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Abstract

This paper extends to three dimensions (3D) the computational technique devel-
oped by the authors in 2D for predicting the onset and evolution of fracture in
a finite element mesh in a simple manner based on combining the finite element
method (FEM) and the discrete element method (DEM) approach [23]. Once a
crack is detected at an element edge, discrete elements are generated at the ad-
jacent element vertexes and a simple DEM mechanism is considered in order to
follow the evolution of the crack. The combination of the DEM with simple 4-
noded linear tetrahedron elements correctly captures the onset of fracture and its
evolution, as shown in several 3D examples of application.

Keywords: Discrete elements, finite elements, fracture mechanics, FEM-DEM
technique

1. Introduction

Many authors have contributed different techniques to define the growth of a
fracture in a brittle or ductile continuum [8, 11, 20, 21]. One of the latest works
defines the continuum by means of discrete elements [19]. However, the inher-
ent difficulty for calibrating the material parameters in the DEM, as well as the
need for a large number of discrete elements [11, 19] question it effectiveness,
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even though the qualitatively results of the DEM for predicting multiple fracture
patterns are pretty good.

This paper extends to 3D analysis the basis of the simple FEM-DEM proce-
dure proposed by the authors for predict the onset and propagation of fractures
in solids [23]. The method extends a well-defined crack opening methodology
termed Element Elimination Technique (EET) [10,16,22] that creates discrete el-
ements at the crack lips. Some important aspects inherent to the formulation here
presented guarantee the good results obtained, like a smoothed stress field, mass
conservation and the use of a simple algorithm to ensure the post-fracture contact
between the fractured edge. The FEM-DEM approach proposed is applied to a
collection of benchmark problems in 3D which evidence the good performance of
this numerical technique for nonlinear analysis of solids involving multi-fracture
situations.

2. 3D Implementation

Following the same FEM-DEM philosophy defined for the 2D case [23], the
fundamental ideas have been exported to the 3D analysis. Basically the FEM-
DEM procedure can be grouped in five steps. Each of these will be discussed in
more detail in the next sections.

• FEM discretization with 4-noded tetrahedra.

• Stress field definition.

• Elemental damage definition.

• DEM discretization.

• Substepping time integration of the dynamic equations for the DEM and
FEM regions.

In short, the solution strategy starts by evaluating the transient mechanical
behaviour of a finite element (FE) mesh of 4-noded tetrahedra that discretize a
solid. The mesh connectivities emulates the discrete element (DE) links were
damage is evaluated. The mechanism to transfer an element damage to the DE
links is defined by the different cutting planes for each tetrahedron. In this way
the element stiffness, affected by the damage, can be defined in a standard form
and a new iteration can be made.
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When the elemental damage is greater than a certain value, it is considered
that the element stiffness is so degraded that it is possible to eliminate the element
following the Element Elimination Technique (EET) [10, 16, 22]. At this time,
new discrete elements are created at the vertices of the removed tetrahedron. In
this way a crack is formed in the continuum discretized by FE with the crack lips
defined by the DE. It is interesting that as the crack grows and branches, some
discrete elements can be detached from the FE mesh when the element that holds
a DE is eliminated, creating a disgregation of the continuum.

2.1. FEM discretization with 4-noded tetrahedral
Much research has been spent in recent years in the development of the FEM

for modelling the onset and propagation of cracks in frictional materials [4–6, 9,
15]. However, most FEM procedures for crack prediction require sophisticated
element formulations, as well as remeshing in the vicinity of the possible cracks
paths [9, 15].

The approach followed in this paper uses the FEM to model a continuum
whose fracture is described by means of DE, as cracks appear.

The simple 4-noded tetrahedra is chosen for the 3D FEM solution. The anal-
ysis domain is initialliy discretized with a tetrahedral mesh, just as in a standard
3D analysis with the FEM. A simple damage model is introduced assuming a
progressive degradation of the element stiffness as described below.

2.2. Stress field definition
Having a proper stress field is key for define the right damage level and the

crack path. In the 2D problem, the stress field is defined by smoothing the stress
values at the elemental Gauss point in a new point located at the middle of the sides
of each triangular element. This strategy follows the superconvergent patch recov-
ery method proposed by Zienkiewicz, and Zhu [24] which overcomes the need to
add stabilization terms to the stress field, as in alternative procedures [4–6].

Since the 3D stress field between elements is discontinuous, the same smooth-
ing mechanism is used. That is, the stresses on each tetrahedral element edge are
computed as the arithmetic mean of the stresses inside all elements that share that
edge.

Like for the 2D case [23], the Rankine failure criteria has been used for pre-
dicting the onset of fracture in brittle materials [5,13]. During failure an exponen-
tial damage law is considered to progressively degrade the material stiffness [7].
The evolution of the damage parameter d (varying from 0 to 1) is defined as
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Figure 1: Cutting planes in a tetrahedron. a) One node disconnect b) Two nodes disconnected.
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where σI is the major principal stress, l is the edge lenght, σ f is the tensile
strength, G is the fracture energy and Eo the undamaged Young modulus of the
material.

2.3. Elemental damage definition
Once damage has been evaluated at each element edge, which corresponds to

an virtual DE link, the elemental is calculated as the maximum damage created at
any cut plane existing within the tetrahedron (Figure 1). On each tetrahedron there
are four cut planes that disconnect one node from the other three nodes (Figure 1a)
) and three cut planes that disconnect two nodes from the other two nodes (Figure
1b) ).

The cutting plane damage is defined as the average damage value of each
edge that the cutting plane intersects. If the elemental damage exceeds a certain
threshold, then the tetrahedron is completely removed [10,16,22] and new discrete
elements are created at the associated nodes maintaining the mass of the element
removed. In many cases is usual that the elemental damage threshold is reached
at the same time steep for all the elements that shares a side. In this case the crack
grows along the removed finite elements and the crack lips are defined by discrete
elements.

2.4. DEM discretization
When a tetrahedron FE is fully removed (i.e. the element stiffness is neglected)

four discrete elements (or particles) are created at the element node. In our work
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we have used spheres for representing the discrete elements. The mass of each
new discrete element corresponds to the nodal mass and its radius is the maxi-
mum one that guarantees the contact between the adjacent discrete elements with-
out creating any overlapping between them. Other algorithms can be used for
generating DE [11, 12], but good results have been achieved with the proposed
one.

Once a DE is created, the forces at the contact interfaces are used to define the
interaction of the element with the adjacent ones. These forces are due only to the
contact interaction in the normal and tangential directions. At the contact point,
the minimum radius of the particles in contact are used to evaluate the contact
forces [19].

For 3D problems the normal contact force Fn at a contact point between two
spheres is given by:

F i j
n =

Ai j

di j
Eoun with Ai j = πr2

c (2)

where rc is the radius of the smaller of the two particles interacting at the interface
i j. un is the normal overlap between the two discrete elements and di j is the
distance between the element centres.

The tangential force Fs is decomposed in two orthogonal directions s1 and s2

contained at the plane normal to the direction di j. For each direction the normal
force is given by:

Fsi = min

usi
Eo

2(1+ν)

µFn

(usi
us

) (3)

were µ is the friction coefficient, ν is the Poisson’s ratio, usi is the relative tangen-
tial displacement between two discrete elements and us is the module of the us

vector. More details of Eqs. (2) and (3) can be found in [19].
As we pointed out in [23], the total number of DE generated in an analysis is

only a small fraction of the number of nodes of the mesh. Therefore, the searching
algorithm for evaluating the contact interactions between discrete elements does
not consume much computational resources.

2.5. Substepping time integration of the dynamic equations for the DEM and FEM
regions

One of the main problems in 3D FEM analysis is the large number of equa-
tions that arise from discretization. Adding to these the difficulties to consider

5



Figure 2: Substepping time scheme used for FEM and DEM time integration.

a large time increment, an implicit time integration is the best solution strategy.
However, this type of integrations is not typically applied when discrete elements
are used because it is very difficult to correctly identify and quantify the contacts
and contact forces between these elements.

The implementation followed in this work corresponds to a time stepping
scheme in which the FEM solution is calculated using an implicit Newmark scheme,
while for the discrete elements computation we use an explicit centred differences
scheme. Usually the implicit time increment is 100 times greater than the explicit
one.

The advantage of this strategy is that the number of discrete elements is much
lower than that of finite elements, so the explicit integration performed in an im-
plicit time step is quite fast. Before beginning a new time step ∆It in the implicit
scheme, the same time period is analysed with an explicit scheme over the discrete
elements using a time increment of ∆Et.

The contact between discrete elements is quantified by the sum of the impulses
that occur along the analysis during ∆It. This effect is expressed as a force applied
on the element at time t+1 for computing the implicit solution, as shown in Figure
2. In this way the FEM-DEM solution advances in time.

It has been observed that it is not advisable for the time steps ∆Et and ∆It
to have a ratio greater than 1:500 since there may be some discrepancy between
the explicit and implicit solutions. Having this in mind, the strategy solution im-
plemented yields excellent results, as shown in the examples presented in next
section.
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3. EXAMPLES

In this section several examples are shown in order to show the good behavior
of the 3D FEM-DEM strategy described. The first example presented is the 3D
study of a normalized sample for a tensile test. The second example corresponds
to the indirect tensile test also known as Brazilian test widely used in in concrete
and rock mechanics. The third example consists of a concrete shear test proposed
in [14]. Finally, we present the seismic analysis of the central nave of the church
located at the Poblet monastery. In this example a 6Mw earthquake is applied to
highlight the effect of the opening and closing of the cracks generated.

3.1. 3D normalized tensile test
The first example corresponds to the fracture analysis of a flat concrete spec-

imen under tensile stress. The geometry is defined according to the norm D638
of the American Section of the International Association for Testing Materials
(ASTM) [1] as shown in Figure 3 where the three meshes of 4-noded tetrahedra
used and the boundary conditions can be seen. A constant horizontal velocity is
imposed to the two ends of the specimen.

The study has been performed using the 3D FEM-DEM technique previously
described. In order to localize the fracture, only one band of elements is allowed
to break at the failure stress level corresponding to the tested material, using the
linear damage model previously described. The results obtained are analysed by
plotting the displacements of points PA and PB shown in Figure 3.

The Young modulus, the Poisson’s ratio and the density are respectively Eo =

30 × 109 Pa , ν = 0.2 , γ = 1.0 × 103 N/m3, the tensile strength σ f = 10 × 103 Pa
and the fracture energy G2 = 7.5 × 10−3 J/m2.

The specimen deforms by applying a constant velocity of 0.5 × 10−7 m/s. at
both tips of the specimen. Figure 4 shows the damaged geometry. Note that where
fracture appears, discrete elements are created at the crack lips as explained in the
previous sections. Due to the DE sizing algorithm which guarantees that the DE
creation do not generate spurious contact forces, the element radius depends on
the ordering in which the DE are generation order.

The displacement of points PA and PB are at the right and at the centre of
the specimen, respectively (Figure 3) are tracked in order to evaluate the crack
opening. Figure 5 shows the load-displacement relationship at these points. For
the three meshes considered the displacement evolution is very similar and in
agreement with the expected results [23].
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Figure 3: Normalized tensile test of a 3D concrete specimen. Finite element mesh and dimentions
acoording to ASTM D638 norm.

Figure 4: Normalized tensile test of a concrete specimen. Cracked zone with the discrete particles
generated for the three finite element meshes considered.
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Figure 5: Normalized tensile test of a concrete specimen. Load-displacement at points PA and PB
of the specimen using G2 = 7.5 × 10−3 J/m2

Since the fractured elements have a different size for each mesh, the displace-
ment of point PB in the elastic region becomes smaller as the element size is
reduced. Beacause the crack opening is a fast phenomenon, the use of an im-
plicit integration scheme does not allow to capture properly the movement of the
analysed points. However, it follows the theoretical results.

We point at the insensitivity of the force-displacement curves to the quality of
the mesh. This is a distinct feature of the FEM-DEM procedure [17, 18, 23]

3.2. Indirect tensile test
The Brazilian tensile strength (BTS) test is a very practical and simple way to

evaluate the tensile strength of concrete and rock materials. The concrete sample
analysed is a cylinder of 0.2 m diameter (D) and 0.1 m thickness (t), which is a
diametrically loaded by a press. The tensile strength value is computed by the
following relationship [3]:

σmax =
2P
πtD

(4)

were P is the applied load.
The material properties are Eo = 21 × 109 Pa, ν = 0.2, γ = 7.8 × 103 N/m3,

σ f = 10 KPa and G = 1 × 10−3 J/m2. This corresponds to a maximum failure
load of P = 314.16 N.
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Figure 6: BTS test on a concrete specimen. Dimensions, boundary conditions and finite element
meshes of three noded triangles used.

Three meshes of 9338, 31455 and 61623 4-noded linear tetrahedra elements
each are used for the analysis, as shown in Figure 6. The sample is deformed by
imposing a constant vertical velocity at the top of the sample.

Figure 7 depicts the crack and the discrete elements generated. It can be seen
that the cracking pattern is similar for the three meshes and in agreement with
the expected result. The numerical results for the load-displacement curve are
presented in Figure 8. The values obtained for the maximum tensile strength are
of (coarse to fine) 10693Pa, 10351Pa and 10235Pa which yields in the range of
6% to 2% error versus the expected value of σ f = 10 KPa.

Again we note the insensitivity of the load-displacement curves to the mesh
size.

3.3. Shear test
A shear test is designed to apply stress to a test sample so that it experiences

a sliding failure along a plane that is parallel to the forces applied. Generally,
shear forces cause one surface of a material to move in one direction and the other
surface to move in the opposite direction so that the material is stressed in a sliding
motion.

The procedure proposed to determine the shear resistance has been based on
the shear test proposed by Luong [14]. This test consists in a circular tube of axis
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Figure 7: BTS 3D test on a concrete specimen. Damage zone and discrete elements generated. a)
Coarse mesh, b) intermediate mesh, c) Fine mesh.

Figure 8: BTS 3D test on a concrete specimen. Force-displacement relationship for the three
meshes used.
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Figure 9: Shear test on a concrete specimen. Geometry and boundary conditions.

Figure 10: Shear test on a concrete specimen. a) CAD gemetry and b) finite element discrtetiza-
tion.

z = 0 subjected, on its internal and external faces, to a shear stress parallel to z = 0
as it is described in Figure 9 were the boundary conditions can be deduced. The
height of the notch is 10mm whereas the width is 4mm. On the internal tube a
constant vertical velocity of 1mm/s has been applied until failure.

The CAD geometry and the finite element mesh can be seen in Figure 10. The
shear plane has been discretized with 87176 4-noded tetrahedral elements in order
to capture properly the stress gradient at this zone.

The material properties are Eo = 35 × 109 Pa, ν = 0.22, γ = 7.8 × 103 N/m3,
σ f = 30 MPa, σt = 3 MPa and G = 75×10−3 J/m2. In general, the shear strength
of concrete is approximately 1/5 or 1/6 of the compressive stress [14].

Figure 11 shows the crack obtained by the numeric experiment and compared
with the restored laboratory samples [14]. Figure 12 shows the force-displacement
graph of the numerical test in which the initial elastic branch is well defined until
the elements starts damaging and the stiffness decreases. From this Figure and
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Figure 11: Shear test on a concrete specimen. a) Top view and b) perspective of the crack obtained
at the numeric experiment. c) Restored laboratory samples [14].

according to the sample dimensions, the computed stress level reaches a value
of 5.10MPa. The obtained result agrees in comparison with the expected value
[14]. Figure 12 shows several laboratory samples, where the crack path obtained
is similar to the one found using the FEM-DEM technique.

3.4. Earthquake analysis of cistercian church
The church belonging to the Royal Monastery of Santa Maria de Poblet, lo-

cated in Vimbodı́ (Tarragona) is an historical artistic monument declared by UN-
ESCO as a world heritage site. Built from the second half of the twelfth century,
the temple adopts a basilical plant with its apse orientated to the East.

The Church is built on one nave plant and two aisles, with seven sections each.
Including cruiser, central apse, abbatial chapels and ambulatory. The central nave
has dimensions of 85m long for 21m wide and 28m high, while the sides reach
18m high. The height difference respect to the central nave is not solved by flying
buttress of the gothic style, but with buttresses. The fully Romanesque central
nave is covered with a ribbed pointed barrel vault, in each section as shown in
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Figure 12: Shear test on a concrete specimen. Force-displacement relationship obtained with the
FEM-DEM technique.

Figure 13.
In this case the solid domain is enveloped with invisible DE in order to solve

the FE-DE contact. For simplifying reasons, only a section of the central nave
is considered. This section is symmetrical respect the normal to the central nave
direction. The FEM mesh has 9294 nodes and 32487 4-noded tetrahedra as shown
in Figure 14 a). The material properties correspond to a limestone of the region,
with Eo = 35×109 Pa, ν = 0.22, γ = 25×103 N/m3, σ f = 780 MPa, σt = 5 MPa
y G = 100 × 10−3 J/m2. We consider the church to be at its clamped foundations.

The applied loads correspond to an imposed oscillatory movement, in the nor-
mal direction to the central nave axis as shown in Figure 14 b). The values shown
correspond to the oscillatory movement in the direction S00E of the records in
displacements obtained from the accelerogram of the earthquake ”El Centro” oc-
curred on May 18, 1940 [2]. These values are applied with a 50% reduction to the
model, so that it simulates a 6.0MW earthquake.

Although the record of movements lasts more than 50 seconds, the structure is
only capable of standing on foot for 4 seconds, beyond this time the church fully
collapses.

Figure 15 shows the cracks formed in the church at 1 second intervals. Initially
the shear of the columns and the more rigid wall occurs, later, the arches bases are
cutt off. From the second 5 it is observed how the structure fully collapses.

It is remarkable how the columns and arches of the aisles are held in place
after they have been cut. This is due to the closure of the formed cracks. The
FEM-DEM technique captures properly the contact between the different broken
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Figure 13: Cistercian church at the monastery of Poblet. a) Inner view of the central nave. b)
Church plant and analized section.

Figure 14: Cistercian church at the monastery of Poblet. a) FE Mesh of the analysed section. b)
Dynamic exitation expresed in displacements.
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Figure 15: Cistercian church at the monastery of Poblet. Evolution of fractures at the central
section of the nave for different times.
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elements of the structure. The fall of these elements occurs with a rotation as can
be seen along seconds 5 to 9 in Figure 15.

4. CONCLUSIONS

A simple 3D FEM-DEM methodology has been proposed for analisys of the
onset and evolution of the crack path in materials and structures. Excellent re-
sults have been found for the examples presented which confirms the predictive
capability of the formulation.
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