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Abstract— Portable devices often demand powerful
processors to run computing intensive applications,
such as video playing or gaming, and ultra low en-
ergy consumption to extend device uptime. Such con-
flicting requirements are hard to fulfil and appeal for
adaptive hardware that only consumes energy when
required.

LP-NUCA is a tiled cache organization aimed
at high-performance low-power embedded processors
that sequentially looks up for blocks ordered by tem-
poral locality in groups of small tiles. Unfortunately,
LP-NUCA has two main dynamic energy wasting
sources: (a) blocks are continuously migrating among
tiles even in low locality phases, (b) to reduce cache
latency, the tag and data arrays of the tiles are always
accessed in parallel.

This paper proposes a learning-based controller
that dynamically tunes block migration and cache ac-
cess policy between parallel and serial. During low
temporal locality phases the controller drops blocks
from the LP-NUCA root tile, L1, and forces a serial
access to the tag and data arrays in the tiles, thus
reducing the energy waste. Using a cycle-accurate
simulator and energy estimations derived from an LP-
NUCA layout, the proposed controller reduces dy-
namic energy by 20% on average for single and multi-
thread workloads.

Keywords— Cache Hierarchy, Multithreading, En-
ergy, Power, Embedded, NUCA

I. Introduction

THE way people use computers is partially shift-
ing from personal computers with local data to

mobile devices with data on the cloud. This “plat-
form” displacement has not carried along “application”
changes. Users almost demand the same performance
in mobile devices that they used to experiment in desk-
top computers. Giving the same performance level
with the tight energy constraints of mobile environ-
ments appeals for adaptive hardware that judiciously
detects whether it is profitable to invest energy in
order to satisfy the user.

One of the most energy-efficient mechanisms to
achieve high-performance is the memory hierarchy [1],
where several small caches pretend to be an unbound
and fast storage thanks to the locality of programs.
Non-Uniform Cache Architecture, NUCA, exploits lo-
cality at a finer granularity than conventional caches
because they enable inter bank block migrations [2].
Light Power NUCA, LP-NUCA, is a variant of Light
NUCA (L-NUCA) for high-performance low-power
embedded processors, such as those of mobile de-
vices, that conveys blocks through three specialized
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nica de Catalunya (UPC). e-mail: teresa@ac.upc.edu

Networks-in-Cache as L-NUCA does [3], [4], but also
includes two static techniques for saving dynamic
energy, Miss Wave Stopping and Sectoring. These
techniques together with LP-NUCA ad-hoc network
mechanism enable to outperform conventional and
static NUCA organizations in terms of energy and
performance.

The organization of LP-NUCA consists of many
small tiles behaving as a very large distributed vic-
tim cache [5]. Blocks remain ordered by temporal
locality (TL), so the L1, renamed root-tile (r-tile),
recently evicted blocks have a lower service latency
than those previously evicted. The LP-NUCA de-
sign relies on the temporal locality of programs along
all their execution; hence, when the r-tile evicts a
block, it triggers a chain of dominoes replacement for
maintaining the TL block ordering. But an energy
wasting problem can arise during low TL phases. Dur-
ing them, the r-tile floods the rest of tiles with blocks
that will be seldom requested. Besides, these blocks
degrade older ones that may be re-referenced in the
near future. Moreover, LP-NUCA always accesses in
parallel tag and data arrays to reduce cache latency.
Since a data array access roughly consumes more
than 5× the energy of the tag in LP-NUCA [4], this
parallel access is a major waste of energy for requests
with high likelihood of being a miss. Ideally, we would
like to detect low locality phases to prevent the r-tile
for evicting low locality blocks and to dynamically
switch between parallel and serial access in the rest
of tiles.

LP-NUCAs were conceived for single-thread proces-
sors; however, to increase their performance⁄energy ra-
tio, current advanced embedded processors rely on
extracting parallelism from multiple threads rather
than from a single one. For example, the Intel Xeon
LC3528, the MIPS MIPS32-1004K, or the Netlogic
XLP832 simultaneously execute between 2 and 4
threads [6], [7], [8]. Traditionally, multi-threaded
processors (MT) have shared all the cache hierar-
chy [9] increasing the chances of polluting the cache
with useless blocks and evicting useful blocks from
other threads. LP-NUCA in MT environments would
suffer from this problem and would benefit from a
controller able to drop low locality blocks and to
retain high locality ones. Finally, in this case we
can expect little performance improvements because
high locality threads will experiment more hits in the
LP-NUCA.

This paper extends LP-NUCA in several signifi-
cant ways. First, we identify that LP-NUCA wastes
dynamic energy during low locality phases by contin-
uously degrading blocks among tiles and by accessing
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the tag and data arrays in parallel even when the
likelihood of miss is high. Second, we propose a learn-
ing based mechanism based on local search methods
that dynamically selects when dropping blocks from
the cache will harm neither performance nor energy.
Third, we employ the same controller to dynamically
adjust between parallel and serial access to the cache
tag and data arrays leveraging from the congestion
management support from L-NUCA. Fourth, we show
that the proposed controller requires minimal hard-
ware for improving energy consumption with small
gains in performance.

The rest of the paper is organized as follows. Sec-
tion II presents the adaptive controller. Section III
describes our methodology and simulation environ-
ment. Section IV evaluates the results. Section V
comments on the related work, and Section VI con-
cludes the paper.

II. Adaptive Drop Ratio Controller

Figure 1 shows the LP-NUCA cache organization.
Misses in LP-NUCA operate as follows: when the r-
tile misses, it allocates an empty way for the incoming
block. When necessary, it evicts a victim block to a
neighbour tile with the minimum latency difference.
The destination tile, with a transport latency of 3,
will repeat the operation to a tile with transport
latency of 4, and this dominoes operation continues
until a tile has an empty way or a block is evicted
from the whole LP-NUCA.
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Fig. 1. LP-NUCA basic organization with its three Networks-
in-Cache: Search in blue, Transport in red, and Replace-
ment in black. The number in the right upper corner of
each tile represents its service latency assuming single-cycle
tiles

This chain of evictions keeps blocks ordered by tem-
poral locality but wastes a lot of energy when blocks
are not requested before leaving the LP-NUCA. Be-
sides, in their way out, these blocks pollute the tiles
and force the evictions of other blocks that may be re-
quested in the near future causing additional damage.
The goal of this work is to find a controller minimizing
the insertion of these polluted blocks from the r-tile
into the rest of tiles. To do so, we propose an Adap-
tive Drop Ratio controller able to dynamically detect
low locality phases of programs and choose the opti-
mal drop rates for all threads in execution. Besides,
when dropping all r-tile eviction blocks, the likelihood
of a request becoming a cache miss increases, so the
controller will switch the access policy of the data

and tag arrays inside tiles from parallel to serial to
save extra power.

Now, we explain the controller operation. It keeps
a reference state with the drop rates of all the threads
and its value in the desired target function (cache
hits, IPC, . . . ). At regular periods, named epochs,
the controller changes the drop rate of a single thread
(trial), and after N epochs have completed, where
N is the number of threads, it ranks the drop rate
trials accordingly to the target function. The best
trial supersedes the reference when its target value
is better than the reference one. To simplify the
implementation, the drop rate changes at regular
steps, named ∆, and ranges between 0 and 1. A drop
rate of 0 means all blocks are evicted to the rest of
tiles and of 1 means all blocks are dropped 1. From a
given drop rate, we can move either upwards, adding
∆, or downwards, subtracting ∆. To avoid the trial of
both, we add a variable specifying the direction, and
restrict the trial to this direction. This variable takes
two values, −1 for downwards (↓) and 1 for upwards
(↑), making straightforward the implementation of
the controller. In round-robin fashion, the controller
selects one thread and computes its trial drop rate as
drtriali = drrefi + diri∆ where drtriali , drrefi , and diri
represent the trial drop rate, the reference drop rate,
and the direction of thread i, respectively. At the
end of thread i trial epoch, diri reverts if the reached
target is lower than the reference one.

Algorithm 1: Hill-Climbing algorithm of the
ADR controller
computeEpochStatistics();
if n epoch % n threads == 0 then

foreach thread do
if not isExempted(thread) then

if ifTrialBetterThanRef(thread) then
ref[thread].dir = trial[thread].dir;

else
ref[thread].dir = !trial[thread].dir;

end

end

end
if bestTrialBetterThanRef() or
maxEpochsWoutChange() then

refSt.dr = bestTrialSt.dr;
end

end
n epoch++;
setTrialState();

Algorithm 1 shows the proposed implementation of
the ADR controller based on hill climbing with two ad-
ditional improvements: the exemption of threads and
the update of the reference state to avoid temporary
maximums. The penalty of dropping useful blocks
can be very high because they can cause processor
stalls. So when a thread experiences a few number of

1Dirty blocks require to be sent to the next cache level in
copy-back configurations.



misses, it is counterproductive his evaluation because
we will be moving the controller in a flat zone and
not towards the steep areas 2. Regarding the latter,
temporary maximums, we observe from the experi-
ments that it is worthy its update either when a trial
performs better or after a given number of epochs
without change. In this work, we empirically fixed
this value to 4× the number of threads in execution.
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Fig. 2. Temporal behaviour of the Adaptive Drop Ratio
Controller with an step, ∆, of 0.5

For example, Figure 2 shows a controller for a 2
thread machine in which the number of LP-NUCA
hits is the target function. We assume that the
controller state is defined as a list of tuples ST =
[[dr0, dir0], ..., [drn−1, dirn−1]]. During epoch i, thread
0 is the trial thread and is in trial downwards direc-
tion state. Alike, thread 1 is evaluated in epoch i+1
with trial upward state. At the end of this epoch, the
controller observes the target function, LP-NUCA
number of hits, and epoch i results better than the
reference one. So in epoch i+2, dr1 remains equal
and dr0 reduces in one step keeping the direction.
Thread 1 reverses its direction because in epoch i+1
the number of hits was lower than in the reference
epoch.

TABLE I

Possible organizations for the Adaptive Drop

Ratio Controller

Evaluation Trigger
Time 1-512K cycles

# misses 1⁄4-5× r-tile blocks
Step Size From 0.1 to 1
Target Metric IPC, # hits, reuse rate
Auxiliary Tags, m From 0 to 128 entries
Exemption Threshold From 5 to 100 MPKI

To suggest a good ADR controller design based on
hill-climbing, we evaluated the various parameters
summarized in Table I.

The first big choice is how to trigger a new epoch,
either at fixed intervals of time or after a fixed number
of r-tile misses. On the former, we have experimented

2We could also reevaluate after a number of epochs equals
to the no exempted threads, but the hardware complexity will
be higher.

with epochs from 1K to 512K cycles and, on the later
from 1⁄4 to 5× the number of blocks the r-tile stores3.
The second big choice is step size; i.e., with an step of
0.5 a thread can drop all, half, or none of the evicted
blocks. Finally, when a thread reaches the “all drop”
state, drj = 1, the controller requires an heuristic for
returning the injection of evicted blocks into the rest
of LP-NUCA tiles, drj = 0. One option is to force the
return to a state that does not drop all the blocks after
a given number of epochs. Another smarter option
is the introduction of a small auxiliary tags tracking
the last m dropped blocks and lookup for misses in
this structure. When updating the controller state if
several requests have matched in the auxiliary tags,
automatically that thread leaves the “all drop” state.
Also, we can fix the misses per epoch that we require
to evaluate a thread.

Finally, Figure 3 shows the behaviour of the con-
troller executing 255.vortex with 179.art during 2
millions of cycles. ADR synchronously reevaluates
after 4096 cycles, has 3 dropping states, and when
the drop ratio is 1, cache arrays are serially accessed.
It includes an auxiliary tag array of 512 entries. This
configuration was the best among all the test of this
work. The plot includes from top to bottom the num-
ber of committed instructions, the drop ratio indexes,
the number of rest of tiles hits, the number of evicted
(inserted) blocks into the rest of tiles, and the num-
ber of dropped blocks. 255.vortex, red lines, is an
example of a benchmark that is better to exempt
from the controller. Its miss rate is very low, and by
dropping blocks we could only reduce its performance
and increase the accesses to the next cache level. On
the contrary, 179.art experiences program phases in
which it pollutes the cache. For example, before the
54M point, the controller drop blocks and keeps useful
blocks inside the cache that are serviced to the r-tile,
and then when the miss rate drops again below the
exemption threshold, it evicts all the blocks inside
the rest of tiles.

A. Hardware Cost

The hardware implementation of the Adaptive
Drop Ratio controller requires minimal overhead.
Most current processors already include the perfor-
mance counters for the target function and we only
require to store the reference state for all the threads,
1 bit for the direction plus log2(drop ratios), and the
trial configuration. The partial tags only require an
small SRAM array, consuming little energy, and if
necessary it could be easily replaced by a bloom filter.

Other novelty of this work is the proposal of switch-
ing between parallel and serial access to the cache
arrays. At first glance, this feature could be hard to
implement, just the opposite is true. The key obser-
vation is that when the likelihood of cache miss is
high only the tag array is accessed. So we can add an
extra bit in the Search Network disabling the accesses
to the data arrays in the tiles. Misses will propagate

3Assuming a 32KB r-tile organized in blocks of 32B, there
are 1024 blocks in total.
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Fig. 3. SMT execution of 255.vortex and 179.art with an ADR of 4Kcycles epochs and 3 drop ratios

back-to-back over the fabric. Nevertheless, in the rare
case that a tile hits during a serial access, the data
array have to be accessed. Since we can not stop the
request propagation in the Search network because it
does not have any control flow mechanism, we need
to re-inject the request in parallel mode. This re-
injection feature is already supported by LP-NUCA
to cope with congestion of the Transport network,
when a tile hits and does not have any output trans-
port link available. Therefore, a serial request hitting
in a tile will reset the serial and set the congestion
bits, so that the request be reinserted.

III. Methodology and Simulation
Environment

We employ the same simulation environment,
energy estimations, and cache hierarchy organiza-
tions that previous LP-NUCA work [4]. The base-
line processor resembles the IBM/LSI PowerPC
476FP [10], [11] and executes 1 or 2 threads simulta-
neously. Table II summarizes the main parameters for
the reference processor and cache hierarchy, including
the same L1 and L3 caches and either a conventional
L2, a S-NUCA, or an L-NUCA. All caches use LRU
replacement except L-NUCA that employs LRF, least-
recently-filled, and they all have a single read/write
port.

Our workload comprises the same embedded do-
main oriented application than previous work [4].
Nevertheless, to get deeper insights from the results,
we divide the benchmarks in two groups: low MPKI
and high MPKI as table III shows. For the two SMT
experiments we present the results in three groups:
low MPKI, medium MPKI, and high MPKI when
both, one, and none benchmarks of the combination
exhibit a low misses per kilo instruction rate.

TABLE II

Simulator Micro-architectural parameters. BS, AM,

lat, and init stand for block size, access mode, latency,

and initiation rate, respectively

Clock Fre-
quency

1 GHz Fetch/Decode/
Commit width

2

Issue width 2(IN+ME)
+2FP

ROB / LSQ en-
tries

32 / 16

INT/FP/MEM
IW entries

8 / 8 / 8 branch predictor bimodal +
gshare, 16 bit

Miss. branch
penalty

6 Instruction
Cache

perfect

L1/L2/L3
MSHR entries

8 / 8 / 4 TLB miss latency 30

MSHR secon.
misses

4 Store Buffer/ L2/
L3 WB sizea

8 / 4 / 4

L1/r-tileb 32KB–4Way–32B BS, write-through, 2-cycle
lat, 1-cycle init

L2 512KB–8Way–32B BS, serial AM, 4-cycle
lat, 2-cycle init, copy-back

S-NUCA 2×2 128KB–2Way–32BS, parallel AM, 3-
cycle lat, 3-cycle init, copy-back

L-NUCA rest
of tiles

32KB–2Way–32B BS, parallel AM, copy-
back, levels: 3, total size: 448KB

L3 4MB eDRAM–16Way–128B BS, 14-cycle lat,
7-cycle init, copy-back

Main Memory 100 cycles/4 cycle inter chunk, 16 Byte bus
a L2, S-NUCA, L-NUCA, and L3 Write Buffers coalesce

entries
b In r-tile, copy-back and write-around

We used a similar energy estimations than the pre-
vious work for the battery powered domain in 32
nm [4]. In the single thread execution, the simula-
tor warms-up caches and branch-predictor for 200M
instructions before starting the cycle-accurate simu-
lation. We follow the same approach that Li et al.
for energy and delay measurements in SMT environ-
ments [12], and account for all the energy consumed



TABLE III

Workload selection. I, F, 0, 6 refer to Integer,

Floating Point, SPEC CPU2000, and SPEC CPU2006,

respectively

Low MPKIa 186.crafty I0, 255.vortex I0, 177.mesa F0,
458.sjeng I6, 482.sphinx3 F6

High MPKI 164.gzip I0, 179.art F0, 187.facerec F0,
401.bzip2 I6, 445.gobmk I6, 464.h264ref
I6, 473.astar I6, 453.povray F6

a L1 MPKI rate lower than 20 in the baseline processor

until the last thread commits 100M instructions.

IV. Results Evaluation

This section compares the cache organizations pre-
sented in previous section, namely, conventional L2
(L2), Static NUCA (SN), LP-NUCA (LP), and two
LP-NUCAs enhanced with two adaptive drop ratio
controllers: one with synchronous epochs (ADR C)
and another with epoch based on the number of
request for evictions (ADR R). Both ADR C and
ADR R have been selected after exhaustively explor-
ing the controlling design space with the options
shown in Table I. ADR C re-evaluates the drop ra-
tios and directions every 4096 cycles, while in ADR R
occurs after 1024 attempts of r-tile evictions (or r-tile
primary misses). Both controllers share the rest of
parameters, namely, 3 dropping states, 512-entry aux-
iliary tags, and an exemption threshold of 50 MPKI
in the rest of tiles.

First, we compare the energy consumption, then we
continue with the execution time, and we finish with
energy-delay results. For the sake of brevity, we only
show overall and averaged results, but the individual
behaviours do not differ from the presented one.

A. Energy

Figure 4 shows the total energy consumed by all
configurations. LP-NUCA with the ADR have the
best results regardless the benchmark group and the
number of threads.

If we focus on the last three bars to compare the
performance of the ADR controller we observe that
the synchronous one performs slightly better than
the based on the number of replacements. In the
more energy demanding benchmarks, high MPKI,
the controller reduces energy by 20% on average.

B. Execution Time

Dropping blocks may reduce LP-NUCA hit rates
and increase execution time, EX. To verify that the
proposed ADRs do not affect EX Figure 5 shows the
total execution time.

LP-NUCA shows performance improvements over
L2 and SN, and both controllers slightly reduce exe-
cution time because they keep inside the cache useful
blocks that otherwise would be expelled. ADR C and
ADR R reduces total execution time by 2.14% and
2.29%, respectively, in the single-thread environment.
Improvements become marginal in the 2 SMT and
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Fig. 5. Total Execution Time for the different configurations

reduce to 0.62% and 0.89% for ADR R and ADR C,
respectively, because the multi-threading execution
covers the memory stalls.

C. Overall System Impact

Finally, we present the sum of the energy-delay
of the tested benchmarks. Figure 6 includes the L3
energy to show that dropped blocks are not requested
to the L3 increasing the overall energy.

Again ADR R and ADR C are the winners in all
categories. LP-NUCA improvements in execution
time reduces the static component with regards to
L2 and SN, and the controllers reduce on average
dynamic energy-delay, their target, 7.6% for all but
low MPKI workloads.

V. Related Work

Architects have proposed a plethora of designs to
save cache energy through reconfigurable caches that
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Fig. 6. Energy-Delay. This figure includes L3 cache consump-
tion as well

change their number of ways, sets, or both at run
time [13], [14], [15], [16]. For an updated state of
the art please refer to Sundararajan et al. [16]. Pre-
vious works adapt the cache at a finer granularity
than this work, and most proposed techniques can
be easily applied to the LP-NUCA. Contrary to the
original LP-NUCA design [4], this work proposes a
proactive dynamic technique to save energy while pre-
vious ones, Sectoring and Miss Wave Stopping, were
completely static and application agnostic. Besides,
this work analyzes SMT workloads which have not
been extensively studied.

Regarding the learning based approach, the Hill
Climbing algorithm has been employed for distrib-
uting resources in SMT processors [17], but not for
cache reconfiguration.

VI. Conclusions

Ultra-portable mobile devices demand quasi-
desktop performance with a fraction of energy con-
sumption. Since application behaviour changes dur-
ing execution, processors require adaptive mechanism
wasting the minimum amount of energy when neces-
sary.

This paper proposes an adaptive controller for LP-
NUCA, a tiled organization for high-performance low-
power processors, that automatically decides when
cache blocks are not reused and can be dropped reduc-
ing the cache activity. Besides, during high dropping
phases, the controller is able to change the cache
array access from parallel to serial further reducing
the energy consumption.

With representative workloads, a cycle-accurate
simulator, and implementation based energy estima-
tions, we observe that the proposed controller reduces
dynamic energy on average by 20% for single-thread
and 2-threaded workloads without increasing the ex-
ecution time.
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