
Towards Continuous Software Release Planning
David Ameller, Carles Farré and Xavier Franch

Universitat Politècnica de Catalunya
Barcelona, Spain

{dameller, farre, franch}@essi.upc.edu

Danilo Valerio and Antonino Cassarino
Siemens AG Österreich

Vienna, Austria
{danilo.valerio, antonino.cassarino}@siemens.com

Abstract—Continuous software engineering is a new trend that
is gaining increasing attention of the research community in the
last years. The main idea behind this trend is to tighten the
connection between the software engineering lifecycle activities
(e.g., development, planning, integration, testing, etc.). While the
connection between development and integration (i.e., continuous
integration) has been subject of research and is applied in
industrial settings, the connection between other activities is still
in a very early stage. We are contributing to this research topic by
proposing our ideas towards connecting the software development
and software release planning activities (i.e., continuous software
release planning). In this paper we present our initial findings on
this topic, how we envision to address the continuous software
release planning, and a research agenda to fulfil our objectives.

Index Terms—Software Release Planning, Continuous Soft-
ware Engineering, Project Management.

I. INTRODUCTION

Software engineering has always aimed to identify separate
engineering activities and assign responsibilities to each of
them as a way to have a clear path to produce or maintain
software products. An extreme example is the seminal wa-
terfall development process that required the current activity
to be completely finished in order to start the following one.
However, this process has been proved inadequate in most
cases due to the instability of the software requirements [1].
To tackle this problem, several iterative software development
processes emerged in the last fifteen years (e.g., Agile, XP,
etc.), which still keep the activities apart but are organized into
smaller iterations that facilitate the incorporation of changes
in the initial activities.

Continuous software engineering is going one step further
by establishing strong connections between software engineer-
ing activities. The objective of these connections is to accel-
erate and increase the efficiency of the software engineering
process; for example, continuous integration is one of the best
established continuous approaches in which the development
and deployment activities are kept linked and synchronized
automatically. In this sense, continuous software engineering
can be also related to DevOps, “a conceptual framework
which aims at benefiting information systems development by
reintegrating development and operations in various ways”
[2]. Keeping the connection between activities is not easy,
therefore it is common to find tool support to provide some
level of automation for continuous software engineering ap-

proaches. For example, Jenkins1 is a very popular tool that
supports continuous integration.

In this paper, our focus is on the connection between the
software development and Software Release Planning (SRP)
activities. Software development is the activity of producing
the implementation of the software (e.g., writing the source
code) while SRP is the activity of creating a release plan
that indicates what is to be implemented, when and by whom
during the time of a release [3].

The main idea of our approach is to re-plan the current
release every time a developer activity triggers the need
of an updated release plan (e.g., when some requirement
implementation is finalized earlier or later than planned, when
a developer takes a sick leave, etc.). To facilitate this re-
planning we will analyse developers’ activity in the ongoing
release, either by information explicitly provided by them (e.g.,
through notifications) or indirectly (e.g., by analysing the data
from the project management tools and software repositories).

With continuous SRP the release plan will become more
adaptable and flexible in real-time, e.g., when some require-
ment is implemented very quickly and there is time to include
yet another one in the current release, or once there is
new information available about the development team that
suggests the need of replanning the software release.

The rest of the paper is divided as follows: Section II
introduces the necessary background concepts related to SRP;
Section III presents our approach for continuous SRP and
describes the envisioned process; Section IV reports the most
relevant related work and how it links with our ideas; and
finally, in Section V and VI we provide our research agenda
and highlight the main conclusions.

II. BACKGROUND

In the context of this paper, we refer to software develop-
ment as the activity of implementing one or more require-
ments in some form of code. This includes creating tests and
verifying the correctness of the implemented code as well
as management tasks (e.g., the use of code version control
systems, bug reporting tools, build tools, etc.).

On the other hand, the SRP activity is composed of two
phases: strategic planning, the prioritization and/or selection
of requirements to be included in the next release; and
operational planning, the assignment of the requirements to a

1https://github.com/jenkinsci

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/157809687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Developer

Software
Development

Project leader

Software Release
Planning

Resource allocation
Optimize planning

Coding
Testing
Bug fixing

Commit code
Bug reporting

Prioritization
Selection
Negotiation

R
ol

es
A

ct
iv

it
ie

s
Ph

a
se

s
T

a
sk

s

Strategic
planning

Operational
planning

ManagementImplementation

Fig. 1. Project leader and developer tasks.

Objectives

Constraints

Social aspects

Company policies

Client needs

Resources

Project
requirements

Release plan

Project leader

Software Release
Planning

Strategic
planning

Operational
planning

Job1

Job2 Job4

Job5

Job3

Bob

Tom

John Job6

Week1 Week2 Week3 Week4 Week5 Week6R1: effort 2

R2: effort 2

R3: effort 3

R4: effort 2, dep R1 & R2

R5: effort 2, dep R3

R6: effort 2, dep R4 Release deadline

Fig. 2. Traditional SRP.

concrete team of developers [3]. Strategic planning is normally
conceived for long-term planning (i.e., multi-release) while
operational planning is more adequate for short-term planning
(i.e., current release).

Figure 1 shows the conceptualization of the roles, activities,
phases, and tasks related to SRP and software development.

In the traditional SRP, the project leader produces a release
plan from a set of requirements. To carry out this activity, the
project leader takes into account several aspects such as social
aspects (e.g., who works well with whom), company policies
(e.g., movement of the developers from project to project),
client needs (e.g., change of priorities, budget, etc.), resources
(e.g., the development team), objectives (e.g., priorities), and
constraints (e.g., the deadline). Figure 2 shows this conceptu-
alization of the traditional SRP.

In a previous work, we conducted a literature review about
the available models related to SRP [4]. We found out that
SRP has been formalized in the literature through the Next
Release Problem (NRP) [5], but commonly it only covers the
selection of requirements to be included in the next release
or releases (i.e., strategic planning), while deciding when
and by whom these requirements will be implemented (i.e.,
operational planning) is more similar to the Job Shop Problem

TABLE I
EXAMPLES OF OPTIMIZATION OBJECTIVES

Name Description

Maximize
priority Try to include the highest priority requirements

Minimize Cost Try to reduce the use of expensive developers (e.g.,
specialists)

Maximize
Revenue

Try to include the requirements that provide most
revenue (independently of their priority)

Minimize Risks
Try to adapt the release plan in a way that
minimizes a particular risks (e.g., reduce the
possibility of a delay)

TABLE II
EXAMPLES OF CONSTRAINTS

Name Description

Deadlines There may be deadlines for specific requirements,
and also for the whole release

Skills
Each requirement may need to be implemented by
a developer with particular skills (e.g., expertise in
a particular technology)

Hard
Dependencies

The implementation of a particular requirement
cannot be started before the dependent requirement
is implemented

Budget There may be a maximum budget that can be spent
in the whole release

(JSP) [6] (in essence, a scheduling problem). Both problems,
NRP and JSP, are classified as NP-hard. The models found
in our literature review are oriented to fulfil some objectives
and constraints (see Table I and Table II) taking into account
the available resources, but none of them handle the other
aspects mentioned above. The objectives and constraints in
Table I and Table II can be seen either from the strategic or the
operational point of view (e.g., in both phases it is common to
consider first high priority requirements and take into account
the dependencies among the requirements).

III. CONTINUOUS SOFTWARE RELEASE PLANNING

A. Definition and Scope

Continuous SRP is a specialization of the traditional SRP
with the added capability of adapting the release plan in
response to events that occur in the daily development activity.

Our approach tackles both strategic and operational plan-
ning. However, it is important to remark that operational
planning is the most important phase in the continuous context,
because development activities usually have a short-term im-
pact in the release planning. For this reason, in this paper, we
do not consider some of the long-term strategic planning tasks
such as prioritization and negotiation as part of the continuous
SRP approach.

Software release
re-planning

Updated release
plan

Event detector
and notifications

Trigger

Fig. 3. Continuous SRP process.

B. Description of the Continuous SRP process

The continuous SRP process (see Figure 3), as it happens
in continuous integration, is an event driven process. For
example, in continuous integration, the main trigger is when a
developer pushes some commit to the version control system
repository. In continuous SRP, the main trigger would be the
finalization of the implementation of a requirement, however
we can also consider other kind of events (see our catalogue of
events in Section III-C). In continuous SRP these events will
be detected and, in consequence, will trigger a re-planning that
will produce an updated release plan.

A common factor for continuous approaches is the use
of some kind of automation. To show this automation in
continuous SRP we have refined the process depicted in Figure
3 to separate the automatic part from and the part controlled
by the project leader. Figure 4 shows this refined process.

In the first part (Figure 4-left), the process starts, as before,
with the detection of events that trigger the re-planning, but
now instead of generating the updated release plan, we propose
one or more release plans. Also, we added the possibility to
warn about foreseen risks or issues (see Section III-D). In the
second part (Figure 4-right), the project leader will have the
opportunity to select the most appropriate release plan (from
the proposed ones) and analyse the risks and issues (if any),
and eventually, perform a manual adaptation of the release
plan before approving the updated release plan.

We consider that the detection of events, the production of
a tentative set of release plans, and the detection of issues
and risks could be done automatically by a tool (or a set of
tools) while the risk analysis, release plan review, and the
adaptation still needs to be performed by the project leader.
However, for the tasks in the second part, the ideal solution
would be to have a support tool that, for example, highlights
the changes between the previous and the proposed release
plans and indicates which requirements are originating the
risks or issues with a reasoned description.

There are important reasons for not having full automatic
continuous SRP process: on the one hand, in general, full
automatic processes are not trusted by the key stakeholders,
e.g., project leaders normally want to keep the control on
the decisions made; on the other hand, it would rise some
ethical concerns to include in a tool knowledge about some
of the aspects that need to be considered, for instance social
aspects of the employees of a company. It is worth mentioning
that other authors in the field of SRP also opted to have
hybrid approaches (e.g., “A hybrid release planning approach
integrates the strength of computational intelligence and the
knowledge and experience of human experts” [7]).

C. Catalogue of Development Activity Events

We have identified some events related to the aspects men-
tioned in Section II, however we do not intend to provide an
exhaustive list of possible triggers for a re-plan. In particular,
we are considering the following development-time events in
our approach:

Events related to the requirements:
• Changes in the dependencies (to existing or new require-

ments). The set of requirements included in a release may
have unforeseen dependencies that forces the inclusion
of a new requirement in the release (e.g., a developer
starts the implementation of a requirement and realizes
that a new requirement to support a particular technology
is needed).

• Changes in the effort. The effort required to implement a
requirement is an estimation and is subject to variations.
The effort can be reduced (e.g., the developer finds that
the requirement can be implemented very easily thanks to
a library he just found) or extended (e.g., the estimation
was too optimistic or there have been complications).

Events related to the resources:
• Changes in the availability. The planning is done based

on a given availability of the resources, normally specified
as the dedication ratio to the project for each resource.
Lower granularity, e.g., a day by day availability, as far as
we know is not being used by the algorithmic solutions.
This availability may change for many reasons (e.g., sick
leaves).

• Changes in the skills. Software developers are nor-
mally specialized in particular technologies or software
parts (e.g., front-end developer and back-end developers).

Automatic tool Project leader

Software release
re-planning

Proposed
release plan(s)

Release plan
selection

Release plan
adaptation and

approval

Updated
release plan

Event detector
and notifications

Detected
risks or issues

Analysis of
risk and issues

Trigger

Fig. 4. Refined continuous SRP process.

However, developers are constantly renewing their knowl-
edge by learning new technologies and languages, these
new skills may be used to produce a better plan of the
software release.

• Changes in the cost. The use of a particular resource may
become more expensive, e.g., a developer is promoted in
the company.

D. Risks and Issues

One of the characteristic of the proposed approach for
continuous SRP is the possibility to warn about possible risks
and issues much earlier in time compared to the traditional
SRP (which only happens once in a while). We are considering
the following risks and issues in our approach:

• Risk of overrun. This risk will emerge when, as con-
sequence of the events occurred, the release plan may
not finish on time (this can also be seen from the cost
perspective). This risk can be either a high priority risk,
i.e., the release plan already surpasses the release deadline
as consequence of the changes; or as a risk indicator, i.e.,
taking into account the previous delays there is a certain
probability of overrun.

• Unfeasible solution issue. The algorithm that generated
the release plan may be unable to generate a solution that
satisfies all the constraints. For example, a requirement
needs a particular skill that none of the developers have,
therefore the requirement cannot be scheduled and neither
all its dependent requirements.

E. Example

To exemplify the continuous SRP approach presented in
this paper, we use the same example shown in Figure 2 with
the same dependencies. In Figure 5 we can see, at the top,
the initial status; in the middle, the automatic part; and at
the bottom, the project leader part. In the automatic part, we
show some events that can occur during a continuous SRP
and the consequences that they could imply as result of an
automatic re-plan. Please note that in the Figure 5 we are
exemplifying more than one event at the same time, but in
continuous SRP each event would have had its impact at the
moment it occurred.

Figure 5 shows that during the Week 3 two events happened:
first, Job 1 is delayed, therefore the depending Job 4 (and Job
6 because it depends on Job 4) is moved forward; second,
Job 3 finished earlier, therefore the depending Job 5 is moved
backward. Then during the Week 5, another event happened:
when John started to work on Job 6 (which was already
delayed) he found out that a new job was necessary before
Job 6. As result, the project leader has approved the proposed
release plan, and by analysing the risk of release delay, s/he
opted to change the release deadline to Week 7.

In the example we have not shown alternative release plans,
but for instance, the new job (Job 7) could have been done by
Tom or by John (see Figure 5), then the project leader would
have selected the better release plan considering all the other
aspects that are not included in the automatic part.

Bob

Tom

John

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Original release plan

Job 1

Bob

Tom

John

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Proposed release plan (automatic part)

Bob

Tom

John

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Updated release plan (project leader part)

Release deadline

Release deadline

Release deadline

Job 2

Job 3

Job 4

Job 5

Job 6

Job 1

Job 3

Job 4

Job 5

Job 6

Job 2

Delay event Finish early event Risk

Job 1

Job 3

Job 4

Job 5

Job 6

Job 2

New dependency event

New job

Job 7

Fig. 5. Example of continuous SRP process.

Finally, we did not include the skills to keep the example
simple and clear but, for example, Job 7 could have required
a skill that only Bob has, therefore it would had added an
additional delay to the release plan.

F. Open Issues for Automating the Continuous SRP Process

There are several open issues involved in the automatic part
of the continuous SRP process:

• Detection of events. Clearly, the easiest way to manage
these events would be to have manual notifications (a
solution that may be suitable for a proof of concept) but
at least some of these events should be detected in an
automatic way, our idea is to integrate this approach with
the tools that developers already use (e.g., Git, Trello,
Slack, etc.) in order to reduce the overload during the
daily work.

• Re-planning. From our literature review [4], only few
approaches deal with re-planning (i.e., take into account
the previous plan while generating a new plan). Re-
planning is different from single planning because: a)
when a re-plan occurs some parts of the planning may
be already finished or being implemented, therefore they
cannot be changed in the new plan; b) from the devel-
oper’s point of view it would be chaotic if every day there
are unnecessary changes in the release plan, therefore
a specific re-plan optimization objective should be to
maximize the correspondence with the previous release
plan; and c) since the re-plan may occur several times
a day, the execution time of a re-plan should be among
seconds or minutes.

• Detection of risks and issues. While some risks and issues
are quite easy to detect (e.g., breaching the deadline of the
release), risk indicators (e.g., determine the probability of
a delay) are more complicated and will require further
research and the use of some technique such as machine
learning.

IV. RELATED WORK

Fitzgerald and Stol (available online in 2015) [8] published
a roadmap and agenda for continuous software engineering. In
this road map continuous planning is defined as an “holistic
endeavor involving multiple stakeholders from business and
software functions whereby plans are dynamic open-ended
artifacts that evolve in response to changes in the business
environment, and thus involve a tighter integration between
planning and execution”, we mostly agree with this definition,
except that our focus is put on the changes that occur in
the development activity rather than in business environment.
We think that our definition of continuous SRP (see Section
III-A) is more aligned with the ideas behind other continuous
approaches such as continuous integration.

Suomalainen et al. (2015) [9] did a preliminary study of
how software companies perform (to some extent) continuous
SRP, their work is based on a literature review and three
case studies. The major difference is that their work is more
oriented to strategic planning rather than operational planning.

Al-Emran et al. (2007) [10] presented a simulation-based
approach to planning, re-planning and risk analysis of software
releases on operational level. This work also uses an event-
based approach for re-planning, the main difference is that
this approach is not in the context of continuous software
engineering.

V. RESEARCH AGENDA

This work is based on the hypothesis that continuous SRP
will improve the current situation. Some promising results
were presented in [11] and [12] related to the use of tool sup-
port in SRP. However, the common approach in IT companies
is still to decide the release plan based on the experience of the
project leader. More empirical studies are needed to determine
the real needs of the industry for continuous SRP.

The presented approach for continuous SRP, still has plenty
of space for improvement: a) identify additional development-
time events that can have an impact in the release planning; b)
explore additional risks and issues that may emerge as result
of the re-planning; c) provide feedback to developers (e.g.,
notify them when a change is made in the release plan).

Creating a proof of concept is a very important step in
the research agenda. This includes resolving the open issues
mentioned in Section III-F (i.e., detection mechanisms, adapt
release planning for re-planning, and machine learning tech-
niques). We already have a tool for release planning [13] and
our plan is to adapt it to support continuous SRP.

Beyond the proof of concept, this tool can be also extended
with other useful functionalities to improve its suitability and
usability in the context of continuous SRP. For example,
provide a graphical visualization of the evolution of the release
plan would help the project leader to identify the roots of the
issues. Also, the tool needs to be informative and easy to use
to facilitate its adoption in real settings.

Finally, we need to validate our approach with experiments
in an industrial environment. For this we are exploring the
possibility of testing the presented ideas in some selected

Siemens projects. Furthermore, we are in contact with several
other companies that have expressed interest in our continuous
SRP approach (e.g., SEnerCon2, Agilogy3, Getupcode4).

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented our approach for continuous
SRP. We provided a definition of continuous SRP and de-
scribed a process that implements this approach accompanied
with an example. We also identified the open issues and
compared our approach with some of the most relevant related
works.

We also drafted a research agenda that points out our
next steps for these ideas, we will start by creating a proof
of concept and improving the proposed approach, and then
validate it in an industrial setting.

ACKNOWLEDGMENT

This work is a result of the SUPERSEDE project, funded
by the EU’s H2020 Programme under the agreement number
644018.

REFERENCES

[1] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2010.
[2] F. Erich, C. Amrit, and M. Daneva, “A mapping study on cooperation

between information system development and operations,” in 15th Inter-
national Conference on Product-Focused Software Process Improvement
(PROFES), 2014, pp. 277–280.

[3] G. Ruhe, Handbook of Software Engineering and Knowledge Engineer-
ing, Vol 3: Recent Advances. World Scientific Publishing, 2005, ch.
Software release planning, pp. 365–394.

[4] D. Ameller, C. Farré, X. Franch, and G. Rufian, “A Survey on Software
Release Planning Models,” in 17th International Conference on Product-
Focused Software Process Improvement (PROFES), 2016, pp. 48–65.

[5] A. Bagnall, V. Rayward-Smith, and I. Whittley, “The next release
problem,” Information and Software Technology, vol. 43, no. 14, pp.
883–890, 2001.

[6] M. R. Garey, D. S. Johnson, and R. Sethi, “The Complexity of Flowshop
and Jobshop Scheduling,” Mathematics of operations research, vol. 1,
no. 2, pp. 117–129, May 1976.

[7] G. Ruhe and M. O. Saliu, “The art and science of software release
planning,” IEEE Software, vol. 22, no. 6, pp. 47–53, Nov. 2005.

[8] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176–189, 2017.

[9] T. Suomalainen, R. Kuusela, and M. Tihinen, “Continuous planning: an
important aspect of agile and lean development,” International Journal
of Agile Systems and Management, vol. 8, no. 2, pp. 132–162, 2015.

[10] A. Al-Emran, D. Pfahl, and G. Ruhe, “DynaReP: A Discrete Event
Simulation Model for Re-planning of Software Releases,” in 1st Inter-
national Conference on Software Process (ICSP), 2007, pp. 246–258.

[11] G. Du, J. McElroy, and G. Ruhe, “A Family of Empirical Studies
to Compare Informal and Optimization-based Planning of Software
Releases,” in 5th ACM/IEEE International Symposium on Empirical
Software Engineering (ISESE), 2006, pp. 212–221.

[12] M. Felderer, A. Beer, J. Ho, and G. Ruhe, “Industrial Evaluation of the
Impact of Quality-driven Release Planning,” in 8th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), 2014, pp. 621–628.

[13] D. Ameller, C. Farré, X. Franch, D. Valerio, A. Cassarino, and V. El-
vassore, “Replan: a Release Planning Tool,” in 24th IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2017.

2http://www.senercon.de
3http://www.agilogy.com
4https://www.getupcode.com

