
Chapter 17
Non-centralized Predictive Control
for Drinking-Water Supply Systems

Juan Manuel Grosso, Carlos Ocampo-Martínez and Vicenç Puig

17.1 Introduction

The control schemes proposed in the previous chapters have shown the potential
applicability of centralized MPC for the economic scheduling control of network
flows. Nevertheless, as illustrated with the case study of Barcelona, flow-based net-
works are generally systems comprised of multiple subsystems and/or large-scale
systems. Thus, the centralization of decisions in a single MPC-based agent could be
disadvantageous for the reliability of the network operation and the maintenance of
the monolithic prediction model. These issues have received a lot of attention from
the control research community during the last years. Several non-centralized con-
trol strategies have been already proposed in the literature, where either large-scale
systems are partitioned into subsystems with individual control agents or a plant-
wide optimization problem is distributed in a set of smaller optimization problems
that are usually coordinated by a master problem. The importance of system parti-
tioning and/or distributed optimization has already been noticed in classic references
addressing the decentralized control of large-scale systems [9, 17] and the decompo-
sition of mathematical programming problems [3]. For distributing the centralized
MPC optimization problem, several analytic methods exist, e.g., Dantzig–Wolfe
decomposition, Bender’s decomposition, and optimality condition decomposition,
among other dual or primal decomposition techniques. These analytic decomposi-
tions rely strongly on the form of both the constraints and the objective function
and are specialized to particular problem structures that might not cover many real
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large-scale flow-based networks. Therefore, as discussed in Chap.16, graph theory is
also used to copewith large-scale networks.Basically, the partitioning of aflow-based
network consists in choosing subsets of the global variables to be assigned to differ-
ent local agents that are in charge of controlling individual partitions/subsystems, as
described in [5, 6, 11, 14]. This chapter addresses a large-scale network as a system-
of-systems instead of analytically decomposing the global optimization problem; the
corresponding partitions will be assumed given from now on.

It has been demonstrated in [16] that exchanging only interaction information
(even iteratively) among the local controllers is not enough to guarantee closed-loop
stability and/or optimal plant-wide performance due to their competitive behaviour.
Hence, for economically optimal operation (or to reduce suboptimality) of the net-
work, cooperation between local controllers must be induced. This can be achieved,
e.g., by means of cooperative, coordinated or hierarchical MPC schemes, which
incorporate negotiation/coordination mechanisms to approach the centralized solu-
tion. A crucial issue in all these non-centralized control schemes is that of guaran-
teeing recursive feasibility of the optimization problem, especially when addressing
dynamically coupled subsystems. Among the non-centralized MPC schemes that
have been proposed in the literature (see, e.g., [12] and references therein), one
important classification criterion is the information exchange between local agents
(e.g., predicted trajectories, prices or dual variables), which in general can be either
local or global. On the one hand, there are schemes that use local information and
iterative communication to improve performance but guaranteeing feasibility mostly
only upon convergence to the global optimal solution. To cope with feasibility losses
(e.g., due to early termination of the iterative algorithm), other non-iterative distrib-
uted MPC schemes consider the shared variables as local disturbances and rely on
the design of (possibly over-conservative) robust local controllers, guaranteeing fea-
sibility of the network at the expense of a worse economic performance. On the other
hand, there exist several cooperative approaches inspired in [18], which exchange
global information and ensure recursive feasibility of the optimization problem (even
with non-iterative communication) by using centralized prediction models. Gener-
ally, these cooperative schemes converge asymptotically to the central optimumunder
certain structural assumptions, e.g., sparse couplings.

Most of the available non-centralized MPC algorithms were proposed to control
systems operating under a standard (tracking) cost functions, and only few coopera-
tive (iterative) distributed economicMPC schemes have been recently published (see,
e.g., [4, 8]). Differently, this chapter proposes a non-iterative multi-layer distributed
economic MPC (ML-DMPC) approach for its application to flow-based networks.
This approach is based on a temporal and functional decomposition of the centralized
economic scheduling-control problem. The architecture of the proposed ML-DMPC
controller lies in the class of hierarchical systems [10]. Specifically, the controller
comprises two layers that operate at different timescales and interact to fulfil a setO of
desired control objectives. In a top-downhierarchy, the control structure has a central-
ized coordinator in the upper layer and a set of local distributedMPCcontrollers in the
lower layer. Contrary to the standard coordinated distributed control structures [10],
where the local controllers use local information and communicate iteratively only
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with the coordinator to reconstruct the centralized performance, the proposed ML-
DMPC scheme considers non-iterative and hierarchical-like neighbour-to-neighbour
communication between the local controllers. The coordinator is used to influence
(also non-iteratively) the overall performance through economic intervention para-
meters. The ML-DMPC controller aims to improve the performance of a decentral-
izedMPC strategy (but still being globally suboptimal) and to guarantee the recursive
feasibility of the involved tractable distributed algorithm.

17.2 Problem Statement

In Chap.11, a method to obtain the monolithic state-space model of a given flow-
based network graph was described. Once the control-oriented model is stated, it is
important to determine the objective of performing the partitioning of the physical
network no matter what control strategy is followed. For large-scale network flow
problems, the partitioning of the system gains sense from the point of view of mod-
ularity of the control architecture and the reduction of computational burden. In any
case, the way the network elements are interconnected is a key factor for performing
the partitioning and control of the overall network since it determines the type of
couplings between subsystems and consequently the complexity and rationality of
the control strategy.

In the following sections, the overall system is assumed to be decomposed in
a set of M ∈ Z≥1 dynamically coupled non-overlapped subsystems denoted by Si ,
i ∈ Z[1,M]. The number M of subsystems is generally a tuning parameter. In this
chapter, a two-stage decomposition is performed. In the first stage, a reachability
analysis is used to define a set of subsystems that can be supplied only by one
source each. These resultant subsystems are here called anchored subsystems and are
denoted as Si , i ∈ Z[1,r ], where r ≤ M is the number of flow sources in the network.
The remaining elements of the network are grouped in a subsystem denoted as S̃,
which is supplied by the cross-border outflows of the anchored subsystems. Such
flows are considered as pseudosources of S̃ . In the second stage of the decomposition,
subsystem S̃ is later subdivided into M − r subsystems by means of the graph-based
partitioning algorithm proposed in Chap.16. This algorithm aims at decomposing S̃
and its corresponding directed graph into subgraphs, in such a way that all resultant
partitions have nearly the same number of vertices and a hierarchical/sequential
solution order can be stated. Note that another set of pseudosources may appear
after the decomposition of S̃ and, contrary to the first stage of decomposition, each
subsystem may have both entering and leaving cross-border flows depending on the
interconnections of the resultant Si subsystems, i ∈ Z[r+1,M]. A sketch of the overall
decomposition process is depicted in Fig. 17.1.

Particularly, this chapter considers only input-coupled dynamics and input-
coupled constraints. Then, each subsystemcanbedescribedby the followingdiscrete-
time linear model:
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Fig. 17.1 Decomposition of a network with r sources into M subsystems
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x[i](k + 1) = Ai i x[i](k) + Bi i u[i](k) + Bd,i i d[i](k) +
M∑

j=1
j �=i

Bi j u[ j](k), (17.1a)

0 = Eu,i i u[i](k) + Ed,i i d[i](k) +
M∑

j=1
j �=i

Eu,i j u[ j](k), (17.1b)

for all k ∈ Z+ and i, j ∈ Z[1,M], where x[i] ∈ R
nxi , u[i] ∈ R

nui and d[i] ∈ R
ndi are,

respectively, the local state, input and demand vectors of subsystem Si , i ∈ Z[1,M].
Local matrices are given by the topology of each subsystem, with Ai i = Inxi

,
Bi i ∈ R

nxi ×nui , Bd,i i ∈ R
nxi ×ndi , Bi j ∈ R

nxi ×nu j , Eu,i i ∈ R
qi ×nui , Ed,i i ∈ R

qi ×ndi and
Eu,i j ∈ R

qi ×nui for all i, j ∈ Z[1,M]. The decomposition assures that
∑M

i=1 nxi = nx ,∑M
i=1 nui = nu ,

∑M
i=1 ndi = nd and

∑M
i=1 qi = q for all nxi , nui , ndi , qi ∈ Z≥1. Sim-

ilarly, the global constraint sets X , U and D are decomposed to give place to a set of
local constraints defined by:

x[ j](k) ∈ Xi := {x[i] ∈ R
nxi | 0 ≤ x[i] ≤ x[i],max}, (17.2a)

u[ j](k) ∈ Ui := {u[i] ∈ R
nui | 0 ≤ u[i] ≤ u[i],max}, (17.2b)

d[ j](k) ∈ Di := {d[i] ∈ R
pi | 0 ≤ d[i] ≤ d[i],max}. (17.2c)

Definition 17.1 (Neighbour and neighbourhood) A subsystem S j is defined as a
neighbour of subsystem Si if and only if Bi j �= 0 or Eu,i j �= 0, j ∈ Z[1,M], j �= i .
Hence, the neighbourhood ofSi is defined asNi := { j ∈ Z[1,M] | Bi j �= 0 or Eu,i j �=
0, j �= i}.
Remark 17.1 Note that the overall systemmodel can be obtained by the composition
of the above M subsystems, as follows:

{
x(k + 1) = Ax(k) + Bu(k) + Bdd(k),

0 = Euu(k) + Edd(k),
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where the vectors and matrices are now a permutation of the original ones, with

x(k) =
⎡
⎢⎣

x(k)[1]
.
.
.

x(k)[M]

⎤
⎥⎦ , u(k) =

⎡
⎢⎣

u(k)[1]
.
.
.

u(k)[M]

⎤
⎥⎦ , d(k) =

⎡
⎢⎣

d(k)[1]
.
.
.

d(k)[M]

⎤
⎥⎦ , (17.3)

and

A =
⎡
⎢⎣

Inx1
. . . 0

...
. . .

...

0 . . . InxM

⎤
⎥⎦ , B =

⎡
⎢⎣

B11 . . . B1M
...

. . .
...

BM1 . . . BM M

⎤
⎥⎦ ,

Bd =
⎡
⎢⎣

Bd,i i . . . 0
...

. . .
...

0 . . . Bd,M M

⎤
⎥⎦ , Eu =

⎡
⎢⎣

Eu,11 . . . Eu,1M
...

. . .
...

Eu,M1 . . . Eu,M M

⎤
⎥⎦ ,

Ed =
⎡
⎢⎣

Ed,i i . . . 0
...

. . .
...

0 . . . Ed,M M

⎤
⎥⎦ .

Moreover, since the dynamic and static nodes of the network were decomposed into
M disjoint subsets, it follows that the global constraint sets can be recovered as
Cartesian products, i.e.,

X =
M∏

i=1

Xi , U =
M∏

i=1

Ui , D =
M∏

i=1

Di . (17.4)

♦

Before getting through the design of the ML-DMPC strategy, the following pre-
liminary assumptions related to the overall system are stated.

Assumption 17.1 All demands have a periodic flow request (with period T ∈ Z≥1)
that can be supplied by at least one flow source through at least one flow path.1

Assumption 17.2 The required control objectives can be grouped in a set O =
Ol ∪ Og , which is a composition of a set Ol of local control objectives and a set Og

of global control objectives.Moreover,ml � |Ol |,mg � |Og|, and henceml + mg =
|O|.

Assumption 17.2 allows to rewrite a centralized general economic stage cost
function J : Z+ × R

nx × R
nu → R+ in the following form:

1A flow path is an ordered sequence of arcs, which may connect sources, intermediate nodes and
demands.
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J (k, x(k), u(k) =
mg∑

g=1

λg�g(k, x(k), u(k)) +
ml∑

l=1

λl Jl(k, x(k), u(k), (17.5)

where λg,λl ∈ R+ are scalar weights that prioritise, within the overall cost function,
each global and local control objective, particularly represented by convex functions
Jg : Z+ × R

nx × R
nu → R+ and Jl : Z+ × R

nx × R
nu → R+, respectively. Hence,

from (17.1), (17.2) and Remark 17.1, the centralized MPC optimization problem
with stage cost (17.5) and prediction horizon N can be rewritten as follows:

min
uk

Hp−1∑
t=0

⎛
⎝ mg∑

g=1

λg Jg(k, x(k + t |k), u(k + t |k))

+
ml∑

l=1

λl Jl(k, x(k + t |k), u(k + t |k)

)
, (17.6a)

subject to:

x[i](k + t + 1|k) =Ai i x[i](k + t |k) + Bi i u[i](k + t |k)

+ Bd,i i d[i](k + t |k) +
M∑

j=1
j �=i

Bi j u[ j](k + t |k), (17.6b)

0 = Eu,i i u[i](k + t |k) + Ed,i i d[i](k + t |k) +
M∑

j=1
j �=i

Eu,i j u[ j](k + t |k), (17.6c)

(x[i](k + t + 1|k), u[i](k + t |k)) ∈ Xi × Ui , (17.6d)

x[i](k|k) = x[i](k), (17.6e)

for all i ∈ Z[1,M] and all t ∈ Z[0,Hp−1]. The aggregate state and input vectors in

the cost function are given by x(k + t |k) = (x[1]T
(k + t |k), . . . , x[M]T

(k + t |k))T ,
mathb f u(k + t |k) = (u[1]T

(k + t |k), . . . , u[M]T
(k + t |k))T , respectively. The deci-

sion variable is the input sequence uk = {u(k + t |k)}t∈Z0,Hp−1 .
Thus, the goal of the ML-DMPC approach proposed in this chapter is that of

solving (17.6) in a distributed fashion in order to cope with the aforementioned dis-
advantages of a centralized controller. To do so, a set C := {C1, . . . , CM } of local con-
trollers, their communication network and a coordination mechanism are designed
in the following to properly address the effect of couplings between subsystems and
to take into account Assumption 17.2.
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17.3 Proposed Approach

The whole ML-DMPC set-up consists of the following:

(i) an upper layer in charge of achieving the global objectives by solving a central-
ized optimization problem with a sampling time �t1 and

(ii) a lower layer comprising a set of distributed MPC agents that compute the
references for the system actuators in order to satisfy the local objectives.

This layer operates with a sampling time �t2 (�t2 ≤ �t1). The local controllers
solve their associated optimization problem in a hierarchical/sequential fashion and
exchange (non-iteratively) in a neighbour-to-neighbour communication strategy the
predicted sequence of the inputs affecting the neighbouring subsystems. The upper
layer influences the operation of the lower layer by projecting global economic
information into the local agents, specifically by modifying the prices/weights of the
flow arcs that are shared among the subsystems arising in the lower layer. Figure17.2
shows the proposed control structure. The ML-DMPC scheme leads to a suboptimal
plant-wide performance but with the advantage of a tractable implementation due
to a hierarchical-like communication approach that avoids negotiations among local
controllers. A formal description of the two optimization layers involved in the ML-
DMPC approach and their interaction is given below.

Fig. 17.2 ML-DMPC control architecture
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17.3.1 Lower Optimization Layer

Once the network partitioning is performed and the M local models are obtained, it
only remains to distribute the original centralized economic MPC problem among
the local controllers Ci , considering the given management policies and constraints.

In order to simplify the notation, let rewrite the interaction-oriented local models
as rewritten in the following more compact form:

{
x[i](k + 1) = Ai i x[i](k) + Bi i u[i](k) + Bd,i i d[i](k) + B̃i w[i](k), (17.7a)

0 = Eu,i i u[i](k) + Ed,i i d[i](k) + Ẽi w[i](k), (17.7b)

for all i ∈ Z[1,M], where w[i](k) := (wT
i1
(k), . . . , wT

i|Ni |
(k))T ∈ Wi is a vector stack-

ing the flows decided by the controllers of neighbours of subsystem Si , {i1, . . . , i|Ni |}
is an ordered sequence of the indices contained in the set Ni (i.e., i1 < . . . < i|Ni |)
and w j (k) := TT

w j
w[ j](k) for all j ∈ Ni . In the definition of each w j (k), the matrix

Tw j ∈ R
nu j ×nui j (TT

w j
Tw j = Inui j

) is such that it collects the mi j (mi j < m j ) columns
of the identity matrix of order nu j , corresponding to the indices of the rows of
ũ[ j](k) ∈ R

nu j related to the controlled flows decided by the controller C j and affect-
ing subsystem Si . Moreover, matrices B̄i and Ēi are suitably defined to represent the
effect of w[i](k) on the local state vector x[i](k), and the set Wi is obtained appropri-
ately from Ui . In the sequel, every subsystem S j that imposes an outflow w j (k) to a
subsystem Si will be considered as a virtual demand of Si .

Interpretation 1 At any time instant k ∈ Z+ when the controlled flow u[i](k) is
computed, the controller Ci has knowledge of the state x[i](k) and the demands d[i](k)

and w[i](k) imposed by the local and virtual demands, respectively. Future demands
d[i](k + t) and w[i](k + t) might be unknown for all t ∈ Z≥1 and can take arbitrary
values in Di and Wi , respectively. Nevertheless, the controller Ci has also knowledge
of the Hp-step sequences of both the local and virtual demand expectations.

Each controller Ci will be in charge of deciding only the network flows corre-
sponding to subsystem Si by using local and neighbouring information under Inter-
pretation 1. In this chapter, the local problems are defined in such a way that each of
them considers a local stage cost function but with a structure similar to the one in
(17.5). Specifically, the stage cost function related to each Ci is written as follows:

Ji (k, x[i](k), u[i](k)) =
mg∑

g=1

λ̂g,i Ĵg,i (k, x[i](k), u[i](k))

+
ml∑

l=1

λl,i Jl,i (k, x[i](k), u[i](k)), (17.8)
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where each Ĵg,i , g ∈ Z[1,mg], corresponds to the gth global control objective properly

expressed and weighted with a suitable λ̂g,i ∈ R+ in order to influence controllers
Ci to improve plant-wide performance. Moreover, each Jl,i is assumed to be the
corresponding part of the separable local objectives Jl , l ∈ Z[1,ml ], related to the
subsystem Si .

For each subsystem Si , a portion of control importance is removed by its neigh-
bours and added to its local uncertainty in a max-min sense due to the local knowl-
edge considered in Interpretation 1. Hence, before fully devising the distributed
MPC controllers operating in the lower layer, the following definition (adjusted from
[1, Definition 4.1]) is introduced.

Definition 17.2 Denote a given network decomposition with P = {Si }i∈Z1,M and let
CSi∞ be the maximal max-min robust control invariant set for subsystem Si . Then, the
decentralized max-min robust control invariant set for the overall system

x(k + 1) = Ax(k) + Bu(k) + Bdd(k), ∀k ∈ Z+ (17.9a)

0 = Euu(k) + Edd(k), ∀k ∈ Z+ (17.9b)

subject to constraints

x(k) ∈ X = {x ∈ R
nx |0 ≤ x ≤ xmax}, ∀k ∈ Z+ (17.10a)

u(k) ∈ U = {x ∈ R
nu |0 ≤ u ≤ umax}, ∀k ∈ Z+ (17.10b)

and decomposed into � is given by C�∞ = ∏M
i=1 CSi∞ .

For a given network decompositionP and local setsXi ,Ui ,Di andWi , i ∈ Z[1,M],
each maximal max-min robust control invariant set CSi∞ can be explicitly computed
for the overall network.

Note that such sets CSi∞ may result to be empty for a given P (consequently
CP∞ = ∅),which implies that there is no guarantee that a decentralized control strategy
will be feasibility for all times. In such a case, the setsUi (accordinglyWi ), i ∈ Z[1,M],
should be properly modified to make possible the decentralized design of CP∞, see
e.g., [1].

Assumption 17.3 The local constraint sets arising for a given network decomposi-
tion P = {Si }i∈Z1,M are such that

Bd,i iDi ⊕ B̄iWi ⊆ −Bi iUi and Ed,i iDi ⊕ ĒiWi ⊆ −Eu,i iUi ,

for all Si ∈ P . Hence, CSi∞ := (
(Xi ⊕ (−Bi iUi ))  (

Bd,i iDi ⊕ ĒiWi
)) ∩ Xi �= ∅.

Even when Assumption 17.3 holds and CP∞ exists, the algebraic equation (17.7b)
for each local model acts as a coupling constraint that forbids the design of non-
iterative distributed controllers with parallel solution of the local optimization prob-
lems. Thus, the distributed MPC algorithm considered in the lower layer of the
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proposed ML-DMPC approach involves a non-iterative communication-based MPC
design that builds on the hierarchical decentralized MPC approach reported in [13].
The strategy proposed here also follows a hierarchical sequence of solution but con-
sidering conditions to deal with the existence of bidirectional complicating flows
between neighbour subsystems. The optimization problem to be solved in the lower
layer of the ML-DMPC by each local controller Ci , i ∈ Z[1,M], with sampling time
�t2, is defined as follows:

min
uk

Hp−1∑
t=0

⎛
⎝ mg∑

g=1

λ̂g,i Ĵg,i (k, x[i](k + t |k), u[i](k + t |k))

+
ml∑

l=1

λl,i Jl,i (k, x[i](k + t |k), u[i](k + t |k))

)
, (17.11a)

subject to:

x[i](k + t + 1|k) = Ai i x[i](k + t |k) + Bi i u[i](k + t |k) + Bd,i i d[i](k + t |k)

+ B̄i w[i](k + t |k), ∀t ∈ Z[0,Hp−1] (17.11b)

0 = Eu,i i u[i](k + t |k) + Ed,i i d[i](k + t |k) + Ēi w[i](k + t |k), ∀t ∈ Z[0,Hp−1]
(17.11c)

x[i](k + 1|k) ∈ CSi∞ , (17.11d)

x[i](k + t |k) ∈ Xi , ∀t ∈ Z[2,Hp] (17.11e)

u[i](k + t |k) ∈ Ui , ∀t ∈ Z[0,Hp−1] (17.11f)

u[i]
(r)(k|k) = u[i]�

(r) (k + 1|k − 1), ∀r ∈ Iu (17.11g)

x[i](k|k) = x[i](k), (17.11h)

where Iu ⊂ Z+ is a set containing the indices of all the rows of vector u[i](k) related
to the inputs decided locally by Ci but affecting neighbours whose controllers C j

are located in higher levels of the predefined hierarchy of solution.
Comparing with the algorithms in [13, 15], problem (17.11) has two subtle but

important differences:

1. The incorporation of (17.11d) as a robustness constraint that enforces the pre-
dicted state to lie within the maximal max-min robust control invariant set at the
first prediction step.

2. The incorporation of (17.11f), restricting those components of the first control
action that are decided locally but affect neighbouring subsystems whose con-
trollers are located at higher levels of the solution hierarchy.

As demonstrated in [7, Chap. 6] for amin-max interpretation in a standard centralized
MPC controller, the robustness constraint (17.11d) leads to a robust strongly feasible
MPC algorithm. Nonetheless, this constraint on its own cannot guarantee recursive
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feasibility of the overall distributedMPC solution sequence, because CSi∞ is computed
under Interpretation 1, which requires that each controller Ci knows at least the first
demand value of its local and virtual demands (i.e., d[i](k) and w[i](k) when solving
at k). This requirement is not fulfilled if controllers Ci are allowed to freely optimize
their full input vector without considering their effect in the hierarchical sequence
of solution of the non-iterative ML-DMPC approach.

To illustrate this observation, assume that a controller C j optimizes the flow of
a complicating arc affecting a subsystem Si whose controller Ci has already solved
the i th problem in the solution sequence. Then, the trajectory obtained by C j could
be infeasible (specially due to the equality coupling constraint (17.11c)) for Si since
w[i](k) might be changed and Ci does not have the chance to recompute its solution.
Hence, constraint (17.11f) is an extra necessary condition to satisfy Interpretation 1
and to maintain feasibility of the overall sequence of local problems.

17.3.2 Upper Optimization Layer

The fulfilment of a global objective from a local point of view often implies infor-
mation from the entire network, but this is lost when the system partitioning is
performed. Therefore, it is necessary to figure out how to induce cooperation among
the set of distributed controllers, considering all the control objectives belonging to
O in a suitable way.

One common way to improve overall closed-loop performance of a decentral-
ized/distributed control scheme is to incorporate a supervisor controller or coor-
dinator on top of the local controllers. Two frequently used coordination methods
are the goal coordination and the interaction prediction coordination (cf., [10]).
The fundamental idea behind these approaches is to have independent subproblems
containing certain coordinating parameters (e.g., Lagrange multipliers, co-state vari-
ables and pseudovariables) in addition to the local decision variables. In both coor-
dination methods, duality theory is used as a standard to construct an equivalent
two-level problem to the primal (centralized) optimization problem. Within such
framework, the coordinating parameters are updated iteratively by the coordinator
based on the local solutions until an optimal solution to the overall system is achieved
(cf. [3, 10]). Feasibility of these coordinated control strategies is guarantee only upon
convergence.

Contrary to the commonmethods, the upper optimization layer of theML-DMPC
approach proposed in this chapter is not focused on reconstructing the centralized
optimal solution in an iterative manner but to improve the economic performance of
the local MPC controllers by intervening in their decision process with a low fre-
quency of intervention. Specifically, this upper layer influences the local solutions
by computing, in a non-iterative way, the weight ω ∈ R

nω (where nω is the number of
arcs interconnecting the subsystems) related to the shared links between partitions
that appear after the selected network decomposition method (see Fig. 17.1). The
weights in ω will affect the first term in the local cost function (17.11a) of each
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controller Ci , i ∈ Z[1,M]. Therefore, to compute ω, a centralized optimization prob-
lem based on a temporal and functional decomposition of the network is stated in
the upper layer of the ML-DMPC by considering

(i) a static model of the whole network and
(ii) a cost function that only takes into account the global control objectives associ-

ated to the system.

The proposed upper optimization layer works with a sampling time �t1 = T ,
where T ∈ Z≥1 corresponds to the period of the periodic flow requested by local
demands (see Assumption 17.1). Thus, when looking at the volume evolution of
storage elements, they show a similar behaviour as the flow to the demands; i.e.,
volumes might also show a periodic behaviour with period T . For this reason, when
modelling the networkwith sampling time�t1, it can be assumed that volumes do not
change along the time. From now on, subindex c is used to differentiate the temporal
scale of the model in the upper layer to that of the lower layer (e.g., xc(k) denotes
the state at the coordinator level at time instant k with sampling time �t1). Hence,
storage nodes behave as static nodes in this layer, and the network dynamic model
(17.9a) becomes a stationary model, i.e., xc(k) = Acxc(k) + Bcuc(k) + Bd,cdc(k).

The stationary model considered by the coordinator is

Jup(k, xc(k), uc(k) :=
mg∑

g=1

λg,c Jg,c(xc(k), uc(k), (17.12)

and the upper layer optimization problem is here proposed to be formulated for
a flow-based network as the search of the economically optimal path flows from
sources nodes to demand nodes.

Definition 17.3 (Directed path) Given a directed graph G = (V,A) of a network,
a directed path is an ordered sequence of nodes v1, v2, . . . , vn in which there is an
arc (i, j) pointing from each node i in the sequence to its successor node j in the
sequence, that is, {(v1, v2)(v2, v3), . . . , (vn−1, vn)}.

To mathematically and systematically find all flow paths in a given network, this
chapter follows the methodology in [2, Appendix A], which exploits the information
contained in the node-arc incidence matrix of the network directed graph to construct
the path-arc matrix for the given sources and demands. The description of such
algorithm is omitted here, and the reader is referred to the aforementioned reference.
Once the path-arc matrix is obtained, a constrained optimization problem can be
stated tominimize (17.12) in terms of path flows, which are denoted here as u p ∈ R

n p

with n p the number of possible paths.
Hence, the coordinator solves in the upper layer of theML-DMPC, anoptimization

problem with the following structure:

min
u p

Ĵup(xc(k), up(k)), (17.13a)
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subject to:

Apup(k) ≤ bp(k), (17.13b)

Aequp(k) = beq(k), (17.13c)

where function Ĵup is equivalent to (17.12) but properly expressed in terms of the
path flows up(k) by using the graph path-arc matrix. Moreover, constraint (17.13b)
is used to consider the physical bounds of each actuator involved in each path, while
constraint (17.13c) is used to enforce satisfaction of demands dc(k). Matrices Ap

and Aeq and vectors bp and beq are defined accordingly to the considered bounds
and balance constraints.

Throughout this chapter, it has been assumed that the flow at each arc of the
network is driven by an actuator. Therefore, by using the optimal solution of problem
(17.13) and the information contained in the path-arc matrix of the overall network,
it is possible to compute the accumulated cost incurred in traversing all the paths that
reach the intermediate nodes from which the arcs interconnecting the M subsystems
depart. This accumulated cost information, in addition to Assumption 17.1, allows
to define the weight ω as a coordinating economic parameter. This weight is used
by the coordinator to project, into the cost function of each local controller Ci , the
economic impact (from a global point of view) that each subsystem Si will suffer
when requesting flow from its neighbour subsystems.

In network flow problems, the global objectives are often given as a composition
of economic linear cost functions. In this case, the value of ω can be obtained by
following Algorithm 17.1.

Note that Assumption 17.1 and the temporal scale selected for the upper layer
make (17.13) independent of the state. Furthermore, the weight ω is more an inter-
vention parameter than a coordination variable since the upper layer does not use
any feedback information from the local controllers allocated at the lower layer.

17.3.3 ML-DMPC Algorithm

The sharing of information between the two layers of the proposed ML-DMPC
depends on the nature and features of each application. For the case considered in
this chapter (i.e., periodic demands), the interaction is unidirectional from the upper
optimization layer to the lower optimization layer. Once the optimization problem
related to the upper layer is solved, the resultant parameters are properly updated for
each optimization problem behind each Ci , i ∈ Z[1,M]. This updating is performed
with a periodicity�t1 to consider possible changes in the periodic pattern of demands.
In fact, if a given application involves an agreement of predefined demands to be
satisfied, the optimization problem of the upper layer needs to be executed only once
at the beginning of the operation. In general, the computational time that the upper
layer spends is quite low with respect to the computational time of the lower layer.
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Algorithm 17.1 Computation of the economic intervention parameter ω

1: Compute the path-arc matrix of the network graph, denoted here by Rp ∈ R
n p×m .

2: Define a matrix Cp ∈ R
n p×m with the same structure of matrix Rp but containing in each

matrix element the unitary flow cost of each actuator in each possible path.
3: Identify all the arcs interconnecting subsystems Si , i ∈ Z[1,M], and denote with nus ∈ Z+

the number of such arcs, called from now on as complicating arcs.
4: Solve problem 17.13 and identify from the optimal solution all the paths in which each

complicating arc participates, and denote by n p j ∈ Z+, j ∈ Z[1,nus ], the numbers of such
paths.

5: Define a set of matrices Ts j ∈ R
n p×n p j , j ∈ Z[1,nus ], each of them collecting the n p j

columns of the identity matrix of order n p .
6: Define a set of matrices Rp j := TT

s j
Rp and Cp j := TT

s j
Cp for all j ∈ Z[1,nus ].

7: From the sequential order of the directed paths involved in each matrix Rp j , define a set of

matrices R̃p j whose elements will be the same as the ones in matrices Rp j for all the
positions related to the sequential arcs that reach the complicating arcs (these latter
included) in each path, and zero in those matrix elements related to the successor arcs.

8: Define the vector ω := (ω1, . . . ,ωnus
)T , with each of its components computed as

ω j =
1T

nus

((
Cp j ◦ Rp j

) ◦ R̃p j

)T
TT

s j
u�

p(k)[
RT

p j
TT

s j
up(k)�

]
(r j )

, ∀ j ∈ Z[1,nus ]

where 1nus
denotes an all-ones column vector of length nus , the operator (◦) indicates the

Hadamard product of matrices, and [·](r j ) is the r j row of the vector in the brackets with r j
being the position of the associated j th complicating arc in the input vector uc(k). Then,
ω j represents a unitary cost per flow unit.

This fact is due to the difference in the nature of the models handled by each layer
and the interactions given by the distributed MPC controllers as well as their amount
and disposition within the defined hierarchy. Algorithm 17.2 collects the main steps
of the proposed ML-DMPC approach. The computational time spend by the scheme
corresponds with the sum ofmaximum times of each hierarchical level of controllers.

One important property desired in the design of anyMPC strategy is recursive fea-
sibility. In the following, it is shown that the proposedML-DMPC algorithm remains
feasible for all times if initial feasibility is assumed. The guarantee of feasibility of
the approach is unrelated to optimality of the distributed solution.

Theorem 17.1 Let Assumptions 17.1–17.3 hold and suppose that an initial feasible
solution in Step 1 of Algorithm 17.2 exists. Then, each local MPC problem (17.11)
solved in Step 3 of Algorithm 17.2 is robust strongly feasible for each subsystem
Si ∈ P .

Proof The proof is by induction, showing that feasibility at time k implies feasibility
at time k + 1. Let x[i](k) be a feasible initial condition for each local problem (17.11)
and assume that there exists a pair of feasible (not necessarily optimal) state-input
trajectories given by (x[i]

k , u[i]
k ) for each subsystem Si ∈ P .
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Algorithm 17.2 Non-iterative Multi-layer Distributed Economic MPC
1: Initialisation: Set k = 0, establish an arbitrary weight ω in the upper layer and send that

information to every local controller Ci , i ∈ Z[1,M]. For each current local state x[i](k) and
local demand sequence d[i]

k = {d[i](k), d̄[i](k + 1|k), . . . , d̄[i](k + Hp − 1|k)}, find for all
subsystems Si a feasible (not necessarily optimal) pair of state and input sequences
(x[i]

k = {x(k + t |k)}t∈Z[0,Hp ] , u[i]
k = {u(k + t |k)}t∈Z[0,Hp−1] ). Apply u[i](k|k) in every

subsystem and transmit each u[i]
k to the controllers of the corresponding neighbours of

each Si .
2: Collecting of information: After receiving all the neighbour trajectories u[ j]

k , j ∈ Ni , each

controller Ci builds the trajectory w[i]
k = {w[i](k + t |k)}∈Z[0,Hp−1] , differencing between

shared inputs to be imposed by controllers arranged in higher levels of hierarchy and
shared inputs planned by controllers arranged in the same or lower levels of hierarchy.
These imposed and planned input trajectories are formed locally as
w[i]

a,k = {w[i]�
a (k|k), . . . , w[i]�

a (k + Hp − 1|k)} and
w[i]

a,k = {w[i]�
b (k + 1|k − 1), . . . , w[i]�

b (k + Hp − 1|k), w[i]�
b (k + 1|k − 1)},

respectively, and it is assumed that w[i](k + t |k) = (w[i] T
a (k), w[i] T

b (k)T . At each sampling

time, obtain x[i](k) and d[i]
k for each subsystem Si .

3: Solution of local problems: Solve each optimization problem 17.11 following a
predefined hierarchical sequence.

4: Implementation of control action: Each local controller Ci applies
κi (x[i](k), u[i]

k , d[i]
k , w[i]

k ) = u[i]�(k|k) to the associated subsystem Si . Transmit each u[i]
k

to the controllers of the corresponding neighbours of each Si .
5: Updating of the economic intervention parameter: If �k�P1 ∈ Z+, then solve problem

17.13 for the current dk and update ω following Algorithm 17.1. Send the new weight to
each local controller Ci . Otherwise, go to step 5.

6: Increment k and go to step 2.

Consider now the hierarchical flow of the solution at the next time instant k + 1.
Since each subsystem applied previously the first control action of the initial feasible
trajectoryu[i]

k , it follows then that x [i]
k+1 = x[i](k + 1|k), and from constraint (17.11d),

it holds that x[i](k + 1) ∈ CSi∞ for all i ∈ Z[1,M]. Since CSi∞ �= ∅ by Assumption 17.3,
it follows from the invariance property of CSi∞ that for all (x[i](k + 1), d[i]

k+1, w[i]
k+1) ∈

CSi∞ × DHp

i × W Hp

i , there exists a control sequence u[i]
k+1 ∈ U Hp

i such that the con-
straints in problem (17.11) are satisfied at time instant k + 1 for all i ∈ Z[1,M].

This claim holds only under Interpretation 1, that is, if and only if each con-
troller Ci knows at least the first demand value of its local and virtual demands
(d[i](k + 1) and w[i](k + 1) when solving at k + 1). Such requirement is guar-
anteed by means of constraint (17.11f), which is feasible by the assumption of
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existence of any initial feasible trajectory uk . Therefore, all the local problems solved
sequentially by controllers Ci are feasible at k + 1. Feasibility for all times follows
then by induction over k and the assumption of initial feasibility. Consequently, the
ML-DMPC approach is strongly feasible, and the claim is proved. �

17.4 Simulations and Results

In order to evaluate the effectiveness of the proposed ML-DMPC approach, the case
study related to the model of the Barcelona DWTN is used. In this network, the set
Og of global control objectives is formed only by the cost function

JE (x(k), u(k; cu(k), cx (k) := cT
u (k)We u(k)�t + cT

x (k)Whx(k), (17.14a)

while the set Ol of local control objectives is formed by the cost functions

JS(x(k); s(k) :=
{

(x(k) − s(k)T Ws(x(k) − s(k) if x(k) ≤ s(k)

0 otherwise,
(17.14b)

J�(�u(k)) := �uT (k)W�u �u(k). (17.14c)

The overall network is assumed to be decomposed in six subsystems (P =
{S1, . . . ,S6}), which are non-overlapped, output-decentralized and input-coupled
(see Fig. 16.3). The model and constraints of each subsystem Si are obtained follow-
ing Sect. 17.2.

The controller Ci of each subsystem Si uses the following local multi-objective
stage cost in its optimization problem:

Ji (k, x[i](k), u[i](k) = λ̂1,i ĴE,i (x[i](k), u[i](k; c[i]
u (k)) + λ2,i J�,i (�u[i](k))

+λ3,i JS,i (¸[i](k); x[i](k), s[i](k)),

where functions ĴE,i , J�,i and JS,i are the local economic, safety and smoothness
objectives for subsystems Si (see Sect. 17.3.1 for the derivation of the local costs).
Moreover, λ̂1,i , λ2,i and λ3,i are positive scalar weights to prioritise each objective
in the aggregate local cost function.

Each local MPC controller operates with a sampling time �t2 = 1 h and a pre-
diction horizon Hp = 24 h. The weight λ̂1,i and the internal economic parameters of
each function �̂E,i , i ∈ Z[1,6], are modified by the upper optimization layer, placing
properly each element of the intervention parameter ω (see Algorithm 17.1) in the
local cost of the corresponding complicated arcs. The cost function used in the upper
optimization layer is given by

Jup(k, xc(k), uc(k)) = JE,c(xc(k), uc(k)), (17.15)
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Fig. 17.3 Network
subsystems Si and their
shared connections wi j w34

w31

w13

w12

w14

w16

w61

w51

S1

S2

S3

S4

S5

S6

which is derived from (17.14a) but expressed in a temporal scale of days (i.e.,�t1 =
24 h).

The constraints and the rest of the parameters involved in the optimization prob-
lems (i.e., water demands, economic prices ofwater end electricity, safety thresholds)
are set up according to Chap. 2.

Figure17.3 shows, in a more compact way, the resulting subsystems and the
important couplings between them including their direction. Instead of neglecting
the effect of this shared links as classic pure decentralized control schemes do,
the ML-DMPC approach applied to the aforementioned case study has the control
architecture shown in Fig. 17.2.

The results obtained by applying the ML-DMPC (Algorithm 17.2) are compared
with those of applying a centralized MPC (CMPC) approach and a decentralized
MPC (DMPC) strategy proposed in [14]. All of the results were obtained for a simu-
lation horizon of 72 h with real data of the network and are summarized in Table16.2
(Chap.16) in terms of computational burden and of economic cost as a global man-
agement performance indicator. For each MPC approach, the computational time (in
seconds) and the water, electric and total cost in economic units (e.u.) are detailed. It
can be noticed that an increment of nearly 30% of the total costs of operation occurs
when using the one-level hierarchical DMPC strategy reported in [14] with respect
to the CMPC baseline. Despite the lower electric costs, the loss of performance in
the overall cost is due to the specialized behaviour of local MPC controllers to solve
their own optimization problems without knowing the real water supply cost of using
shared resources with the neighbours. In contrast, the ML-DMPC outperforms the
DMPC results by including the bilevel optimization, which allows to propagate the
water cost of sources related with neighbour subsystems to the shared links thanks to
the daily centralized control level. With this ML-DMPC approach, the level of sub-
optimality is acceptable comparing with the CMPC strategy; i.e., total costs are quite
similar, but the computational burden is reduced. For this particular application, the
computational time of the three approaches is able to satisfy the real-time constraint

REVIS
ED
ncludinncludi

classic purclassic pu
ied to the afored to the afor

7.22..
by applying they applying the

g a centralizeg a centralize
tegy proposedgy proposed

f 72 h with real72 h with rea
n terms of comterms of com

performance inrformance
s) and the wates) and the wat
noticed thanoticed tha
ng theng t

PROOFOFOFS5

oral scale of daoral scale of da

involved in thinvolved in th
water end electrwater end elec

way, the rway,
theirthe



358 J.M. Grosso et al.

Table 17.1 Performance comparisons

Index CMPC DMPC ML-DMPC

Water cost 93.01 205.55 97.11

Electric cost 90.31 34.58 87.53

Total cost 183.33 240.13 184.65

CPU time 1143 537 540

since the control sampling time is 1 h. Thus, themainmotivation for usingML-DMPC
is the scalability and easy adaptability of the submodels if network changes, as well
as the modularity of the control policy that leads to face some malfunction/fault
without stopping the overall supervisory MPC strategy (Table17.1).
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Fig. 17.4 Economic costs of the three MPC strategies
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Fig. 17.5 Total flow per water source in the Barcelona DWTN
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Due to the difference of price between water sources and the impact of electric
costs on the overall economic performance, the CMPC and ML-DMPC strategies
decide to use more water from the Llobregat source despite the consequent pump-
ing of more water through the network (see Fig. 17.5), but achieving a lower total
cost, while the hierarchical DMPC decides to exploit in each subsystem their own
water source (which could be expensive) and minimize the pumping operation cost.
Figure17.4 shows in detail the evolution of water cost and electric cost, respectively.
These results confirm the improvement obtained by including an upper optimization
layer to coordinate the local MPCs and face the lack of communication when solving
their problems in a tractable way.

17.5 Conclusions

This chapter proposed a non-iterative multi-layer distributed economic MPC
approach for large-scale flow-based networks. The control architecture consists in
two optimization layers. The upper layer, workingwith a larger timescale, is in charge
of improving the global performance (in general related to an optimal economic cost)
by influencing a set of distributed MPC controllers by means of an intervention eco-
nomic parameter. These distributed controllers are hierarchically arranged in a lower
optimization layer and are in charge of determining the set point of the flow actua-
tors to satisfy the local management/control objectives. The system decomposition is
based on graph partitioning theory. Results obtained on selected simulation scenarios
have shown the effectiveness of the control strategy in terms of system modularity,
reduced computational burden and, at the same time, reduced loss of performance in
contrast to a CMPC strategy and a hierarchical-like DMPC strategy. Additionally, it
has been proved that the proposed approach results in a strongly feasible distributed
MPC algorithm. For clarity of presentation, in Algorithm 17.2 it was required that
each subsystem calculates its input trajectory at each time step in a hierarchical and
sequential order. However, the algorithmworks in the same way if non-neighbouring
systems located in the same level of hierarchy solve their problems in parallel. Future
workwill be focused onfinding stability conditions under the framework of economic
MPC and also on improving the mechanism of coordination to avoid the requirement
of plant-wide information in the upper layer of the ML-DMPC approach.
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