
Chapter 18
Data-Driven Evolutionary-Game-Based
Control for Drinking-Water Networks

Julián Barreiro-Gomez, Gerardo Riaño-Briceño, Carlos Ocampo-Martínez
and Nicanor Quijano

18.1 Introduction

Around 663 million people had no access to safe drinking water in 2015, and around
2.4 billion people live without adequate sanitation according to [25]. This situation
has impacts on the economy of the society according to the Millennium Summit
of 2000, on which the United Nations agreed the Millennium Development Goals
(MDG). One of the biggest concerns of theMDG, due to the rapid population growth
and industrialization, is to guarantee the access to drinking water, achieving a proper
management of the available water resources. Hence, it becomes essential to over-
come the lack of drinking water for achieving sustainable development including in
both social and economic aspects, poverty reduction and equity, and also sustainable
environmental services [13].

Over the last decade, several optimization-based control strategies have been pro-
posed to manage efficiently drinking water and to solve resource allocation problems
in water applications. For instance, in [10] a nonlinear multi-objective optimiza-
tion procedure has been proposed to manage water flows and reserves in drinking
water transport networks (DWTNs), considering the uncertainty of climate and global
change development, using an integrated approach, i.e.,modelling the drinking-water
system, the climate, and the society as a whole. However, this solution implies to
consider a lot of variables and constraints which increase the complexity of the opti-
mization problem. Likewise, optimization-based strategies such as model predictive
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control (MPC) have been designed for this kind of systems, considering the uncer-
tainty of demand patterns as in [26] and minimizing operational costs and shortage
events [9].

Another approach to address the DWTN control design is the use of population
dynamics taking advantage of their stability properties and the close relationship
between the solution in a population game (Nash equilibrium) and the unique maxi-
mizer of a constrained convex optimization problem [23]. Recently, game theory has
been used in the solution of engineering problems [1, 14, 17, 24] and for the solution
of optimization problems [15, 16]. Furthermore, in this chapter, the population game
approach is presented as a powerful tool for the design of data-driven controllers.
More precisely, two different directions in the design of data-driven population-
games-based controllers are treated in this work. First, the DWTN is controlled by
making a partitioning into subsystems that satisfy specific conditions, and a resource
allocation problem is solved at each partition. This approach generates a decentral-
ized control scheme since the local controllers neither communicate to each other nor
exchange information among them. Secondly, it is proposed the design of data-driven
controllers by minimizing a cost function and considering flow-balance constraints.
Under this approach, the network is divided into subsystems according to the estab-
lished constraints over the control inputs, which constitutes a distributed scheme due
to the existing intersection among the different subsystems.

The presented contents in this chapter are a compilation of the theory proposed in
previous works [3–6, 21]. However, some new case studies are incorporated as well
as new simulation results.

Notation
Although this book follows an unified notation and in order to facilitate the reading
of this chapter, some additional notation is introduced. The subindex is associated
to a node of a graph or to a strategy in a game. On the other hand, the superindex
refers to a population. For instance, the subindex i in ui, Pi, up

i or fi refers either to a
node in a graph or to a strategy, and the superindex p in mp, up, up

i or np indicates a
population. Also it should be clear that the superindex is not an operational number,
i.e., n3 refers to population three but n3 �= nnn. We use bold font for column vectors
and matrices, e.g., u, and H; and non-bold style is used for scalar numbers, e.g., np.
Calligraphy style is used for sets, e.g., S. The column vector with n unitary entries
is denoted by 1n, and the column vector with null entries and suitable dimension
is denoted by 0. The identity matrix with dimension n × n is denoted by In. The
cardinality of a set S is denoted by |S|. The continuous time is denoted by t, and it is
mostly omitted throughout the manuscript in order to simplify the notation. Finally,
R≥0 represents the set of all non-negative real numbers, and Z>0 represents the set
of positive integer numbers.

REVIS
ED ome

an unified notan unified not
ditional notatioitional notatio

or to a strategyr to a strategy
on. For instancn. For instanc

or to a strategor to a strateg
Also it should bAlso it should

ers to populatis to popula
atrices, e.g.,atrices, e.g., uu
raphy styleraphy style

d byd by 1

PROOF
s cs c

ons, and ans, and
enerates a deenerates

unicate to eachnicate to eac
ed the design oed the design

ering flow-balaing flow-bala
ubsystems accoubsystems acc

constitutes a dconstitutes a d
ent subsystemsnt subsystems
e a compilatie a compilat
w case sw ca



18 Data-Driven Evolutionary-Game-Based Control for Drinking-Water Networks 365

18.2 Problem Statement

18.2.1 First Data-Driven Perspective

In the proposed DWTNmodel for the design of the population dynamics-based con-
trollers, which is composed by several storage tanks, the flowdirection is unique since
it is assumed that the pressure head at upstream tanks of the network is always higher
than the pressure head at downstream tanks.This consideration is common inDWTNs
that have been designed for places where the topography is steep and the slope is
descending. Due to this assumption, it is possible to distinguish between source and
receptor tanks, taking into account that the former ones are always upstream and
directly linked to the latter ones.

Consider then a simpleDWTNcomposed by n receptor tanks, and only one source
tank as shown in Fig. 18.1. This topology is known as branched [19], which means
that there are no loops in the network due to the fact that several outflows might go
out from a single source tank, but no several inflows come into a single receptor.
Let S = {1, ..., n} be the set of receptor tanks in the branched subsystem. The
volume of the tank i ∈ S is denoted by xi ∈ R≥0, its maximum volume is denoted
by xmax

i ∈ R≥0 and its inflows and outflows are given by qin
i ∈ R≥0 and qout

i ∈ R≥0,
respectively. Hence, the vector of all the tank volumes is denoted x ∈ R

n
≥0, and the

vector of maximum volumes is xmax ∈ R
n
≥0. The parameter ui ∈ [0, 1] determines

the setting of the input valve in the ith tank, Ki > 0 scales the outflow, and it can
be considered as a volume-flow conversion factor or the discharge coefficient of
the tank. Moreover, the system is affected by perturbations that are related to daily
demand patterns.

The control objective consists in avoiding shortages throughout the system, i.e.,
to avoid that the current volume of the tank xi runs out, not supplying the demand, for
all i ∈ S. To achieve this objective, it is proposed to do an allocation of the available
resource stored in the n tanks, i.e., to distribute the current available volume given by
xmax

i − xi in an optimal way by controlling the inflows qin
i , for all i ∈ S. For instance,

considering the hypothetical situation in which one tank is completely filled and
another tank is empty, more priority should be assigned to the inflow of the empty
tank rather than the inflow assigned to the filled one, in order to prevent shortages.

Fig. 18.1 Branched
topology with n receptor
tanks, and one source tank
whose volume is denoted by
vs. The source tank is
upstream of the receptor
tanks
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For each subsystem, the topology of interest is given by different receptor tanks
and one source. The entire control system for the DWTN is composed by π local
controllers that do not communicatewith each other andwhich operate independently
in parallel, i.e., all local controllers may operate their corresponding control inputs
at once.

18.2.2 Second Data-Driven Perspective

This section presents the design of a controller without considering the model of the
system, but just by considering the fact that the error within a tank (i.e., the difference
between the safety value and the current volume) can be reduced as the control
action is increased. In order to design a data-driven controller based on the proposed
methodology, it is defined a cost function corresponding to the desired behaviour of
the system. In this particular case, a volume error at each tank is considered.

The controller is designed through an optimization problem minimizing econom-
ical costs, the volume error with respect to the safety storage term and variations in
the control actions. The economical costs are given by (α

p
1 + α

p
2(k))�up(k), where

α
p
1 is a constant vector defining the energy costs, and α

p
2 is a time varying vector

determining the water costs. The volume error is given by xp
s − xp, where xp

s is the
safety storage imposed by the company in charge of the systemmanagement. Finally,
the �up(k)��up(k) corresponds to the smooth operation cost.

These objectives areminimized subject to constraints ofmass balance andphysical
constraints of actuators. To this end, new variables x̃s ∈ R

nu of safety values, and
x̃ ∈ R

nu composed of tank volumes, are introduced. Notice that the dimension of the
new vectors of volumes corresponds to the dimension of the vector of control actions,
i.e., x̃s, x̃, u ∈ R

nu . The scalar x̃i denotes the volume corresponding to the tank whose
inflow is given by ui, and null in case that ui is not an inflow for any tank. The safety
volume x̃s,i corresponds to the safety volume of the tank whose inflow is given by ui,
and null otherwise. Briefly, x̃i = xj, and x̃s,i = xs,j if ui is the inflow of the jth tank,
and null if ui is not an inflow for any tank. Notice that the constraints over the system
states (i.e., tanks volumes) may not be considered since this approach does not use a
Control-Oriented Model (COM). The following optimization problem only depends
on measured state values (volumes) and decision variables (control inputs):

maximize
up

V (up(k)) = −γ1(α
p
1 + α

p
2(k))�up(k)

−γ2(x̃p
s − x̃p(k))�diag(up(k)) (x̃p

s − x̃p(k)) − γ3�up(k)� �up(k),

subject to Ep
uup(k) = −Ep

ddp(k),[
Inu

−Inu

]
up(k) ≤

[
up,max

−up,min

]
. (18.1)
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18.3 Proposed Approach

18.3.1 Population-Games Approach: First Data-Driven
Perspective

In this section, a detailed description of the population dynamics-based controller is
done, taking into consideration that it is presented for the case of a single partition or
subsystem.As it was stated before, the control approach is conceived from an analogy
between the population dynamics framework and the DWTNmodel (see Table18.1).
In order to make clearer the analogy, it is worth to understand the process of transport
between a source tank and the final user.

First of all, storage tanks receive water from treatment plants and/or natural water
bodies (e.g., aquifers and reservoirs). Then, this water is redistributed among several
storage tanks, which are located close to the final user. For instance, these can be
placed in houses to prevent shortage when there is a lack of the resource. Consumers
use the water that is available for them into the closest tank. In order to match supply
and demand, the utility has the possibility to manipulate the amount of water that is
deposited into receptor tanks through valves.

Considering this process, one can notice that the control problem is reduced to a
resource allocation problem, in which the system can be seen as the population of
a game. The population is composed by water or flow units, which summed all up
form a mass (outflow). When the population mass reaches a point in which the flow
diverges, it has the possibility to select one of the n paths (strategies) that lead to one
of the receptor tanks in S. The mass is going to select certain strategy based on the
maximization of its wealth, which is defined by a fitness function.

Now that the analogy has been exposed, consider the branched DWTN with n ∈
Z>0 receptor tanks (strategies). The total flow through the system (population mass)
is denoted by Q ∈ R≥0, which corresponds to the outflow of the source tank. Each
flow unit is assigned to an inflow of one of the receptor tanks.

The scalar ui ∈ R≥0 is the proportion of flowunits assigned to each flowassociated
to the tank i ∈ S as a percentage, i.e., the inflow for the ith tank is given by uiQ. The

Table 18.1 Equivalence between population dynamics and DWTN

Population dynamics DWTN

P Population System

i Strategy Receptor tanks

m Population mass Total outflow source tank

q Agents Flow units

ui Proportion of agents Proportion of flow

u Strategic distribution Flow distribution in receptor tanks

fi Fitness of a strategy Available volume capacity
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vector u ∈ R
n
≥0 is the flow proportion distribution involving the n tanks according to

the topology. The set of the possible distributions of flow is given by a simplex

� =
{

u ∈ R
n
≥0 :

∑
i∈S

ui = 1

}
,

and the tangent space of the set of possible distributions of flow is defined as

T� =
{

z ∈ R
n :

∑
i∈S

zi = 0

}
.

Each flow unit is assigned to each tank i ∈ S depending on the current volume
capacity, which is described by a function fi(u). Therefore, less inflow is assigned to
those tanks close to be filled up.

The design of the population dynamics-based controllers are given by the proper
selection of the fitness functions that define the incentives for the proportion of
agents to choose a particular strategy. The proper selection of the fitness functions is
further discussed below, and it depends on how the water is distributed in a DWTN
with branched topology. Furthermore, it is necessary that the fitness functions satisfy
conditions to obtain a class of population game known as stable game [11].

Definition 18.1 The game F(u) is stable if the Jacobian matrix J = DF(u) is neg-
ative semi-definite with respect to the tangent space T� [11], i.e.,

z�J z ≤ 0, for all z ∈ T�, u ∈ �.

Then, it implies that a game is stable if the fitness functions are decreasing with
respect to the proportion of agents.

Notice that for the branched topology, thefitness functions canbe selected decreas-
ing with respect to the current volume, e.g., the error with respect to the maximum
capacity volume as in [20] (see Fig. 18.2a). When a proportion of agents is increased,
it is expected that the corresponding volume increases (see Fig. 18.2b). Consequently,
due to the fact that fitness functions are increasing with respect to the volume, the fit-
ness function decreases with respect to the proportion of agents (necessary condition
for a stable game).

The Distributed Replicator Dynamics
The results presented on this chapter are obtained using the replicator dynamics [23]
in order to find a solution to the resource allocation problem. The solution, in which
no agent has incentives to switch from one strategy to another one [23], is determined
in terms of a Nash equilibrium,1 which can be found when the dynamics converge,

1u∗ ∈ � is aNash equilibrium if each used strategy entails themaximumbenefit for the proportion of
agents selecting it, i.e., the set of Nash equilibria is given by {u∗ ∈ � : u∗

i > 0 ⇒ fi(u∗) ≥ fj(u∗)},
for all i, j ∈ S [23].
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Fig. 18.2 Proper selection
of fitness functions for
divergence topology (a) and
(b). Correspondence is as
follows: a decreasing fitness
function with respect to
volume. b increasing relation
existing between proportion
of agents and volume for
divergence topology

fi

xia b

xi

ui

a

b

(a) (b)

and is denoted by u∗ ∈ �. The replicator dynamics are of interest in this work since
they share gradient properties studied in [22], and because of their passivity properties
studied in [3]. However, the replicator dynamics require full information (i.e., all the
tanks (strategies) need information about the states of the others in order to evolve).

Since the problem is handled using a distributed control approach, it is necessary
to use the distributed replicator dynamics, which were deduced in [2] from a local
revision protocol that only needs partial information. Due to the fact that only local
information is needed, then there is an undirected non-complete connected graph
describing the interactions among agents. It is denoted by G = (V, E), where V is
the set of nodes, which represents the tanks, and E ⊂ {(i, j) : i, j ∈ V} is the set of
links representing the information sharing within the system. Furthermore, the set
of neighbours of the node i ∈ V is given by Ni = {j : (i, j) ∈ E}. Notice that i /∈ Ni,
and that Ni �= ∅, for all i ∈ V since G is connected.

The distributed replicator dynamics are given by

u̇i = ui

⎛
⎝fi(u)

∑
j∈Ni

uj −
∑
j∈Ni

ujfj(u)

⎞
⎠ , for all i ∈ S.

Now that the distributed replicator dynamics have been defined, consider a pop-
ulation composed by a large and finite number of agents. Agents in the population
have incentives to select the tank outflows (e.g., in a general control system, the error
is an incentive for the controller to apply more energy to the system and then correct
the states to achieve the desired values). The incentives, associated to rewarding that
the proportion of agents ui receives, for selecting the tank i ∈ S, are given by a fitness
function fi(u) whose mapping is fi : � �→ R. Moreover, the vector of all the fitness
functions is denoted by F = [f1 · · · fn]� with mapping F : � �→ R

n.
The solution of the population game is given by the condition fi = fj, for all

i, j ∈ S. In order to control the case of flow divergence topology, it is proposed the
following fitness function

fi = −
(

1

ei + ε

)
, for all i ∈ S, (18.2)
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with
ei = 1 − xi + si + γ

xmax
i + γ

, for all i ∈ S,

where si ∈ R≥0 is the shortage volume, i.e., the volume that is demanded but cannot
be supplied by the ith tank, γ ∈ R>0 is a constant that ensures 0 ≤ ei ≤ 1 and ε ∈ R>0

is a small factor that prevents the indetermination of fi when ei = 0. Moreover, the
proposed fitness function for the strategy i ∈ S, only depends on the volume vi and
the proportion of agents ui, making it suitable to apply in this case where only local
information is available.

All the valves, defining the inflow of the receptor tanks in a partition, are estab-
lished by the vector u ∈ R

n
≥0. These settings in the output gates affect the behaviour

of the tank volumes, i.e., x ∈ R
n
≥0. Then, the variation of the tank volumes modi-

fies the fitness function (18.2), affecting the control actions over the output valves
u ∈ R

n
≥0.

18.3.2 Population-Games Approach: Second Data-Driven
Perspective

Consider a society whose topology is represented by an undirected non-complete
connected graph denoted by G = (V, E), where V denotes the set of nodes of the
graph G. These nodes represent the set of n available strategies in a social game
denoted by S = {1, . . . , n}. Besides, the set E ⊂ {(i, j) : i, j ∈ V} denotes the edges
of the graph G that determines the possible interactions among social strategies.

The graph G is divided into π ∈ Z>0 subcomplete graphs known as cliques [7].
Additionally, each clique represents a population within the society. The set P =
{1, . . . ,π} denotes the collection of the π populations, and the set of cliques is
denoted by C = {Cp : p ∈ P}. The clique corresponding to the population p ∈ P is a
graph given by Cp = (Vp, Ep), where the set Vp represents the np available strategies
in a population game, which are denoted by Sp = {i : i ∈ Vp}. On the other hand,
Ep = {(i, j) : i, j ∈ Vp} is the set of all the possible links in Cp determining full
interaction among the population strategies.

In this work, it is assumed that the set of cliques is already known, i.e., the number
of cliques π, the set of vertices Vp and the set of edges Ep for all p ∈ P are known.
Although if it is desired to obtain the optimal set of cliques,2 there are severalmethods
to find them, e.g., the Bron Kerbosh algorithm [12], or the maximum clique problem
using replicator dynamics as shown in [7]. Once the optimal set of cliques C has
been identified, it is possible to find redundant links. A link (i, j) ∈ E is redundant if
(i, j) /∈ Ẽ , i.e., (i, j) /∈ Ep, for all p ∈ P .

2The minimum amount of cliques π such that
⋃

p∈P Vp = V , and the minimum amount of links

|Ẽ|, where Ẽ = ⋃
p∈P Ep ⊆ E such that the graph G̃ = (V, Ẽ) is connected.
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Then, the number of cliques that contain a node i ∈ V , denoted by G(i), is defined
as follows:

G(i) =
∑
p∈P

g(i, p),

and

g(i, p) =
{
1 if i ∈ Vp

0 otherwise.

Due to the fact that the graph G is a non-complete and connected, then all cliques
share at least one node with another clique, which is known as an intersection node.
The set Ip = {i ∈ Vp : G(i) > 1} collects all the intersection nodes in a popula-
tion p ∈ P . Moreover, the set of intersection nodes in the graph G is given by
I = ⋃

p∈P Ip.
Furthermore, all the populations p ∈ P such that a node i ∈ V belongs to the set

of nodes Vp are collected in a set denoted by Pi. The set of all the populations that
includes a node i ∈ V is given by Pi = {p : i ∈ Vp}, where Pi ⊆ P .

The scalar ui ∈ R≥0 is the proportion of agents in the society selecting the strategy
i ∈ S. Similarly, the scalar up

i ∈ R≥0 is the proportion of agents selecting the strategy
i ∈ Sp in the population p ∈ P . Moreover, the distribution of agents throughout the
available strategies in the society and populations is known as the social strategic
distribution and the population strategic distribution denoted by u ∈ R

n
≥0 and up ∈

R
np

≥0, respectively.
The set of possible social strategic distributions is given by a simplex denoted

by �, which is a constant set, i.e., � = {
u ∈ R

n
≥0 : ∑

i∈S ui = m
}
, where m ∈ R>0

is the constant mass of agents in the society. Similarly, the set of possible strategic
distributions of the population p ∈ P is given by a non-constant simplex defined
as �p = {

up ∈ R
np

≥0 : ∑
i∈Sp ui = mp

}
, where mp ∈ R>0 corresponds to the mass

of agents in the population p ∈ P . Furthermore, there is a relationship between the
social proportions and the population proportions given by

ui = 1

G(i)

∑
p∈Pi

up
i . (18.3)

Notice that if it is considered that up
i = 0 for all i /∈ Vp, then (18.3) can be written

as

ui = 1

G(i)

∑
p∈P

up
i . (18.4)

Thefitness functions take a social or population strategic distribution and return the
payoff that a proportion of agents playing a certain strategy receives. Let fi : � �→ R

be themapping of the fitness function for the proportion of agents playing the strategy
i ∈ S, and f p

i : �p �→ R be the mapping of the fitness function for the proportion of
agents playing the strategy i ∈ Sp in the population p ∈ P . The fitness corresponding
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to a strategy i ∈ S is the same as the fitness for a strategy j ∈ Sp for all p ∈ P if i = j.
Consequently, for all i ∈ Sp and for all p ∈ Pi,

fi(u) = f p
i (up), if ui = up

i . (18.5)

The vector of the fitness functions for a society is given by F = [f1 . . . fn]� ∈
R

n. The social average fitness is denoted by f̄ , where f̄ = (u�F)/m. Similarly, the
vector of fitness functions for a population p ∈ P is given by Fp ∈ R

np
, whose fitness

functions are associated to the strategies Sp. The average fitness for a population
p ∈ P is denoted by f̄ p = (up�Fp)/mp. There is a relationship between the population
masses and the social mass given by

m =
∑
p∈P

mp −
∑
i∈S

(G(i) − 1)ui. (18.6)

The framework of this paper is given by the assumptions stated next.

Assumption 18.1 The game F is a full potential game [23], i.e., there is a continu-
ously differentiable function V (u), known as the potential function, satisfying

∂V (u)

∂ui
= fi(u), for all i ∈ S, and u ∈ �.

Assumption 18.2 Fitness functions depend only on strategies on which there is
connection, i.e., each node requires only available information given by the graph
topology.

Assumption 18.3 The proportion of agents playing the strategies corresponding to
intersection nodes are strictly positive for all the time, i.e., up

i > 0 for all i ∈ I, and
for all p ∈ P (i.e., there is not extinction of the intersection population). This also
implies that population masses are strictly positive, i.e., mp > 0, for all p ∈ P , since
the population masses are composed of proportion of agents within populations.

Assumption 18.4 The game DDF is a stable game [11], i.e., the Jacobian matrix
DF(u) is negative semi-definite with respect to the tangent space T� (see Definition
18.1).

The features of the potential function V (u) determinewhether the full potential game
F is stable, as shown in Lemma 18.1.

Lemma 18.1 If V (u) is twice continuously differentiable and concave, then the full
potential game F is a stable game.

The objective for the society is to converge to a Nash equilibrium3 of the game
F denoted by u∗ ∈ �. In order to achieve this objective, there is a game at each

3u∗ ∈ � is aNash equilibrium if each used strategy entails themaximumbenefit for the proportion of
agents selecting it, i.e., the set of Nash equilibria is given by {u∗ ∈ � : u∗

i > 0 ⇒ fi(u∗) ≥ fj(u∗)},
for all i, j ∈ S [23].
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population p ∈ P converging to a Nash equilibrium of the game Fp denoted by
up∗ ∈ �p, and the intersection nodes i ∈ I allow a mass interchange among the
different populations.

Population Dynamics and Mass Dynamics
Agame is solved for each populationwith constraints given by the populationmasses
mp, which vary dynamically. Dynamics associated to each population are shown in
(18.7a). There are π different dynamics of this form, one for each clique Cp for all
p ∈ P , i.e.,

u̇p
i = up

i

(
f p
i − f̄ p − φp

)
, for all i ∈ Sp, (18.7a)

φp = β

⎛
⎝ 1

mp

∑
j∈Sp

up
j − 1

⎞
⎠ , (18.7b)

where β is the convergence factor for the whole system that takes a positive and finite
value. Notice that, when φp = 0 (i.e., up ∈ �p), then (18.7a) becomes the classical
replicator dynamics equation [27].

On the other hand, there are as many mass dynamics as intersection nodes in the
graph, i.e., one for each i ∈ I. The dynamics for population masses mp are given by

ṁp
i = mp

i

(
ui − up

i

)
, for all p ∈ Pi, (18.8)

Equation (18.8) describes the movements of agents among populations through
intersection nodes for the case in which there is no social mass constraint [6]. There
might be alternative possibilities in the selection of the mass dynamics (18.8). How-
ever, the requirements that should be satisfied are as follows: (i) the dynamics satisfy
the communication constraints established by the graph G, and (ii) dynamics con-
verge to the equilibrium point given by ui = up

i , for all p ∈ Pi.
There is a relationship between mp

i , for all i ∈ Ip, and the population masses mp

given by

mp = 1

|Ip|
∑
i∈Ip

mp
i , for all p ∈ P. (18.9)

For the mass dynamics at intersection nodes in (18.8), the vector of masses and the
vector of states associated to an intersection node i ∈ I are defined next. The masses
vector is denoted by mi = [mp1

i . . . m
pG(i)

i ]� ∈ R
G(i), where p1, . . . , pG(i) ∈ Pi;

and the vector of population states is ui = [up1
i . . . u

pG(i)

i ]� ∈ R
G(i), where

p1, . . . , pG(i) ∈ Pi; both vectors mi, and ui for all i ∈ I. Notice that, mi �= mi and
ui �= ui.

Finally, the dynamical system can be forced to converge to a Nash equilibrium
u∗ such that F(u∗) = ∇V (u∗) converges to a desired value fi(r) for an i ∈ I, where
r is a known value (e.g., a reference). Modifying the relationship between the states
in (18.4) by adding the reference r, the following new relationship is obtained:
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ui = 1

G(i) + 1

⎛
⎝∑

p∈P
up

i + r

⎞
⎠ ,

where up
i = 0, if i /∈ Vp. Using this modification, by (18.8), ui tends to r. This makes

f̄ to converge to the desired value fi(r), for only one i ∈ I.
Optimization Problems
The presented population dynamics with time-variant mass may be implemented
to solve different constrained optimization problem forms. First, it is presented a
population game without social mass constraint but with the positiveness over the
proportion of agents. Afterwards, the population-games approach is presented to
solve a constrained optimization problemwith several constraints over the proportion
of agents.

First, consider optimization problems without social mass constraint. This prob-
lem only demands the positiveness of optimization variables. From a mass dynamics
perspective, it implies a variation of the social mass arbitrarily. The problem is stated
as follows:

maximize
u

V (u)

subject to u ∈ R
n
≥0,

where V : R
n
≥0 �→ R, and V is continuously differentiable and concave. Also, it is

supposed that the solution point of this problem is an interior point. The solution
for the optimization problem with one constraint is found by F(u) = ∇V (u) = 0,
since V (u) is concave and by the fact that it is known that the maximum point is an
interior point. Therefore, the desired value for the average fitness is fi(r) = 0, and it
is enough to find the correct value for reference r and any intersection i ∈ I.

Secondly, consider optimization problems with multiple constraints over agents
proportions. Suppose that there is a strategic interaction with more than one con-
straint, e.g., different constraints over the proportion of agents. It is desired that the
total amount of certain groups of proportions of agents are constant. This problem
is stated as

maximize
u

V (u)

subject to Hu = h, and u ∈ R
n
≥0, (18.10)

where u ∈ R
n
≥0, V : R

n
≥0 �→ R, and V is concave and continuously differentiable.

Moreover, H ∈ R
L×n since there are L constraints and n decision variables, and

h ∈ R
L. For this optimization problem, μ is the Lagrange multiplier vector. The

Lagrange function l : R
n × R

L �→ R is

l(u,μ) = V (u) + μ�(Hu − h). (18.11)
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Moreover,∇ul(u,μ) = ∇f (u) + H�μ, and−∇μl(u,μ) = −Hu + h.TheLagrange
condition is used to find possible extreme points in the objective function, in which
∇ul(u,μ) = 0, ∇μl(u,μ) = 0 [8].

Consequently, fitness functions for each node are chosen to be defined as F(u) =
∇ul(u,μ), and F(μ) = ∇μl(u,μ). This problem is solved by using a reference r as
it was explained in Sect. 18.3.2 in order to force a convergence value for the fitness
functions associated to the social states and the Lagrange multipliers. In order to
use the population and the mass dynamics, it is necessary that the games are stable
according to Assumption 18.3.

Lemma 18.2 If V (u) is twice continuously differentiable and concave, and the
constraints have the form Hu = h, then the games F(u) = ∇ul(u,μ) and F(μ) =
∇μl(u,μ) are stable.

18.4 Simulations and Results

18.4.1 Case Study: First Data-Driven Perspective

In the design of the proposed decentralized controller, it is necessary to make a par-
titioning of the DWTN into different subsystems. Each subsystem must correspond
to a case of flow divergence (i.e., each subsystem must be of the form shown in
Fig. 18.1). In order to clarify the partitioning process in a typical branched DWTN,
an arbitrary DWTN is presented in Fig. 18.3. At this general example, it is possible
to identify that the whole system is composed of three partitions or subsystems.

When performing the partitioning, it is possible to find some tanks that are a source
and also a receptor for different subsystems in the DWTN (this is typical when the
topology is branched). For instance, in the partitioning presented in Fig. 18.3, the
grey tanks are receptors for the partition 1, and source tanks for the partitions 2,
and 3.

Fig. 18.3 Partitions over a
branched topology. Some
tanks are source and receptor
in different partitions (gray
tanks)

Partition 1

Partition 2 Partition 3

REVIS
ED subsy
each subseach sub

e partitioning pe partitioning
nted in Fig.ed in Fig. 18.18

system is comsystem is com
he partitioning,e partitioning,

for different suor different s
chedc ). For ins). For in

e receptors fore receptors

PartitionPa
polopolo

PROOF
))

PerspectivePerspective

d controller, icontroller, i
ems. Eaems.



376 J. Barreiro-Gomez et al.

Fig. 18.4 Case study with eight tanks in a branched DWTN

Table 18.2 Maximum
volumes and scale factors of
the tanks in the DWTN

Tank i xmax
i

(
m3

)
Ki (1/ms)

1 2.0 0.123

2 1.1 0.160

3 2.0 0.326

4 0.5 0.599

5 2.6 0.660

6 0.2 0.632

7 2.0 0.255

8 3.5 0.427

A DWTN composed by eight tanks is controlled (see Fig. 18.4), for an scenario in
which shortages are produced due to the fact that the network is only operating with
water stored in the main upstream tank. The system is a branched DWTN whose
topology is mainly divergent, so it can be partitioned in three main subsystems;
all independently controlled by a distributed replicator-dynamics-based controller.
The maximum storage capacity and the scale factors of each tank are presented in
Table18.2. Since the system is branched and the divergence topology prevails, it is
possible to divide the system into three partitions, as it was described before. The
first one is composed by tanks 2 and 3, the second by tanks 4 and 5 and the third
by tanks 6, 7 and 8. Each partition receives the flow from a source tank, which is
distributed in different proportions, depending on the setting of the input valves of
each tank of the partition.

Each tank attends a different demand pattern along the day denoted by di. The
tanks with volumes x5 and x8 supply a constant demand pattern of 4.5 × 10−3 l/s,
while the others, denominated as inactive tanks (i.e., tanks 2, 3, 4, 6 and 7) are
just operating to store water, not attending any demand pattern. When there is not
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(a) (b) (c)

(d) (e) (f)

Fig. 18.5 Evolution of the used capacity in storage tanks; a, b, c capacity of tanks when no control
strategy is applied; and d, e, f capacity of tanks when the evolutionary-game-based strategy with
the replicator dynamics is applied

a control strategy, the flow is divided equally, and shortage of 26 m3 is produced
because the distribution of flows is inefficient, as shown in Figs. 18.5a, 18.5b and
18.5c.

When the control strategy is applied, then the priority is given to the tanks that
supply the demand, and inactive tanks become less filled up since they are not attend-
ing any demand pattern. Thereby, no shortages are produced, the demand is fully
supplied and the distribution of flows is more efficient, in comparison to the case
with no control. This is because all the tanks keep some volume stored on them at
the end of the day, while in the other case, tanks 5 and 8 are completely empty.

It has been shown that the proposed decentralized population dynamics-based
control is efficient in terms of a better distribution of drinking water throughout
the DWTN, avoiding shortages. The partitioning proposed methodology allows to
design the decentralized controller by using different local controllers with a lower
computational burden with respect to a centralized controller.

18.4.2 Case Study: Second Data-Driven Perspective

Consider the case study presented in Fig. 18.6, which corresponds with the aggre-
gate model of the Barcelona drinking water network presented in Fig. 2.2. For
this system, consider x̃ = [x̃1 x̃2 . . . x̃61]�, x̃s = [x̃s,1 x̃s,2 . . . x̃s,61]� and
u = [u1 u2 . . . u61]� according to the explanation presented in Sect. 18.2.2.

REVIS
ED equ
inefficieninefficie

is applied, theis applied, th
active tanks becactive tanks be

n. Thereby, noThereby, no
tribution of flotribution of fl

This is becauseis becaus
day, while in tday, while

een shown thaen shown tha
is efficient ins efficient in

WTN, avoidinWTN, avoidin
he decenhe decen
onaona

PROOOOFOFOFOOFOOOFOFOOOOOOOFOFFFFFFFOOOOOOOOOOOOOOOOOOOOFOFOFOFOFOFOFOFOFOFOFOFFFFFFFOOOOOOOOOOOOOOFOFOFOFFFFFOFFOFFOFOFO, c capacity of tacapacity o
evolutionary-gamevolutionary-ga

ly, and sly, a
asas



378 J. Barreiro-Gomez et al.

F
ig

.1
8.

6
A
gg
re
ga
te
m
od
el
of

th
e
B
ar
ce
lo
na

D
W
T
N
(B
D
W
T
N
)
co
m
pr
is
ed

by
17

st
at
es
,6
1
co
nt
ro
la
ct
io
ns
,2
5
de
m
an
ds

an
d
11

m
as
s
ba
la
nc
e
no
de
s

REEEEEVIS
ED 

EVVV
DDDDDDDDEDEDDEDEDDDDD

SSSS
VISVISVISVISVISVISISISS

ED
SEEEE

VIS
ED

EV
SES

VV
EDEDDEEDED

EVISVIS
D

EEEE

PROO
RROROOOOOROROOROOOOROROROOORROORRORRPPRPRPPPPPPPPPRPPRPRRPRPPPPRORORRRORR

O
RPPPPPROOF

PPP
OOOFOFFOOFOFOFFFFOFFFFFFF

PPRPRPRPRPRPR
OOO

PROOOOOFOFF
OO

PPPPP



18 Data-Driven Evolutionary-Game-Based Control for Drinking-Water Networks 379

In the control design, thefirst step is the determination of cliqueswithin the system,
i.e., to make a partitioning of the system. The aforementioned partition process of the
BDWTN is a problem already studied in [18]. For the BDWTN control problem, the
proposed partitioning is determined based on the system mass balance constraints.
Lagrange-multiplier vertices are connected to decision variables vertices fromwhich
information is needed in order to compute the fitness functions F(μ). As a criterion
for performing the partitioning, it is desired that all the Lagrange multipliers, and
the nodes connected with them, belong to the same clique. In order to formalize this
partitioning criterion, let Hj be the set of all the nodes that are involved in the jth
equality constraint of the form (18.10), where j = 1, . . . , L, e.g., for the BDWTN
system, H1 = {1, 2, 5, 6}, and H2 = {2, 3}. Furthermore, we consider two sets of
nodes for mass balance constraints Hi, and Hj. If Hi ∩ Hj �= ∅, then all the nodes
Hi ∪ Hj should belong to the same clique.

Based on this idea, it is possible to determine the vertices (strategies) that
should belong to the same clique (population). As an example, consider the set
of nodes associated to the constraint given by mass balance node 9, i.e., H9 =
{28, 35, 43, 49}, and the set of nodes corresponding to the mass balance constraint
10, i.e., H10 = {43, 44, 52}. There is a common vertex given by H9 ∩ H10 = {43}.
Now, considering the constraint corresponding to the mass balance node 11, i.e.,
H11 = {50, 51, 52, 56, 57, 58, 59, 60, 61}, then it is obtained thatH10 ∩ H11 = {52}.
Consequently, all the nodes H9 ∪ H10 ∪ H11 should belong to the same clique.

On the other hand, there are some vertices that are not associated to any
constraint, e.g., the node 4 associated to the decision variable x4, then 4 /∈ Hj

for all j = 1, . . . , 11. In these cases, vertices are assigned to the closest clique.
Cliques are presented in Fig. 18.7, and the nodes of each clique are shown in
Table18.3. Notice that {H1 ∪ H2 ∪ H3 ∪ H5} ∈ V1, {H4 ∪ H6 ∪ H7 ∪ H8} ∈ V2,
and {H9 ∪ H10 ∪ H11} ∈ V3.

Once the partitioning is performed, the optimization problem (18.1) is stated of the
form (18.10) by adding slack variables, which may be solved by using the population
andmass dynamics. In this case, the society is composedof three population (cliques).
In order to analyze the performance of the data-driven controller, the obtained results
are compared to a centralized MPC controller. Figure18.8 presents the evolution of
three volume tanks (i.e., x1, x12, and x14), and three control inputs (i.e., u18, u32,
and u40) for both centralized MPC controller and data-driven controller based on
population dynamics. In Figs. 18.8a, 18.8b and 18.8c show that, with the centralized
MPC controller, the tanks are maintained with more volumes with respect to the
data-driven controller based on population dynamics. This better performance of the
centralizedMPC controller is obtained due to the fact it disposes of the systemmodel
in comparison to the data-driven control approach. Moreover, Figs. 18.8d, 18.8e and
18.8f show the similar performance of the control inputs for both controller. This
close behaviour is obtained because of the constraints, which are taken into account
for both control approaches.

Table18.4 shows the comparison of the economical costs obtained with the cen-
tralizedMPC strategy and the data-driven population-games-based control approach.
The results exhibit lower energy costs associated to the control inputs with the
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Fig. 18.7 Partitioning of the BDWTN into three cliques (see Table18.3)

data-driven approach. However, since the MPC controller disposes of the model
system to generate a prediction, the centralized MPC approach minimizes more the
overall costs. In contrast, even though the minimization of costs, the data-driven
control scheme is non-centralized, reducing the amount of required communication
links in order to compute the final control inputs.

Table 18.3 Partitioning of the network into the three resultant cliques

Clique Vertices u Involved states x

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13,
17, 18, 22, 29, 30, 36, 37, 38

1, 2, 3, 4, 6, 7, 9, 10, 11

2 12, 14, 15, 16, 19, 20, 21, 23, 24, 25, 26,
27, 31, 32, 33, 34, 39, 40, 41, 45, 46, 47

4, 5, 6, 7, 8, 9, 10, 12, 14

3 28, 35, 42, 43, 44, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61

9, 10, 11, 12, 13, 14, 15, 16, 17
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(a) (b) (c)

(d) (e) (f)

Fig. 18.8 Evolution of volumes a 1, b 12, and c 14. Evolution of control inputs d 18, e 32, and
f 40

Table 18.4 Discrimination of economical costs for different control strategies

Day Total cost in economical units (e.u.)

Population dynamics approach Model predictive control

Data-driven controller Model-based controller

Water Energy Water Energy

1 45484.48 18409.34 37915.28 22096.12

2 41384.76 18131.81 28352.38 22235.15

3 40022.43 18791.73 28400.39 22288.11

4 40389.76 18387.35 28330.14 22219.59

Sum 167281.43 73720.23 122998.21 88838.97

Overall costs 241001.66 211837.17

18.5 Conclusions

Two data-driven non-centralized control strategies to manage water flows among
drinking-water networks have been presented. The proposed controllers are based
on population games and have been designed using the distributed replicator dynam-
ics and a modification of the population dynamics incorporating mass dynamics.
Additionally, two partitioning approaches have been introduced in order to divide
the typical centralized control problem into several subsystems. The partitioning of
the system allows to reduce the computational burden required to manage the flows
among the system. In the first population-games approach, the partitioning implies a
decentralized control scheme since the local controllers do not communicate to each
other. On the other hand, the partitioning in the second population-games implies a

REVIS
ED gy

D8409.348409.34DE
18131.8118131

ED
SE18791.7318791.73

SE66

SE1838718387

SE1.431.43 SE733IS1001.66001.66

VIS
ConclusionConclusion

-drive-dri

PROOFOFFFFFFOFontrol inputstrol inputs dd 11

t control strategit control strate

RORPRModel prModel p

PRPRModeModPPWP



382 J. Barreiro-Gomez et al.

distributed control scheme since there is overlapping among the resulting subsystems.
Both techniques have been tested using two different case studies.
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