
Demonstration-Free Contextualized Probabilistic Movement Primitives,
Further Enhanced with Obstacle Avoidance

Adrià Colomé1 and Carme Torras1

Abstract— Movement Primitives (MPs) have been widely
used over the last years for learning robot motion tasks with
direct Policy Search (PS) reinforcement learning. Among them,
Probabilistic Movement Primitives (ProMPs) are a kind of MP
based on a stochastic representation over sets of trajectories,
which benefits from the properties of probability operations.
However, the generation of such ProMPs requires a set of
demonstrations to capture motion variability.

Additionally, using context variables to modify trajectories
coded as MPs is a popular approach nowadays in order to
adapt motion to environmental variables. This paper proposes
a contextual representation of ProMPs that allows for an easy
adaptation to changing situations through context variables,
by reparametrizing motion with them. Moreover, we propose
a way of initializing contextual trajectories without the need
of real robot demonstrations, by setting an initial position, a
final position, and a number of trajectory interest points, where
the contextual variables are evaluated. The parametrizations
obtained show to be accurate while relieving the user from the
need of performing costly computations such as conditioning.
Additionally, using this contextual representation, we propose
a simple yet effective quadratic optimization-based obstacle
avoidance method for ProMPs. Experiments in simulation and
on a real robot show the promise of the approach.

I. INTRODUCTION

Movement Primitives (MPs) are a common approach to
characterize motion in robotics, usually as a compact repre-
sentation that easily permits learning tasks based on changes
in their parameters. Over the last years, Dynamic Move-
ment Primitives (DMPs) have been widely used for motion
representation and learning [1], [2]. However, DMPs are a
deterministic approach to motion representation, thus they
are not capable of representing motion variability. In contrast,
the recently proposed ProMPs [3] approach is capable of
capturing the variance of a set of demonstrations to a robot
of the same task, and then reproducing the trajectory with the
same variance over time, thanks to a stochastic model-based
linear feedback controller.

The ProMPs representation allows the use of probabilistic
operations such as conditioning a trajectory to a certain via-
point, and blending several trajectories, among others [3].
The adaptability of such ProMPs can be extended through
a model with context variables, i.e., environmental elements
that can be encoded with a variable, as a via-point position,
goal position, initial position, etc. These contextual represen-
tations are then suitable for contextual reinforcement learning

This work is partially funded by CSIC projects MANIPlus (201350E102)
and TextilRob (201550E028), and by the European project I-DRESS (PCIN-
2015-147)

1Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona,
Spain. E-mail: acolome@iri.upc.edu, torras@iri.upc.edu.

via direct Policy Search (PS) [4], [5], [6], [7] or through
hierarchical representations [8]. In the case of ProMPs, the
contextual parameters can be inserted by reparametrizing the
trajectory weights with the context variables, as in [9].

Fig. 1. The experimental setting consisting of a Barrett WAM robot arm
and a Kinect camera.

However, ProMPs usually require a set of demonstrations
to be trained, and to fully characterize their covariance, a
number of samples equal to, at least, the number of param-
eters, is recommended. However, in robots as the Barrett
WAM robot (see Fig. 1) with 7 DoF, using ProMPs, often
a few hundreds of parameters are needed to appropriately
fit a trajectory. Therefore, having a full-ranked covariance
matrix during training is impractical. For this reason, in this
paper we propose to build a framework for easily initial-
izing ProMPs with synthetic data, and build a conditioning
dataset in order to easily map context variables to motion
parameters. This can be used for both exploiting its features
by executing such contextualized trajectories, or improving
through contextual PS.

Moreover, in this paper we also propose an obstacle
avoidance framework for ProMPs. Obstacle avoidance is
usually an important matter when learning trajectories with
movement primitives, and it is often difficult to adapt
trajectories to avoid contact with elements present in the
environment. While some approaches clustered a series of
recorded trajectories to help avoiding obstacles [10], DMPs
can also adapt by setting potential functions in the accel-
eration domain [2]. In the case of ProMPs, we analytically
impose a certain distance from the robot trajectory to the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/157809652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

obstacle, while minimizing the differences wrt. the original
trajectory. The resulting optimization problem can be solved
fast by quadratic solvers available online, like the YALMIP
solver [11].

In Section II, we will define the basic elements of ProMPs
used throughout this paper. Section III is devoted to the
contextual ProMPs and we present the obstacle avoidance
with ProMPs in Section IV. Finally, some conclusions and
future prospects are sketched.

II. PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

A. Definition

ProMPs are a general approach to learn and encode a set
of similar motion trajectories that present time-dependent
variances over time as seen in Fig. 2. Given a number of
basis functions per DoF, Nf , ProMPs use a Nf × 2 time-
dependent matrix Φt = [φt, φ̇t] to encode position and
velocity, φt being the vector of normalized kernel basis
functions (e.g., uniformly distributed Gaussian basis function
over time). Thus, the position and velocity state vector yt can
be represented as

yt =

[
qt
q̇t

]
= ΦT

t ω + εy, (1)

where εy ∼ N (0,Σy) is a zero-mean Gaussian noise and
the weights ω are also treated as random variables with a
distribution

p(ω) = N (ω|µω,Σω). (2)

This distribution can be fitted, given a set of demonstration
trajectories τ k = {ykt }t=1..Nt , k = 1..Nk, by obtain-
ing the weights ωk of each demonstration through least
squares. Subsequently, the parameters of the distribution θ =
{µω,Σω,Σy}, Σy being the state covariance, are fitted by
means of a maximum likelihood estimate, i.e., we compute
the sample mean and the sample covariance of ω. Then the
probability of observing a trajectory τ can be expressed as
the product of all timestep probabilities p (yt;θ)

p(τ ;θ) =
∏
t

∫
N (yt|ΦT

t ω,Σy)N (ω|µω,Σω)dω (3)

Due to the probabilistic representation, the ProMPs ap-
proach can represent motion variability while keeping other
MP properties such as rescalation and linear representation
wrt. parameters. It also allows for other operations such as
modulation via probabilistic conditioning and combination
by product [3].

In addition, ProMPs also come with a model-based
stochastic controller that reproduces the encoded trajectory
distribution. In Fig. 2, we show the average and standard
deviation of a ProMP and different sample trajectories from
its distribution.

B. Conditioning and blending of ProMPs

As shown in [3], ProMPs allow the use of probability
operations to merge or condition trajectories. In order to
assign a via-point, the ProMP represented as θ = {µω,Σω}

Fig. 2. ProMP fitting a set of trajectories, the mean and standard deviation
for each timestep are shown.

can be conditioned to go through the operational space point
y?t with covariance Σ?

t at timestep t, resulting in a new set
of ProMP Gaussian parameters θcond = {µcond

ω ,Σcond
ω } [3]:

µcond
ω = µω+

+ ΣωΦt

(
Σ?
t + ΦT

t ΣωΦt

)−1 (
y?t −ΦT

t µω

)
(4)

Σcond
ω = Σω + ΣωΦt

(
Σ?
t + ΦT

t ΣωΦt

)−1
ΦT
t Σω. (5)

Moreover, trajectories can be combined or blended by
using the probability product (see [3] for more details). For
the purpose of this paper, we consider the combination of
two trajectories, i.e., their intersection. Given two trajectories
with the same Gaussian basis functions and parameters θ1 =
{µ1,Σ1}, θ2 = {µ2,Σ2}, their combination/intersection is
obtained as:

µcomb = Σ2 (Σ1 + Σ2)
−1
µ1 + Σ1 (Σ1 + Σ2)

−1
µ2 (6)

Σcomb = Σ1 (Σ1 + Σ2)
−1

Σ2, (7)

These combinations of ProMPs can also be used to se-
quentially condition several via-points. If two or more via-
points are conditioned by sequentially using Eqs.(4) and
(5), conditioning the second point over the result of the
first conditioning usually results in a trajectory that does
not necessarily preserve the first conditioned point. For this
reason, in case of more than one conditioned point, it is
more robust to apply Eqs. (4), (5) independently to each
point wrt. the original ProMP parameters, and then combine
all the resulting conditioned trajectories with Eqs. (6), (7).
In Fig. 3, we see the effect of this procedure.

C. Contextual ProMPs

Context variables usually represent elements of the task at
hand that can be measured and, therefore, the robot can be
told to adapt to such changing situation, the typical case
being a changing via-point in a trajectory. In PS, many
algorithms already consider such context variables [4], [5],

Fig. 3. Sequential conditioning of a ProMP with several via-points. The original trajectory (in black in the top row) is conditioned to three points, the
resulting conditioned trajectories applying Eqs.(4), (5) to each point are shown in red, overlapping the original trajectory. The bottom row shows the result
of applying Eqs. (6), (7) sequentially to combine the three conditioned trajectories to obtain a trajectory that goes through all the three conditioned points.

[6]. The application of context variables to ProMPs can be
done by having a large covariance in the context part of
the trajectory and then conditioning the ProMP to it with
Eqs. (4) (5), or by reparametrizing the parameters with
context variables (denoted s), using µω(s) = µω + Kωs,
where Kω is a matrix mapping the context variables into the
trajectory mean parameter [9]. However, this representation
does not encode a desired covariance change. Therefore,
we studied better ways of representing context-dependent
ProMP parameters, which will be described in next section.

III. DEMONSTRATION-FREE CONTEXTUAL PROMPS

As mentioned in the previous section, we aim at finding a
good mapping from context variables into ProMPs parame-
ters. Moreover, while demonstrations can generate a highly
valuable ProMP initialization, they are not fully necessary in
many cases, where the initial and final points of the trajectory
are known, and so are a number of interest points, which are
considered to be those points of the trajectory that can be
contextualized, or are mandatory via-points.

In the case of a demonstration-free trajectory, we will
initialize the trajectory, given an initial and a final position,
by calculating the minimum-jerk trajectory between those
positions. With the obtained trajectory, we will fit the initial
ProMP mean µω . And we will set the initial ProMP covari-
ance Σω arbitrarily, usually by setting Σω = KINf ·d, where
K is the variance along each one of the parameters of the
trajectory, and Nf is the number of Gaussian kernels used per
each one of them. The resulting trajectory will be similiar to
the intial one used for the example in Fig.3, shown in black
in the background of the top row.

A. Trajectory interest points

Besides an initial and a final position, we will set a number
Np of interest points. These points are the ones where we will
allow context variables to change a trajectory and are tagged
by the timestamp at which they occur. As an example, Fig.
3 has three interest points, located at t = 0, 0.5, 1. These

points will be separated as fixed points or variable points.
While fixed points will never change and are hard via-points,
exploration interest points will be parametrized by a context
variable that will reparametrize the ProMP depending on its
value.

1) Fixed points

We will condition the initial min-jerk trajectory through the
fixed points with a corresponding variance by using Eqs.
(4) (5), and (6), (7) if more than one fixed point is set.
The variance imposed will usually be small. Given Σt =
ΦT
t ΣωΦt the variance from the initialization at time t, we

can set the imposed variance as Σ?
t = λ2Σt, where λ is

a scalar, usually around λ = 10−2 in order to reduce the
variance of such via-point.

2) Exploration points

Exploration points will be treated similarly to fixed points,
with the difference that, for each interest point to contex-
tualize, p = 1..Ne

p , we will sample trajectories artificially
to build a relation model with the ProMPs parameters, as
explained next in Section III-B.

B. Synthetic data generation

Once the ProMP has been initialized by setting an initial
position, a final position, and all the Gaussian kernels with
their initial weight covariance matrix, and it has been condi-
tioned to the fixed interest points, we will build the mapping
from the context variables, i.e., exploration interest points,
to the trajectory weights. In order to do so, we will generate
a certain amount of synthetic data. Under the assumption
that the desired operational space covariance matrix Σ?

tp
will always be that of the initial trajectory multiplied by a
scalar, i.e., Σ?

tp = λ2pΣtp , for each exploration interest point
p = 1..Ne

p . Then, eqs. (4),(5) can be simplified to:

µcond
ω = µω + ΦT†

t

sp
1 + λ2p

(8)

Σcond
ω = Σω

Id·Nf
+

Φt

(
ΦtΣωΦT

t

)−1
ΦT
t ΣωΦT

t

1 + λ2p

 ,

(9)
where sp = y?des −ΦT

t µω is the context variable, centered
on the initial trajectory value ΦT

t µω .
While the conditioned covariance does not simplify much

wrt. Eq.(5), the mean in Eq. (8) does, showing a linear
dependency on both terms sp and ξp = 1

1+λ2
p

. This allows
for a faster conditioning in order to generate synthetic data.

Therefore, for each of the Ne
p exploration interest points,

we have the covariance ratio ξp, encoding the covariance
variation, and the context variable sp (with a dimension equal
to the number of dimensions d of the ProMP). Appending
such variables we can define ξ =

[
ξ1; ...; ξNe

p

]
and s =[

s1; ...; sNe
p

]
.

In order to generate synthetic data, we will define an
exploration ratio σλ, so that λp ∼ U [0, σλ] is a uniform
distribution. Similarly, we will use sp ∼ N

(
ytp ,Σtp

)
=

N
(
ΦT
tpµω,Φ

T
tpΣωΦtp

)
.

We will generate a number Ndata of sample trajectories,
and fit a contextual ProMP as described in the following
section III-C.

C. Contextual ProMPs fitting

When trying to fit a contextual ProMP model, we started
by the one defined in [9], and expanded it so as to better
represent covariance. In order to fit the trajectory mean, we
define the context-dependent ProMP mean as in [9]:

µω(s) = µ
0
ω + Kω ŝ, (10)

where µ0
ω is the initial ProMP mean after conditioning the

fixed interest points. Kω is a matrix that maps ŝ into the
new mean weights by using the pseudoinverse operator †:

Kω =

 ŝ1

...
ŝNk

† (µ1
ω − µ0

ω)
T

...
(µNk

ω − µ0
ω)
T

 (11)

Moreover, ŝ includes the powers of the values of s up to
a degree α, representing a polynomial fitting of the mean.

In order to capture the covariance properly, given ω ∼
N (µω(ŝ),Σω(ŝ, ξ)) = N

(
µ0
ω + Kω ŝ,Σω(ŝ, ξ)

)
, we know

from Eq. (37) in [12], that the transferred effect of the
variance Σŝ will be KωΣŝKω . However, the transferred
effect of ξ remains unknown and, if not considered, a
variance that we might expect to be smaller that Σ0

ω would
actually be larger. Therefore, we will fit a model of the form

Σω(s, ξ) = Σ0
ω + KωΣŝK

T
ω +

Np∑
p=1

ξpΛp, (12)

where Λp are matrices with the size of Σω that we will fit
through least squares:

Algorithm 1 Contextualized ProMP generation
Input:
µ0
ω , Σ0

ω initialized ProMP with fixed interest points already
conditioned.
t1, ..., tNe

p
timestamps of exploration condition points

α polynomial fitting degree
σλ allowed precision deviation

1: for k = 1..Nk do
2: Sample skp ∼ N

(
ΦT
tpµ

0
ω,Φ

T
tpΣ0

ωΦtp

)
, p = 1..Ne

p , and
λkp ∼ U [0, σλ]

3: Generate µkω , Σk
ω by sequentially conditioning and com-

bining the exploration interest points with {skp, ξkp =
1

1+(λk
p)

2 }p=1..Ne
p

4: Store ŝkp with up to the α-th power of skp for each
exploration interest point

5: Store ŝk = [ŝk1 ; ...; ŝ
k
Ne

p
] and ξk = [ξk1 ; ...; ξ

k
Ne

p
]

6: end for
7: Compute Σŝ = covariance(ŝ)
8: Compute Kω with Eq.(11)
9: Compute Λ with Eq.(13)

10: Compute Λp with Eq.(14), ∀p = 1..Ne
p

Λ =

 (ξ1)T

...

(ξNk)T

† (vec(Σ1
ω −Σ1

ω −KωΣŝK
T
ω))

T

...

(vec(ΣNk
ω −Σ1

ω −KωΣŝK
T
ω))

T

 ,
(13)

where vec is the vectorization of a matrix, and then

Λp = vec−1(Λ(p, :)), (14)

where vec−1 is the inverse operation of the vectorization
(transforming the vectorized matrix into a matrix again).

The procedure for fitting the model provided by Eqs.(10)
and (12) is summarized in Algorithm 1.

IV. OBSTACLE AVOIDANCE FOR PROMPS

Another feature to be added to ProMPs is the capability of
avoiding obstacles in a trajectory. While obstacle avoidance
has been studied through different perspectives on DMPs
[2], its application on ProMPs is not as clear. In [13], a
collision-free ProMP is learned by maximizing the distance
to the obstacle while staying close to the data by using the
demonstrated data. Here, we propose a method for obtaining
a collision-free trajectory within the ProMP distribution
obtained directly from the ProMP parameters, which can be
obtained without the need of data samples.

When trying to avoid an obstacle located at a position yo,
a simple approach can be to condition the ProMP so as to
go through a point which is at a certain threshold distance D
from it. However, there are infinite many solutions of points
at a distance D of an obstacle. Therefore, a criterion for
deciding which one to take is needed.

Fig. 4. Proposed obstacle avoidance for a 2-dimensional ProMP with different metrics matrices. Top row shows the first component, while second row
shows the second component. The black curves and area represent the ProMP after conditioning the exploration points, the red dot represents the obstacle,
while the blue line corresponds to the solution of the obstacle avoidance system in Eq.(15) (where there is a solution), and the green line is the result
without the Mahalanobis constraint.

In our case, given a ProMP characterized by θ =
{µω,Σω}, we find a weight ω such that is as close as
possible to the mean trajectory µω , while at a distance D
from the obstacle at a certain time t, corresponding to the
closest point of the trajectory to the obstacle. However, this
might result in a trajectory with very low probability wrt. the
ProMP. Therefore, we also limit the Mahalanobis distance
(usually with one or two standard deviations) in order to
obtain a trajectory within the distribution. Therefore, we will
find the solution ω of:

argminω (ω − µω)
T · (ω − µω)

s.t.
(
yo −ΦT

t ω
)T

M
(
yo −ΦT

t ω
)
= D2

DM (ΦT
t ω,Φ

T
t µω) ≤ b2

(15)

where M is a metric matrix that will be used to prioritize the
dimensions in which we want to avoid the obstacle, and will
usually be defined as a diagonal matrix M = diag(v)/‖v‖.
DM (ΦT

t ω,Φ
T
t µω) is the Mahalanobis distance between

ΦT
t ω and the ProMP distribution N

(
ΦT
t µω,Φ

T
t ΣωΦt

)
:

DM (ΦT
t ω,Φ

T
t µω) =

=
(
ΦT
t ω −ΦT

t µω

)T (
ΦT
t ΣωΦt

)−1 (
ΦT
t ω −ΦT

t µω

)
(16)

In Fig. 4, we show the behavior of the proposed obstacle
avoidance framework for a 2-dimensional ProMP with Nf =
12 Gaussians per DoF. We initialized the trajectory with one
fixed point at t = 0.5, resulting in the ProMP in yellow, with
initial position 0.0 and final position 0.4 for each DoF. We
simulated Ndata = 500 trajectories, with σλ = 0.2 and used
a third-order fitting (α = 3). We obtained the model in Eqs.
(10), (12) and conditioned to a new point, resulting in the
black ProMP. Then, with the same obstacle (in red), using
a distance D = 0.15 and Mahalanobis distance of b = 1
standard deviation, we can see the results of the optimization.
Those are the same when using the Mahalanobis constraint
or not in the first case, where both components have equal
importance. However, if we give more importance to the
x component in a 8 : 1 ratio (middle column), the green
line (without the Mahalanobis constraint) presents a very
large deviation from the mean conditioned trajectory (in
black). Using the Mahalanobis constraint in this case results
in a trajectory with less deviation from the mean. If all
responsibility for avoiding the obstacle is given to the first
component (right column), we cannot find a solution with
the Mahalanobis constraint, due to it being more than one
standard deviation away from the mean, as is the green line.

To conclude, in the case of an already contextualized
ProMP that we want to use to avoid obstacles, considering
the ProMP parameters θ = {µω,Σω} and the result-

Fig. 5. Experiment with the Barrett WAM robot in the set-up shown in Fig. 1. X and Y components of the generated trajectories. Plots on the left show
the initial trajectory with a fixed point at t = 0 (in black), and conditioned to an exploration point in t = 8 (in blue). On the right we see the X and
Y components of the same trajectories, and the result after using obstacle avoidance (in discontinuous green) on the contextual trajectory to avoid two
obstacles (red dots) in the Y domain.

ing parameters after using the model in Eqs. (10), (12),
θcond = {µcond

ω ,Σcond
ω }, We then minimize

(
ω − µcond

ω

)T ·(
ω − µcond

ω

)
in the system defined in Eq. (15).

The application to several obstacles can be performed by
solving independently the system in Eq. (15), adding one
constraint for each obstacle present:(

yoi −ΦT
t ω
)T

M
(
yoi −ΦT

t ω
)
= D2

i . (17)

We also tested the proposed methods in this paper in
the set-up in Fig. 1, where the Barrett WAM arm had to
follow a nominal straight-line, consisting on a 2-dimensional
trajectory on the X-Y plane with a fixed initial point
and a variable end point. Using our approach, we con-
ditioned the end point to be 10cm away and then added
two obstacles (small bottles) observed by a Kinect camera.
The resulting well-conditioned obstacle-avoiding trajecto-
ries were computed by giving all the priority to the Y
component, and are shown in Fig. 5. Real-robot execution
can be seen at http://www.iri.upc.edu/groups/
perception/#ProMPobstacles.

V. CONCLUSIONS

In this paper, we presented a framework for generating
Probabilistic Movement Primitives (ProMPs) with context
variables, without the need of a large number of human
demonstrations. While a few demonstrations can be used to
obtain an initial guess of a motion encoded as a ProMP,
its generalization to context variables often requires a much
larger number of motion samples. The proposed method for
defining interest points, sampling them and building a model
efficiently saves a lot of effort to the user.

Moreover, we proposed an obstacle avoidance method for
ProMPs, based on a quadratic optimization with a small com-
putational cost. The application of such obstacle avoidance
over a conditioned trajectory was tested in both simulated
and real-robot experiments, showing the correct conditioning

of the trajectory by using the synthetic model, as well as the
effectiveness of the method in avoiding obstacles. While the
method scales well to higher dimensions, a deeper study on
the effect of the ratio matrix M in Eq. (15) will be developed
further in the future.

REFERENCES

[1] A. J. Ijspeert, J. Nakanishi and S. Schaal, “Movement Imitation with
Nonlinear Dyamical Systems in Humanoid Robots”. IEEE ICRA, pp
1398-1403, 2002.

[2] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor and S. Schaal,
“Dynamical Movement Primitives: Learning Attractor Models for
Motor Behaviours". Neural Computation, vol 25, no 2, pp 328-373
2013.

[3] A. Paraschos, G Neumann, C. Daniel, and J. Peters, “Probabilistic
movement primitives". In Advances in NIPS, Cambridge, MA: MIT
Press., 2013.

[4] A. Fabisch and J. H. Metzen, "Active Contextual Policy Search". J.
Mach. Learn. Res., vol. 15, no. 1, pp 3371-3399, 2014.

[5] A. Abdolmaleki, D. Simões, N. Lau, L. P. Reis and G. Neumann,
"Contextual Relative Entropy Policy Search with Covariance Matrix
Adaptation," 2016 International Conference on Autonomous Robot
Systems and Competitions (ICARSC), pp. 94-99, 2016.

[6] A. Kupcsik, M. Deisenroth, J. Peters and G. Neumann, "Data-Efficient
Generalization of Robot Skills with Contextual Policy Search". Pro-
ceedings of the AAAI Conference, pp. 1401-1407, 2013.

[7] M. P. Deisenroth, G. Neumann and J. Peters, “A survey on Policy
Search for Robotics". Foundations and Trends in Robotics, vol 2, pp
1-142, 2013.

[8] C. Daniel, G. Neumann,O. Kroemer and J. Peters, "Hierarchical Rel-
ative Entropy Policy Search". Journal of Machine Learning Research,
vol. 17, no. 93, pp 1-50, 2016.

[9] A. Colomé, G. Neumann, J. Peters and C. Torras "Dimensionality Re-
duction for Probabilistic Movement Primitives". IEEE-RAS Humanoid
Robots, pp. 794-800, 2014.

[10] F. Stulp, E. Oztop, P. Pastor, M. Beetz and S. Schaal, "Compact models
of motor primitive variations for predictable reaching and obstacle
avoidance," IEEE-RAS Humanoid Robots, pp. 589-595, 2009.

[11] J. Löfberg, "YALMIP Matlab Library", [online] available: https:
//yalmip.github.io/download/.

[12] M. Toussaint, “Lecture Notes: Gaussian identities". [online]
Available: http://ipvs.informatik.uni-stuttgart.de/
mlr/marc/notes/gaussians.pdf

[13] D. Koert, G. Maeda, R. Lioutikov, G. Neumann and J. Peters, "Demon-
stration Based Trajectory Optimization for Generalizable Robot Mo-
tions", IEEE-RAS Humanoid Robots, pp. 515-522, 2016.

http://www.iri.upc.edu/groups/perception/#ProMPobstacles
http://www.iri.upc.edu/groups/perception/#ProMPobstacles
https://yalmip.github.io/download/
https://yalmip.github.io/download/
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

	Introduction
	Probabilistic Movement Primitives (ProMPs)
	Definition
	Conditioning and blending of ProMPs
	Contextual ProMPs

	Demonstration-free Contextual ProMPs
	Trajectory interest points
	Fixed points
	Exploration points

	Synthetic data generation
	Contextual ProMPs fitting

	Obstacle avoidance for ProMPs
	Conclusions
	References

