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 

Abstract— This work presents the development of a 

comprehensive distributed circuit model to account for the 

existing nonlinear effects in Bulk Acoustic Wave resonators 

(BAW). The comprehensiveness of the model and its distributed 

implementation allows for the inclusion of the nonlinear effects 

occurring in any layer of the BAW configuration, not only the 

piezoelectric layer. The model has been applied to evaluate the 

nonlinear contribution of the piezoelectric layer and silicon 

dioxide (SiO2) layer in the Bragg reflector. The nonlinear 

manifestations are a function of the frequency of the driving 

fundamental tones. Accurate measurements of state of the art 

resonators validate the model proposed and confirm the 

contribution of the SiO2 layer on the overall nonlinear 

performance. 

 
Index Terms—Nonlinearities, BAW, electro-acoustic, SiO2, 

second harmonic, third harmonic, third order intermodulation 

product. 

I. INTRODUCTION 

ULK acoustic wave (BAW) technology is becoming the 

main solution for the complex RF filtering of current and 

future mobile devices [1]. The increasing amount of services, 

frequency band and worldwide interoperability requirements 

for the handsets force the industry to place more and more 

high performance filters in a reduced space. Besides small 

footprint, power handling, high selectivity and low insertion 

losses, nonlinearities in BAW resonators have become a hot 

issue in the last years as the regulations and standards demand 

higher linearity.  

Electro-acoustic dynamics of BAW resonators are 

intrinsically nonlinear. Nonlinear relations can be stablished 

between field magnitudes and it is not trivial to unambiguously 

identify what are the most important contributions to 

observable effects [2]. 

A circuital model is critical to understand the origin of 
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nonlinearities. The model must be able to relate nonlinear 

properties of material that are independent of geometry, with 

experimental observations. After the first nonlinear distributed 

equivalent circuit of acoustic devices published in 1993 [3], 

extensive work has been done in the last 10 years. Reference 

[4] published a nonlinear distributed model for BAW 

resonators, which was based in the KLM circuit. This model 

was a phenomenological approach to describe the second 

harmonic (H2) generation and was surpassed by the non-lineal 

distributed Mason model [5], [6], which was based in the 

constitutive nonlinear equations. This later model was 

completed in [7] adding the thermal domain to the constitutive 

equations. 

Authors of [2], [4]-[7] outlined the importance of measuring 

harmonics and intermodulation generation sweeping the 

frequency of the fundamental/s signal/s. The frequency pattern 

of a given observable must be consistent with the distributed 

model and it constitutes a fingerprint of the origin of the 

nonlinearity. In addition, different manifestations of 

nonlinearity, through different experiments, must be also 

consistent and explained with a unique model.  

Those works, [4] and [7] using Solidly Mounted Resonators 

(SMR) and [2], [5], [6] using Thin-Film Bulk Acoustic Wave 

Resonators (FBAR), concluded that H2 and third order 

intermodulation (IMD3) was generated in the piezoelectric 

layer. Accordingly, all models developed were focused on the 

nonlinearities in the piezo-layer and none of them included the 

effects other layers could have in the nonlinearities. 

Specifically, the silicon dioxide (SiO2) layers usually present 

in the Bragg Reflector of SMR resonators can play a 

significant role depending of the stack configuration.  

This work experimentally validates the latter statement by 

performing three different experiments: a) generation of 2nd 

order harmonics H2 and 3rd order harmonics H3,  

b) third-order intermodulation products IMD3 and  

c) detuning with a DC voltage bias applied to the electrodes.  

II. CONSTITUTIVE EQUATIONS 

A. Piezoelectric layers 

The constitutive nonlinear electroacoustic equations for the 

piezoelectric layer are extensively explained in [5]-[7].  Those 

equations relate the field magnitudes stress T, strain S, electric 

field E and electric displacement D to each other using the 
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constants c
E
, e and S

, stiffness, piezoelectric and dielectric 

constant respectively. The equations according to the 

nomenclature described in [6] are:  

,TeEScT E   

,DEeSD S    

  (1) 

where the nonlinear terms T and D are 
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which depend on several 2
nd

 order ( SEc 2532 ,,,  ) and 3
rd

 

order ( SEc 33 , ) derivative constants. Using (1),(2) we can 

define the nonlinear constants as 
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 (3) 

in order to help a better understanding of the role of each 

parameter. 

The model will be finally implemented using the strain S and 

the electrical displacement D as independent variables, and 

adding the nonlinear voltage sources Tc and Vc to a 

conventional distributed Mason model [5], [6]. As done in [2], 

[7], the piezoelectric layer is discretized into many unit cells of 

small thickness z, where the strength of the electric field is 

constant.  
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and the stiffened elasticity is defined as  

.
2

S

ED e
cc


    (6) 

B. Non-piezoelectric layers 

For the non-piezoelectric layers, the nonlinear relation 

between stress and strain, truncated up to a third order, can be 

written as 
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in which the subscript NP indicates the material and 

NPNP cc ,3,2 ,  are the nonlinear derivatives of the elastic 

constant
NLNPc ,

: 
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III. NONLINEAR MODEL 

A. Piezoelectric 

The circuit model of the piezoelectric layer is the same than 

the one used in [2], [5]-[7]. Equations (4), (5) are implemented 

using the distributed Mason model, in which the equivalences 

Force=Voltage, Particle velocity=Current allow for an 

equivalent circuit implementation. This model discretizes the 

piezoelectric layer into many unit cells (slabs of thickness z), 

which account for electro-acoustic interactions (4) and the 

acoustic wave propagation in the thickness direction.  Each 

cell obeys the telegrapher equations for an acoustic 

transmission line with distributed parameters [8] 
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 (9) 

in which DDcA  ,,, are the resonators’ area, stiffened 

elasticity, mass density and viscosity respectively. 

Fig. 1 shows the nonlinear unit cell [2], [7] of the circuit 

model. The number of unit cells that must be cascaded 

depends on the highest frequency of interest. In our case we 

will discretize the piezoelectric in 60 unit cells. 

 

B. Non-piezoelectric 

Two different approaches have been used to model a non-

piezoelectric layer depending on the potential non-lineal 

behavior of the material.  

 

1) Lineal layers  

Acoustic wave propagation can be modeled with a 

conventional T-network circuit (Fig. 2a) for an acoustic 

transmission line with propagation constant  and 

characteristic impedance Z0:  
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vA being the phase velocity and  the attenuation constant [8] 
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Fig. 1. Nonlinear unit cell of the piezoelectric layer [2], [7]. 
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2) Discretized model for nonlinear layer 

For the nonlinear case, the field magnitudes must be 

calculated at each point along the thickness of the layer. A 

discretized model [8] is again used (Fig 2b) with distributed 

inductance, capacitance and conductance according to (9) and 

nonlinear voltage sources Tc according to (7)  

 

IV. DEVICES AND LINEAR MEASUREMENTS 

Distributed nonlinear models can reproduce the standing-

wave pattern of the fields along the thickness direction of the 

stack at a given frequency. The local nonlinear contribution to 

a given measurable magnitude, such as the second harmonic 

power at the electrodes of the resonator can be simulated. The 

frequency pattern of this measurable quantity is like a 

fingerprint of the origin of the nonlinearities, since each 

nonlinear constant will contribute in a different way as a 

function of frequency. This is because some of the constants, 

those appearing in T and D in (2), determine the sources Tc 

through (5), and those appearing in D affect to Vc and Tc.  

Furthermore, as those constant are the results of derivatives 

with regard different independent magnitudes, S or E, the 

effect on the frequency pattern will be also different according 

to the different frequency pattern of S and E. 

 
The main advantage of using distributed models is that it 

provides valuable information [2], [4]-[7] to characterize the 

materials and determine their nonlinear constants. In addition, 

a given set of nonlinear constant must be consistent with all the 

experimental results that those constants can determine. 

In this article we discuss the experiments we have 

performed to unambiguously identify and quantify nonlinear 

constants in BAW resonators. 

A. Description of the devices 

The measured device is an Aluminum Nitride (AlN) based 

SMR resonator formed by more than ten layers. The thickness 

l of the AlN is 0.9 µm and the series resonance frequency is 

around 2.3 GHz. The layers of the electrodes and Brag 

reflector are plotted in Fig. 3. The stack used is similar to [9]. 

B. Linear fitting  

A very good match between the linear measurements and the 

model is critical for an accurate model of the nonlinearities. 

Not only the main resonance must be accurately modeled, but 

also the out of band resonances appearing at higher frequency 

as we will discuss in next sections. 

Fig. 4 shows the measured input impedance and the 

simulated response showing very good agreement. 

 

V. NONLINEAR MEASUREMENTS 

A main concern in BAW resonators is about the second 

order nonlinearities which are usually characterized by second 

harmonic H2 generation [2], [4]-[7], [10] 

A. Narrowband Second Harmonic Measurements   

Fig. 5 shows the measured second harmonic with a DUT 

input power of 21 dBm. As it was expected, there is a 

maximum at a frequency just above the series resonance of 

2.32 GHz. At this frequency, the stress is maximum inside the 

piezoelectric layer [4] and there is consensus [2], [5]-[7] on 

the origin of the nonlinearity: the parameter 5, (1 in [5], [6]) 

which sets the strain-dependent piezoelectric constant, or the 

electric field-dependent elasticity due to equivalent second-

order interactions between physical domains. In fact, despite 

5 having an effect on Vc and Tc according to (2)-(5), the main 

contributor to the H2 level at this frequency is the nonlinear 

source Vc. 

Fig. 5 shows the second harmonic simulated 

with
AlNAlN e 17,5 . This value is exactly the same we 

obtained in [7]. The smooth ripple appearing is due to the 
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Fig. 3. Stack configuration of the measured SMR BAW resonator. 
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Fig. 4. Simulated (dashed blue) and measured (dotted red) narrowband 

(upper figures) and broadband (lower figure) input impedance of a BAW 

resonator. 
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Fig. 2. Circuit models of the non-piezoelectric layers. T-network equivalent 

circuit of an acoustic transmission line (left) and nonlinear unit cell (right) of a 

discretized transmission line. 
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measurement system and its measured effect is included in the 

simulation [11]. The simulation matches the measured 

response related to the main resonance (peak at 2.34 GHz) but 

fails to model the additional peak appearing at 2.245 GHz. To 

understand where this peak is coming from, we have to take a 

look at the out of band resonances present in the broadband 

input impedance of the resonator. As it can be seen in Fig. 4, a 

small resonance shows at twice that frequency: 4.49 GHz. 

Apparently there is an acoustic mode at 4.49 GHz which is 

able to interact with H2 of the driving tone at 2.245 GHz, as 

the mode couples to the electrical domain the H2 measurement 

shows a high peak in Fig. 5. As the high frequency out of band 

resonances are strongly dependent on the stack configuration 

the linear response must be accurately modeled to reproduce 

this effect in simulations as introduced in previous Section IV. 

At a first glance, the term Ec2
 of the piezoelectric constant can 

produce this high peak as shown in Fig. 5. The pair of values 
E

AlN

E

AlN cc  2.32,2
 and 

AlNAlN e 8.23,5  reproduces the 

measured frequency pattern. 

 
Nevertheless, the nonlinear term of the elastic constant Ec2

 

is not a uniquely able to produce this effect. A nonlinear 

elastic constant for the SiO2 with 
SiOSiO cc  4.6,2

 can 

produce the same effect as shown in Fig. 5. In the latter case, 

the nonlinearities of the AlN are set to 
AlNAlN e 7.18' ,5  

and 0,2 E

AlNc . In this case, we have checked through 

simulations that the SiO2 layer placed just underneath the 

bottom electrode is the predominant SiO2 layer causing this H2 

peak. This makes sense since the standing wave pattern of the 

strain in SiO2 is dominated by the first layer at that frequency. 

It is clear that additional measurements must be done to 

discern between those two working hypotheses:  E

AlNAlN c ,2,5 ,  

and   SiOAlN c ,2,5 ,' . 

B. Broadband Second Harmonic Measurements 

Broadband H2 measurements can help since the standing 

wave pattern at higher frequencies changes considerably 

within the stack. Fig. 6 shows the measured H2 from 2.1 GHz 

up to 3.2 GHz. As it can be seen, high H2 peaks appear at 2.8 

GHz and 3 GHz. Note that the AlN nonlinear term E

AlNc ,2
 

cannot reproduce them, yet the SiO2 term SiOc ,2  creates 

excellent agreement with measurements as can be seen in Fig. 

6.  

It is worth mentioning that in both scenarios we have 

introduced a nonlinear term for the AlN dielectric constant. 

The term  E

AlNAlN

SS ce /202    must be taken in 

consideration to reproduce the out-of-resonance plateau of the 

H2 as shown in Fig. 7. 

C. Narrowband IMD3 and H3 

We have also performed IMD3 and H3 measurements. Two 

tones were applied with a tone spacing of f = f2-f1 =1 MHz 

and DUT input power of 30 dBm. Fig. 8 shows the 

measurements and simulations for the hypothesis  E

AlNAlN c ,2,5 , . 

This hypothesis overestimates the IMD3 and H3 at resonance. 

Fig. 9 shows the measurements and simulations for the second 

hypothesis  SiOAlN c ,2,5 ,' . This matches the measurements 

better. Note that no additional third order terms have been 

included. Therefore, third order intermodulation products and 

harmonics are coming from second order nonlinear terms by 

remix of the second order terms  SiOAlN c ,2,5 ,'  with the 

fundamental signals. 

Sticking to the confirmed 2
nd

 hypothesis, we investigate 

which term is the main contributor to third order 

nonlinearities: 
AlN,5'  or 

SiOc ,2
.  Fig. 10 shows simulations 

with 0,2 SiOc  and Fig. 11 shows simulations with 0,5 AlN . 

As it can be seen, 
AlN,5'  slightly underestimates the IMD3 and 

fails to simulate the H3 below resonance. On the contrary 

SiOc ,2
 overestimates the IMD3 and predict the H3 very well, 

which is completely dominated by this term. 
 

Fig. 6. Measured (solid black) and simulated broadband H2 for the cases: 

AlN,5 and E

AlNc ,2
 (dashed red), 

AlN,5 and 
SiOc ,2

 (dotted blue). 
 

 

 

 

 

 
Fig. 5. Measured (dashed black) and simulated H2 for the cases: only  

AlN,5  (green asterisks), 
AlN,5 and E

AlNc ,2
 (red circles), 

AlN,5 and 
SiOc ,2

 

(blue squares). 
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In our previous work on SMR BAW resonators [6], we 

stated that the IMD3 (with tone spacing big enough to avoid 

thermal effects) was due to c3
E
. H3 was not measured because 

the measurement bandwidth was limited to 50 MHz around 

resonance. Because the stack was different, we did not 

discover the contribution of the SiO2 layers on the 

nonlinearities and we wrongly postulated that the IMD3 was 

directly generated by a third order nonlinear term 
E

AlN

E

AlN cc  111,3
. Here, we have performed simulations with 

this value and setting 0,2 SiOc  and the IMD3 peak at 

resonance is exactly the same than the one resulting from E

SiOc ,2
 

as shown in Fig. 12. However, IMD3 and H3 out of resonance, 

between 2.23 GHz and 2.3 GHz, are not consistent as shown in 

Fig 12. It now seems clear than third order term E

AlNc ,3
 is not the 

main contribution to the measured IMD3 for this stack. 

 

 

 

 
Fig. 7. Measured (solid black) and simulated broadband H2 for the cases 

AlN,5 ,
SiOc ,2

 with 02 S  (dotted blue). 

 
Fig. 12. Measured (dotted lines) and simulated (solid lines) IMD3 (2f1- f2 in 

blue circles and 2f2- f1 red squares) and H3 (3f1 in black diamonds) for the 

direct generation due to only E

AlNc ,3
. 

 

 
Fig. 11. Measured (dotted lines) and simulated (solid lines) IMD3 (2f1- f2 in 

blue circles and 2f2- f1 red squares) and H3 (3f1 in black diamonds) for the 

case only 
SiOc ,2

. 

 
Fig. 9. Measured (dotted lines) and simulated (solid lines) IMD3 (2f1- f2 in 

blue circles and 2f2- f1 red squares) and H3 (3f1 in black diamonds) for the 

case 
AlN,5 and 

SiOc ,2
. 

 

 

 

 
Fig. 8. Measured (dotted lines) and simulated (solid lines) IMD3 (2f1- f2 in 

blue circles and 2f2- f1 red squares) and H3 (3f1 in black diamonds) for the 

case 
AlN,5 and E

AlNc ,2
. 

 

 

 

 

 
Fig. 10. Measured (dotted lines) and simulated (solid lines) IMD3 (2f1- f2 in 

blue circles and 2f2- f1 red squares) and H3 (3f1 in black diamonds) for the 

case only 
AlN,5 . 
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D. DC-Detuning 

The third experiment is an S-parameters measurement while 

a DC bias voltage is applied at the electrodes. This must 

provide consistent results for the hypothesis to be confirmed. 

This experiment is of remarkable interest since the SiO2 layers 

are not subject to the static electric field between electrodes, 

nor will static strain exist in the SiO2 layers. 

 
Although, the nonlinear model we are using is able to 

simulate the effects of a DC bias applied voltage, we have also 

derived new closed-form expressions, whose derivation is 

detailed in the Appendix. As a consequence, linear simulations 

may account for an applied DC voltage just by replacing the 

constants E

AlNc , eAlN, and S  by the terms  
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(12) 

 

l being the piezoelectric thickness.  In order to validate the 

close-form equations, Fig. 13 shows the measured and 

simulated input impedance for an applied voltage of +25 V. 

HB simulations using the nonlinear model and linear 

simulations using the constants described in (12) overlap 

perfectly. 

Fig. 14 shows the frequency shifts of the series and shunt 

resonances in part-per-million for a voltage ranging from -25 

V up to 25 V that was measured, and simulations using (12) 

for both hypotheses. The hypothesis  E

AlNAlN c ,2,5 ,  overestimates 

the frequency shift in comparison with measurements. On the 

other side, the results for the hypothesis
 E

SiOAlN c ,2,5 ,'
, where 

simulations and measurements match perfectly. This is the 

third and simplest independent experiment that confirms the 

hypothesis  E

SiOAlN c ,2,5 ,' . Using the provided formulation, it is a 

fast test to set the magnitude of 
AlN,5' and does require neither 

complex measurements nor nonlinear simulations. However, 

this experiment by itself does not give any information about 

the nonlinearities coming from the SiO2 layers, which play a 

significant role in the generation of harmonics and 

intermodulation products as shown earlier. 

 

VI. NONLINEARITIES IN OTHER LAYERS 

Other materials, such as the aluminum (Al) or the tungsten 

(W), could also contribute on the nonlinearities. In fact, both, 

Al and W, can reproduce the narrowband H2 behavior of Fig. 

5 if appropriate E

Alc ,2
 or E

Wc ,2
terms are chosen. However, those 

hypotheses fail to model the broadband H2 response and they 

overestimate by far the IMD3.  

It is also worth to mention that other third order nonlinear 

terms might also contribute to the direct IMD3 generation. 

This is for instance the case of the third order terms of elastic 

constant of the layers in the Bragg reflector, such as SiO2 or W 

layers ( E

SiOc ,3
 and E

Wc ,3
 respectively), which could be considered 

to improve the match between simulations and measurements. 

Those terms, with the proper sign, might cancel out the IMD3 

rising from remixing effects at frequencies around 2.32 GHz, 

and shift the simulated maximum IMD3 towards higher 

frequencies, giving a more accurate fitting  to the measured 

IMD3. However, further experiments and research need to be 

done to properly discern and quantify the contribution of these 

layers SiO2 and/or W. 

VII. CONCLUSIONS 

 Unexpected second harmonic peaks may appear at some 

frequencies in BAW and FBAR resonators. When the device is 

driven at a frequency close to the resonance frequency, such 

that an out of band resonance exists at twice that frequency, 

the resonating conditions enhance the H2 and the output H2 

power may become significant. For the particular stack studied 

in this paper we have unambiguously demonstrated that the 

silicon dioxide layer below the bottom electrode is responsible 

for this effect by three different experiments: broadband H2, 

IMD3 and H3, and DC detuning. Once, well stablished the 

origin of this anomalous effect, it may be corrected by 

modifying the design of the Bragg reflector and electrodes 

slightly to avoid out of band resonances close to twice the 
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Fig. 14. Frequency shift of series (red squares) and shunt (blue circles) 

resonances in parts-per-millions of measured series resonance (black plus sign) 

and shunt resonance (black times sign), and simulations under 
 E

AlNAlN c ,2,5 ,
 

hypothesis (dashed lines) and 
 E

SiOAlN c ,2,5 ,'
 hypothesis (solid lines). 
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Fig. 13. Input impedance with +25 V of DC voltage, measured (solid red), HB 

simulation (dotted black) and close-form expression (dashed blue). 
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main resonance. 

For the resonator we have measured, the IMD3 and H3 were 

also dominated from the second order nonlinear silicon 

dioxide trough remixing effects.  

The harmonic and intermodulation experiments were 

consistent with linear measurements of the input impedance of 

the resonator under a DC bias voltage. We also provide new 

closed-form expressions which agree perfectly with the 

nonlinear simulations. 

APPENDIX I 

Using (1) and (2), and considering negligible the term 3  

according to the simulations of Section-V, we can write the 

nonlinear relation between stress, strain and electric field  

.
6

1

2

1
c 5

3

3

2

2

E SEScSceEST EE     (13) 

 

 

In order to characterize the DC feed contribution, the electric 

field and strain can be modelled as the sum of the 

contributions of the static magnitudes EDC and SDC produced 

by the DC voltage and the electric field and strain produced by 

the fundamental signal with peak amplitudes E0 and S0, 

),cos(0 tSSS DC   

).cos(0 tEEE DC   

  (14) 

 

 

 By use of (13), and selecting the terms that affect the strain 

and electric field at the fundamental frequency, we can write 

     .coscos

8
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1

0505
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32

tESeωtS E

S cS cS ccT=

DCDC
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 



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





     (15) 

 

The saturation term 2

03
8

1
S c E  that does not depend on the DC 

bias voltage can be neglected for low power levels, and (15) 

can be written as 

   ,coscos 00

, tEeωtST=c DCDCE      (16) 

where the stiffness and piezoelectric constants modified by the 

DC voltage are respectively 

.1

,
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The strain produced by the DC voltage is 

,






 


l

V
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e
E

c

e
S DC

EDCEDC
        (18) 

l being the thickness of the piezoelectric layer. Therefore, we 

can define and effective elastic DCEc ,  and piezoelectric 
DCe constants under DC bias voltage as 

   

.1

,
2

1
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5

52
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    (19) 

The contribution of the nonlinear term 
S

2  can be taking into 

account straightforward just replacing  

.1 2,











 DCS

S
SDCS V

l


           (20) 

The modified terms of (19) and (20) can be used instead 

of Ec , e and S in linear simulations. 
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