
Chapter 16
Partitioning Approaches for Large-Scale
Water Transport Networks

Carlos Ocampo-Martínez and Vicenç Puig

16.1 Introduction

Large-scale systems (LSS) present control theory with new challenges due to the
large size of the plant and of its model [13, 22]. The goal to be achieved with control
methods for this kind of systems is to obtain a reasonable solution with a reasonable
effort in modelling, designing and implementing the controller.

As discussed in previous chapters, MPC has been proved to be suitably applied for
the control of LSS as drinking-water networks [3], sewer networks [14], open-flow
channel networks [18] or electrical networks [15]. Nevertheless, the main hurdle for
MPC control (as any other control technique), when applied to LSS in a centralized
way, is the non-scalability. The reason is that a huge control model is needed, being
difficult to maintain/update and which needs to be rebuilt on every change of the
system configuration, e.g., when some part of the system should be stopped because
of maintenance actions or malfunctions. Subsequently, a model change would require
re-tuning the centralized controller. It is obvious that the cost of setting up and
maintaining the monolithic solution of the control problem is prohibitive. A way of
circumventing these issues might be by looking into decentralized MPC (DMPC) or
distributed MPC techniques, where networked local MPC controllers are in charge
of controlling part of the entire system. The main difference between distributed
and decentralized MPC is that the former uses negotiations and re-computations of
local control actions within the sampling period to increase the level of cooperation,
whereas the latter does not (at the benefit of computation time, but at the cost of
optimality).

The industrial success of the traditional centralized MPC (CMPC) drives now a
new interest in this old area of distributed control, and distributed MPC has become
one of the hottest topics in process control in the early twenty-first century, world-
wide. Thus, two research projects (HDMPC [10] and WIDE [24]) are currently being

C. Ocampo-Martínez (B)
Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
e-mail: cocampo@iri.upc.edu

V. Puig
Research Center Supervision, Safety and Automatic Control (CS2AC-UPC), Terrassa, Spain

© Springer International Publishing AG 2017
V. Puig et al. (eds.), Real-Time Monitoring and Operational Control
of Drinking-Water Systems, Advances in Industrial Control,
DOI 10.1007/978-3-319-50751-4_16

321

REVIS
ED

n is thn is th
which needshich need

n some part ofn some part o
alfunctions. Sufunctions. Su

d controller. Itcontroller. It
lithic solutionithic solution

e issues mightissues might
C techniques, wC techniques,

g part of the eg part of the
tralized MPCalized MP

ontrol actions wontrol actions
as the latteras the latter

y).y).

PROOFchallenges duchallenges
o be achieved we achieved w

le solution witle solution wit
e controller.ontroller.

en proved to been proved to b
s [33], sewer ne], sewer n

ks [s [1515]. Neverth]. Neve
e), when ape), when ap

a hugea hu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/157809743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


322 C. Ocampo-Martínez and V. Puig

carried out in Europe, both focused on the development of decentralized and distrib-
uted MPC techniques. Few works have been recently published in this area; see, e.g.,
[6, 11, 16, 19, 20, 23], among others.

However, in order to apply decentralized or distributed MPC approaches to LSS,
there is a prior problem to be solved: the system decomposition into subsystems. The
importance of this issue has already been noticed in classic control books addressing
the decentralized control of LSS as [13, 22]. The decomposition of the system into
subsystems could be carried out during the modelling of the process by identifying
subsystems as parts of the system on the basis of physical insight, intuition or expe-
rience. But, when a large-scale complex system with many states, inputs and outputs
is considered, it may be difficult, even impossible, to obtain partitions by physical
reasoning. A more appealing alternative is to develop systematic methods, which
can be used to decompose a given system by extracting information from its struc-
ture and representing it as a graph. Then, this structural information can be analysed
by using methods coming from graph theory. Consequently, the problem of system
decomposition into subsystems leads to the problem of graph partitioning, i.e., the
decomposition of graph into subgraphs.

Graph partitioning is an important problem with extensive application in scien-
tific computing [12], optimization, very large-scale integration (VLSI) design [8],
task partitioning for parallel processing, control of cascading failures, among others.
However, the development of graph partitioning algorithms that allow the decom-
position of LSS into subsystems for being used in decentralized or distributed MPC
is still very incipient and available methods are quite limited. In [22], a hierarchical
LBT decomposition that leads to a input-reachable hierarchy for some particular
systems is presented. A more general approach is based on the ε-decomposition
method, which is based on decomposing the system in weakly coupled subsystems
(see also [22]). The algorithm proceeds sequentially disconnecting the edges of the
system graph that are smaller than a prescribed threshold ε and identifying the dis-
connected subgraph of the resulting graph. The obtained subsystems correspond to
the subsystems with mutual coupling smaller or equal than ε. However, the tuning
of this parameter is not a trivial issue and only a trial and error approach is currently
available.

16.2 Problem Statement

A graph can be defined as an abstract representation of a set of objects from a
certain collection, where some pairs of objects are connected by links. The intercon-
nected elements are typically called vertices while the connection links are called
edges. These latter elements may be directed (asymmetric) or undirected (symmetric)
according to their connection features, what makes that the whole graph is directed
or undirected as well. It is also possible to distinguish graphs whether or not their
vertices and edges are weighted (weighted/unweighted graphs).
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Consider a dynamical system represented in general form by the state-space equa-
tions

x(k + 1) = g(x(k), u(k), d(k)), (16.1a)

y = h(x(k), u(k), d(k)), (16.1b)

where x(k) ∈ R
nx and x(k + 1) ∈ R

nx are, respectively, the current and successor sys-
tem states in discrete time, u ∈ R

nu is the system input, y ∈ R
ny is the system output

and dıRnd is a bounded process disturbance. Moreover, g : R
nx × R

nu × R
nd → R

nx

is the states mapping function and h : R
nx × R

nu × R
nd → R

ny corresponds with the
output mapping function. Suppose now that it is desired to decompose (16.1) into
subsystems. With this aim, the graph representation of the system model (16.1) is
determined (by using the system topology) and incidence matrix Bi j is then stated,
which describes the connections (edges) between the graph vertices (system inputs,
outputs and states). Without loss of generality, Bi j and the directionality of the edges
are derived from the relation between system equations (rows of Bi j ) and system
variables (columns of IM ), as proposed by [22, 25, 26]. There are alternative matrix
representations for a (directed) graph such as the adjacency matrix and the Laplacian
matrix (see [2]), which are related to the matrix representation used in this paper.
Once Bi j has been obtained from the system directed graph (digraph), the problem
of the decomposition into subsystems can be formulated in terms of partitioning
the corresponding graph into subgraphs. Since such partitioning is oriented to the
application of a decentralized control strategy (in particular, DMPC), the resultant
subgraphs should have the following features (see [13, 22]):

• nearly the same number of vertices;
• few connections between the subgraphs.

These features guarantee that the obtained subgraphs have a similar size which
balances computations between subsystem controllers and allows minimizing com-
munications between them. Hence, the problem of graph partitioning can be more
formally established as follows:

Problem 16.1 (Standard Graph Partitioning) Given a graph G(V, E), where V
denotes the set of vertices, E is the set of edges and M ∈ Z≥1, find M subsets V1,
V2, . . . ,VM of V such that

1.
M⋃

i=1
Vi = V ,

2. Vi ∩ V j = ∅, for i ∈ {1, 2, . . . , M}, j ∈ {1, 2, . . . , M}, i �= j ,
3. |V1| ≈ |V2| ≈ · · · ≈ |VM |,
4. the cut size, i.e., the number of edges with endpoints in different subsets Vi , is

minimized.

Remark 16.1 Defining the vertex-based weight of a subset Vi as

REVIS
ED phs. S
trol strategyrol strate

wing featureswing feature

of vertices;of vertices;
een the subgraen the subgra

uarantee that tarantee that
ations betweenations betwe

between them.between them
stablished as foablished a

em 16.1em 16.1 ((StaSta
the set othe set o

oo

PROOF
modmo

BBi ji j is theis t
ertices (systemertices (sys

irectionality oectionality o
s (rows ofs (rows of BB

6]. There are aThere a
djacency matridjacency matr

rix representatx represent
m directed grapm directed

n be formulan be formula
ce suchce su



324 C. Ocampo-Martínez and V. Puig

�i �
|Vi |∑
j=1

ω
j
i , (16.2)

where ω
j
i corresponds to the weight of the j-th vertex of the subset Vi , the following

condition should be added to Problem 16.1 in the case of weighted graph partitioning:

• �i ≈ �/M , with i ∈ {1, 2, . . . , M}, where

� �
M∑

i=1

�i . (16.3)

Remark 16.2 Conditions 3 and 4 of Problem 16.1 are of high interest from the decen-
tralized control point of view since they are related to the degree of interconnection
between resultant subsystems and their size balance, respectively.

Graph partitioning is considered as a NP-complete problem [22]. However, it
can be solved in polynomial time for |Vi | = 2 (Kernighan-Lin algorithm) [4, 7].
Since this condition is quite restrictive for large-scale graphs, alternatives for graph
partitioning based on fundamental heuristics are properly accepted. Two main classes
of successful heuristics have evolved over the years, trying to achieve the proper
trade-off between partitioning speed and quality. They are the minimum degree-based
ordering algorithms (MDB) and the graph partitioning-based ordering algorithms
(GPB) [9].

16.3 Proposed Approaches

16.3.1 Using Graph Theory

This approach consists in proposing a partitioning algorithm, as much automatized
as possible, through which a partition of a dynamical system can be found, which
allows its decomposition in subsystems. This algorithm requires to represent the
dynamical system as a graph, which can be obtained from the system structure [22].

Main Algorithm
The partitioning algorithm proposed in this chapter follows some ideas developed in
[9] for graph partitioning purposes. However, some refining steps have been added
as well as some of the original procedures have been drastically changed in order to
find partitions oriented to split dynamical networked systems. Hence, the different
parts/routines of the main proposed algorithm are presented and explained in sections
below. The current version of the algorithm is thought to be used offline, i.e., the
partitioning of the system is not carried out online. A further improvement could be
to adapt the proposed algorithm such that the partitioning could be done online when
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some structural change of the network occurs. In this way, the potential benefit of
using a DMPC approach described in the Introduction could be fully exploited.

Start-up: This procedure requires the definition of the graph, i.e., the incidence
matrix1 Bi j , which describes the connections between the graph vertices, their
directionality and, in some cases, the weight of each edge.

Preliminary partitioning: This procedure performs a preliminary automatic par-
titioning of the graph as follows. The vertex v j ∈ V , for j ∈ {1, 2, . . . , |V|}, with
maximum weight ω is found and defined as the centre of the first subgraph G1.
Then, all vertices connected to this vertex of maximum weight are assigned to
G1. At this point, the set of non-selected vertices is defined as

Vr � {v j ∈ V : v j /∈ V1}.

This procedure is now repeated for all vertices v j ∈ Vr (now for j = {1, 2, . . . ,

|Vr |}) until Vr is empty, after the corresponding updating. This routine highlights
the subgraphs of higher connectivity. The resultant subgraphs with just one vertex
are merged to the closest subgraph. Once a set of subgraphs Gi (Vi ,Vi ), for i =
1, 2, . . . , M , is obtained, it is possible to determine some useful indexes for the
entire graph and each one of the resultant subgraphs. These indexes are as follows:

• ϕi � |Vi | (from now on called subgraph internal weight of Gi );
• εi , denoted as the cut size2 of the subgraph Gi (from now on called subgraph

external weight of Gi );
• ϕmax � max

i
ϕi , for i = 1, 2, . . . , M ;

• ϕ̄ � 1
M

M∑
i=1

ϕi (arithmetic mean).

Notice that at this stage, the number M of subgraphs is obtained in an automatic way
so it is not imposed.

Remark 16.3 Notice that introducing the set Ẽa ⊂ E , defined as the set of edges with
endpoints in other subgraphs different to Ga , the representation of subgraphs Gi such
that

1The incidence matrix of a directed graph G(V, E), denoted as Bi j , is defined such that

Bi j =

⎧⎪⎨
⎪⎩

−1 if the edge z j leaves vertex vi ,

1 if the edge z j enters vertex vi ,

0 otherwise.

This matrix has dimensions ϕ × ηe, where ϕ corresponds with the total number of vertices and ηe
denotes de total number of edges [2]. Additionally, the weight of the j-th vertex, denoted as ω j ,
for j = 1, 2, . . . ,ϕ, where ϕ � |V|, is computed. The weight ω j represents the number of edges
connected to this vertex. Moreover, ω j is also known as the vertex degree [5].
2See Problem 16.1.
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M⋃
i=1

Gi = G,

can be slightly modified to Gi (Vi , Ei , Ẽi ) for completeness purposes. Also notice
that εi � |Ẽi |.
Uncoarsening—Internal balance: This procedure aims at the reduction of the

number of subgraphs, trying to achieve similar internal weights for all of them.
This process starts determining the set

L = {Gi , i = 1, 2, . . . , m : ϕi ≤ ϕ̄}, (16.4)

with m ∈ Z+ and m < M . For each Gi ∈ L, the set of neighbour3 subgraphs,
denoted as Ni , is determined and expressed as

Ni = {G j , j = 1, 2, . . . , hi : G j is neighbour of Gi }, (16.5)

with hi = |Li |. If the condition

ϕi + ϕ j ≤ ϕ̄, i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , hi } (16.6)

holds for Gi ∈ L and G j ∈ Ni , then these two subgraphs are merged. If there are
two or more subgraphs G j ∈ Ni such that (16.6) holds, the subgraph G j ∈ Ni

with minimum internal weight is selected. Once two subgraphs are merged, ϕ̄ is
updated.
This procedure is iterated until no additional merging was possible. It is considered
that the internal balance has been achieved when either

• ϕ̄ ≤ ϕi ≤ ϕmax, for i = 1, 2, . . . , M , or
• Gi with ϕi ≤ ϕ̄ cannot be merged with any of its neighbours since the ϕ associated

with the resultant subgraph might be greater than ϕmax.

Refining—External balance: This procedure aims at the reduction of the cut size
of the resultant subgraphs. To achieve this goal, define ω

j
i as the degree of the

j-th vertex of the i-th subgraph, with j ∈ {1, 2, . . . ,ϕi } and i ∈ {1, 2, . . . , M}.
From this definition, two indexes can be stated as follows:

• the vertex internal degree, denoted as ω̂
j
i , which represents the number of connec-

tions of the vertex v j ∈ Vi , for j ∈ {1, 2, . . . ,ϕi }, i ∈ {1, 2, . . . , M}, with other
vertices vp ∈ Vi , p ∈ {1, 2, . . . ,ϕi }, p �= j ;

• the vertex external degree, denoted as ω̆
j
i , which represents the number of connec-

tions of the vertex v j ∈ Vi , for j ∈ {1, 2, . . . ,ϕi }, i ∈ {1, 2, . . . , M}, with other
vertices vp ∈ Vq , p ∈ {1, 2, . . . ,ϕq}, q ∈ {1, 2, . . . , M}, q �= i .

3Two subgraphs are called neighbours if they are contiguous and share edges (see, e.g., [1] among
many others).
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Algorithm 16.1 Graph partitioning algorithm
1: Bi j ← System topology
2: G(V,E) ← Bi j

3: for j = 1 to ϕ do
4: Compute ω j

5: end for
6: Vr ← V , i = 1
7: repeat
8: Find v ∈ Vr with maximum ω

9: Vi ← v and all its neighbour vertices

10: Vr � V −
{

i⋃
h=1

Vh

}
11: i = i + 1
12: until Vr = ∅
13: for i = 1 to M do {Compute some indexes}
14: ϕi � |Vi | {internal weight}
15: εi � |Ẽi | {external weight}
16: end for
17: ϕmax � max

i
ϕi

18: ϕ̄ � 1
M

M∑
i=1

ϕi {arithmetic mean}

19: Compute L {see (16.4)}
20: bint = false {Internal balance}
21: while bint = false do
22: for i = 1 to m do
23: Compute Ni {see (16.5)}
24: for j = 1 to h do
25: if ϕi + ϕ j ≤ ϕ̄ then {see (16.6)}
26: G∗ = Gi ∪ G j

27: Gnew ← G∗ with minimum ϕ∗
28: Update ϕ̄

29: end if
30: end for
31: end for
32: Update ϕi

33: bext = false {External balance}
34: while bext = false do
35: for i = 1 to M do
36: for j = 1 to ϕi do
37: Compute ω̂

j
i and ω̆

j
i

38: if ω̂
j
i < ω̆

j
i then

39: Move v j from Gi to its neighbour
40: end if
41: Update ϕi , ϕ̄, ϕmax

42: end for
43: end for
44: Update all indexes
45: Check external balance (nodes)
46: end while
47: Check internal balance (subgraphs)
48: end while
49: return P {see (16.7)}

)})}

.66)})}

mumum ϕϕ∗∗

falsefalse
e bbextex == falsefalse do

forfor ii == 1 to1 to MM dd
forr jj = 1 to1 to
ComputComput

ifif ω̂ω
j

PROOF
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Hence, for a given vertex v j ∈ Vi , if ω̂
j
i < ω̆

j
i , then vertex v j is moved from subgraph

Gi (Vi , Ei , Ẽi ) to the subgraph in which most of its edges have their endpoint (like
in the AVL tree algorithm [5]). All indexes should be updated for the M subgraphs
and the next vertex is analysed. This procedure will last until each subgraph vertex
fulfills ω̂

j
i ≥ ω̆

j
i .

The Complete Algorithm: Algorithm 16.1 collects all the procedures/routines
mentioned and explained before. Hence, applying this algorithm to the graph
associated wit a given dynamical system, the expected result consists of a set of
subgraphs which determines a particular system decomposition. This set P is then
defined as

P =
{

Gi , i = 1, 2, . . . , M :
M⋃

i=1

Gi = G

}
. (16.7)

Auxiliary Routines
Despite Algorithm 16.1 yields an automatic partitioning of a given graph, it does
not imply that the resultant set P follows the pre-established requirements stated in
Problem 16.1. In this sense, complementary routines can be useful for improving the
partitioning process according to the considered application. Additional auxiliary
routines could be added such that the generated partitioning takes into account the
control performance that would be achieved when used in decentralized or distributed
MPC control.

Prefiltering: In general, the resultant solution given by the Algorithm 16.1 is
nearly appropriate in terms of ω̂ and ω̆, but it highly depends on the topology
and complexity of the graph. For this reason, in order to obtain a better graph
partitioning, sometimes it can be useful to make a Prefiltering routine, where all
the vertexes with ω = 1 are virtually merged to this vertex that shares its unique
edge. This procedure creates supranodes, which should be properly recognized
at the moment of determining the partitioning of the dynamical system from the
decomposition of its associated graph. Moreover, doing the manual merging of
those vertices reduces the work done by subsequent routines.

Post-filtering: On the other hand, suppose that after partitioning a given graph
G(V, E) by using Algorithm 16.1, all the M resultant subgraphs fulfil

ϕ̄ ≤ ϕi ≤ ϕmax, for i ∈ {1, 2, . . . , M}. (16.8)

However, the following situation could occur. Suppose a subgraph Ga with
ϕa � ϕ̄, which is placed next to a subgraph Gb and fulfills (16.8). The merg-
ing of subgraphs Ga and Gb, expressed as Gc � Ga ∪ Gb, is not allowed
since ϕc ≥ ϕmax. The post-filtering routine implements an approximation and a
parameterization, i.e., by adding a small tolerance δ, the existence of the resultant
subgraph Gc is now allowed since ϕc ≤ ϕmax + δ. This relaxation allows to
have less subgraphs but with higher complexity and internal weight.
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Anti-oscillation: This procedure leads to solve a possible issue when the refining
(external balance) routine is run. When a vertex is moved from one subgraph to
another according to its internal and external degrees, there exists the possibility
of doing this movement during an infinite time if there is no specification of
routine ending. Therefore, the refining routine is then run within a for loop and
the parameter ρ is set as the maximum number of iterations that this procedure
is executed. Afterwards, since the resulting set of subgraphs is stored at each
iteration t ′ ∈ Z+, t ′ = {1, 2, . . . , ρ}, the configuration of M subgraphs with
minor εi , for i = 1, 2, . . . , M , can be chosen.

Some Practical Issues
Given that the partitioning algorithm proposed in this chapter is mainly thought for
performing decentralized control of LSS, several features could be taken into account
to achieve a convenient system partitioning and less complex controller designs. For
instance, an additional routine that would restrict the connection of subgraphs with
unidirectional edges would be very useful since a pure hierarchical control scheme
can be straightforwardly implemented, decreasing the inherent loss of performance
of a decentralized control scheme.

16.3.2 Using Masks

The application of DMPC to WTN depends crucially on how the network is decom-
posed into subsystems. Identifying subsystems is not an easy task in a large-scale
network as it involves to find automatically sufficiently small sections of the net-
worked plant that are not too coupled among them. The partitioning algorithm,
proposed in this chapter, aims to obtain this decomposition automatically by iden-
tifying clusters of elements that are strongly connected with each other but weakly
interconnected with the other clusters, in order to represent the whole network as
a set of loosely coupled subsystems [21]. The current version of the algorithm is
thought to be used offline, that is the partitioning of the system is static and is not
carried out online. A further improvement could be to adapt the proposed algorithm
such that the partitioning could be done online when, for instance, some structural
change of the network appears.

As a starting point, the partitioning algorithm requires the following information
of the WTN:

1. The interconnection structure characterized by the matrix

Ic = [
Asp Bsp

]
, (16.9a)

where

Asp =
[

A 0
0 0

]
, Bsp =

[
B
E

]
, (16.9b)
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where A and B are the system matrices in (12.8), the subscript sp identifies the
matrices used for system decomposition and E � [Eu Ed ] is the matrix related
to the equality constraints (12.9b). In order to take into account input bounds,
new normalized inputs are introduced ū � u/umax so that ū ∈ [0, 1]. Thus, new
matrices B̄ and Ē are introduced in (16.9b) to take into account the rescaling.
From matrix Ic, the adjacency matrix � of the network graph can be obtained by
replacing the nonzero elements by ones, leaving the null elements unchanged.

2. A threshold value ε is used for determining whether a term, which takes into
account the actuator capacity (maximum allowable flow) and its usage frequency,
has a negligible effect on the entire plant. In this way, the less important actuators
are filtered out, in order to reduce the coupling degree of the system and identify
independent subnetworks.

The partitioning algorithm proceeds by decomposing the matrix Ic into a set
of submatrices, named as partitions and denoted by Pε = {Ic1, . . . , Ic M}. Then,
Pε correspond to a set of subgraphs (subsystems) obtaining by deleting the edges
corresponding to elements of Ic with magnitude no larger than ε. That is, the idea
behind the partitioning approach is to neglect less important elements (i.e., links)
in matrix Ic such that the resulting Ĩc is less coupled. Ideally, Ĩc should lead to a
permutation matrix P such that P′M̃P is block diagonal. This procedure is repeated
iteratively by reducing ε until an enough number of partitions is obtained. Algorithm
16.2 summarizes the steps of the proposed partitioning algorithm.

Partitions can be tuned by means of parameter ε of the proposed approach, which
makes the user able to attempt matching the desired number and size of subsystems.

Typically, in the first iteration, Algorithm 16.2 neglects a high number of elements
of Ic, highly reducing the matrix connectivity degree and obtaining a subsystem
decomposition. Then, once the sets of states/inputs relative to each partition are
computed, the task of finding a suitable P that block-diagonalizes the matrix P′M̃P
is a matter of linear algebra implementation. Every subsystem is composed by sets
of state and input variables that are linked, meaning that are in the same block in the
P′M̃P diagonal. Let X i and U i be, respectively, the sets of state and input variables
assigned to subsystem i , while |X i | and |U i | determine the number of variables for
each set. A subsystem is created if both numbers are different than zero. All state
and input variables that are not assigned to any of the currently created subsystems,
i.e., that do not belong to X i or U i , respectively, are available for the next iteration.
Otherwise, variables already assigned to a subsystem in the current or in a previous
iteration are masked4 to prevent their reassignment to other subsystem.

Then, a new iteration of the algorithm starts by decreasing ε (e.g., halving ε).
Algorithm 16.2 iterates until all state variables are assigned to a subsystem. Note that
the algorithm may terminate even if some inputs are not assigned to any subsystem,
which is due to automatic threshold-based neglecting process. Such issue can be
managed by manually including unassigned inputs to proper subsystem following
engineering insight.

4Consider a variable to be masked when it does not belong to any set since it has already been
classified in a previous iteration.
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The importance of the mask arises from the structure of the algorithm. In fact,
if not excluded, all previously assigned states and inputs would be part of the next
iteration partition, introducing couplings and hence increasing the size of the resulting
submodels. The aforementioned inclusion easily follows from the decreasing of ε
among sequential iterations.

Algorithm 16.2 Automatic partitioning algorithm
1: Initialise masks to a neutral value
2: Initialise the sets of unassigned variables X and U with all state and input variables,

respectively
3: Determine the number of unassigned states: Nx = |X |;
4: Init ε
5: while Nx > 1 do
6: Apply masks to Asp and Bsp
7: Ic = [Asp Bspū]
8: For all elements of Ic
9: if Ic i, j < ε then
10: Ĩci, j = 0;
11: else
12: Ĩci, j = 1;
13: end if
14: Find P such that P′M̃P is block diagonal
15: Identify parts satisfying Nxi = |X i | > 0 and Nui = L(U i ) > 0 and add to previous ones
16: Update Nx
17: Update masks with updated states and inputs
18: Update ε
19: end while

Few remarks on the above algorithm:

1. At any iteration of Algorithm 16.2, the numerical value of ε is a crucial tuning
knob of the approach. A guideline is that the larger is the decreasing step, the
larger is the size of the obtained subsystems. Ways for automatically determining
the step size are a subject of current research.

2. Matrix E in (16.9b) defines a constraint among actuators that can be easily taken
into account if all the actuators belong to the same subsystem. Otherwise, since
each controller manipulates every partition independently from the others, nego-
tiations between controllers would be required to guarantee the fulfilment of node
constraints.

3. The use of masks to prevent state reassignment avoids that submodels have over-
lapping states and inputs: if a state variable is used in a model by a controller,
no other controller can use it. The main benefit of this choice is the very low
level of coupling between partitions, but the price to pay is a potential decrease
of closed-loop performance.

4. The current structure of the algorithm is unsuitable to handle state overlaps
because it relies on links between elements that present different degree of cou-
pling. Hence, once the stronger couplings are eliminated (using masking), the
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weaker ones gain relative importance. State overlaps may be introduced a poste-
riori based on engineering insight, in order to increase the adherence with respect
to the original centralized model. Handling overlapping in an automatic way is
also a current research topic.

5. In some cases, even relatively small connections, i.e., capable of carrying a minor
amount of water, are very important for demand satisfaction. A way of accounting
for such an issue is to perform a simulation using, for instance, a CMPC con-
troller and compute the average percentage of use for each actuator. Thus, this
information could be used to weight ū component-wise. The main drawback of
this approach is the need of (and dependence on) simulation.

6. Note that the proposed algorithm can be customized by setting different impor-
tance levels of states vs. inputs, by weighting the related components in Ic from
its statement at (16.9a).

7. The structure of the proposed algorithm suggests that termination is achieved
if the ε value is decreased at each iteration. However, at the current status of
the development, the algorithm cannot guarantee any property for the resulting
partitioning but the assignment of all system state variables to a subsystem.

The decomposition process of matrix Ic reported here is similar to the one proposed
by the ε-decomposition method in [21]. The underlying idea in both cases is to
disconnect those actuators corresponding to interconnections with strength smaller
than the prescribed ε, identifying the disconnected subsystems. According to [21],
there are s different ε-decompositions Pε that can be obtained for different values of
ε satisfying

max
i �= j

∣∣mi j

∣∣ = ε1 < ε2 < · · · < εK = 0,

with K ≤ dim(Ic). Moreover, such decompositions are nested, that is the partitions
obtained satisfy: Pε1 ⊂ Pε2 · · · PεK with Pε1 being the finest and Pεk the coarsest.
The main novelty of the algorithm presented in this chapter is the matrix normaliza-
tion taking into account actuator physical/operative limits and the iterative threshold
updating that allows one to take into account weaker coupling without being influ-
enced by the stronger ones.

16.4 Simulations and Results

16.4.1 Results Using Masks-Based Approach

Using the partitioning algorithm presented in this section, the aggregate model of
the Barcelona WTN is decomposed in three subsystems, as depicted in Fig. 16.1 in
different colours. The resultant decomposition follows the scheme shown in Fig. 16.2,
where μi denotes the i-th vector of shared variables among the subsystems Sj , for
j = 1, . . . , M . The subsystems are defined by the following elements:
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Fig. 16.1 Partition of the Barcelona WTN, aggregate model

• Subsystem 1: Composed by tanks xi , i ∈ {1, 2}, inputs u j , j ∈ {1 : 5}, demands
dl , l ∈ {1, 2, 3} and nodes nq , q ∈ {1, 2}. It is represented in Fig. 16.1 with red
colour and corresponds to Subsystem S1 in Fig. 16.2.
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Fig. 16.2 Conceptual
scheme of the partitioned
Barcelona WTN

Table 16.1 Dimension comparison between the subsystems and the whole network

Elements Subsystem 1 Subsystem 2 Subsystem 3 Whole model

Tanks 2 5 10 17

Actuators 5 22 34 61

Demands 3 7 15 25

Nodes 2 3 6 11

• Subsystem 2: Composed by tanks xi , i ∈ {3, 4, 5, 12, 17}, inputs u j , j ∈ {7 :
16, 18, 19, 25, 26, 32, 34, 40, 41, 47, 48, 56, 60}, demands dl , l ∈ {4 : 7, 15, 18,

22} and nodes nq , q ∈ {3, 4, 7}. It is represented in Fig. 16.1 with green colour and
corresponds to Subsystem S2 in Fig. 16.2.

• Subsystem 3: Composed by tanks xi , i ∈ {6 : 11, 13 : 16}, the inputs u j , j ∈
{6, 17, 20 : 24, 27 : 31, 33, 35 : 39, 42 : 46, 49 : 55, 57, 58, 59, 61}, demands dl ,
l ∈ {8 : 14, 16, 17, 19, 20, 21, 23, 24, 25} and nodes nq , q ∈ {5, 6, 8 : 11}. It is
represented in Fig. 16.1 with blue colour and corresponds to Subsystem S3 in
Fig. 16.2.

Table16.1 collects the resultant dimensions for each subsystem and the corre-
sponding comparison with the dimensions of the vectors of variables for the entire
aggregate network.

16.4.2 Results using Graph-Theory-Based Approach

This section presents the results of the application of Algorithm 14 for the parti-
tioning of the Barcelona WTN into compositional subsystems [17]. Algorithm 16.1
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and auxiliary routines presented in Sect. 16.3.1 have been designed for any system.
However, some particular features should be introduced depending on the consid-
ered case study and control law in order to obtain a suitable decomposition. More
precisely, the graph of the Barcelona WTN has been derived from its mathematical
model expressed in the way introduced in Chap.12, i.e.,

x(k + 1) = A x(k) + Bu u(k) + Bd d(k), (16.10a)

0 = Eu u(k) + Ed d(k), (16.10b)

under the following considerations:

• every tank, sector of consume, water source and node is considered as a vertex of
the graph;

• every pump, valve and link with a sector of consume is considered as a graph edge.

In order to evaluate the partitioning results obtained from the application of
Algorithm 16.1 and auxiliary routines to the Barcelona WTN, the following indexes
are taken into account additionally to those previously introduced:

• ε �
M∑

i=1
εi ,

• ε̄ � ε
M (arithmetic mean),

• σ2
ϕ � 1

M

M∑
i=1

(ϕi − ϕ̄)2,

• σ2
ε � 1

M

M∑
i=1

(εi − ε̄)2.

Remark 16.4 Notice that although ε is not directly related to the number of shared
edges between subgraphs obtained by using Algorithm 16.2, this index gives an
indirect idea about their level of interconnection. Recall that the objective of the par-
titioning algorithm is the minimization of indexes σ2

ϕ, ε and εi (for i = 1, 2, . . . , M)
to obtain a graph decomposition as less interconnected as possible and with similar
number of vertices for each subgraph (internal weight).

Table16.2 summarizes the partitioning results obtained applying Algorithm 16.1
(A1) combined with the auxiliary routine/filters presented in Sect. 16.3.1 performing
the following combinations:

Table 16.2 Results for different partitioning approaches

Routine combination M ϕ̄ ε̄ σ2
ϕ σ2

ε ε

1 17 10.59 3.76 53.88 25.32 64

2 13 6.30 4.15 21.39 27.80 54

3 10 8.20 5.10 31.73 32.76 52

4 6 13.67 6.33 14.88 25.22 38
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1. No auxiliary routines are considered.
2. A1 and prefiltering (pre-F) routine only.
3. A1 in addition to pre-F and post-filtering (post-F) routines.
4. A1 in addition to pre-F, post-F and anti-oscillation (AO) routines.

This distinction has been done in order to understand how the proposed routines
affect the partitioning results.

Using only the Algorithm 16.1, the resultant partitioning P is comprised by 17
subgraphs. Many of them are small and cannot be merged since their neighbour sub-
graphs have internal weights with values quite close to ϕ̄ (see Sect. 16.3.1). More-
over, there are several vertices with ω = 1, which correspond to network water
sources and demands, leading to unnecessarily difficult algorithm computations due
to sizes of the resultant subgraphs (in terms of internal weight). By employing the
pre-F routine, the previous problems are fixed and Algorithm 16.1 produces 13 sub-
graphs (see Table16.2). Additionally, if the refining routine embedded within Algo-
rithm 16.1 is complemented with the post-F routine, setting δ = 2, a partitioning
with ten subgraphs is reached.5 Finally, if the AO routine is also considered, setting
the refining limit to ρ = 250, a partitioning with six subgraphs is now reached.
According to Table16.2, this last partitioning (Combination 4) satisfies the mini-
mization of the average of the internal weights for all resultant subgraphs as well
as the interconnection degree between subgraph measured through ε. It is impor-
tant to highlight that the proposed partitioning approach automatically determines
the final number of partitions M (six for this case) when the conditions 3 and 4 of
Problem 16.1 are fulfilled (see Remark 16.2). The tuning parameters δ and ρ also
influence on the obtained value of M .

Notice that each subgraph of the final decomposition corresponds to a subsys-
tem of the Barcelona WTN with the number of elements presented in Table16.3.
Figure16.3 shows, in different colours, the obtained subsystems of Barcelona WTN.

Moreover, Fig. 16.4 schematically shows the disposition of the resultant subsys-
tems Si , for i ∈ {1, . . . , 6}, and the sets μi j of shared links between the network
subsystems corresponding to the control inputs u (manipulated flows), whose direc-
tionality is defined from Si to Sj for j ∈ {1, . . . , 6}, i �= j . Table16.4 collects the
number of control inputs of each set μi j .

Table 16.3 Dimension comparison of the WTN subsystems

Subsystem Tanks Actuators Demands Nodes

1 13 36 20 5

2 11 11 11 0

3 13 22 20 3

4 9 16 12 2

5 6 10 8 2

6 15 26 17 3

Total 67 121 88 15

5Notice that increasing the parameter δ implies that σ2
εi

becomes bigger.
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Fig. 16.3 Definitive partition of the Barcelona WTN. The key elements are properly featured
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Fig. 16.4 Network
subsystems Si and their sets
of shared connections μi j

Table 16.4 Dimensions of shared links μi j

Set μ12 μ13 μ14 μ16 μ31 μ34 μ51 μ61

Number
of u’s

2 2 2 2 4 3 1 3

16.5 Conclusions

This chapter has proposed two approaches for the automatic partitioning of a WTN
into subsystems intended to be applied along with a non-centralized model predictive
control strategy. The algorithm transforms the dynamical model of the given system
into a graph representation. Once the equivalent graph has been obtained, the problem
of graph partitioning is then solved. The resultant partitions are composed of a set of
non-overlapping subgraphs such that their sizes, in terms of number of vertices, are
similar and the number of edges connecting them is minimal. To achieve this goal,
the algorithm applied a set of procedures based on identifying the highly connected
subgraphs with balanced number of internal and external connections. Some addi-
tional prefiltering and post-filtering routines are also needed to be included to reduce
the number of obtained subsystems. The performance of the proposed decomposition
approach has been assessed in a real case study based on the Barcelona WTN. A
study of the effect of auxiliary routines on the basic partitioning algorithm has also
been included showing the benefits of their use.
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