimation is plotted in Fig. 5. The PI-UIO 

has steady state error in estimating time varying faults because 

it is designed for constant and slow varying faults. If the 

frequency of the sinusoidal fault increases, the steady state 

error will increase because the assumption ( ) 0f t  is not 

 

Fig. 2 State estimation errors in the first scenario 

 

 

Fig. 3 Abrupt faults and their estimates 

 

 

Fig. 4 Incipient faults and their estimates 
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satisfied. Relaxing this assumption is part of the future 

research which can be developed considering the use of PMI 

or adaptive observer following the references provided in the 

introduction. Reducing the estimation error of time varying 

faults will improve the performance of the active fault tolerant 

controller. 

 

6. Conclusion  

In this paper, a polytopic PI-UIO was designed for 

SDLPV systems. In the considered system, there are delayed 

dynamics, input disturbance, output noise and actuator faults. 

The case of inexact measured parameters was considered 

closer to the real situations. The system with uncertainty 

induced by inexact measured parameters was formulated as an 

uncertain system. The proposed observer can carry out both 

state and actuator fault estimation. Fault diagnosis is directly 

achieved based on the estimated values of the faults which 

avoids the use of the residual computation and evaluation, 

reducing the computational burden of the diagnosis unit. The 

effects of input disturbance, output noise and uncertainty of 

inexact measured parameters are robustly attenuated on the 

state and fault estimation error. The robust exponential 

stability of the error dynamics of the observer and the 

calculation of the observer matrices were formulated as a 

convex optimization problem with LMI constraints. An 

electrical circuit was used as a case study to show the 

efficiency of the proposed state and fault estimation method. 

Extending the results for the case of fast time varying faults is 

part of the future research.  
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