
A Fast Robust Optimization-based Heuristic for the
Deployment of Green Virtual Network Functions

Antonio Marottaa,∗, Enrica Zolab, Fabio D’Andreagiovannic,, Andreas Kasslera

aKarlstad University, Universitetsgatan 2, 65188, Karlstad, Sweden
bUniversitat Politècnica de Catalunya, C. Jordi Girona, 1-3, 08034 Barcelona, Spain

cSorbonne Universités, Université de Technologie de Compiègne,
CNRS, Heudiasyc UMR 7253, CS 60319, 60203 Compiègne, France

Abstract

Network Function Virtualization (NFV) has attracted a lot of attention in the

telecommunication field because it allows to virtualize core-business network

functions on top of a NFV Infrastructure. Typically, Virtual Network Func-

tions (VNFs) can be represented as chains of Virtual Machines (VMs) or con-

tainers that exchange network traffic which are deployed inside datacenters on

commodity hardware. In order to achieve cost efficiency, network operators

aim at minimizing the power consumption of their NFV infrastructure. This

can be achieved by using the minimum set of physical servers and networking

equipment that are able to provide the quality of service required by the virtual

functions in terms of computing, memory, disk and network related parameters.

However, it is very difficult to predict precisely the resource demands required

by the VNFs to execute their tasks. In this work, we apply the theory of robust

optimization to deal with such parameter uncertainty. We model the problem of

robust VNF placement and network embedding under resource demand uncer-

tainty and network latency constraints using robust mixed integer optimization

techniques. For online optimization, we develop fast solution heuristics. By

using the virtualized Evolved Packet Core as use case, we perform a compre-

∗Corresponding author
Email addresses: antonio.marotta@kau.se (Antonio Marotta), enrica@entel.upc.edu

(Enrica Zola), d.andreagiovann@hds.utc.fr (Fabio D’Andreagiovanni),
andreas.kassler@kau.se (Andreas Kassler)

Preprint submitted to Elsevier July 8, 2017

hensive evaluation in terms of performance, solution time and complexity and

show that our heuristic can calculate robust solutions for large instances under

one second.

Keywords: Network Function Virtualization (NFV), Robust Optimization

(RO), VNF, 5G, VNF Placement Heuristic, Datacenter

1. Introduction

Recently, Service Providers are migrating vendor specific hardware and soft-

ware that implement their network functions towards the Cloud. In such Net-

work Function Virtualization (NFV) [1], Virtualized Network Functions (VNFs)

run inside Virtual Machines (VMs) or containers on commodity servers. NFV5

is expected to lead to significantly reduced CAPEX and OPEX due to the elas-

ticity and scalability of the cloud paradigm, which significantly simplifies the

VNF operation and management. Virtualization inside modern datacenters en-

ables resources consolidation, leading towards green strategies to manage both

compute and network infrastructure where VNFs are hosted.10

Important tools are server consolidation strategies that migrate VMs/containers

towards the fewest number of servers and power down unused ones to save en-

ergy. As VNFs are composed of a set of VNF Components (VNFC) that need

to exchange data over the network under capacity and latency constraints, the

networking plays also an important part. By using Software Defined Networking15

(SDN), one can dynamically adjust the network topology and available capac-

ity by powering down unused switch ports or routers that are not needed to

carry a certain traffic volume [2], thus consuming the least amount of energy

at a potential expense of higher latency. Green strategies try to place the VNF

components onto the fewest amount of servers and to adjust the network topol-20

ogy and capacity by powering down unused switches and ports to match the

demands of the VNFCs. Such design of the VNF placement and virtual net-

work embedding can be formulated as a mathematical optimization problem,

and efficient heuristics can be designed to quickly solve the problem.

2

In classical mathematical optimization, it is assumed that all data involved25

in an optimization problem are known exactly when the problem is solved.

However, this assumption does not hold in most real-world problems, in which

data are often uncertain, i.e. not known with precision when the problem is

solved. As an example, one can think about the unpredictable fluctuations in

the traffic generated by users in telecommunication networks (see, e.g., [3, 4]).30

The decision maker could solve the problem simply using an estimate of these

uncertain data. However, this could have potentially bad effects, as minimum

variations in the input data may impact the optimality and the feasibility of

the solution (see [5, 6, 7] for a thorough discussion). Solutions that neglect

data uncertainty may turn out to be infeasible and thus useless in practice.35

Therefore, it is crucial to include data uncertainty in the optimization model.

Recently, Robust Optimization (RO) has been proposed in the optimization

community as a methodology for dealing with data uncertainty. RO has had a

great success in the last decade, thanks to its accessibility and computational

efficiency. It essentially consists in taking into account data uncertainty under40

the form of additional constraints included in the model to cut off solutions

that may turn infeasible or suboptimal, if variations in the input data occur [5].

The application of robustness allows to achieve a trade-off between protection

from parameter deviations, which may lead to Service Level Agreement (SLA)

violations (e.g. in terms of CPU utilization of the virtual components or network45

latency), and the well-discussed price of robustness [3, 6, 8, 9] due to higher cost

(e.g. energy consumption) required to protect from parameter deviations [10].

In [11], we proposed a model for Robust Green VNF placement based on RO,

which balances the power consumption for the Virtual Network Infrastructure

(VNI) deployment and the protection from resource demand deviations of the50

individual virtual network functions. However, the model is too complex to solve

for online optimization and does not account for traffic load induced latency at

intermediate switches but rather assumes a fixed link latency.

In this paper, to the best of our knowledge we are the first to present a

fast heuristic to solve the problem of Robust Green VNF placement and net-55

3

work embedding with the aim of reducing the overall power consumption of the

NFV Infrastructure while considering latency constraints for the service chains.

The algorithm powers down compute servers, network switches and links, while

taking into account the presence of data uncertainty in terms of VNF resource

demands. Our heuristic iteratively solves three subsequent problems to deploy60

all the VNFs in a robust way. The first problem (step 1) deals with the allo-

cation of each VNF component by minimizing the servers’ power consumption

and the total network traffic matrix that VNFCs inject. We propose both exact

and heuristic approaches. In step 2, the allocation is made robust by using a

fast greedy heuristic, which calculates both the set of migrations required to65

protect the placement from resource demand deviations and the updated traffic

matrix. In step 3, we solve the splittable flow routing problem with latency

constraints. We model the queueing delay that VNFCs may experience as a

function of the link capacity and the processing load which can be modelled

through an M/M/K/1 queueing system [12]. We perform a comprehensive eval-70

uation in terms of performance, solution time and complexity using the virtu-

alized Evolved Packet Core and we show that we can calculate robust solutions

for large instance sizes in less than a second.

The reminder of the paper is structured as follows. The related work is dis-

cussed in Section 2. In Section 3, the problem is formulated, while the heuristic75

is illustrated in Section 4. Section 5 presents and discusses the numerical results.

Finally, Section 6 concludes the paper and draws attention to future work.

2. Related Work

Conventional resource allocation aims at efficiently allocating computing and

storage resources, with little effort on ensuring the network performance of the80

ongoing services. Recently, new approaches have been proposed that abstract

the services in the form of virtual infrastructures for resource allocation. The

Network Function Virtualization concept brings flexibility, manageability and

reliability to the network; characteristics that are crucial for the definition and

4

further deployment of future network architectures (e.g., 5G). Consequently, the85

VNF placement has received a lot of attention in recent years. The resource

allocation problem for virtual infrastructures is tackled in [13]. The proposed

approach extends the rounding technique used for the traditional VNE prob-

lem, while minimizing mapping conflicts introduced by the virtual infrastructure

embedding problem. In [14], an optimization model is presented to solve the90

resource allocation for network service chains, by taking into account network

latency as a combination of processing, packet queuing and propagation delay.

The resource allocation problem for wireless virtual networks is formulated in

[15], and a heuristic algorithm based on the Bottom-Left algorithm is developed.

As shown, the resource utilization is increased with spectrum aggregation. An95

Integer Linear Programming (ILP) model is formulated in [16] for allocating

VNFs in order to minimize the total network related cost and the resources

fragmentation. [17] tackles the VNFs placement problem with the aim of mini-

mizing the total network load overhead, by considering the data plane delay and

the control plane overhead. In [18], two constraint-based heuristics are applied100

for the deployment of a virtualized Evolved Packet Core and the results are

shown in terms of average number of used CPU cores and aggregate through-

put. The joint problem of VNF scheduling and traffic steering is studied in [19]

as a mixed ILP (MILP), with the goal of minimizing the makespan/latency of

the overall VNFs’ schedule. A genetic algorithm-based heuristic is proposed to105

reduce the complexity of the formulated problem.

Besides resource-efficient virtual network (VN) mapping or cost-efficient VN

mapping, another important issue in cloud-based data centers is the amount of

power or energy that is consumed. Consequently, a lot of research effort has

focused on energy-aware (green) strategies. Authors in [20] propose an energy-110

aware virtual network embedding (VNE). An energy cost model is proposed

and an ILP is formulated for the energy-aware VNE problem. The authors also

proposed two efficient algorithms: a heuristic-based algorithm and a particle-

swarm based optimization algorithm. Energy-aware VNE is also considered

in [21]. The authors propose an efficient heuristic to assign virtual nodes to115

5

appropriate substrate nodes based on priority, where existing activated nodes

have higher priority for hosting newly arrived virtual nodes. [22] uses a game

theoretic based approach to consolidate resources and find a balance between

energy efficiency and network resiliency in the telecommunication domain. By

employing mixed-integer programming, [23] proposes a power-efficient resource120

provisioning technique in cloud-based data centers, while complying with SLAs.

As their optimization problem is NP-hard, the authors also propose a heuris-

tic to efficiently solve it. Authors in [24] propose an optimization method to

minimize energy consumption for a backbone network while respecting capacity

constraints on links and rule space constraints on routers. An exact ILP formu-125

lation is presented first and an efficient greedy heuristic algorithm is introduced.

The time limitation is also taken into account in [25], where the VM-placement

and routing problem is investigated to provide resource guarantees. Further,

VM-migration is exploited to improve power saving and resource utilization.

Also in this case, a fast online heuristic is developed to allocate resources on the130

basis of the request’s duration and bandwidth demand.

To the best of our knowledge, none of the above works deal with the uncer-

tainty on the input data to their optimization models or heuristics (e.g., users

requests, power consumption, CPU demand, etc.). However, it is well known

that the solution of an optimization problem often exhibits high sensitivity to135

the input data perturbations. Consequently, ignoring uncertainty in input data

can lead to solutions which are suboptimal or even infeasible [6, 9] when used in

reality. On the other hand, the theory of robust optimization has been applied

already successfully in other areas to cope with parameter uncertainty. The

OpenFlow VN design problem is addressed in [26], where traffic uncertainty140

and statistical multiplexing are taken into consideration. The problem is mod-

elled as a robust optimization program to jointly determine admission control

for VN and routing for virtual links. A robust cloud resource provisioning al-

gorithm is proposed in [27], where the over-provisioning and under-provisioning

costs are minimized and various types of uncertainty are considered. The nu-145

merical study shows that the solution obtained from their algorithm achieves

6

robustness. The problem of sharing the infrastructure of a backhaul network for

routing is tackled in [28]. In particular, the authors consider the revenue maxi-

mization problem for the physical network operator when subject to stochastic

traffic requirements of multiple virtual network operators and prescribed SLAs.150

A robust MILP is formulated to study the trade-off between revenue maximiza-

tion and the allowed level of uncertainty in the traffic demands. An original

robust cutting-plane algorithm is proposed in [29] to address the uncertain na-

ture of the jamming problem in wireless networks. A robust optimization ap-

proach for the VNE problem is investigated in [30], which is based on a robust155

MILP formulation using the Γ−robustness model. They also propose a MILP-

based two-phase heuristic but do not consider latency constraints or compute

demands of the VNFs. In our previous work [11], the problem of the robust

green VNF placement was addressed. This new work goes a step further and

proposes a heuristic that solves the problem fast also for big instances of the160

VNI, thus making our proposal suitable for online optimization. In addition

to [11], we now consider latency constraints on service chains in the problem

formulation. The heuristic then calculates network paths between the servers

hosting the communicating VNF components that have the required capacity

and fulfil those latency constraints while considering both the propagation and165

queueing induced latency.

3. Problem Formulation

We consider the VNI as the set of hardware resources (compute and network

infrastructure) hosting a certain number of VNFs inside a virtualized data cen-

ter. Each VNF is composed of service chains, which are a group of VNFCs with

a set of traffic demands and a maximum tolerable latency. In particular, the

traffic demands specify how much traffic the first component in a service chain

sends to the second one, which forwards it after some processing to the third

one and so on. The latency of a service chain is the sum of the experienced

delays on the used paths, on which all the demands of the service chain are for-

7

warded and includes the propagation latency and the latency due to queueing.

We take into account a set J of servers and a network graph G(N,E), where

N represents the set of network nodes and E denotes the links among them.

Given the family of service chains, which are defined as a specific number of

traffic demands between couples of a subset V̄ ⊂ V of VNFCs, the objective of

the problem is to allocate all the VNFCs on the servers and to find the network

routes that satisfy the traffic demands while minimizing the VNI overall power

consumption, given the latency, resource and bandwidth capacity budgets. A

compact expression of the objective function is:

min f = PV NI = Pservers + Pswitches (1)

Regarding the power model for the compute infrastructure, we assume that

the CPU of a server is the most power consuming part [31] and use a simple

model as in [32, 33]. Each server j has an idle power consumption Pidle,j (the170

power needed by the server when just powered on) and a maximum power

consumption Pmax,j (all the CPUs run at maximum utilization). In between,

the power consumption follows a linear model dependent on the CPU utilization

(due to the virtual components that consume the CPU cycles of the server where

they are allocated to).175

For the switch power consumption, we consider two components as in [34]:

a static component due to the chassis and the line cards, and a dynamic one

dependent on the powered-on ports operating at a specific rate and characterized

by a total utilization. For example, [35] provides an overview on the power

consumption of three different 48-port switch models. For a specific switch,180

they show that the power consumption is 151W when the switch is idle and all

the ports are powered down, while it increases to 184W when all the ports are

enabled and to 195W when all the ports serve traffic at 1 Gbps. As the traffic-

dependent power component is very small compared to the power consumption

due to the static components and powered on ports, in this work we neglect the185

former as in [35].

8

4. A Fast Heuristic For Green and Robust VNF Placement (GRVP)

In order to cope with data uncertainty, in this work we follow the concept

of Γ-Robustness [9], which allows taking into account an uncertainty budget,

namely a maximum number of variables that may be affected by parameter190

deviation. This allows us to trade-off between the protection level against pa-

rameter deviations and the cost of the robust solution, which is usually higher

than the one obtained in the deterministic case. Nevertheless, solving directly

a robust optimization model [11] by using an exact solver, such as IBM ILOG

CPLEX [36], may require a very long time (see also the discussion for two195

distinct robust network design problems in [4, 37]), especially if the problem

needs to be solved for a large set of Γ values. Consequently, we develop a fast

heuristic, which we call Green Robust VNFs Placement (GRVP), to solve

the formulated problem by dividing it into three sub-steps, namely the VNFCs

Placement, the Robust Heuristic and the Latency Constrained Flow Routing,200

see Fig. 1.

Figure 1: GRVP Heuristic

We briefly explain each step of the GRVP heuristic in the following. Fig. 2

illustrates the overall problem, which is to embed a set of service chains with

uncertain resource demands into a given compute and network infrastructure.

1. The first step allocates the VNFCs belonging to the different service chains205

to a group of servers, each one having a different energy profile. When

allocating each component, the objective is to obtain a balance between

9

the minimum servers’ power consumption and the total traffic injected into

the network. This is the traffic exchanged by a VNFC m1 and VNFC m2,

considering that they are allocated to different servers associated to two210

different network nodes. As can be seen from Figure 2, such total traffic

demand would be all the traffic sent from all the servers sending towards

their access switches (sum of green, red and violet demands). Would

all VNFCs be allocated to the same server, then such demand would be

zero. The allocation obtained in this step guarantees no protection from215

deviations in terms of resource demands of each VNFC, since the average

resource demand values are taken into account in this step (i.e., assuming

the resource demand is fixed and known precisely). Two outputs are

obtained from this first step: the VNFC allocation scheme (e.g. VNFC1

is allocated to server 3, VNFC3 is allocated to server 4 and VNFC2 is220

allocated to server 6) and the total network flow demands between each

node (e.g. VNFC1 is injecting green and violet traffic, etc..). To solve this

step, two methods are proposed: a classical optimization model based on

Mixed Integer Linear Programming (MILP) and a fast First Fit Clustering

Allocation (FFCA) online heuristic.225

2. The second step is a greedy heuristic to make the placement immune

from a certain number (Γ) of deviating parameters, namely the resource

demands of the VNFCs allocated on each server. For example, if server 3

could host VNFC1 at average demand -but not with the maximum demand

specified- while server 5 could host the maximum demand of VNFC1, then230

VNFC1 would migrate from server 3 to server 5. The heuristic tries to

migrate away as few VNFCs as possible from those servers in which the

remaining free-resource level is not sufficient to accommodate up to Γ

components with a maximum deviation on their nominal resource demand.

For more than one VNFCs allocated to a server, one needs to consider all235

possible combinations or the worst case. For example, let us assume

• a server j with a total CPU of 1.0 (each 0.1 stands for 1 virtual core);

10

1. Allocate VNFCs (MILP/FFCA)

2. Protect allocation (Greedy Heursitic)

3. Latency constraint routing (MILP)

l23 l45

l24

l35

l56

l46l12

l13

n1

n2

n3

n4

n5

n6

s2 (a12,a22,a32)

s1 (a11,a21,a31)

l25
l34

s7 (a17,a27,a37)

s6 (a16,a26,a36)

s5 (a15,a25,a35)

s4 (a14,a24,a34)

s3 (a13,a23,a33)

v1 v2

v2 v3

v1 v3

dem1,2

dem1,3

dem2,3

n2

n4

S1 S2

D1 D2

S3D3

S1

S2

S3 n4

D1

D2

D3

n2

n5

n2

v1

v2

v3

dem1,2

dem1,2

dem1,2
dem1,2

dem1,2

dem1,2

Demand

Power

Pidle

Pmax

Demand

Power

Pidle

Pmax

Demand

Power

Pidle

Pmax

sc1

sc2

sc3

Created by Unlicensed Version

Created by Unlicensed Version

Created by Unlicensed Version

Figure 2: VNF embedding problem into Network and Compute Infrastructure.

• two VNFCs m1 and m2 allocated on j, respectively demanding for

0.4 and 0.5 units of CPU;

• a protection factor, Γ, equal to 2;240

• a maximum deviation in the CPU demands by the components which

account for 30% of the actual demand (∆r = 30%);

then the CPU demands of m1 and m2 may deviate up to 0.52 and 0.65,

respectively. Consequently, if both VNFCs at the same time deviate,

server j can not accommodate both VNFCs any longer (i.e., the total245

CPU demand is higher than the available CPU at server j). Thus, we

need to migrate away one VNFC (and possibly power on another server

to host this VNFC) in order to make our placement robust against the

demand variations. On the other hand, if we assume Γ = 1 (i.e., we

want to protect against the deviation of only one VNFC demand), we still250

need to migrate away one VNFC, because in the worst case VNFC m2

may deviate up to 0.65 CPU units while we assume no deviation for m1

consuming 0.4, thus the total demand is again higher than the available

CPU at server j. The output of the second step will be a set of migrations

11

that are necessary in order to ensure an allocation which is immune to255

a maximum number Γ of parameter deviations. Moreover, this step also

updates the traffic matrix1.

3. Once the VNFCs are placed in a robust way in step two, we use the up-

dated traffic flow matrix for routing the traffic between the servers where

VNFCs have been placed in the previous step. Here, we only need to260

consider flows that inject traffic into the network (we do not need to route

flows between VNFCs allocated on the same host). In order to com-

pute the routing for the traffic flows, we develop a splittable and latency

constrained flow routing model. The aim is to find the minimum power

consumption in the network when determining the routing decision for265

each demand belonging to a specific service chain. To this end, we need

to guarantee that the sum of the delays suffered by each demand on the

possible paths is not greater than the one tolerated by the service chain.

To clarify, suppose we have one service chain (sc1) with three VNFCs and

the following list of demands (dem) and latency (lat, expressed in ms):270

• sc1 = {m1,m2,m3}

• dem = {(m1,m2, 10), (m2,m3, 20)}

• lat = {(sc1, 50)}

If the demand between m1 and m2 (i.e., 10) is sent on the path 1-2, with

a total latency of 9 ms, and the second demand between m2 and m3 (i.e.,275

20) is forwarded on the path {2-3, 3-4} with a total latency of 21 ms, the

total suffered latency for the service chain will be 30 ms (which is less

than 50 ms, namely the maximum tolerable latency for the service chain

sc1).

1Note that we do not perform real live migration of VNFCs at this stage. Rather, the

migrations are virtual ones in order to create a robust placement out of a placement that may

not be robust after the first step. Only after all the steps are finalized, we have calculated our

placement that will be enforced by the NFV orchestrator.

12

4.1. Step 1: Initial VNFCs Placement280

We consider a set of VNFs V to allocate on the set of servers J , which offer

a set of resources I: the VNFs are associated with a set C of service chains

involving a set M of VNFCs. Each VNFC m ∈ M can be run on a single VM

or container and we denote by r̄i,m its request for resource i ∈ I. Each server

j ∈ J is connected to one single node of the network, denoted by n(j) ∈ N and285

can provide a maximum amount ai,j of each resource i ∈ I. Given this basic

notation, we present all the parameters and the decision variables involved in

the optimization model to solve the initial VNF placement in Table 1.

Input parameters:

ai,j amount of resource i ∈ I available at server j ∈ J
r̄i,m amount of resource i ∈ I requested by VNFC m ∈M
Pidle,j idle power consumption of server j

Pmax,j maximum power consumption of server j

demm1,m2
amount of traffic to be sent from VNFC m1 to m2,

for each m1,m2 ∈M : m1 6= m2

n(j) network node in N to which the server j ∈ J is connected

Decision variables:

xj,m is equal to 1 if m ∈M is allocated to j ∈ J and 0 otherwise

yj is equal to 1 if server j ∈ J is active, 0 otherwise

aln,m is equal to 1 if m is associated to network node n, 0 otherwise

pj is the power consumption of server j ∈ J
zm1,m2
n1,n2

is 1 if the traffic from m1 to m2 is sent from node n1 to n2

∀m1,m2 ∈M : m1 6= m2, ∀n1, n2: n1 6= n2, 0 otherwise

trafn1,n2
is the total traffic between the node n1 and n2 ∀n1, n2: n1 = n2

Table 1: Initial VNF Placement Model Parameters

The Mixed Integer Linear Programming model in Table 2 allocates all the

VNFCs to the physical servers to minimize (2): 1) the sum of the final servers’290

power consumption, normalized to the total power consumption; and 2) the

traffic to be injected into the network, normalized to the total traffic demand

(tot dem, which is the sum of all the traffic demands demm1,m2). As the prob-

lem is a multi-objective optimization problem, we normalize each single objec-

tive component to obtain values between 0 and 1 which we then multiply with a295

weight, set to 0.5. This is because we want to find a good balance between min-

imizing both the total server’s power consumption and the total network flow.

13

A non-active server (yj = 0) has a 0 power consumption; on the contrary, the

power consumption is linearly increasing with the CPU utilization. The latter

is computed as the sum of the CPU units requested by each VNFC allocated to300

the server, normalized to the total available resource amount (4).

Table 2: Initial (non-robust) VNFCs Placement Model

min f = 1
2 ·

∑
j∈J

Pj
Pmax,j

+ 1
2 ·

∑
n1,n2∈N:n1 6=n2

trafn1,n2
tot dem (2)

s.t. (3)

Pj = Pidle,j · yj + (Pmax,j − Pidle,j) ·
∑

m∈M r̄i,m·xj,m
ai,j

∀j ∈ J, i ∈ I : i = CPU (4)∑
j∈J xj,m = 1 ∀m ∈M (5)

yj ≤
∑

m∈M xj,m ∀j ∈ J (6)

yj ≥ xj,m ∀j ∈ J,m ∈M (7)∑
m∈M r̄i,m · xj,m ≤ ai,j · yj ∀j ∈ J, i ∈ I (8)

aln,m =
∑

j∈J:n(j)=n xj,m ∀n ∈ N,m ∈M (9)

zm1,m2
n1,n2

≤ aln1,m1 ∀m1,m2 ∈M : m1 6= m2, ∀n1, n2: n1 6= n2 (10)

zm1,m2
n1,n2

≤ aln2,m2
∀m1,m2 ∈M : m1 6= m2, ∀n1, n2: n1 6= n2 (11)

zm1,m2
n1,n2

≥ aln1,m1
+ aln2,m2

− 1 ∀m1,m2 ∈M : m1 6= m2, ∀n1, n2 : n1 6= n2 (12)

trafn1,n2 =
∑

m1,m2∈M:m1 6=m2
demm1,m2 · z

m1,m2
n1,n2

∀n1, n2 : n1 6= n2 (13)

Constraint (5) expresses that each VNFC must be allocated to exactly one

server. Constraints (6) and (7) express that a server is active when at least

one VNFC is allocated to it, otherwise it is inactive. Moreover, (8) ensures

that the total amount of resources available at each server is not exceeded. (9)305

defines the (binary) variable aln,m, which is equal to 1 if VNFC m is allocated

to some server connected to node n, otherwise it is 0. Constraints (10-12) link

the binary variables aln1,m1 , aln2,m2 to the binary variable zm1,m2
n1,n2

, determining

if the traffic has to be routed from node n1 to node n2, depending on how the

VNFCs m1,m2 are allocated with respect to n1, n2. If either aln1,m1
or aln2,m2

310

is equal to 0, then no traffic related to VNFCs m1,m2 is sent from node n1 to

node n2 and thus the variable zm1,m2
n1,n2

is forced to 0. This also holds if both the

14

decision variables are equal to 0. In contrast, when both aln1,m1 and aln2,m2

are equal to 1, then the right hand side of (12) is equal to 1 and this forces

zm1,m2
n1,n2

to be equal to 1, expressing the fact that the amount of traffic from m1315

to m2 has to be sent from node n1 to n2. Finally, in (13), given the demands

and their directions, the traffic between any two nodes n1 and n2 is computed.

Algorithm 1 First Fit Clustering Allocation (FFCA)

1: Input: sc, servers

2: Output: allocation

3: order clustered servers in decreasing order of available resources

4: for each service chain c ∈ C do

5: for each VNFC m belonging to c do

6: first fit allocate(servers, m)

7: end for

8: end for

The first phase, which places the VNFCs in an energy/network efficient way,

is modelled as an MILP and calculates the optimal placement. However, the

runtime for large instances may be prohibitive due to its complexity. In order320

to speed up the first phase, we alternatively propose a First Fit Clustering

Allocation (FFCA) heuristic (Algorithm 1), based on a simple policy. The

heuristic iterates through all servers and checks, if they are connected to a

specific network node. The nodes are taken into account according to their

position in the network, meaning that the node with id 0 is considered first.325

The outcome is a set of clustered servers per each network node, which are then

ordered in a decreasing fashion of the available amount of considered resource.

The heuristic tries to allocate all the components of a specific service chain to

the servers connected to the same network node, with the aim of reducing the

amount of traffic to inject into the network. Algorithm 1 includes two nested330

loops over the service chains and the VNCFs and has a complexity of O(|C||M |),

where by M we denote the overall set of virtual network function components

and by C we denote the overall set of service chains.

15

4.2. A Greedy Heuristic for Robust VNFCs Placement

The placement obtained in the first phase does not take into account resource335

demand variations for the VNFCs, as it only considers the average resource

demands when performing the initial placement decisions. Consequently, the

resulting placement may lead to possible SLA violations that may occur if a cer-

tain number of VNFCs in some service chains have actual resource requirements

that deviate from their expected demand to the maximum. In [11], we proposed340

an optimization model in which the resource requirement of each VNFC is not

known precisely, but may vary within a well-defined interval. We specified a

maximum allowed deviation from the mean resource demand which may lie

within a symmetrically distributed range with an upper and lower bound. In

more details, we assume that a specific VNFC m requires an expected nominal345

amount r̄i,m of resource i (e.g. memory or CPU) associated with a symmetric

maximum deviation, r̂i,m ≥ 0. Hence the actual resource demand may vary

within the interval [r̄i,m− r̂i,m, r̄i,m + r̂i,m]. Based on the theory of robust opti-

mization [5], we protect now the allocation by allowing a maximum number of

components, given by Γ, to deviate from the expected demand at the same time.350

Consequently, after phase 1 some servers may have a resource utilization that

is not protected against demand deviations. Therefore, this step tries to move

away VNFCs from such servers in order to make room for potential demand de-

viations for a given protection level. Γ denotes the so-called uncertainty budget

of the problem, which is based on the assumption that uncertain coefficients355

in different constraints are not correlated and on the observation that it is un-

likely that all the coefficients may deviate to their worst possible value at the

same time. The pseudo-code of our heuristic which tries to migrate away as few

VNFCs as possible from a server that may run into potential contention, given

the uncertainty budget Γ, is shown in Algorithm 2. In particular, we define the360

maximum deviation of each parameter r̄i,m as a percentage (ω%) of the nominal

value (r̂i,m =
ω·r̄i,m

100).

The algorithm accepts as input the lists of VNFCs, the idle and active servers

after the initial placement, the traffic demands matrix, the uncertainty budget

16

Algorithm 2 Greedy Heuristic for Robust VNFCs Placement

1: Input: list vms, active servers, idle servers, demands, Γ, ω

2: Output: mig list, traffic matrix

3: order idle servers in decreasing order of energy efficiency

4: for each active server j do

5: vms = {}
6: get the allocated vms on server j and the resource protection for j according to Γ and ω

7: while get available resource(j) ≤ res protection do

8: if iteration ≥ max iter OR vms.size() == 0 then

9: break while

10: end if

11: success = False

12: m = get vm to migrate (list vms, vms, demands, num vms)

13: for each active server k != j do

14: if k /∈ protected list AND allocate and protect(m, k, Γ, ω) then

15: success = True

16: dest = k

17: break for

18: end if

19: end for

20: if success = False then

21: for Each idle server h do

22: if allocate and protect(m, h, Γ, ω) then

23: success = True

24: dest = h

25: break for

26: end if

27: end for

28: end if

29: if success = True then

30: migrate(m, dest), add migration in mig list and update the traffic matrix

31: if get protection space(j, Γ, ω) ≥ get free resource(j) then

32: add j in the protection list

33: end if

34: end if

35: remove m from vms

36: end while

37: end for

and the maximum relative deviation ω. It calculates the (virtual) migrations365

list and the updated traffic matrix after the (virtual) migrations are applied.

The heuristic checks each active server: for each server and its allocated VNFCs

obtained from step 1, we compute the amount of resources that are needed to

deal with a certain number Γ of components deviating at the maximum from

their nominal demand. If the number of allocated VNFCs is less than the370

uncertainty budget Γ, all the VNFCs must be considered in the computation,

17

otherwise they are ordered in a decreasing fashion and the first Γ are taken

into account (lines 4-6). If for the examined server there is not enough spare

resources in order to account for the deviating VNFCs to their maximum value,

then the algorithm tries to free the required amount of resources by migrating375

some VNFCs to other possible physical machines. The VNFCs to migrate are

selected according to the following policy. First, we order the allocated VNFCs

in terms of decreasing amount of traffic to exchange with other components

on different servers. If there are more VNFCs with the same amount of traffic

to choose from, the one with the resource demand closer to the gap to free380

on the server is selected (lines 7-11). The for cycle (line 13) tries to find an

already active server to migrate the chosen component to, by verifying if the

allocation is possible and by assuring at the same time the protection from the

total deviation (Algorithm 3). If the (virtual) migration is successful, then the

current server is stored, otherwise the search is carried out among the idle servers385

and a new server needs to be powered on (lines 13-27). If a server is eventually

found, the (virtual) migration is performed and the allocation, together with

the traffic matrix, is updated, accordingly. The source host is checked again: if

the migration has freed enough space to cope with the uncertainty budget, then

it is added to the protected servers list; if this condition does not hold, the next390

iteration of the while cycle tries to migrate a different VNFC (lines 28-36).

The complexity of Algorithm 2 is determined by the three nested loops (de-

fined in lines 4, 7 and 13) involving the set of servers, the set of virtual machines

and the set of servers. The algorithm thus has a complexity of O(|J |2|VM |),

where by VM we denote the overall set of virtual machines (each virtual ma-395

chine hosts one VNFC in our assumption) and by J the set of servers. The

complexity of the Algorithm 3 is instead determined by the presence of a single

loop over the VNCFs and the complexity is thus O(|VM |), where by VM we

denote the overall set of virtual machines.

Note that our strategy to make the placement robust by migrating away400

VNFCs from servers where there is a potential resource contention is quite con-

servative. This is because in our heuristic, the Γ-protection is ensured per each

18

Algorithm 3 Allocate and protect

1: Input: m, s, Γ, ω

2: Output: possible

3: get the allocated vms on s

4: total res = 0, possible = False

5: if vms.size() ≤ Γ then

6: stop = vms.size()

7: else

8: stop = Γ

9: end if

10: for m = 1:stop do

11: total res = total res +(r̄i,m + r̂i,m)

12: end for

13: if s.max avail res ≥ total res then

14: possible = True

15: end if

16: return possible

active server. This is in contrast to an exact Robust MILP formulation, which

is more opportunistic in considering all possible combinations at the expense of

a significant longer runtime, which is not suitable for optimization. Hence, our405

algorithm is expected to calculate solutions very fast that provide a very good

protection at the expense of higher energy cost than the theoretical optimal

solution.

4.3. Latency Constrained Flow Routing

Once the final allocation for each VNFC has been found and safeguarded410

from possible resource demand deviations, the last step consists in finding the

routing paths for the traffic demands among the VNFCs allocated on different

hosts. As the goal is minimizing the energy consumption, we try to power down

as many switches and switch ports as possible and route the traffic along those

paths that have enough capacity, while fulfilling the latency requirements of415

the service chains. Differently from the optimization model in [11], we assume

that each flow demand can be routed on splittable paths2 and the link delay

is not a static input parameter of the problem. Instead, each network link

2We argue that by using multipath transport layer and SDN, such splittable paths can be

enforced.

19

is characterized by a latency that is computed as the sum of the propagation

delay (fixed input parameter depending on the length of the link itself) and a420

queuing delay (depending on the processing load due to the traffic sent over

the link). The processing delay can be considered as an average queuing delay,

dependent on the incoming traffic rate, the configuration of the buffer size and

the link capacity. Each queue is characterized by a delay that can be modelled

according to the M/M/1/K queuing system. We apply the same procedure as in425

[38] and approximate the queueing induced latency using piecewise linearization.

The optimization model defining the Latency Constrained Flow Routing is

shown in Table 4. The objective is to minimize the total power consumption due

to all the active network devices and ports as in (14). The power consumption

of a switch is zero if it is not used (all of its ports are idle). This is the case430

in which all the VMs belonging to the service chains, which are exchanging

traffic among them, are allocated to servers packed in the same rack. Since we

are considering each rack connected to a network switch, this allocation scheme

causes all the traffic to be internal to the racks and, as a consequence, no packet

will be sent to the upper layer switch. Thus, for the model the switches will435

be inactive; otherwise, if there is traffic flowing from one rack to another, the

interested switches will be active and their consumption will be computed as

the sum of a static idle power and the consumption of the active ports (16). In

(17), the flow conservation constraint is expressed: given a node n and a traffic

demand dem, if the source component is allocated to n and the destination is440

associated to another node, the sum of the incoming flows and the exiting ones

is equal to the demand itself. The difference is equal to the opposite of the

demand if the source component is not allocated to n, whereas the destination

of the traffic is hosted on n. If n is just a transit node, the difference is zero.

The flow on a given link should be less or equal to the demand itself, if the445

link is used to carry that traffic (18). If the demand on a specific link is zero,

that link should not be active for the demand and the port can be powered off

(19). The total amount of traffic on a link is just the sum of all the demands

forwarded on it and it should not be greater than the link capacity (20-21).

20

Input Parameters:

Ps,n is the static power consumption of node n

demm1,m2
is the traffic demand with value dem from VNFC s to d

e.(src, dst, pw, lat, cap) are the source, destination, power, latency and capacity of link e

pathp,e is 1 if link e belongs to the possible path p

scc,m is 1 if the component m belongs to the service chain c

latc is the maximum tolerable latency for service chain c

Decision Variables:

yn is 1 if the node n is active, 0 otherwise

Pn is the power consumption of the node n

fdem
e is the flow demand dem on the link e

hdem
e is 1 if the link e is carrying the demand dem

He is 1 if the link e is used for any traffic

Fe is the total traffic on link e

loadn,e is the load of the node n considering its outgoing link e

del qun,e is the queueing delay of n considering the buffer on the outgoing link e

del linke is the total delay of link e

latsube,d is the suffered delay by the demand dem on the link e

path latp,d is the total delay suffered by demand dem on the possible path p

Table 3: Latency Constrained Flow Routing Model Parameters

The load of each network node buffer is computed per outgoing link: if n is the450

source node of the link e, then its load is computed as the sum of the demands

forwarded through it, normalized to the total capacity of the link; otherwise it is

set to zero (22). The constraint (23) expresses the piecewise linearisation of the

node queuing delay according to the coefficients αi and βi, which are obtained

through the linear interpolation of the curve from [38]. The node queuing delay455

is set to zero when the node is not active (24). The total delay of link e can be

computed as the sum of the latency of link e and the node queuing delay (25).

The delay a traffic demand can suffer on a link e can be expressed as

delaye,d = he,d · del linke. The problem of this equation is that it requires

the product of two decision variables: the first one indicating that the link is460

actually used for routing the demand and the total delay of the link, given by the

sum of the propagation latency and the queuing delay of its source node. That

equation can be linearised by introducing another decision variable latsube,d and

the constraints (26-27-28), where M2 is an upper bound to the latency suffered

by a demand on a link. The latency suffered by the traffic demand on a possible465

21

Table 4: Latency Constrained Flow Routing Model

Flow Routing Model

min
∑

n∈N Pn (14)

s.t. (15)

Pn = Ps,n · yn +
∑

e:e.s=nHe · e.pw ∀n (16)

∑
e:e.d=n f

d
e −

∑
e:e.s=n f

d
e =


d.dem if aln,d.s = 1 & aln,d.d = 0

−d.dem if aln,d.s = 0 & aln,d.d = 1

0 otherwise ∀n, ∀d

(17)

fd
e ≤ h

d
e · d.dem ∀e, d (18)

hd
e ≤ f

d
e ∀e, d (19)

Fe =
∑

d f
d
e ∀e (20)

Fe ≤ e.cap ·He ∀e (21)

loadn,e =


∑

d fd
e

e.cap ∀e : e.s = n

0 otherwise ∀n, d
(22)

αi + βi · loadn,e ≤ del qun,e + (1− yn) ·M1 ∀e, n (23)

del qun,e ≤M1 · yn ∀e, n (24)

del linke = e.lat+ del que.s,e ∀e (25)

latsube,d ≤ del linke ∀e, d (26)

latsube,d ≤M2 · he,d ∀e, d (27)

latsube,d − del linke ≥ −M2 · (1− he,d) ∀e, d (28)

path latp,d =
∑

e latsube,d · pathp,e ∀p, d (29)∑
p,d : (scc,d.s·scc,d.d)=1 path latp,d ≤ latc ∀c (30)

yn ≤
∑

e:e.s=n : e.d=nHe ∀n (31)

yn ≥ He ∀n, ∀e : e.s=n || e.d=n (32)

path is given by the sum of the delays on each link composing the considered

path (29). For each service chain c we need to ensure that the sum of the de-

lays suffered by each demand, belonging to c, on each used possible path is not

greater than the maximum tolerable one, latc (30). Finally, the constraints (31)

and (32) assure that a switch is active if and only if at least one of its ports is470

active, otherwise it is considered as idle. We note that if a solution is not found

22

in the last step, the heuristic is not able to modify the allocation in order to

guarantee a feasible solution; this is instead left as future work.

5. Experimental Results

5.1. Evaluation Setup475

In the numerical evaluation, we consider the deployment of a virtual Evolved

Packet Core (vEPC) network inside a VNF Infrastructure. By considering the

control plane (CP) load in terms of events per hour, we use [18] to compute the

number of instances required per each type of VNFC that are needed to sustain

the estimated hourly traffic bundle. In particular, we take into account different480

configurations for the number of VNFCs, a maximum allowed deviation from

resource demands of 40% from their nominal value, and a protection factor (Γ)

ranging from 0 (no protection) up to a maximum value. Our physical network

topology, where the service chains need to be embedded, is organised in three

layers: each rack has a single bidirectional link to the upper switch, while the485

switches in the second layer are connected in a full mesh with the ones in the

top layer. For the sake of simplicity, all the links have a capacity of 1 Gbps and

a latency randomly selected between 1, 2 and 3 ms.

As our model is to the best of our knowledge the first one to consider ro-

bustness for latency aware Green VNF placement and network embedding, we490

cannot compare it directly against related work. Instead, we provide a compre-

hensive evaluation in terms of performance, solution time and degree and price

of robustness.

5.2. Evaluation of Step 1 - FFCA heuristic

In Figure 3, we plot the energy consumption (left) and the network flows495

(right) using the placement model from Table 2 when solved by CPLEX [36]

using the well known branch-and-cut algorithm. We compare those values with

the ones obtained by the FFCA heuristic (Algorithm 1). On the x-axis we

vary the instance size configurations in terms of CP load (leading consequently

23

Figure 3: Power Consumption and Remaining Network Flow for the Optimal Place-

ment Model and the FFCA Heuristic

to more VNFCs and higher problem complexity), starting from 106 ev/h (28500

VNFCs) up to 12 ·106 ev/h (310 VNFCs). In the graph on the left, we show the

number of active servers (right y-axis), while the server’s power consumption

is shown on the left y-axis. These results show the outcome of step one of our

algorithm considering the deterministic allocation without any robustness or

latency constraints.505

The FFCA heuristic shows very encouraging results in terms of used servers

and their total power consumption. The heuristic shows even better results com-

pared to the optimal model when considering only the number of used servers

for some configurations (the improvement of the results is between 7.15% and

11.76%). But the optimal solver has better results in terms of finding a balance510

between total power consumption and remaining network traffic. This is also

due to the fact that the FFCA heuristic does not take into account the power

model of different servers, as it simply uses a first-fit allocation policy to reduce

the flows to inject into the network. The FFCA heuristic shows worse results

in terms of network flows when the control plane load is increasing because of515

the vEPC service chains’ characteristics. This is also because one component

can be part of different service chains, which makes it harder for the heuristic

to attenuate the traffic, especially when the CP load is increasing.

24

Figure 4: Comparison between the GRVP (with Optimal Placement Model) and the

original model [11] (106 ev/h, ω = 40%)

5.3. GRVP and FFCA heuristic combined

In Figure 4, we compare the GRVP heuristic (using the optimal placement520

model in Table 2 as step 1, followed by the robustifying part and the latency

aware flow routing in step 3) with the results of the model in [11]. For fair

comparison, we extended [11] to take into account latency due to increased traffic

demand with the corresponding constraints. The difference to our heuristic is

that [11] with latency extensions uses Γ robustness principle and consequently525

protects the whole placement (all servers) from demand deviations. Therefore,

our heuristic is more conservative as we protect each individual server from

demand deviations. We used Matlab [39] and the ROME toolkit [40] for solving

the extended model in [11]. Because of the high complexity involved, we can

only solve a small instance to optimality (1 · 106 ev/h), and we vary from Γ = 0530

(no protection) to the maximum protection Γ = 28.

The figure shows the number of used physical servers and their total power

consumption in the left-graph and the active switches and links in the right one,

both for the GRVP heuristic and for the model in [11] with latency aware flow

routing. It is interesting to observe that the heuristic approach and the optimal535

solver achieve very similar results when no protection is applied (Γ = 0): in

particular, the number of used servers and networking elements are the same,

while the total power is only 2% higher than the optimal one. Consequently, our

heuristic provides excellent results when no protection is desired. When Γ ≥ 4

25

the heuristic activates around 25% more servers to cope with the uncertainty540

in demands compared to the exact model. The used links and switches also

stabilize when Γ ≥ 4 to values that are 53.85% and 40% worse than the opti-

mal results, respectively. Besides, the heuristic has a total flow that is 75.31%

higher with respect to the optimal solver in the worst case (1328 traffic units

against only 328 computed by CPLEX and ROME). The difference in terms545

of power consumption is not too excessive, as the heuristic calculates place-

ments that have between 2% and 35.37% higher power consumption than the

one given by the exact model. The reason why our heuristic has higher energy

consumption compared to the extended model from [11] is mainly because the

heuristic is much more conservative as it protects each server individually from550

demand deviations, while [11] considers all potential combinations of parameter

uncertainty. Consequently, for a targeted constraint violation probability, the

heuristic requires a lower Γ compared to the optimal model. As we will see

later, the benefits of our approach is that it is suitable for online optimization

while [11] is too complex to solve reasonably sized instances in short time.

Figure 5: Results for GRVP with FFCA for 8M events and maximum deviation ω =

40%

555

In Figure 5, the results of the GRVP heuristic using FFCA allocation tech-

niques for a control plane load equal to 8 · 106 events per hour are presented.

The graph on the left shows the power consumption of the servers, network

nodes and the total power consumption of the VNF Infrastructure when Γ is

26

increased from 0 (no protection) up to 30 (beyond this value of Γ, no valuable560

changes in the results were observed). The greatest increase in terms of total

power consumption (15.22%) is observed when Γ increases from 9 to 10: the

number of links, switches and servers change from 8 to 10, 5 to 7 and 25 to 28,

respectively, to sustain the possible demand deviations. For Γ = 23 the active

servers are stable to 34, while the used switches and links settle to 7 and 10565

when Γ is equal to 10. By having a close look at these graphs, the VNI operator

can decide if it should protect its VNF deployment from more components that

may deviate in terms of resource demands, or be more power conservative con-

sequently leading to less protection in terms of potential SLA violations. The

full protection comes at a greater cost in terms of power consumption of the570

VNF Infrastructure which is 73.74% higher in comparison to the value obtained

without any protection (Γ = 0).

In Figure 6, we show the results obtained by the GRVP with FFCA for

the number of used servers, the total network flow and the number of activated

links and total power consumption of the VNF Infrastructure for different values575

of Γ and increasing CP load (4M up to 20M). As can be seen, the total power

consumption increases both for increasing protection applied and higher number

of signalling events being served.

5.4. Price of Robustness and Runtime Evaluation

Finally, we investigate the additional price to pay for robust solutions in

terms of higher energy consumption for protecting against uncertainty for a

given Γ. We solve the problem for a given Γ using our heuristic phase 1 and

2 using GRVP with FFCA without the flow routing. For the robust solution

calculated after step 2, we create 10.000 different instances of our input variables

as follows. For each instance, if a VNFC requires avr units of CPU, we modify

its demand to fall randomly within its upper and lower interval bound. After

updating the CPU utilization on each server according to the random values

calculated within the given bounds, we check the resource budget constraint

and compute the number of constraint violations due to the input parameter

27

Figure 6: Results of GRVP with FFCA for different configurations (ω = 40%)

Figure 7: Degree and Price of Robustness for GRVP with FFCA for different protection

levels

28

variation within the given bounds. We calculate the robustness degree as:

robustness = 1− #violations

#runs
(33)

In addition, we calculate the price of robustness as the increase in the objective

function (i.e., the total server power consumption) compared to the best value

achieved when no protection is applied (Γ = 0):

price(Γ=x) =
total power(Γ=x) − total power(Γ=0)

total power(Γ=0)
(34)

Fig. 7 shows the robustness degree (in blue) and the price of robustness (in red)580

as the protection factor increases for four different configurations of the vEPC:

5, 10, 15 and 20 M ev/h for different protection level Γ from 0 to 10. When

Γ = 0, we do not protect against uncertainty and thus no additional resources

are needed. This results in the lowest cost also having the lowest protection

factor. When Γ increases, more servers and links are activated to protect the585

allocation from the demand deviations leading to higher energy consumption.

For example, when Γ = 6 and ev/h=20M, we need around 15% more energy

to protect at a robustness degree of around 20%. Interestingly, when Γ = 7,

the degree of robustness is 100%, meaning that no SLA violations occur as the

servers are all properly overprovisioned for the given workload to cope with590

demand uncertainty. This is due to the conservative nature of our heuristic.

Selecting a proper Γ is up to the Cloud Operator as the protection factor

achieves a trade-off between additional costs in terms of energy consumption and

the desired degree of robustness. A more conservative NFVI operator would like

to protect its VNFI more from demand deviations, and consequently would se-595

lect a larger Γ. However, more servers and network elements would be needed

leading to higher costs to run the infrastructure. A more opportunistic operator

would select a lower Γ leading to a potential higher constraint violation prob-

ability, which may lead to increased resource contention and ultimately also to

SLA violations at the benefit of significant cost savings.600

Finally, in figure 8 we show the execution times of the heuristic in (Algorithm

2). In particular, we fix the protection level Γ to 5 and plot the execution times

29

Figure 8: Execution Times for GRVP with FFCA for different problem sizes

starting from 1 million events per hour up to 60 millions events (1800 VMs in

total). As shown in the figure, the heuristic performs very well and we are able

to calculate a robust solution within 0.268s for very large instance sizes.605

6. Conclusions and Future Work

In this paper, we propose a fast three-phase heuristic to tackle the problem

of designing a power efficient Virtual Network Infrastructure under uncertainty

of resource demands. In the first phase, we solve the problem of placing the

VNF components on the servers in an energy efficient way while at the same610

time minimizing the resulting traffic matrix, without considering robustness.

We propose both an exact method and a fast heuristic based on clustering and

greedy strategies. The resulting initial placement is made robust in phase two

by exchanging VNFCs among servers in a specific way that protects the servers

from resource demand deviations of individual VNFCs, while at the same time615

trying to power on the minimum amount of servers and minimizing the total

traffic matrix injected into the network. Finally, in step three, we solve the

latency and capacity constrained routing problem to embed the service chain

traffic into the substrate network. We consider queueing induced latency which

depends on the amount of flows routed on a link.620

Our approach can help a Telecom Operator in the planning decision making

30

by finding a balance between protection from demand uncertainty of the VNFs

and a higher cost in terms of additional energy consumption required due to

more servers and network elements needed to protect from uncertainty. We show

that our heuristic can solve large instances and achieves reasonable results with625

respect to the optimal solution. Our future work will consist in improving the

heuristic to reduce the gap from the optimal solution, also by considering the

integration of local search strategies such as greedy randomized adaptive search

(GRASP) into the algorithm. Another important future step is to implement

the fast heuristic into the orchestrator of an ETSI MANO framework for NFV630

Orchestration.

Acknowledgement

Part of this work has been funded by the Knowledge Foundation of Swe-

den through the Profile HITS, by the Spanish Government and ERDF through

CICYT project TEC2013-48099-C2-1-P, and by the German Federal Ministry635

of Education and Research (BMBF grant 05M2013 - VINO: Virtual Network

Optimization).

References

[1] Chiosi M., et. al., Network Functions Virtualisation - Introductory white

paper (2015).640

URL https://portal.etsi.org/nfv/nfv_white_paper.pdf

[2] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,

S. Banerjee, N. McKeown, Elastictree: Saving energy in data center net-

works, in: Proceedings of the 7th USENIX Conference on Networked Sys-

tems Design and Implementation, NSDI’10, USENIX Association, Berke-645

ley, USA, 2010, pp. 17–17.

[3] T. Bauschert, C. Büsing, F. D’Andreagiovanni, A. M. Koster, M. Kutschka,

U. Steglich, Network planning under demand uncertainty with robust op-

31

https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf

timization, IEEE Communications Magazine 52 (2) (2014) 178 – 185.

doi:10.1109/MCOM.2014.6736760.650

[4] F. D’Andreagiovanni, J. Krolikowski, J. Pulaj, A fast hybrid primal heuris-

tic for multiband robust capacitated network design with multiple time pe-

riods, App. Soft Comp. 26 (2015) 497–507. doi:10.1016/j.asoc.2014.

10.016.

[5] D. Bertsimas, D. B. Brown, C. Caramanis, Theory and applications of655

robust optimization, SIAM Rev. 53 (3) (2011) 464–501. doi:10.1137/

080734510.

URL http://dx.doi.org/10.1137/080734510

[6] Ben-Tal A. and El Ghaoui L. and Nemirovski, A.S., Robust Optimiza-

tion. Princeton University Press, Princeton Series in Applied Mathematics660

(2009).

[7] C. Büsing, F. D’Andreagiovanni, New Results about Multi-band Uncer-

tainty in Robust Optimization, in: R. Klasing (Ed.), Experimental Al-

gorithms, Vol. 7276 of LNCS, Springer, Heidelberg, 2012, pp. 63–74.

doi:10.1007/978-3-642-30850-5_7.665

[8] D. Bertsimas, S. M., The Price of Robustness, Oper. Res. 52 (2004) 35–53.

doi:10.1287/opre.1030.0065.

[9] D. Bertsimas, A. Thiele, Robust and Data-Driven Optimization: Modern

Decision-Making Under Uncertainty. INFORMS Tutorials in Operations

Research: Models, Methods, and Applications for Innovative Decision Mak-670

ing (2006).

[10] E. Zola, A. J. Kassler, Optimising for Energy or Robustness? Trade-offs

for VM Consolidation in Virtualized Datacenters under Uncertainty, Opti-

mization Letters (2016) 1–22.doi:10.1007/s11590-016-1065-x.

[11] A. Marotta, A. J. Kassler, A power efficient and robust virtual network675

functions placement problem, in: 28th International Teletraffic Congress

32

http://dx.doi.org/10.1109/MCOM.2014.6736760
http://dx.doi.org/10.1016/j.asoc.2014.10.016
http://dx.doi.org/10.1016/j.asoc.2014.10.016
http://dx.doi.org/10.1016/j.asoc.2014.10.016
http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1007/978-3-642-30850-5_7
http://dx.doi.org/10.1287/opre.1030.0065
http://dx.doi.org/10.1007/s11590-016-1065-x
http://i-teletraffic.org/_Resources/Persistent/b4860cf049ff9b40b2d216e277a2e2a5d965467b/Marotta2016.pdf
http://i-teletraffic.org/_Resources/Persistent/b4860cf049ff9b40b2d216e277a2e2a5d965467b/Marotta2016.pdf
http://i-teletraffic.org/_Resources/Persistent/b4860cf049ff9b40b2d216e277a2e2a5d965467b/Marotta2016.pdf

(ITC 28), Würzburg, Germany, 2016.

URL http://i-teletraffic.org/_Resources/Persistent/

b4860cf049ff9b40b2d216e277a2e2a5d965467b/Marotta2016.pdf

[12] G. Joshi, E. Soljanin, G. Wornell, Queues with Redundancy: Latency-680

Cost Analysis, SIGMETRICS Perform. Eval. Rev. 43 (2) (2015) 54–56.

doi:10.1145/2825236.2825258.

[13] R. Yu, G. Xue, X. Zhang, Towards Min-Cost Virtual Infrastructure Embed-

ding, in: 2015 IEEE Global Communications Conference (GLOBECOM),

2015, pp. 1–6. doi:10.1109/GLOCOM.2015.7416953.685

[14] A. Baumgartner, V. S. Reddy, T. Bauschert, Combined Virtual Mobile

Core Network Function Placement and Topology Optimization with La-

tency Bounds, in: Software Defined Networks (EWSDN), 2015 Fourth Eu-

ropean Workshop on, 2015, pp. 97–102. doi:10.1109/EWSDN.2015.68.

[15] F. T. Hsu, C. H. Gan, Resource Allocation with Spectrum Aggregation for690

Wireless Virtual Network Embedding, in: Vehicular Technology Conference

(VTC Fall), 2015 IEEE 82nd, 2015, pp. 1–5. doi:10.1109/VTCFall.2015.

7391117.

[16] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, On Orchestrating

Virtual Network Functions in NFV, CoRR abs/1503.06377.695

URL http://arxiv.org/abs/1503.06377

[17] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, K. Hoffmann, Applying

NFV and SDN to LTE Mobile Core Gateways, the Functions Placement

Problem, in: Proceedings of the 4th Workshop on All Things Cellular:

Operations, Applications, & Challenges, AllThingsCellular ’14, ACM, New700

York, NY, USA, 2014, pp. 33–38. doi:10.1145/2627585.2627592.

[18] F. Z. Yousaf, P. Loureiro, F. Zdarsky, T. Taleb, M. Liebsch, Cost Anal-

ysis of Initial Deployment Strategies for Virtualized Mobile Core Net-

33

http://i-teletraffic.org/_Resources/Persistent/b4860cf049ff9b40b2d216e277a2e2a5d965467b/Marotta2016.pdf
http://i-teletraffic.org/_Resources/Persistent/b4860cf049ff9b40b2d216e277a2e2a5d965467b/Marotta2016.pdf
http://i-teletraffic.org/_Resources/Persistent/b4860cf049ff9b40b2d216e277a2e2a5d965467b/Marotta2016.pdf
http://dx.doi.org/10.1145/2825236.2825258
http://dx.doi.org/10.1109/GLOCOM.2015.7416953
http://dx.doi.org/10.1109/EWSDN.2015.68
http://dx.doi.org/10.1109/VTCFall.2015.7391117
http://dx.doi.org/10.1109/VTCFall.2015.7391117
http://dx.doi.org/10.1109/VTCFall.2015.7391117
http://arxiv.org/abs/1503.06377
http://arxiv.org/abs/1503.06377
http://arxiv.org/abs/1503.06377
http://arxiv.org/abs/1503.06377
http://dx.doi.org/10.1145/2627585.2627592

work Functions, IEEE Communications Magazine 53 (12) (2015) 60–66.

doi:10.1109/MCOM.2015.7355586.705

[19] L. Qu, C. Assi, K. Shaban, Delay-Aware Scheduling and Resource Opti-

mization With Network Function Virtualization, IEEE Transactions on

Communications 64 (9) (2016) 3746–3758. doi:10.1109/TCOMM.2016.

2580150.

[20] S. Su, Z. Zhang, A. X. Liu, X. Cheng, Y. Wang, X. Zhao, Energy-710

Aware Virtual Network Embedding, IEEE/ACM Transactions on Network-

ing 22 (5) (2014) 1607–1620. doi:10.1109/TNET.2013.2286156.

[21] S. Jia, G. Jiang, P. He, J. Wu, Efficient Algorithm for Energy-aware Virtual

Network Embedding, Tsinghua Science and Technology 21 (4) (2016) 407–

414. doi:10.1109/TST.2016.7536718.715

[22] A. P. Bianzino, C. Chaudet, D. Rossi, J. L. Rougier, S. Moretti, The Green-

Game: Striking a Balance between QoS and Energy Saving, in: Teletraffic

Congress (ITC), 2011 23rd International, 2011, pp. 262–269.

[23] G. Sun, V. Anand, D. Liao, C. Lu, X. Zhang, N. H. Bao, Power-Efficient

Provisioning for Online Virtual Network Requests in Cloud-Based Data720

Centers, IEEE Systems Journal 9 (2) (2015) 427–441. doi:10.1109/

JSYST.2013.2289584.

[24] F. Giroire, J. Moulierac, T. K. Phan, Optimizing Rule Placement in

Software-Defined Networks for Energy-aware Routing, in: 2014 IEEE

Global Communications Conference, 2014, pp. 2523–2529. doi:10.1109/725

GLOCOM.2014.7037187.

[25] A. Dalvandi, M. Gurusamy, K. C. Chua, Time-Aware VMFlow Place-

ment, Routing, and Migration for Power Efficiency in Data Centers, IEEE

Transactions on Network and Service Management 12 (3) (2015) 349–362.

doi:10.1109/TNSM.2015.2443838.730

34

http://dx.doi.org/10.1109/MCOM.2015.7355586
http://dx.doi.org/10.1109/TCOMM.2016.2580150
http://dx.doi.org/10.1109/TCOMM.2016.2580150
http://dx.doi.org/10.1109/TCOMM.2016.2580150
http://dx.doi.org/10.1109/TNET.2013.2286156
http://dx.doi.org/10.1109/TST.2016.7536718
http://dx.doi.org/10.1109/JSYST.2013.2289584
http://dx.doi.org/10.1109/JSYST.2013.2289584
http://dx.doi.org/10.1109/JSYST.2013.2289584
http://dx.doi.org/10.1109/GLOCOM.2014.7037187
http://dx.doi.org/10.1109/GLOCOM.2014.7037187
http://dx.doi.org/10.1109/GLOCOM.2014.7037187
http://dx.doi.org/10.1109/TNSM.2015.2443838

[26] S. S. W. Lee, K. Y. Li, K. Y. Chan, Y. C. Chung, G. H. Lai, Design of

Bandwidth Guaranteed OpenFlow Virtual Networks Using Robust Opti-

mization, in: 2014 IEEE Global Communications Conference, 2014, pp.

1916–1922. doi:10.1109/GLOCOM.2014.7037088.

[27] S. Chaisiri, B.-S. Lee, D. Niyato, Robust Cloud Resource Provisioning for735

Cloud Computing Environments, in: Service-Oriented Computing and Ap-

plications (SOCA), 2010 IEEE International Conference on, 2010, pp. 1–8.

doi:10.1109/SOCA.2010.5707147.

[28] C. Caillouet, D. Coudert, A. Kodjo, Robust Optimization in Multi-

Operators Microwave Backhaul Networks, in: Global Information Infras-740

tructure Symposium - GIIS 2013, 2013, pp. 1–6. doi:10.1109/GIIS.2013.

6684375.

[29] F. D’Andreagiovanni, Revisiting Wireless Network Jamming by SIR-based

Considerations and Multiband Robust Optimization, Optimization Letters

9 (8) (2014) 1495–1510. doi:10.1007/s11590-014-0839-2.745

[30] S. Coniglio, A. M. C. A. Koster, M. Tieves, Virtual Network Embedding

under Uncertainty: Exact and Heuristic Approaches, in: Design of Reliable

Communication Networks (DRCN), 2015 11th International Conference on

the, 2015, pp. 1–8. doi:10.1109/DRCN.2015.7148978.

[31] P. R. Panda, B. V. N. Silpa, A. Shrivastava, K. Gummidipudi, Power-750

efficient System Design, 1st Edition, Springer Publishing Company, Incor-

porated, 2010.

[32] S. H. Lim, B. Sharma, G. Nam, E. K. Kim, C. R. Das, Mdcsim: A multi-tier

data center simulation platform, in: 2009 IEEE International Conference on

Cluster Computing and Workshops, 2009, pp. 1–9. doi:10.1109/CLUSTR.755

2009.5289159.

[33] M. Pedram, I. Hwang, Power and performance modeling in a virtualized

server system, in: 2010 39th International Conference on Parallel Pro-

35

http://dx.doi.org/10.1109/GLOCOM.2014.7037088
http://dx.doi.org/10.1109/SOCA.2010.5707147
http://dx.doi.org/10.1109/GIIS.2013.6684375
http://dx.doi.org/10.1109/GIIS.2013.6684375
http://dx.doi.org/10.1109/GIIS.2013.6684375
http://dx.doi.org/10.1007/s11590-014-0839-2
http://dx.doi.org/10.1109/DRCN.2015.7148978
http://dx.doi.org/10.1109/CLUSTR.2009.5289159
http://dx.doi.org/10.1109/CLUSTR.2009.5289159
http://dx.doi.org/10.1109/CLUSTR.2009.5289159

cessing Workshops (ICPPW), IEEE Computer Society, 2010, pp. 520–526.

doi:doi.ieeecomputersociety.org/10.1109/ICPPW.2010.76.760

[34] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, A. Zomaya, Energy-efficient

Data Replication in Cloud Computing Datacenters, Cluster Computing

18 (1) (2015) 385–402. doi:10.1007/s10586-014-0404-x.

[35] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,

S. Banerjee, N. McKeown, Elastictree: Saving energy in data center net-765

works, in: Proceedings of the 7th USENIX Conference on Networked Sys-

tems Design and Implementation, NSDI’10, USENIX Association, Berke-

ley, CA, USA, 2010, pp. 17–17.

URL http://dl.acm.org/citation.cfm?id=1855711.1855728

[36] IBM Cplex (Last accessed: April 2017).770

URL http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/

[37] F. D’Andreagiovanni, A. Nardin, Towards the fast and robust optimal de-

sign of wireless body area networks, App. Soft Comp. 37 (2015) 971–982.

doi:10.1016/j.asoc.2015.04.037.775

[38] O. Dobrijevic, A. J. Kassler, L. Skorin-Kapov, M. Matijasevic, Q-POINT:

QoE-Driven Path Optimization Model for Multimedia Services, Springer

International Publishing, Cham, 2014, pp. 134–147. doi:10.1007/

978-3-319-13174-0_11.

[39] Matlab (Last accessed: April 2017).780

URL http://se.mathworks.com/products/matlab

[40] Rome Robust Optimization Made Easy User Guide (Last accessed: April

2017).

URL http://www.robustopt.com/references/ROME_Guide_1.0.pdf

36

http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/ICPPW.2010.76
http://dx.doi.org/10.1007/s10586-014-0404-x
http://dl.acm.org/citation.cfm?id=1855711.1855728
http://dl.acm.org/citation.cfm?id=1855711.1855728
http://dl.acm.org/citation.cfm?id=1855711.1855728
http://dl.acm.org/citation.cfm?id=1855711.1855728
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://dx.doi.org/10.1016/j.asoc.2015.04.037
http://dx.doi.org/10.1007/978-3-319-13174-0_11
http://dx.doi.org/10.1007/978-3-319-13174-0_11
http://dx.doi.org/10.1007/978-3-319-13174-0_11
http://se.mathworks.com/products/matlab
http://se.mathworks.com/products/matlab
http://www.robustopt.com/references/ROME_Guide_1.0.pdf
http://www.robustopt.com/references/ROME_Guide_1.0.pdf

	Introduction
	Related Work
	Problem Formulation
	A Fast Heuristic For Green and Robust VNF Placement (GRVP)
	Step 1: Initial VNFCs Placement
	A Greedy Heuristic for Robust VNFCs Placement
	Latency Constrained Flow Routing

	Experimental Results
	Evaluation Setup
	Evaluation of Step 1 - FFCA heuristic
	GRVP and FFCA heuristic combined
	Price of Robustness and Runtime Evaluation

	Conclusions and Future Work

