
TED: A Tolerant Edit Distance for Segmentation Evaluation

Jan Funkea,b,c, Jonas Kleinc, Francesc Moreno-Noguera, Albert Cardonab, Matthew Cookc
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Abstract

In this paper, we present a novel error measure to compare a computer-generated segmentation of images or volumes
against ground truth. This measure, which we call Tolerant Edit Distance (TED), is motivated by two observations that
we usually encounter in biomedical image processing: (1) Some errors, like small boundary shifts, are tolerable in practice.
Which errors are tolerable is application dependent and should be explicitly expressible in the measure. (2) Non-tolerable
errors have to be corrected manually. The effort needed to do so should be reflected by the error measure. Our measure
is the minimal weighted sum of split and merge operations to apply to one segmentation such that it resembles another
segmentation within specified tolerance bounds. This is in contrast to other commonly used measures like Rand index
or variation of information, which integrate small, but tolerable, differences. Additionally, the TED provides intuitive
numbers and allows the localization and classification of errors in images or volumes. We demonstrate the applicability
of the TED on 3D segmentations of neurons in electron microscopy images where topological correctness is arguable
more important than exact boundary locations. Furthermore, we show that the TED is not just limited to evaluation
tasks. We use it as the loss function in a max-margin learning framework to find parameters of an automatic neuron
segmentation algorithm. We show that training to minimize the TED, i.e., to minimize crucial errors, leads to higher
segmentation accuracy compared to other learning methods.

1. Introduction

In the computer vision literature, several approaches to
assess the quality of contour detection and segmentation
algorithms can be found. Most of these measures have
been designed to capture the intuition of what humans
consider to be two similar results. In particular, these
measures are supposed to be robust to certain tolerated
deviations, like small shifts of contours. For the contour
detection in the Berkeley segmentation dataset [1], for ex-
ample, the precision and recall of detected boundary pixels
within a threshold distance to the ground truth became
the widely used standard [2, 3]. Contour error measures
are, however, not a good fit for segmentations, since small
errors in the detection of a contour can lead to the split or
merge of segments. Therefore, alternatives like the Vari-
ation of Information (VOI), the Rand Index [4] (RI), the
probabilistic Rand index [5, 6], and the segmentation cov-
ering measure [3], have been proposed.

However, these measures do not acknowledge that there
are different criteria for segmentation comparison, and in-
stead accumulate errors uniformly, even for many small
differences that are irrelevant in practice. Especially in
the field of biomedical image processing, we are often more
interested in counting true topological errors like splits
and merges of objects, instead of counting small devia-
tions from the ground truth contours. This is in particular

the case for imaging methods for which no unique “ground
truth” labeling exists. In the imaging of neural tissue with
Electron Microscopy (EM), for example, the preparation
protocol can alter the volume of neural processes, such
that it is hard to know where the true boundary was [7].
Further, the imaging resolution and data quality might
just not be sufficient to clearly locate contours between
objects [8], resulting in a high inter-observer variability.

1.1. Contributions

The main contribution of this paper is a novel mea-
sure to evaluate segmentations on a clearly specified toler-
ance criterion to address the aforementioned issues. At the
core of our measure, which we call Tolerant Edit Distance
(TED)1, is an explicit tolerance criterion (e.g., boundary
shifts within a certain range). Using integer linear pro-
gramming, we find the minimal weighted sum of split and
merge operations to transform one segmentation into an-
other, which is tolerably close to the ground truth. By
setting the weights of the split and merge operations to
the expected effort to perform these operations, the TED
reflects the total effort needed to manually fix a segmenta-
tion. Similar to VOI and RI, our measure does not require
voxels of the same object to form a connected component,

1Source code available at http://github.com/funkey/ted.
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Figure 1: Illustration of the Tolerant Edit Distance (TED) between
two segmentations x and y. By tolerating boundary shifts to a cer-
tain extend, shown as shadow in (b), y is allowed to be changed to
match x as closely as possible. For that, we consider regions obtained
by combining x and y, illustrated in (c). For each of these regions,
we enumerate a set of labels used by y that are within a threshold
distance to all locations inside the region (shown in curly brackets).
This threshold is the maximally allowed boundary shift. Note that
in this example, the region obtained from intersecting A and 3 can
change its label to 1 (or keep 3), but not to 2, since it contains points
that are too far away from region 2. Regions with only one possible
label are too large to be relabeled by shifting their boundary and
have to keep their initial label. From all the possible ways to relabel
y, the relabeling (d) minimizing the number of split and merge errors
compared to x is chosen by solving an integer linear program.

and can thus be applied to volumes with missing data,
known object connections via paths outside the volume,
or on stitched volumes with registration artifacts. The re-
ported numbers are intuitive (e.g., time or cost effort to
fix a segmentation), easy to interpret (splits and merges
of objects), and errors can be localized in the volume. An
illustration of the TED can be found in Figure 1.

1.2. Application to Neuron Segmentation.

To demonstrate the usefulness of our measure, we present
our results in the context of automatic neuron segmenta-
tion from EM volumes, an active field of biomedical image
processing (for recent advances, see [9, 10, 11, 12, 13]). We
argue that especially in this field there is a need for explicit
and intuitive error measures. Furthermore, we show how
the TED can be used to train neuron segmentation algo-
rithms. Our findings (based on our previous work [14])
show that training to minimize the TED leads to higher
segmentation accuracy on a range of error measures, com-
pared to other methods.

1.2.1. Evaluation

As it is the case in many biological applications, the
criterion to assess the quality of a neuron segmentation
depends on the biological question one would like to an-
swer. On one hand, skeletons of neurons are sufficient to
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Figure 2: Example errors made by an automatic neuron segmenta-
tion algorithm. Errors like merges (M) and splits (S) dramatically
change the reconstructed topology and should be avoided. Small dis-
agreements in the boundary location (T) are however tolerable and
should be ignored during evaluation.

identify individual neurons [15], to study neuron types and
their function [16], and to obtain the wiring diagram of a
nervous system (the so-called connectome) [8]. In these
cases, topological correctness is far more important than
the diameter of a neural process or the exact location of
its boundary (see Figure 2 for examples). On the other
hand, for biophysically realistic neuron simulation, vol-
umetric information is needed to model action potential
time dynamics, and to understand and simulate informa-
tion processing capabilities of single neurons [17]. In this
case, the segmentation should be close to the true volume
of the reconstructed neurons. Only small deviations in the
boundary location might still be tolerable.

Currently, reporting segmentation accuracy in terms of
VOI or RI is the de-facto standard [11, 18, 10, 12, 13]. Less
frequently used [9, 19] is the Anisotropic Edit Distance
(AED) [9] and the Warping Error (WE) [20]. The AED
is tailored to the specific error correction steps required
for anisotropic volumes (splits and merges of 2D neuron
slices within a section, connections and disconnections of
slices between sections). The WE aims to measure the
difference between ground truth and a proposal segmen-
tation in terms of their topological differences. As such,
the WE was the first error measure for neuron segmenta-
tion that deals with the delicate question of up to which
point a boundary shift is not considered to be an error.
However, since the WE assumes a foreground-background
segmentation where connected foreground objects repre-
sent neurons, it is only applicable to volumes in which
connectedness of neurons is preserved. Furthermore, only
suboptimal solutions to the WE are found using a greedy,
randomized heuristic, which makes it difficult to use for
evaluation purposes. Consequently, the WE has found its
main application in the training of neural networks for im-
age classification [20].

In Section 2 we introduce the TED as an alternative
to address some of the shortcomings of existing measures.
Similar to the WE, the TED is designed to ignore small de-
viations from the ground truth and only count true topo-
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logical errors, but is computed deterministically and to
global optimality and does not impose constraints on the
types of volumes being compared.

1.2.2. Training

Current state-of-the-art methods for automatic neuron
segmentation can broadly be divided into isotropic [11,
18, 12, 13] and anisotropic methods [9, 10, 19]. Assign-
ment models constitute the current state of the art for the
segmentation of neurons from anisotropic volumes, as ob-
tained by serial section EM [9, 10]. These models enumer-
ate and price possible assignments of candidate segments
across sections of EM stacks (see Figure 8 for an overview
and Section 3 for details). A final segmentation is found
by selecting a cost minimal and consistent subset of all
assignments.

Learning in this kind of models consists of finding a
function that maps from features of the candidate seg-
ments to a cost. Currently, this function is either set
by hand [21, 10, 22], learned from a random forest clas-
sifier based on positive and negative assignment exam-
ples [9, 23], or found via grid-search by tuning weights
of a small number of features [24]. Except for grid-search,
which does not scale to larger sets of parameters, none of
the currently used training methods implements real end-
to-end learning. In Section 3, we show how to overcome
these limitations by performing structured learning on a
sensible loss function. For that, we solve two subproblems:
(1) We show how to generate a training sample suitable for
structured learning from human annotated ground truth.
(2) We introduce a loss for structured learning, which min-
imizes the TED during learning.

We show that our learning framework leads to con-
sistently higher segmentation accuracy compared to other
learning methods. Furthermore, we show that our learning
framework can be used to train on skeleton annotations
without big sacrifices in segmentation accuracy. Skele-
ton annotations are non-volumetric centerlines of neurons,
which are in practice much faster to obtain.

2. Tolerant Edit Distance

In this section, we formally introduce the TED and its
associated optimization problem. We will show how to
compute the TED for a specific class of tolerance criteria,
of which the boundary shift is an example. Finally, we will
analyze some of the properties of the TED in the context of
neuron segmentation and contrast them with conventional
error measures used in this field.

2.1. Definition of the TED

The TED measures the distance2 between two segmen-
tations x : Ω 7→ Kx and y : Ω 7→ Ky, where Ω is a discrete

2Note that, due to the intended tolerance to small deviations, the
TED is not a proper metric on the space of segmentations. In slight
abuse of nomenclature we use the term distance here anyway, which
is sometimes used synonymous for metric.

set of voxel (or supervoxel) locations in a volume, and Kx

and Ky are sets of labels used by x and y, respectively.
The distance is reported in terms of the minimal number
of splits and merges appearing in a relabeling of y, as com-
pared with x. How y is allowed to be relabeled is defined
on a tolerance criterion, e.g., the maximal displacement of
an object boundary.

We say that a label k ∈ Kx overlaps with a label
l ∈ Ky, if there exists at least one location i ∈ Ω such
that x(i) = k and y(i) = l. If x and y represent the same
segmentation, each label l overlaps with exactly one label
k, and vice versa. Consequently, if a label k ∈ Kx overlaps
with n labels from Ky, we count it as n − 1 splits. Anal-
ogously, if a label l ∈ Ky overlaps with n labels from Kx,
we count it as n−1 merges. For two labelings x and y, we
denote as s(x, y) and m(x, y) the sum of splits and merges
over all labels.

At the core of the TED lies a to-be-defined tolerance
criterion T , which is meant to formalize our intuition about
how a segmentation y is allowed to be relabeled. More
formally, T (y, y′) is supposed to evaluate to > if y′ is a
tolerated relabeling, and to ⊥ otherwise. With Y being the
set of all labeling functions y′ : Ω 7→ Ky, (i.e., all possible
labelings of Ω using the labels of y), we call the subset
Y+(y) = {y′ ∈ Y | T (y, y′) = >} the set of all tolerated
relabelings of y. The TED is the minimal weighted sum
of splits and merges over all tolerable relabelings Y+(y):

TED(x, y) = min
y′∈Y+(y)

α s(x, y′) + βm(x, y′), (1)

where the weights α and β represent the time or effort
needed to fix a split or merge, respectively.

Without imposing restrictions on the tolerance criteria
T , the optimization in (1) is intractable in general. There-
fore, we restrict ourselves to what we call local tolerance
criteria in the following. A local tolerance criterion is com-
pletely defined by providing relabel alternatives Ai ⊆ Ky

for each location i, such that each relabeling y′ using any
label y′(i) ∈ Ai is tolerated. More formally,

Tlocal(y, y
′) =

∧
i∈Ω

y′(i) ∈ Ai. (2)

One example of such a local tolerance criterion is the bound-
ary shift up to a distance threshold θ, which we illustrate
in Figure 1 (c). For this tolerance criterion, Ai of a loca-
tion i comprises the union of labels of all other locations
that are within a θ distance from i.

For local tolerance criteria, (1) can be solved with the
following integer linear program (ILP):

min
v

αs+ βm (3)

s.t.
∑
l∈Ai

vi←l = 1 ∀i ∈ Ω (4)∑
i∈Ω

vi←l ≥ 1 ∀l ∈ Ky (5)
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akl − vi←l ≥ 0 ∀i ∈ Ω : x(i) = k (6)

akl −
∑

i∈Ω:x(i)=k

vi←l ≤ 0 ∀k ∈ Kx ∀l ∈ Ky (7)

sk −
∑
l∈Ky

akl = −1 ∀k ∈ Kx (8)

ml −
∑
k∈Kx

akl = −1 ∀l ∈ Ky (9)

s−
∑
k∈Kx

sk = 0 (10)

m−
∑
l∈Ky

ml = 0 (11)

At the core of this ILP are binary indicator variables v =
(vi←l ∈ {0, 1} | i ∈ Ω, l ∈ Ai) to indicate the assignment
of label l to location i. Constraints (4) and (5) ensure that
exactly one of the labels gets chosen for each location and
that each label of y has to appear at least once. Further, we
introduce binary variables akl that indicate the presence
of a joint assignment of label k from x and label l from y′

at at least one location. With constraints (6) and (7) we
make sure that each akl = 1 if and only if there is at least
one location i ∈ Ω such that x(i) = k and y′(i) = l. To
count the number of times a label k ∈ Kx is split in y′, we
further introduce integers sk ∈ N. These counts equal the
number of times k was matched with any other label minus
one, which we ensure with constraints (8). Analogously,
we introduce integers ml and constraints (9) for merges
caused by label l in y′. The final split and merge numbers
s and m are just the sums of the label-wise splits and
merges, ensured by (10) and (11).

Once the optimal solution of this ILP has been found,
the variables akl can be used to determine which labels got
split and merged, and thus to localize errors.

2.2. Discussion of the TED

2.2.1. Parameters

As formulated above, the TED and the boundary shift
tolerance criterion introduce three parameters: α and β to
score differently split and merge errors, and a threshold θ
for the maximally permitted boundary shift.

α and β can be set straightforwardly as the effort or
time needed to fix a split or merge error. This depends on
the concrete application and the tools available to proof-
readers. Since a study of the time needed to fix segmen-
tations is beyond the scope of this paper, we will proceed
as follows: We set α = β = 1 for this discussion, so as to
count the number of errors. For the experiments presented
in Section 3, we will set α = 1 and β = 2 to reflect that
merges are usually more difficult to fix than splits. Note
that, up to scale, the TED will be the same for equally
scaled α and β. We allow them to be set independently
anyway to obtain directly a time-to-fix estimate if α and
β reflect time.

The distance threshold θ might not be as obvious to
set. Setting this value requires us to find an answer to the
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Figure 3: Comparison of Rand index (RI), variation of informa-
tion (VOI), and tolerant edit distance (TED) as functions of object
boundary displacements. Given a ground truth labeling X, the er-
ror measures are plotted as functions of the split position between
two objects in a reconstruction Y . It can clearly be seen that TED
assigns the same numbers (one split and one merge error) as soon
as a given tolerance criterion is exceeded (0.025 in this example),
regardless where the error happens. The TED is given as the sum
of the possible errors, which is one split and one merge error unless
the reconstruction object boundary is within the tolerated distance
(0.025 in this example) to the true object boundary. VOI is in bits
(lower is better) and 1-RI is 1 minus the ratio of agreeing pairs over
all pairs (lower is better). The advantage of the TED is that it ex-
plicitly counts the topological errors made, regardless where in the
segment they occur. Furthermore, small boundary shifts are not
counted at all, whereas for RI and VOI their contribution can not
be distinguished from real errors.

unpleasant question until which point a deviation from the
ground truth is just a tolerable dent in a segment or a real
error that should be counted. A single threshold alone is
unlikely to provide an answer to this question. But, follow-
ing a popular philosophy, we think that explicit is better
than implicit. By explicitly setting this value, we achieve
two things: First, we know exactly how to interpret the
values measured by the TED. Second, we confront our-
selves with the aforementioned unpleasant question, which
we hope will encourage us to come up with more elaborate
tolerance criteria, tailored to the needs of specific applica-
tions.

2.2.2. Shift of Object Boundary

To illustrate the behavior of different error measures
in the case of object boundary displacements, we created
a simple artificial 1D labeling consisting of two regions.
In Figure 3, we show the errors of segmentations obtained
by shifting the boundary between the objects. It can
clearly be seen that TED assigns the same numbers (one
split and one merge error) as soon as a given tolerance
criterion is exceeded (0.025 in this example), regardless
where the error happens. This is the desired outcome for
applications like neuron segmentation, where it is impor-
tant to count the number of topological errors regardless
of how many voxels got affected.

2.2.3. Influence of Distance Threshold

In order to study the effect of the threshold distance
for boundary shifts, we used an automatic segmentation
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Figure 5: Comparison of error measures between the original ground
truth (left) and three modifications. For the boundary shift exper-
iment, the labels of the ground truth were dilated by 10nm. For
the split and merge experiments, ten random locations were chosen
where the ground truth neurons were manually split or merged, re-
spectively. Both RI and VOI assign better scores (i.e., higher for RI,
lower for VOI) to the split and merge experiments than to the grow
experiment. The TED boundary shift tolerance was set to 20nm
thus counts only the true morphological errors as false splits (FS)
and false merges (FM).

result3 and evaluated the TED for varying thresholds. Re-
sults are shown in Figure 4. The TED reveals that most
of the errors occur within the range of about 50nm, corre-
sponding to about 12 pixels in the x-y-plane of this dataset.
Depending on the biological question, those errors might
be tolerable. In the same plot, we show the VOI of the
closest tolerable relabeling to the ground truth under the
given boundary shift threshold (i.e., the equivalent of Fig-
ure 1 (d) on the proposal segmentation). From this exam-
ple, we can see that the errors < 50nm contribute quite
significantly with 0.23 bits to the total VOI of 0.886, and
thus can shadow true topological errors.

2.2.4. Comparison to RI and VOI

To demonstrate the main differences between TED and
conventional error measures, we compare RI and VOI against
TED for three manual modifications of the ground truth
labeling of [25], shown in Figure 5. For the 10nm shift
experiment, we dilated the boundaries of neurons in the
ground truth by 10nm. For the splits and merges experi-
ment, we split and merged neurons at 10 randomly selected
locations, respectively. It can be seen that the small shifts

3Obtained using Sopnet [9] on a publicly available EM
dataset [25]

of object boundaries can have a significant contribution
to the measures RI and VOI, which confirms our previous
observation.

2.2.5. Localization of Errors

Due to the explicit tolerance criterion of the TED, er-
rors can be localized in the volume. In Figure 6 we show
example split and merge errors detected by the TED on an
automatic segmentation result for the SNEMI dataset [26].
The boundary shift tolerance was set to 100nm, which cor-
responds to 16.6× 16.6× 3.3 voxels for this volume with a
resolution of 6nm×6nm×30nm. With this setup, the TED
reveals true topological errors made by the automatic seg-
mentation method. This allows analyzing the weaknesses
of a method, which is both useful for model design as well
as to communicate the limits of what can be done with a
method to neuroscientists.

2.2.6. Runtime

The runtime of the TED depends both on the size of
the volumes and their discrepancy. The less similar two
segmentations are, the more variables have to be intro-
duced to represent the possible relabelings. This results in
larger ILPs that are in general harder to solve.

We studied the impact of discrepancy on the runtime of
the ILP by producing randomly generated segmentations.
For that, we first created a reference segmentation by iter-
atively agglomerating supervoxels of a 1000 × 1000 × 100
volume, using an affinity-based scoring function to pro-
pose the next merge4. We stopped the agglomeration at a
manually set threshold to produce ∼ 800 components. For
the randomized segmentations, we added random noise of
increasing intensity to the scoring function of the agglom-
eration to generate more and more discrepancies compared
to the reference. Each segmentation obtained this way was
compared against the reference segmentation. We mea-
sured the single-thread runtime on a Intel(R) Xeon(R)
CPU with 2.2GHz, using Gurobi to solve the ILP. Results
for 9 noise intensities (with 20 repetitions each) are shown
in Figure 7. It can be seen that, although the number of
errors goes up as high as 960, the vast majority of runs
finished in less than 4s. The number of variables in the
ILPs ranged from 59397 (most similar segmentations) to
69105 (most dissimilar segmentations).

These results match our observations so far and can
be summarized in the following way: If two segmentations
are similar enough, the runtime of the TED seems to be
moderate and an exact solution of the ILP is tractable
in practice. Although we have so far not encountered in-
tractable instances, we can not exclude their existence. We
hypothesize that in such a case the segmentations in ques-
tion would be very dissimilar and an approximate solution
to the ILP would suffice.

4We used the implementation http://github.com/funkey/waterz
on a volume of neural tissue, for which we predicted voxel-wise affini-
ties.
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Figure 6: Errors found by the TED between a human generated ground truth x (a) and a proposal segmentation y (b), illustrated on two
neurons (purple and red in ground truth). Small errors, as the one shown in the magnification, are tolerated and consequently removed in
the found relabeling of y (c). Remaining errors are considered real splits (S) and merges (M).

0

2

4

6

8

10

12

14

in
fe
re
n
ce

ti
m
e
[s
]

inference time

820

840

860

880

900

920

940

960

980

su
m

o
f
er
ro
rs

sum of errors

Figure 7: Runtime analysis of the TED computation on several ran-
domized segmentations of a 1000× 1000× 100 volume.

3. Learning of Assignment Models

In this section, we demonstrate that the TED can be
used as a loss function to train neuron segmentation meth-
ods. Here, we focus on assignment models which gained
popularity for the segmentation of anisotropic volumes
of neural tissue. For that, we show first how the struc-
tured learning framework can be used to learn weights of
a generic cost function. Second, we develop a tractable
approximation of the TED that can be used as loss for
structured learning. We report results on two publicly
available datasets.

3.1. Assignment Models

Assignment models for anisotropic neuron segmenta-
tion introduce n binary indicator variables z ∈ {0, 1}n to
represent possible assignments of 2D neuron candidates
across consecutive pairs of sections of a volume (for an
illustration see Figure 8, more details about assignment
models can be found in [9, 10]). Linear constraints are
formulated on the binary assignment indicators to ensure
that a solution is consistent. In particular, the following
set of constraints ensures that no pair of overlapping can-

didates are chosen (see also Figure 8 (g)):∑
c∈C

∑
zi∈z→c

zi ≤ 1 ∀C ∈ C. (12)

Here, C denotes the set of all conflict cliques, i.e., sets of
candidates that are mutually overlapping and z→c all as-
signment variables that link c to the previous section. For
each conflict clique C, we require the number of assign-
ment variables linking any candidate in it to the previous
section to be at most 1. These constraints are accompa-
nied by the following, which ensure a contiguous sequence
of assignments (see also Figure 8 (h)):∑

zi∈z→c

zi −
∑

zi∈zc→

zi = 0 ∀c. (13)

Here, zc→ denotes all assignments variables that link a
candidate c to the next section. Noting that the above
constraints are linear in z, we can characterize the set of
consistent solutions as

Z = {z ∈ {0, 1}n|Az � b}, (14)

where we write a � b to say that a is element-wise less
than or equal to b. Given a cost vector c for the as-
signment variables, the optimal assignment vector is the
solution to the integer linear program

min
z∈Z
〈c, z〉 . (15)

Without loss of generality, we assume that the cost ci for
selecting an assignment zi is a weighted sum of features
φi extracted for this assignment:

c = Φ ·w = [φ1,φ2, . . . ,φn]
T ·w. (16)

3.2. Learning of Model Parameters

Using the structured learning framework [27], we find
the optimal w given annotated training data (φ, z′). More
specifically, we use the margin rescaling variant to find the
weights w∗ as the minimizer of

L(w) = λ|w|2+max
z∈Z

[〈Φw, z′〉 − 〈Φw, z〉]+∆(z′, z), (17)
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Figure 8: Assignment model for anisotropic neuron segmentation. From a stack of EM sections (a), a pixel classifier is used to predict
membrane locations (b). Several, possibly overlapping, 2D neuron candidates are extracted for each section (c), and possible assignments are
enumerated between candidates of adjacent sections (d). In the model, each assignment of candidates between two sections (f) is represented
by a binary variable zi and has an associated cost ci for selecting it. By finding a cost-minimal z subject to constraints (g) and (h) yields a
segmentation (e).

where λ is the regularizer weight and ∆(z′, z) is an appli-
cation specific loss function. In order for this method to
be successful, two problems need to be solved: (1) a rep-
resentative training sample z′ has to be found, and (2) a
sensible loss function ∆(z′, z) has to be designed.

3.3. Training Sample z′

Even apart from the difficulties in obtaining unambigu-
ous human generated ground truth for the neuron segmen-
tation problem in the first place, the provision of z′ is not
trivial: We have to find a member of Z, i.e., the set of
all possible assignment vectors using the found 2D neuron
candidates, that is as close as possible to the human anno-
tated ground truth. We have to note that the extracted 2D
neuron candidates can be imperfect and thus there might
not be a z ∈ Z that corresponds to the human annotated
ground truth. Consequently, we have to accept that the
training sample z′ will only represent a best-effort solution
and not the ground truth.

In order to find this best-effort solution in a principled
way, we assign a local ground truth matching score gi to
each assignment and then select a consistent solution that
minimizes this score. Let Ω = [1,W ]×[1, H]×[1, D] be the
set of all discrete pixel locations in a stack of size W ×H×
D. We assume a ground truth labeling x : Ω 7→ K that
assigns a unique label k ∈ K to each ground truth segment
in the volume. Let u(i) and v(i) denote the section indices
that are linked by assignment zi. We denote by Ai ⊂ Ω
the set of pixels of section u(i) and v(i) that are merged
by the assignment zi. Similarly, let Gk

i ⊂ Ω denote the set
of pixels that are labeled to belong to the same region k
in the ground truth, limited to the sections u(i) and v(i).
For each pair of assignment i and ground truth label k, we
compute a similarity gki that rewards overlap between the

sets Ai and Gk
i and punishes set differences:

gki = |Gk
i ∩Ai|︸ ︷︷ ︸

overlap

−
(
|Gk

i \Ai|+ |Ai \Gk
i |
)︸ ︷︷ ︸

set difference

. (18)

The final matching score gi of an assignment zi is the max-
imal similarity with any ground truth label:

gi = max
k∈K

gki . (19)

The scores gi reflect, for each assignment zi, how well
it locally fits to the ground-truth. We use these scores to
find the overall best assignment z by solving the following
ILP:

z′ = arg max
z∈Z

〈g, z〉 . (20)

Note that this ILP is maximizing the sum of similarities for
all assignments. This way that we find a consistent solu-
tion (in terms of the constraints introduced in Section 3.1)
that maximizes similarity with the provided ground truth.

3.4. Loss ∆(z′, z)

Ideally, we would use the error measure that we use
to evaluate the results of our automatic segmentation as
∆(z′, z). However, we have to make sure that the maxi-
mization in (17) is still tractable.

To this end, we suggest a first order approximation
of the TED to be used as ∆(z′, z): For each assignment
variable zi, we estimate its contribution li to the TED
score. If zi = z′i, no error was introduced by zi and hence
its contribution is 0. If, however, zi 6= z′i, the resulting
segmentation will deviate from the best-effort solution. In
order to estimate the contribution of an erroneous zi to
the TED score, we compute the TED score between two
segmentations yz′ and yz̄(i): yz′ denotes the segmentation
obtained from the best-effort solution z′ and yz̄(i) denotes
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the segmentation obtained by z′, but with z′i inverted5.
More formally, we set

li = (1− 2z′i) TED(yz′ , yz̄(i)) and c =
∑

i:z′
i=1

−li, (21)

where some of the contributions li turn into rewards (neg-
ative values) for using an assignment, i.e., when the cor-
responding z′i = 1. This linearization allows us to model
the loss as a linear function of z:

∆(z′, z) = 〈l, z〉+ c ≈ TED(yz′ , yz), (22)

which favorably plugs into (17). In fact, the loss aug-
mented inference problem for a given w has the same
structure as the inference problem (15) itself, for which
we already know that it is tractable in practice:

max
z∈Z

〈l− Φw, z〉+ 〈Φw, z′〉+ c︸ ︷︷ ︸
constant

. (23)

3.5. Results

We use two publicly available datasets for our experi-
ments, which we refer to as Drosophila [25], which con-
sists of two stacks of 20 EM sections with 4 × 4 × 40nm
resolution (1024 × 1024 × 20 pixels), and Mouse Cor-
tex [26], which consists of two stacks of 100 EM sections
with 6× 6× 30nm resolution (1024× 1024× 100 pixels).

We split the parts for which ground truth was avail-
able into two stacks of equal size (2 × 10 sections for
Drosophila and 2 × 50 sections for Mouse Cortex).
For each dataset, we trained all methods on a sample z′

(see Section 3.3) extracted from the first stack and report
the results on the second stack.

We trained and evaluated the assignment model imple-
mented in Sopnet [9], using membrane predictions from [28],
and 2D neuron candidates extracted from component trees [9].
We used the default features implemented in Sopnet for
Φ.

3.5.1. Comparison of Learning Methods

We compare the structured learning method proposed
in Section 3 to random forests (RF) as proposed in [9, 19],
support vector machines (SVM), and overlap. RF and
SVM learn to score each assignment based on positive and
negative examples provided by z′ (see Section 3.3). As
a baseline, overlap uses the number of overlapping pix-
els of an assignment across sections as score. Since these
methods need a prior for the selection of assignments, we
trained RF and SVM on a subset of the training data (5
sections for Drosophila, 40 sections for Mouse Cor-
tex) and used the rest to validate a prior for RF, SVM,

5Since the constraints (14) might not allow inverting single vari-
ables in isolation, we identify a minimal group of variables that have
to be inverted as well to obtain a consistent solution: for each as-
signment i, we find an assignment vector z̄(i) ∈ Z that has zi 6= z′i
and minimizes the Hamming distance to z′.

and overlap with a grid-search minimizing the Hamming
distance to z′.

To study the performance of the structured learning
method, we compare our loss SL-TED (see Section 3.4)
against three baselines: SL-Ham, SL-VOI, and SL-RI. SL-
Ham uses the Hamming distance of z to z′ for ∆(z′, z). SL-
VOI and SL-RI use the same linear approximation scheme
we developed for the TED (see (21)), but with VOI and RI
as error measures instead of TED. For the computation of
SL-TED, we evaluated the TED allowing boundary shifts
up to θ = 100nm, with weights α = 1 and β = 2 to account
for the fact that merges lose geometric information and
thus usually take more time to repair than splits.

Results are shown in Table 1. We report errors for sev-
eral commonly used measures for neuron segmentation:
Rand Index (RI), Variation of Information (VOI), An-
isotropic Edit Distance [9] (AED, note that we refer to
the inter FP/FN as FS/FM), and TED. The TED counts
topological errors that are not considered boundary shifts
as false splits (FS) and false merges (FM). Splits of the
ground truth background label are false positives (FP) and
merges involving the reconstruction background label false
negatives (FN). For the time-to-fix (TTF) estimate, we
again set the time needed for fixing a split to α = 1 and
for fixing a merge to β = 2. The structured learning meth-
ods are in general superior to overlap, RF, and SVM, with
the best results being obtained by training on SL-TED.
Training on the TED-approximation SL-TED does indeed
minimize the TTF. Furthermore, RI, VOI, and AED are
minimized. Our results also reveal interesting differences
between error measures: Although the best solutions in
terms of TED have also best RI, VOI, and AED, we see a
discrepancy in the mid-field: on Drosophila, SVM scores
much better than RF in terms of VOI and slightly better
in terms of RI. However, TED on a clearly defined crite-
rion shows that the numbers are misleading and in fact
RF has less errors in total and shorter TTF.

3.5.2. Learning from Skeletons

We show on Mouse Cortex that our method to find
a training sample z′ allows us to train on skeleton anno-
tations as well. Skeleton annotations are not volumetric,
i.e., instead of labeling every pixel, only the centerline of
the neuron is provided as training data. In practice, this
saves a lot of manual labeling effort such that larger vol-
umes can be annotated. To simulate skeleton annotations
and compare them to the learning outcome of complete
ground truth, we skeletonized each ground truth label of
the training stack. For that, we shrunk each 2D connected
component of one label in each EM section to a single pixel
at its center of mass. Consequently, we adjusted the search
for the training sample z′ to not consider the set difference
term in (18). The results of training with SL-TED on the
z′ obtained this way are shown in Table 2. Although sig-
nificant, the loss in accuracy might be compensated by the
time saved to annotate only skeletons for training.
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Mouse Cortex Dataset

VOI AED TED
method Rand split merge total FP FN FS FM total FP FN FS FM TTF

overlap 0.9939 0.668 0.192 0.860 1,553 2,404 3,114 1,666 8,737 155 179 678 57 1,305
RF 0.9936 0.375 0.291 0.666 1,048 2,546 3,014 1,451 8,059 23 151 273 68 734
SVM 0.9572 0.507 1.434 1.940 2,998 3,761 5,155 4,587 16,501 4 147 129 167 761

SL-Ham 0.9933 0.348 0.309 0.657 895 2,258 2,735 1,333 7,221 23 138 243 82 706
SL-VOI 0.9870 0.525 0.899 1.424 799 2,466 2,884 1,325 7,474 14 127 161 141 711
SL-RI 0.9797 0.514 1.047 1.561 780 2,604 3,004 1,291 7,679 14 129 163 143 721

SL-TED 0.9948 0.331 0.275 0.606 838 2,297 2,752 1,268 7,155 18 135 229 82 681

Drosophila Dataset

VOI AED TED
method Rand split merge total FP FN FS FM total FP FN FS FM TTF

overlap 0.9906 0.309 0.340 0.648 179 517 648 254 1,598 13 58 201 99 528
RF 0.9864 0.934 0.518 1.452 181 585 556 252 1,574 1 175 108 35 529
SVM 0.9890 0.804 0.230 1.034 366 357 593 537 1,853 10 86 224 84 574

SL-Ham 0.9959 0.309 0.080 0.389 241 234 375 250 1,100 14 63 227 47 461
SL-VOI 0.9959 0.301 0.101 0.402 214 268 400 202 1,084 14 60 243 54 485
SL-RI 0.9958 0.301 0.109 0.410 202 288 419 192 1,101 16 59 243 60 497

SL-TED 0.9960 0.299 0.087 0.386 224 249 382 239 1,094 15 63 215 50 456

Table 1: Comparison of segmentation results of different learning methods on two anisotropic EM datasets.

Mouse Cortex Dataset

TED
method FP FN FS FM TTF

volumetric ground truth 18 135 229 82 681
skeleton ground truth 17 114 188 152 737

Table 2: Reconstruction results on Mouse Cortex after training
on different ground truth types: volumetric uses the original ground
truth, skeleton a skeletonized version. We show false splits and false
merges (FS and FM), false positives and false negatives (FP and
FN), and an estimated time-to-fix (TTF), as reported by the TED
measure.

3.5.3. Runtimes

The bottleneck of our method is the computation of
the coefficients li needed for the TED approximations SL-
TED, since for every binary variable in the z′ the TED has
to be evaluated. For Mouse Cortex and Drosophila,
z′ contained 277,874 and 20,890 variables, respectively.
Computing the coefficients took 64.3h for Mouse Cortex
and 4.8h for Drosophila on a 12 core Intel Xeon CPU
with 3.47 GHz. By noting that the influence of a single
variable flip is usually local, the computation of the TED
could be limited to constant size subvolumes around the
variable of interest, such that the effort of computing the
coefficients scales linearly with the best-effort size. Struc-
tured learning with SL-TED took 30m for Drosophila
and 1h45m for Mouse Cortex on 10 cores of a Intel Xeon
CPU with 2.6 GHz. We used an iterative cutting plane

method6 to minimize the convex learning objective (17)
to optimality. The maximization in (17) has been solved
with an ILP to optimality (using the Gurobi solver) in
each iteration as well.

4. Conclusions

We presented the TED, a novel measure for segmen-
tation comparison, which tolerates small errors based on
an explicit tolerance criterion and therefore focusses on
counting true topological errors. As such, it is suited to
report an effort or time to fix estimate.

A current limitation of the TED is the restriction to
use local tolerance functions, e.g., a boundary shift up to
a certain threshold. More complex tolerance criteria that
do not factorize over regions are currently not express-
ible. Although they could in theory be incorporated into
the ILP by adding auxiliary variables, it remains question-
able whether the resulting problem is still tractable. Even
though we did not observe that empirically, it is already
conceivable in the current formulation that an optimal so-
lution to the ILP can not be found in reasonable time.
This could in particular be the case if ground truth and
proposal segmentation differ a lot and a very lax tolerance
criterion is used. In these cases, approximate solutions to
the proposed ILP might be worth considering.

6Source code available at http://github.com/funkey/sbmrm

9

http://github.com/funkey/sbmrm


Besides being a tool to assess the quality of a segmen-
tation, we also showed that the TED can be used to train
a neuron segmentation algorithm.

We believe that the key for the superior performance
of training using the TED compared to other losses is
the consideration of topological errors. Previous attempts
tried to correctly classify each assignment decision and did
not take into account the severity of a wrong decision in
terms of split and merge errors in the result. Training on
a TED approximation overcomes this problem.

It is worth noting that the boundary shift we used as
a tolerance criterion is just one example of how to use the
TED for training and evaluation. Depending on the bio-
logical question, more or less deviations from the ground
truth can be permitted. For example, boundary shifts
could be tolerated to an extent that locally depends on
the diameter of the ground truth neuron. In future work,
it will be interesting to investigate the use of the TED for
more general biomedical image processing problems with
more specific tolerance criteria.
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