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Abstract. In the context of assistive robotics, robots need to make
multiple decisions. We explore the problem where a robot has multi-
ple choices to perform a task and must select the action that maximizes
success probability among a repertoire of pre-trained actions. We inves-
tigate the case in which sensory data is only available before making the
decision, but not while the action is being performed. In this paper we
propose to use a Gaussian Mixture Model (GMM) as decision-making
system. Our adaptation permits the initialization of the model using
only one sample per component. We also propose an algorithm to use
the result of each execution to update the model, thus adapting the robot
behavior to the user and evaluating the effectiveness of each pre-trained
action. The proposed algorithm is applied to a robotic shoe-dressing task.
Simulated and real experiments show the validity of our approach.

1 Introduction

Assistive robots are becoming a reality. Apart from the safety requirements, one
of the main issues is related to the high variability of human environments. In
this context, perceptions, and by extension the measurement of the current state,
are partial and uncertain. Additionally, the effects of the actions of the robot
are also uncertain, as we consider that actions may not only succeed or fail, but
also have intermediate results.

In the framework of the I-DRESS project, we are investigating how robots
could be useful assistants in dressing tasks. These tasks require interaction with
the user, adaptation to the preferences of the user, and guaranteeing safety.

In assistive robotics, the ability to take adequate decisions is crucial. During
the completion of a task, a robot has to decide, multiple times, among different
actions. In this paper we put the focus on choosing among actions that solve the
same goal but use different strategies.

Let us use an example to provide further intuition. The task of shoe dressing
is quite complex: it involves several actions (choose a shoe, grasp, approach,
insert); different types of shoe require different insertion strategies; and people
have different mobility restrictions. It is very difficult to program a robot to
cope with all this variability. We envisage that this can be done by providing
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Fig. 1: Overall setup.

the robot with a repertoire of strategies and the ability of choosing one among
them.

Here we concentrate on the insertion action as it provides a perfect example
(see Fig. 1). Imagine that the robot has a repertoire of insert actions, learned in
the factory environment, which are suited to several foot orientations of refer-
ence. In a real situation, the robot has to decide which insert action to execute
based on the current orientation of the user foot. Naturally, the current orienta-
tion will not perfectly correspond to a reference orientation, so an estimation of
the most convenient one is required.

When the relevant sensory data is available during the execution of the tra-
jectory at a high rate, the usual strategy is to define an error function and
reshape the trajectory to minimize this error function. In a recent work, Pignat
and Calinon [7] propose a method that allows to demonstrate few example tra-
jectories that include sensory data. Their system is able not only to reproduce
the expected behavior, but also to learn the relevant relationships between sen-
sory data and robot motion. Note that visual information is most often used, but
in assistive robotics force plays an important role. In this paper we explore the
case when this information is not available. We assume that the only information
available are some snapshots at the beginning and the end of the actions, so an
error function cannot be defined.

Action selection (also known as the problem of what to do next) is a broad
field in artificial intelligence. The available selection methods can be divided
in two families: global and local. Global methods use the information about the
long-term goal, the set of actions that the robot can execute, and their effects and
costs, to obtain a plan that optimizes the cost of the entire set of actions. Kael-
bling and Lozano-Perez [5] proposed a hierarchical planning algorithm to limit
the length of the obtained plans. Martínez et al. [6] proposed to use short-horizon



planning in tasks where the uncertainty of the actions makes the prediction of
the state too ambiguous after few actions.

Contrarily, local methods use only the information at a given point to choose
the action that maximizes the immediate reward. Local action selection has
been used traditionally in active vision to decide the placement of the camera
(see [2] for a review). Different measurements can be used as decision criterion.
For example, Foix et al. [3] propose to use a variation of the information gain
to combine gains from two different sources. All these methods are based on
estimating the effects of executing given actions. However, here we deal with a
slightly different problem, as the only two possible outcomes of the actions are
success/not_success, and the problem is to select the appropriate action that
maximizes the success probability.

In this paper we propose a decision-making system based on an adaptation
of a Gaussian Mixture Model (GMM) that permits initialization by using only
one sample per component. We also show how the model can be updated after
each new execution by taking advantage of the result of the preceding trial.

2 Revisiting Gaussian Mixture Models

A Gaussian Mixture Model (GMM) distribution over a random variable x can be
written as a weighted superposition ofK Gaussians with mean µk and covariance
Σk, weighted by their mixing proportions πk [1], for k = 1..K:

p(x) =

K∑
k=1

πkN (x|µk,Σk), (1)

where it is common to consider πk as the probability of a K-dimensional random
variable z, with zk ∈ {0, 1} and p(zk = 1) = p(zk = 1, z6=k = 0) = πk [1]. Note
that 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1. Therefore, p(x|zk = 1) = N (x|µk,Σk) and,

marginalizing x wrt. z we obtain Eq. (1) again:

p(x) =
∑
z

p(x|z)p(z) =
K∑

k=1

πkN (x|µk,Σk) (2)

The GMMmodel in Eq.(1) can be obtained with an Expectation-Maximization
(EM) algorithm [1], for which we need to compute a term γ(zik) , p(zk = 1|xi)
by using the Bayes’ rule:

γ(zik) =
πkN (xi|µk,Σk)

K∑
k=1

πkN (xi|µk,Σk)

. (3)

γ(zik) is called the responsibility of the component k associated with a sample
xi, and we will use it later for action selection.

Using the aforementioned EM algorithm with a set of N data samples X,
the log-likelihood lnp(X|π,µ,Σ) can be maximized in an iterative 2-step opti-
mization:



– E-step: Evaluate the responsibilities using current parameters with Eq.(3)
– M-step: Re-calculate the parameters with (see [1]):

µnew
k =

1

Nk

N∑
i=1

γ(zik)xi (4)

Σnew
k =

1

Nk

N∑
i=1

γ(zik)(xi − µnew
k )(xi − µnew

k )T (5)

πnew
k =

Nk

N
(6)

where N =
∑

kNk and

Nk =

N∑
i=1

γ(zik) (7)

– Evaluate the log-likelihood:

lnp(X|π,µ,Σ) =

N∑
i=1

ln

[
K∑

k=1

πkN (x|µk,Σk)

]
(8)

and check for convergence.

3 Using a GMM for action selection

In this section, we adapt a GMM in order to be used for action selection. For
this purpose, we match the number of Gaussian components K to the number
of actions available, and use the samples x ∈ Rd as contextual features that will
take the role of variables deciding which action to execute, d being the dimension
of the feature space.

We modify the GMM defined in Section 2, so that it can be initialized with
fewer samples (even as few as one sample per component). Such small number
of samples results in the need to adapt the values Nk, as the responsibilities or
number of samples to generate the distribution might not be available. Moreover,
we add weights to the GMM responsibilities in order to update the model after
each sample, according to the results of the experimentation. Such procedure
helps to improve the decision-making algorithm.

3.1 Initializing a GMM with few samples

In order to initialize a GMM with few samples, we assume we have K posible
actions, with mk samples for each of them, and we know the action associated
with each sample in the training dataset. If mk ≥ 4d, it is then considered
that there is probably enough data to fit the covariance matrix of mixing the
component k [4]. In that case, the EM algorithm presented in Section 2 generates



a properly initialized model. Otherwise, We can initialize the means of the GMM
by using the average of the samples associated to each action k = 1..K:

µk =
1

mk

∑
i∈K

xi. (9)

The covariances for each component are then initialized by assuming a 1.5
standard deviations intersection. That is, Σk = λ2kI, where

λk = minj=1..K,j 6=k

‖µj − µk‖
1.5

. (10)

Last, we initialize πk = 1/K, ∀k = 1..K.
The rationale behind Eq.(10) is that the resulting Gaussian components are

intersecting, but with an overlap small enough to be discriminative. We build
hyperspheres in a d-dimensional space, centered at the mean points µk (Eq (9))
and radii so that their contacts are at most tangent. Then, we use these radii
and set them to be 1.5 standard deviations on an isotropic covariance matrix,
as defined in Eq. (10). We found that the 1.5 ratio offered a good trade-off
between Gaussians not being too small and having a relevant probability in their
region of overlap. Figure 2 shows an example of the proposed initialization of the
GMM with only 3 samples per component in a GMM with K = 5 components,
comparing different values of the number of standard deviations-equivalence used
in Eq.(10).
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Fig. 2: Initialization of a GMM with few samples. The means of the components
(blue crosses) are obtained by averaging the samples (black dots). Then, the
covariance matrix is obtained with Eq.(10). As we can see, 1 standard deviation
generates a GMM with too much overlap between components, while 2 standard
deviations have a too reduced overlap. Therefore, we used 1.5 standard deviations
equivalence.

3.2 Reward-Weighted Responsibility GMM (RWR-GMM)

In order to apply GMMs to action selection, we now present a variant of the
GMM presented in Section 2, where the responsibilities γ(zsk) play a crucial



role. Given a sample xs, the action to execute will be selected depending on
such responsibility values, as γ(zsk) = p(zk = 1|xs). However, the GMM needs
to be adapted after each execution, depending on the success of the decision
taken by our selector. For this reason, if the success is denoted by the random
variable r ∈ [0, 1], such that rsk = 1 if action k was successful when applied in
situation xs, then we define the reward-weighted responsibility of an action as

dskγ(zsk) = p(rsk = 1|zk = 1,xs)p(zk = 1|xs), (11)

which is equivalent to the probability of success when applying action k in a
situation described by xs.

Given such weighted responsibilities, we can substitute dskγ(zsk) for γ(zsk) in
Eqs.(4)-(7) and obtain a Reward-Weighted Responsibility GMM (RWR-GMM):

µnew
k =

1

Nk

N∑
i=1

dskγ(zsk)xi (12)

Σnew
k =

1

Nk

N∑
i=1

dskγ(zsk)(xi − µnew
k )(xi − µnew

k )T (13)

πnew
k =

Nk

N
(14)

where N =
∑

kNk and

Nk =

N∑
s=1

dskγ(zsk) (15)

This permits assigning importance to samples, but it is specially used to
update the model in a one-step manner, as will be described in Section 3.3.

3.3 Updating an RWR-GMM

Another issue we can encounter is how to update a given RWR-GMM (π,µ,Σ)
when a new sample is added and we do not know how many samples were used to
build it, or if it was artificially generated. This results in unknown values for the
responsibilities γ(zsk) and Nk. However, given Eq. (7), we can assume that the
GMM was generated with a certain number of samples N and so, isolating Nk

from Eq.(7), Nk = Nπk. The choice of N will depend on the relative importance
we want to give to a newly-generated sample and acts as a forgetting factor. For
example, setting N = 100 would be equivalent to treat the GMM as if it was
generated with such amount of samples, and the effect of an additional sample
would be relative to that amount.

If, given a model (πk,µk,Σk), we add a sample xn, equations (12)-(15) can
be reformulated by adding a point and substituting the old values of πk,µk,Σk:

µnew
k =

Nk

Nk + dskγ(zsk)

(
µk +

dskγ(zsk)xn

Nk

)
(16)



Algorithm 1 RWR-GMM using all actions
Input: GMM with {πk,Σk,µk} and a preset value of N , so that Nk = Nπk

Output: Updated GMM parameters {πk,Σk,µk}

1: for s = 1 : Nsamples do
2: For the given sample xs, execute all the actions k = 1..K and check whether

the execution was successful.
3: Update the RWR-GMM with dsk = 1, ∀k that were successful, and dsk? = 0

otherwise.
4: end for

Algorithm 2 RWR-GMM checking only one action
Input: GMM with {πk,Σk,µk} and a preset value of N , so that Nk = Nπk

Output: Updated GMM parameters {πk,Σk,µk}

1: for s = 1 : Nsamples do
2: Compute the responsibilities γ(zsk), ∀k = 1..K, for the given sample xs with

Eq. (3). Note that
∑

k γ(zsk) = 1.
3: Randomly select an action k? using the probabilities obtained with responsibil-

ities
4: Execute the action k? and check if it was successful.
5: If action k? was successful, we update the RWR-GMM with dsk = 0, ∀k 6= k?,
dsk? = 1. Otherwise, dsk = 1, ∀k 6= k? and dsk? = 0.

6: end for

Σnew
k =

Nk

Nk + dskγ(zsk)

(
Σk +

dskγ(zsk)(xn − µk)(xn − µk)
T

Nk

)
(17)

Nnew
k = Nk + dskγ(zsk) (18)

In practical applications, we will have a number K of actions to select from
and, given an initialized GMM as in Section 3.1, a new sample xs consisting of
state feature variables that can be observed/measured. We propose two alter-
natives for improving the method: in the first one, we assume we can test all
the possible actions for each point xs, and we will set dsk = 1 for the successful
actions and 0 otherwise (see Alg. 1). Alternatively, in case the assumption is
not satisfied, we will evaluate the responsibilities of each action for each new
sample xs, and randomly choose an action k? with a probability equal to its
responsibility. Then, this action will be executed and tested for success. If so, its
weight will be set to dsk? = 1 and the other actions to 0. Otherwise, dsk? = 0
and, for the other actions, it will be set to 1, as shown in Alg. 2.

After setting the reward weights, we can update the model with Eqs. (16)-
(18).



Fig. 3: Initial pose for each of the shoe insertion trajectories. Notice that the tip of
the foot is already into the shoe.

4 Experimentation

Figure 1 shows the overall setup used in our experiments. In order to ensure a
good initialization pose for both shoe and foot, experiments were carried out
using two arm manipulators. As it can be seen, we used a mannequin leg instead
of a real human leg. Thanks to that, we managed to avoid two complicated
issues: the use of an external vision system for a precise foot pose estimation
and the difficulty for a human to repeatedly maintain a constant foot pose while
the robot is putting the shoe. Figure 3 shows a detailed view of the initial pose
for each of the demonstration trajectories. It is important to notice that both
the tip of the foot and the shoe poses are always in the same initial position for
all the experiments no matter the orientation. This way, we ensure that a wrong
action cannot be due to failed shoe insertion.

Obviously, the action required to insert a shoe depends on the position of the
foot but also on the type of shoe. Shoes like flip flops and some sandals require
easy motions as do not have a back strap. Contrarily, some orthopedic shoes are
challenging because the topline on top of the counter can bend over. Observe
that the shoe used in the experiments (Fig. 1) belongs to the last group, and
that means that insert actions should tend to fail more easily.

Experiments consisted of the following steps: first, we taught the robot,
through kinesthetic teaching, how to perform a good shoe insertion for each
of the reference demonstration foot poses; and second, we equally divided the
configuration space by 0.1 rad. and tested exhaustively each intermediate foot

pose, xs =

[
pitchs
yaws

]
, with each of the taught shoe insertion actions. Foot poses

were chosen as realistic as possible and by taking into account a range foot ori-



entation comfortable for humans when performing that task, ±0.5 radian range
for both pitch and yaw angles. Given the bi-dimensionality of the parametriza-
tion and the short ranges, we trained the system with 5 different demonstration
poses. One central and the other 4 located at the limit of each range. Using the
robot that was holding the mannequin leg as a reference frame, these are the
selected centers for each GMM:

µ1 = [0;−1.5],
µ2 = [−0.5;−1.5],
µ3 = [0.5;−1.5],
µ4 = [0;−2.0],
µ5 = [0;−1.0].

(19)

After using the initialization method described in Sec.3.1, we obtain the ini-
tialization map shown in Figure 4. Observe the homogeneous distribution of the
Gaussians over the central pose point and the 4 limit pose points. Figure 5 shows
the success of actions after testing for each action at each intermediate point xs

(pitch = −0.5 : 0.1 : 0.5 and yaw = −2 : 0.1 : −1), in a total of 605 execu-
tions. Notice how actions taught at different foot pitch angles overlap on some
intermediate poses, showing a good compatibility; the incompatibility between
actions taught at different foot yaw angles can also be seen.
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Fig. 4: Initialization of the GMM with only one sample per node.

Whether a shoe insertion action was successfully achieved or not was con-
trolled by visual check. Please see Figures 6a, b for a good and a bad example,
respectively.
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Fig. 5: Successful executions for each of the 5 actions.

4.1 Using Algorithm 1

Among the 121 tested points, we only considered those 46 which were successful.
Among these 46, we used 21 points for training, and the remaining 25 for vali-
dation. Using the initialization in Figure 4, with an initial value of N = 20, and
training the model following Algorithm 1, we compared the successful actions
for the validation set with the responsibilities obtained from the RWR-GMM
updates, see Fig. 7. In order to evaluate the accuracy of the system, we fitted
the model with 10 randomly chosen sample subsets and checked its responsi-
bility for an action. After evaluating all of them and averaging the result, we
obtained 98.4% accuracy in assigning the highest responsibility to an action that
was successful. The remaining 1.6% were failures corresponding to points where
the successful action was the second with the highest responsibility, with a value
of more than 0.3, therefore corresponding to overlapped regions.

4.2 Using Algorithm 2

Similarly to the previous subsection, we took 21 of the points with at least
one successful action and trained the system using the procedure described in
Alg.2, see Fig. 8. In this case, we obtained 98% success in assigning the highest
probability to a successful action, the unsuccessful ones also being in positions
where a successful action had a responsibility higher than 0.3.

5 Conclusions

In this article we have shown how a GMM can be adapted to be used as an
action decision-making system. Such adaptation permits shortening the model
initialization process, by reducing the number of required samples thanks to



(a) Success. (b) Failure.

Fig. 6: Visual check of action fulfillment. a) shows a perfectly successful action.
b) shows a non-satisfactory case.

some minor assumptions, and to improve the update of the model at runtime,
by adding rewards as weights into the GMM responsibilities. Experiments have
demonstrated the validity of the approach by achieving 98% accuracy in a very
challenging real scenario, shoe dressing. Two algorithms have been presented,
one that considers observability of all possible actions for testing at each step
and another that evaluates only one at a time. We have shown how the lat-
ter, although slightly less precise, is highly efficient and requires 5 times less
executions.

As future work we would like to extend experimentation to other user-
adjustable robotic assistive tasks such as jacket or gown dressing, food feeding,
or prosthetic grasping. To carry out such complex tasks, the proposed system
could be enhanced by making robot skills feature-dependent, so as to better
adapt robot motion to the observed situation.
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Fig. 7: Results with sampling as in Alg.1.
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Fig. 8: Results with sampling as in Alg.2.
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