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Department of Mathematics
Universitat Politècnica de Catalunya
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Abstract

An old conjecture of Ringel states that every tree with m edges decom-
poses the complete graph K2m+1. The best known lower bound for the order
of a complete graph which admits a decomposition by every given tree with
m edges is O(m3). We show that asymptotically almost surely a random tree
with m edges and p = 2m+ 1 a prime decomposes K2m+1(r) for every r ≥ 2,
the graph obtained from the complete graph K2m+1 by replacing each vertex
by a coclique of order r. Based on this result we show, among other results,
that a random tree with m + 1 edges a.a.s. decomposes the compete graph
K6m+5 minus one edge.
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2000 MSC: 05C70

1. Introduction

Given two graphs H and G we say that H decomposes G if G is the
edge–disjoint union of isomorphic copies of H. The following is a well–known
conjecture of Ringel.

Conjecture 1 (Ringel [17]). Every tree with m edges decomposes the com-
plete graph K2m+1.

The conjecture has been verified by a number of particular classes of trees,
see the extensive survey by Gallian [11]. Recently, there have been substantial
contributions in the area of graph decomposition problems which are partly
motivated by Conjecture 1 leading to impressive results. Böttcher, Hladký,
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Piguet and Taraz [3] show that, for any ε > 0 and any ∆, every family of trees
with orders at most n maximum degree at most ∆ and at most

(
n
2

)
edges in

total packs into the complete graph K(1+ε)n for every sufficiently large n. This
provides an approximate result to several tree packing conjectures including
Conjecture 1. The result was extended by Mesuti, Rödl and Schacht [16]
from trees to general minor closed classes of bounded degree graphs and by
Ferber, Lee and Moussat [9] to separable classes of bounded degree graphs.
Recently, Joos, Kim, Kühn and Osthus [10] give a general result on packing
trees which in particular definitely proves Conjecture 1 for bounded degree
trees and sufficiently large m.

In this paper we aim at results for almost all trees. By a random tree of
size m we mean an unlabelled tree chosen uniformly at random among all the
unlabelled trees with m edges. Drmota and the author [8] used structural
results on random trees to show that asymptotically almost surely (a.a.s.) a
random tree with m edges decomposes the complete bipartite graph K2m,2m,
thus providing an aproximate result to another decomposition conjecture
by Graham and Häggkvist (see e.g. [12]) which asserts that the complete
bipartite graph Km,m can be decomposed by any given tree with m edges.

Let g(m) be the smallest integer n such that any tree with m edges
decomposes the complete graph Kn. It was shown by Yuster [20] that g(m) =
O(m10) and the upper bound was reduced by Kezdy and Snevily [14] to
g(m) = O(m3). Since K2m,2m decomposes the complete graph K8m2+1 (see
Snevily [19]), the above mentioned result on the decomposition of K2m,2m

shows that a tree withm edges decomposes a.a.s. the complete graphK8m2+1,
giving a quadratic bound on m for almost all trees. Our aim is to reduce this
quadratic bound to linear getting much closer to Ringel’s conjecture.

For positive integers n, r we denote by Kn(r) the blow–up graph obtained
from the complete graph Kn by replacing each vertex by a coclique with order
r and joining every pair of vertices which do not belong to the same coclique.
Our main result is the following one.

Theorem 1. For every r ≥ 2, asymptotically almost surely a random tree
with m edges such that p = 2m+ 1 is a prime decomposes K2m+1(r).

Theorem 1 will be derived from the following deterministic result which
considers trees with sufficiently many leaves.
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Theorem 2. Let p > 10 be a prime and r ≥ 2 an integer. Let T be a tree
with m = (p− 1)/2 edges. If T has at least 2m/5 leaves, then T decomposes
K2m+1(r).

As an application of Theorem 1 we obtain the following corollaries, which
are approximate results for random trees of Ringel’s conjecture. The follow-
ing statement is a direct consequence of Theorem 1 with r = 2.

Corollary 1. A random tree with m edges such that p = 2m+ 1 is a prime
a.a.s. decomposes K2m+2 \M , where M is any perfect matching.

The next theorems also follow from Theorem 2 with some additional work.

Theorem 3. A random tree with m edges such that p = 2m− 1 is a prime
a.a.s. decomposes K6m−1 \ e, where e is an edge of the complete graph. .

The following extension of Theorem 3 can be seen as an approximation
to a more general conjecture by Ringel which states that every tree with m
edges decomposes the complete graph Krm+1 whenever r ≥ 2 and m are not
both odd.

Theorem 4. For each odd number r ≥ 3 a random tree with m edges such
that p = 2m− 1 is a prime a.a.s. decomposes

K2rm−(r−1)/2 \K(r+1)/2.

The paper is organised as follows. In Section 2 we introduce the notion of
rainbow embeddings in connection to graph decompositions and give some
results which provide a rainbow embedding of a given tree in an appropriate
Cayley graph. The embedding techniques use the polynomial method of Alon
[1] which introduces the condition that p = 2m+1 is a prime in the statement
of Theorem 1. The polynomial method was already used in this problem by
Kézdy [13], who proved Conjecture 1 for the class of so–called stunted trees.
The same method was used in [15] for a closely related problem. However,
these techniques are not enough to ensure that the rainbow embedded copy
is isomorphic to the given tree. In order to complete the proof of Theorem
1, in Section 3 we consider the blow up of the complete graph, extend to
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it the rainbow embedding obtained in Section 2 and perform some local
modifications to obtain a true decomposition of the graph into copies of the
given tree. The strategy of the proof is outlined in the beginning of Section
3. The proofs of Theorem 1 and of the Corollaries 1, 3 and 4 are given in
Section 4.

2. Rainbow embeddings

The general approach to show that a tree T decomposes a complete graph
consists in showing that T cyclically decomposes the corresponding graph.
We first recall the basic principle behind this approach in slightly different
terminology from the usual one in the labeling literature [11], by introducing
rainbow embeddings in Cayley graphs. Rainbow embeddings of a graph H
in a Cayley graph X = Cay(G,S) naturally lead to decompositions of X by
H by the action of the base group G. At this point we use the polynomial
method to obtain rainbow embeddings of a given tree. This is the purpose
of this Section. As it happens, the goal is only partially fulfilled because the
embedded graph may be not isomorphic to the tree, a problem that we will
address in Section 3.

Let X be a directed graph with a coloring of the arcs. A rainbow embed-
ding of a graph H into X is an injective homomorphism f of some orientation−→
H of H in X such that no two directed edges of f(

−→
H ) have the same color.

Let X = Cay(G,S) be a Cayley digraph on an abelian group G with
respect to an antisymmetric subset S ⊂ G (namely, S ∩ −S = ∅.) We
consider X as an arc–colored directed graph, by giving to each arc (x, x+ s),
x ∈ G, s ∈ S, the color s. The underlying graph of X is the graph obtained
from X by ignoring the orientation of the arcs and their colors.

Lemma 1. Let G be an abelian group and S an antisymmetric subset of G.
If a graph H admits a rainbow embedding in the Cayley directed graph X =
Cay(G,S) then the underlying graph of X contains n edge–disjoint copies of
H. In particular, if H has |S| edges then H decomposes the underlying graph
of X.

Proof. Let f : H → X be a rainbow embedding. For each a ∈ G the
translation x→ x+ a, x ∈ G, is an automorphism of X which preserves the
colors and has no fixed points. Since S is antisymmetric, each translation

sends f(
−→
H ) to an isomorphic copy which is edge–disjoint from it. Thus the
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sets of translations for all a ∈ G give rise to n edge–disjoint copies of
−→
H in

X. By ignoring orientations and colors, we thus have n edge disjoint copies
of H in the underlying graph of X. In particular, if H has |S| edges then H
decomposes the underlying graph of X. 2

The proof of the main Theorem uses the Lemma 1 for a rainbow subgraph
of an appropriate Cayley graph X. Instead of finding a rainbow embedding
of a tree T we will find a rainbow edge–injective homomorphism of T in X in
two steps, first embedding T0, the tree with some leaves removed, and then
embedding the remaining forest F of stars to complete T .

For the first step we use the the so–called Combinatorial Nullstellensatz
of Alon [1] that we next recall.

Theorem 5 (Combinatorial Nullstellensatz). Let P ∈ F [x1, . . . , xk] be
a polynomial of degree d in k variables with coefficients in a field F .

If the coefficient of the monomial xd11 · · ·x
dk
k , where

∑
i di = d, is nonzero,

then P takes a nonzero value in every grid A1×· · ·×Ak ⊂ F k with |Ai| > di,
for 1 ≤ i ≤ k. 2

In Lemma 2 below we use Theorem 5 in a way inspired by Kézdy [13].
A peeling ordering of a tree T is an ordering x0, . . . , xm of V (T ) such that
for every 0 ≤ t ≤ m the induced subgraph T [x0, . . . , xt] is a subtree of T .
We assume that T is an oriented tree rooted at x0 with all its edges oriented
downwards from the root x0.

We denote by Zp the finite field with p elements, p a prime. Lemma 2
shows that any tree with k edges admits a rainbow embedding in a Cayley
graph Cay(Zp, S) for some S with |S| = k provided that k is not too large
with respect to p.

Lemma 2. Let p > 10 be a prime and T a tree with k < 3(p− 1)/10 edges.
There is an antisymmetric set S ⊂ Z∗p with |S| = k such that T admits a
rainbow embedding in Cay(Zp, S).

Proof. Let x0, x1, . . . , xk be a peeling ordering of T . Label the edges
of T by variables y1, . . . , yk such that the edge labelled yi joins xi with
T [x0, x1, . . . , xi−1], 0 < i ≤ k. For each i we denote by T (i) the set of
subscripts j such that the edges yj lie in the unique path from x0 to xi in T .
Consider the polynomial P ∈ Zp[y1, . . . , yk] defined as

P (y1, . . . , yk) =
∏

1≤i<j≤k

(y2j − y2i )
∏

0≤i<j≤k

(
∑
r∈T (i)

yr −
∑
s∈T (j)

ys),
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where T (0) = ∅ and
∑

r∈T (0) yr = 0. The polynomial P has degree

2

(
k

2

)
+

(
k + 1

2

)
=

3k(k − 1)

2
+ k.

Suppose that P (a1, a2, · · · , ak) 6= 0 for some point (a1, . . . , ak) ∈ (Z∗p)k.
Then, since the first factor Q =

∏
i<j(y

2
i −y2j ) of P is nonzero at (a1, . . . , ak),

we have ai 6= ±aj for each pair i 6= j. Hence the elements a1, . . . , ak are
pairwise distinct and the set S = {a1, . . . , ak} is antisymmetric.

Moreover, since the second factor R =
∏

i<j(
∑

yr∈T (i) yr −
∑

yr∈T (j) yr) is

nonzero at (a1, . . . , ak), the map f : V (T )→ Cay(Zp, S) defined as

f(xi) =
∑
r∈T (i)

ar, 0 ≤ i ≤ k,

is injective and the edge xixi′ in T joining xi with T [x0, x1, . . . , xi−1] is sent
to f(xi) − f(xi′) = ai (the value of the variable yi associated to this edge).
Therefore f is a rainbow embedding of T in Cay(Zp, S). Hence the Theorem
will be proved if we show that P is not identically zero in (Z∗p)k.

Let us show that P is nonzero at some point of (Z∗p)k. To this end we
consider the monomial

M = y
3(k−1)+1
k y

3(k−2)+1
k−1 · · · y11,

in P . The monomial M has maximum degree 3k(k − 1)/2 + k and it can be
obtained in the expansion of P by collecting yk in all the factors of Q where
it appears, giving y

2(k−1)
k , and also in all terms of R where it appears, which,

since yk is a leaf of T , gives ykk . This is the unique way to obtain y
3(k−1)+1
k in

a monomial of P . Thus the coefficient of y
3(k−1)+1
k in P is

[y
3(k−1)+1
k ]P = ±Pk−1,

where

Pk−1(y1, . . . , yk−1) =
∏

1≤i<j≤k−1

(y2i − y2j )
∏

0≤i<j≤k−1

(
∑
r∈T (i)

yr −
∑
s∈T (j)

ys).

By iterating the same argument we conclude that the coefficient in P of

y
3(k−1)+1
k y

3(k−2)+1
k−1 · · · y11
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is ±1 and, in particular, different from zero. Since 3(k−1)+1 < 9p/10 < p−1
for p > 10, we conclude from Theorem 5 that P takes a nonzero value in
(Z∗p)k. This concludes the proof. 2

In the second step we try to obtain a rainbow embedding of a forest of
stars. We still use Theorem 5, or rather the following consequence derived
from it by Alon [2].

Theorem 6 (Alon [2]). Let p be a prime and k < p. For every sequence
a1, . . . , ak (possibly with repeated elements) and every set {b1, . . . , bk} of el-
ements of Zp there is a permutation σ of {1, 2, . . . , k} such that the sums
a1 + bσ(1), . . . , ak + bσ(k) are pairwise distinct. 2

Let F be a forest of stars. If a component of F has more than one edge,
its center is the vertex of degree largest than one and its endvertices are the
vertices of degree one. If a component consists of a single edge, we distinguish
one vertex as its center and the other one as its endvertex.

One consequence of Theorem 6 is that, for every antisymmetric set S ⊂ Zp
with h elements, every forest of stars with h edges admits an edge–injective
rainbow map in Cay(Zp, S). Moreover, the centers of the stars in the forest
can be placed at prescribed vertices. The following is the precise statement,
which specifies how close the image of the injective map is to the original
forest.

Lemma 3. Let p be a prime. Let F be a forest of k stars centered at
x1, . . . , xk and h ≤ (p − 1)/2 edges. Let S ⊂ Z∗p be an antiymmetric set
with |S| = h.

Every injection f : {x1, . . . , xk} → Zp can be extended to a rainbow edge-
injective homomorphism, f1 : F −→ Cay(Zp, S) such that f1(F ) is a directed
graph with maximum indegree one.

Proof. Let hi be the number of edges of the star centered at xi in F ,∑
i hi = h. Let y1, . . . , yh denote the endvertices of F , where yj is adjacent to

xi whenever
∑i−1

r=1 hr < j ≤
∑i

r=1 hr. Orient the edges of F from the centers
of the stars to their endvertices.

Consider the sequence (f(x1)
(h1), . . . , f(xk)

(hk)), where hi denotes the
multiplicity of f(xi) in the sequence.

By Theorem 6 there is an ordering s1, . . . , sh of the elements of S such
that for any 1 ≤ i ≤ k and any

∑i−1
r=1 hr < j ≤

∑i
r=1 hr, the sums

f(xi) + sj,
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are pairwise distinct.
For each i and each

∑i−1
r=1 hr < j ≤

∑i
r=1 hr,, we obtain the desired

rainbow embedding by defining,

f1(xi) = f(xi), f1(yj) = f(xi) + sj.

The edges of the star receive the different colors s1, . . . , sh, so the map f1 is
rainbow. Since all sums are distinct, no two endvertices of F are sent to the
same vertex by f1 and each of them has indegree one in f1(F ); by the same
reason, every f1(xi) can coincide with at most one f1(yj) for some yj not in
the same star as xi. Thus the image f1(F ) has indegree at most one. 2

3. The decomposition

In this Section we prove Theorem 2. The strategy of the proof is as
follows. We decompose the given tree T into a tree T0 and a forest F of stars
centred at some vertices of T0,

T = T0 ⊕ F.
By using Lemma 2 we find a rainbow embedding of T0 in Cay(Zp, S0) where
S0 ⊂ Z∗p is an antisymmetric set of cardinality |S0| = |E(T0)|. We choose
S1 ⊂ Z∗p \ S0 such that S = S0 ∪ S1 is an antisymmetric set, and use Lemma
3 to find an injective rainbow homomorphism from F to Cay(Zp, S1). In
this second step we may fail to obtain an isomorphic image of F , so that
the combination of the two steps produces a graph which is not isomorphic
to T . The last step in the proof consists in extending the injective rainbow
homomorphism to Cay(Zp×Zr, S×Zr) and rearranging some arcs to obtain
a decomposition of this directed graph into copies of T .

For a graph G and a positive integer r we denote by G(r) the graph
obtained form G by replacing each vertex with a coclique of order r and
every edge xy in G by the complete bipartite graph joining the cocliques
corresponding to x and y. Figure 1 illustrates the definition with K5(3). The
same notation is used when G is a directed graph.

For the proof of Theorem 2 we will use the following technical Lemma.

Lemma 4. Let r ≥ 2 be an integer and let M = (Ma,Mb) be the matrix
1 2 · · · r σ1 σ2 · · · σr

r + 1 r + 2 · · · 2r σr+1 σr+2 · · · σ2r
...

...
...

...
r(r − 1) + 1 r(r − 1) + 2 · · · r2 σr(r−1)+1 σr(r−1)+2 · · · σr2

 .
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Figure 1: The blow-up K5(3) of K5.

where (σ1, . . . , σr2) is a permutation of {1, . . . , r2}.
There are permutations of the elements in each column of M in such a

way that the resulting matrix M ′ has no row with repeated entries.

Proof. We proceed row by row. By the definition of M , each column
has r distinct entries. Let Ma,i be the set of entries in the i-th column of Ma

and Mb,j be the set of entries in the j-th column of Mb.
We use Hall’s theorem to find a transversal of the family

M = {Ma,1,Ma,2, · · ·Ma,r,Mb,1,Mb,2, · · ·Mb,r}.

For each pair of subsets I, J ⊂ {1, 2, . . . , r} we have,

|I|+ |J | ≤ 2 max{|I|, |J |} ≤ rmax{|I|, |J |} ≤ |(∪i∈IMa,i) ∪ (∪j∈JMb,j)| (1)

which shows that Hall’s condition holds and therefore M has a transversal.
We place this transversal in the first row of the new matrix M ′.

By deleting each element of the transversal from its set of M we get a
family of (r−1)–sets for which the inequalities in (1) hold with r replaced by
(r−1) as long as r−1 ≥ 2. Hence there is a transversal of this new family of
sets which we place in the second row of M ′. We can proceed with the same
argument up to the (r − 1) row. Now, if each of the first r − 1 rows of M ′

have their entries pairwise distinct, the remaining elements are also pairwise
distinct and can be placed in the last row of M ′. 2

The next Lemma ensures the existence of a rainbow copy of a graph which
is itself the edge–disjoint union of r copies of a given tree T in Cay(Zp ×
Zr, S × Zr). Combined with Lemma 1 it will lead to a proof of Theorem 2.

Lemma 5. Let r ≥ 2 and let p be a prime. Let T be a tree with m = (p−1)/2
edges and at least 2m/5 leaves.

There is an antisymmetric set S ⊂ Z∗p with |S| = (p−1)/2 and a rainbow
edge–injective homomorphism of T in X = Cay(Zp, S) such that
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(i) H = f(T ) has in–degree at most two, and

(ii) H(r) ⊂ X(r) = Cay(Zp × Zr, S × Zr) admits a decomposition into r2

copies of T
H(r) = T1 ⊕ T2 ⊕ · · · ⊕ Tr2 ,

and

(iii) π(Ti) = H for each 1 ≤ i ≤ r2, where π : Zp×Zr → Zp is the canonical
projection.

Proof. Remove d2m/5e leaves from T and denote by T0 the resulting
tree. Let F be the forest of stars with centers in vertices of T0 so that

T = T0 ⊕ F.

We split the proof of the Lemma into three steps.

Step 1. Define a rainbow edge–injective homomorphism of T into X =
Cay(Zp, S) where S ⊂ Z∗p is an antisymmetric set with |S| = (p− 1)/2.

Let t ≤ 3m/5 < 3(p − 1)/10 < (p − 1)/3 be the number of edges of T0.
By Lemma 2, there is an antisymmetric subset S0 ⊂ Z∗p with |S0| = t and a
rainbow embedding

f0 : T0 → Cay(Zp, S0).

Let x0, . . . , xt be a peeling ordering of T0. Since t > d2m/5e, we may assume
that x0 is not incident to a leaf in F . By exchanging elements s of S by their
opposite ones −s if necessary, we may assume that f0(T0) has all its edges
oriented from x0 to the leaves of T0. By abuse of notation we still denote
by x0, . . . , xt the images of the vertices of T0 by f0. We may assume that
f0(x0) = 0.

Let S be an antisymmetric subset of Z∗p with |S| = (p − 1)/2 which
contains S0, so that |S − S0| = |E(F )|. Let xi1 = v1, · · · , , xik = vk be the
centers of the stars of F . By Lemma 3 there is an edge–injective rainbow
homomorphism of the forest F into Cay(Zp, S \ S0),

f1 : F → Cay(Zp, S \ S0),

such that f1(vi) = f0(vi), i = 1, . . . , k. Moreover F̃ = f1(F ) is an oriented
graph with maximum in–degree one.
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The map f : V (T ) → Cay(Zp, S) defined by f0 on V (T0) and by f1 on
V (F ) is well defined, since f1(vi) = f0(vi), and the two graphs f0(T0), f1(F )
are edge–disjoint, so that

f(T ) = f0(T0)⊕ f1(F ) = H

is a rainbow subgraph of X = Cay(Zp, S).
We note that f may fail to be a rainbow embedding of T in X =

Cay(Zp, S) to the effect that some endvertices of T may have been sent
by f1 to some vertices of f0(V (T0)). Thus H may be not isomorphic to T
and contain some cycles (see Figure 2 for an illustration.)

T

x0

x1 x2
x3

y

X

f0(x0)

f0(x3) = f1(x3)

f0(x1) = f1(y)

H

x0

x1 x2
x3

Figure 2: A rainbow map of T with conflicting arcs at f0(x1) = f1(y).

We observe however that, if f1(y) = f0(x) for some endvertex y ∈ F
and some x ∈ V (T0), then y is not adjacent to x in T because f1 is an edge–
injective homomorphism. In other words, H = f(T ) has maximum in–degree
at most two. This proves (i).

Step 2. Extending the rainbow map from X = Cay(Zp, S) to X(r) =
Cay(Zp × Zr, S × Zr).

For each pair i, j ∈ Zr we define an injective homomorphism

fij : H → X(r),

by fij(0) = (0, i) and every arc (x, x+s) ∈ E(H) is sent to the arc (fij(x), fij(x)+
(s, j)) of E(X(r)). Since H is a connected subgraph of X, the map fij is
well defined. Let

Hij = fij(H).
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We observe that, by the definition, Hij is a rainbow subgraph of X(r). Figure
3 illustrates, for p = 13, the subgraphs H0,j corresponding to the example of
Figure 2.

H = H00 (5, 0)

(3, 0)

(1, 0)(6, 0)

(4, 0)
(2, 0)

(0, 0)

(6, 0) (1, 0)

(4, 0)

(9, 0)

(10, 0)

H01 (5, 1)

(3, 1)

(1, 1)(6, 1)

(4, 1)

(2, 1)

(6, 3)

(0, 0)

(6, 1) (1, 1)

(4, 2)

(9, 3)

(10, 2)

H02 (5, 2)

(3, 2)

(1, 2)(6, 2)

(4, 2)

(2, 2)

(0, 0)

(6, 2) (1, 2)

(4, 0)

(9, 2)

(10, 0)

H03 (5, 3)

(3, 3)

(1, 3)(6, 3)

(4, 3)

(2, 3)

(6, 1)

(0, 0)

(6, 3) (1, 3)

(4, 2)

(9, 1)

(10, 2)

Figure 3: The rainbow subgraphs H0,j = f0j(H) of X(4) = Cay(Z13 × Z4, S × Z4).

Every Hij can be decomposed into

Hij = Tij ⊕ Fij,

where, since T0 is acyclic, Tij is isomorphic to T0. As in the Step 1, Hij may
be non isomorphic to the original tree T , but only due to the fact that some
end vertex of Fij may have been identified with some vertex of Tij. However,
the in–degree of every vertex in Hij is again at most two as this was the case
in H. If there is a vertex with indegree two in Hij we call its incoming arcs
to be conflicting.

We note that the Hij’s are edge-disjoint (they hold pairwise distinct labels
for j fixed and these labels emerge from distinct vertices for each i). Let

Hi = ⊕0≤j<rHij.

By the definition of fij, we observe that each Hi is a rainbow subgraph of
X(r) with r(p− 1)/2 edges, so that all colors of the generating set S ×Zr of
X(r) appear in Hi precisely once. Hence, if there are no conflicting arcs (all
vertices of indegree one) in Hij then Hij is a rainbow copy of T .

We observe that

⊕0≤i<rHi = ⊕0≤i,j<rHij = H(r), (2)

since, for every edge in H, there are r2 edges between the corresponding
cocliques in ⊕0≤i,j<rHij.
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Step 3. The final step consists of modifying each Hij into H ′ij, which will
be isomorphic to the original tree T , in such a way that,

H(r) = ⊕0≤i,j<rH
′
ij.

In this step we will perform some local modifications to the Hij in order
to eliminate its conflicting arcs, that is, to obtain H ′ij with all vertices of
indegree one and isomorphic to T .

Each arc (x, y) in H is split in H(r) into a (oriented) complete bipartite

graph Kr,r that we denote by K
(x,y)
r,r . The H ′ij will be constructed by rearrang-

ing the arcs in K
(x,y)
r,r whenever y has indegree two in H. This rearrangement

of arcs will be performed locally not affecting the remaining arcs of Hij.

Suppose that y = f1(u), where y ∈ V (T0) and u ∈ V (F ), so that y is
incident with a conflicting arc of H.

Let x be the vertex of T0 adjacent to y in T0 and let z 6= x be the vertex
of F adjacent to y in H (which creates an undesired cycle as illustrated in
Figure 2.)

X(r)

x

z

y

(y, 0)

(y, 1)

(x, 0) (x, 1)

(z, 0) (z, 1)

H1

K
(x,y)
r,r

K
(z,y)
r,rH1

(x, 0) (x, 1) (z, 0) (z, 1)

(y, 0) 1 2 1 4
(y, 1) 3 4 3 2

Figure 4: Conflicting arcs at y are ((x, 0), (y, 0)) and ((z, 0), (y, 0)), both belonging to H1

(in solid lines in the figure), and ((x, 0), (y, 1)), ((z, 0), (y, 1)), both belonging to H3. There
are no conflicts in H2 or H4 in this example, according to the matrix (Mxy,Mzy) on the
righthand side of the figure.

Each edge in K
(x,y)
r,r belongs to one of r2 trees Tij isomorphic to T0 in the

decomposition (2) of H(r) and likewise, each edge in K
(z,y)
r,r belongs to one of

the Fij. For simplicity we label these copies with the numbers (i+ 1) + rj ∈
{1, 2, . . . , r2} and denote Hij by Hs with s = (i + 1) + rj. We thus have
copies H1, . . . , Hr2 .
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To each directed complete bipartite graph K
(x,y)
r,r in X(r) we associate an

(r × r) matrix Mxy where the entry (i, j) in Mxy is s if the arc ((x, i), (y, j)
belongs to Hs. Without loss of generality we may assume that the matrix
(Mxy,Mzy) is

1 2 · · · r σ1 σ2 · · · σr
r + 1 r + 2 · · · 2r σr+1 σr+2 · · · σ2r

...
...

...
...

r(r − 1) + 1 r(r − 1) + 2 · · · r2 σr(r−1)+1 σr(r−1)+2 · · · σr2

 ,

for some permutation σ = (σ1, . . . , σr2) of {1, . . . , r2}. The righthand side of
Figure 4 displays an example of such a matrix.

If all the rows of (Mxy,Mzy) have pairwise distinct entries, then every
vertex in y × Zr has indegree one in each Hs. If this is the case for every
conflicting arc then each Hs is a rainbow isomorphic copy of T and our task
in this Step 3 is finished.

Suppose on the contrary that there are rows with repeated entries in
(Mxy,Mzy). By Lemma 4, there is a matrix M ′ = (M ′

xy,M
′
zy) obtained from

M by permuting the entries within columns which have no repeated entries in
the same row. We use M ′ as a new incidence matrix of arcs to copies, which
amounts to redistribute the edges in K

(x,y)
r,r and K

(z,y)
r,r among the copies of H.

Since M ′
xy still has all entries pairwise distinct, each copy of H has exactly

one edge of K
(x,y)
r,r assigned to it, and the same is true for K

(z,y)
r,r . Since rows

of (M ′
xy,M

′
yz) have no repeated entries, each vertex in y×Zr has indegree one

in the resulting copies of H. Figure 3 illustrates this application of Lemma
4 in our example.

Our local rearrangement is completed by performing, for each vertex u
adjacent from y in T0, the same permutations in the matrix Muy as the ones
made in Mxy to obtain M ′

xy . The purpose of this additional rearrangement
is to make sure that the modified T ′ij is isomorphic to T0 (otherwise a copy
may land at (y, i′) from (x, j) and continue from a vertex (y, i), i 6= i′, to a
vertex in (u, j′), see Figure 3 for an illustration in our example.)

We can make the local arrangements described above by following the
original peeling order of T0. We proceed to modify the distribution of the
arcs as we encounter vertices incident with conflicting arcs in that order. In
this way we travel through directed arcs from the root of each Tij, so that
rearrangements of arcs do not affect modifications made previously until all
conflicting arcs have been processed. This completes Step 3.
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(y, 0)

(y, 1)

(x, 0) (x, 1)

(z, 0) (z, 1)

K
(x,y)
r,rH ′1

K
(z,y)
r,rH ′1

(x, 0) (x, 1) (z, 0) (z, 1)
(y, 0) 3 2 1 4
(y, 1) 1 4 3 2

Figure 5: Distribution of arcs after rearrangment: the conflict in H1 has been eliminated.

(y, 0)

(y, 1)

(x, 0) (x, 1)

(z, 0) (z, 1)

(u, 0)

(u, 1)

H ′1
H1

→

(y, 0)

(y, 1)

(x, 0) (x, 1)

(z, 0) (z, 1)

(u, 0)

(u, 1)

H ′1H ′1

Figure 6: Completing the local rearrangament at K
(y,u)
r,r .

At this point we obtain an edge decomposition of H(r) into the r2 oriented
graphs H ′i,j, each one isomorphic to our given tree T . Since each H ′ij is

obtained from Hij only by rearrangements within K
(x,y)
r,r for some edges xy ∈

T , we still have π(H ′ij) = H. This completes the proof. 2

4. Proofs of the results

In this section we include the proofs of the statements from the Introduc-
tion. We start with the proof of Theorem 2
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Proof of Theorem 2 By Lemma 5 there is a subgraph H(r) of X(r) =
Cay(Zp×Zr, S×Zr) which is itself an edge–disjoint union of r2 copies of T .
Since H = π(H(r), where π : Zp × Zr → Zp is the canonical projection, is
a rainbow subgraph of X = Cay(Zp, S) and H(r) has mr2 edges, the set of
translates

{H(r) + (x, 0) : x ∈ Zp}
is a decomposition of X(r). Therefore T decomposes the underlying graph
of X(r), which is isomorphic to K2m+1(r). 2

Theorem 2 leads directly to a proof of Theorem 1 by using known results
on random trees.

Proof of Theorem 1. Robinson and Schwenk [18] proved that the
average number of leaves in an (unlabelled) random tree with m edges is
asymptotically cm with c ≈ 0.438. Drmota and Gittenberger [6] showed
that the distribution of the number of leaves in a random tree with m edges
is asymptotically normal with variance c2m for some positive constant c2.
Thus, asymptotically almost surely a random tree with m edges has more
than 2m/5 leaves. It follows from Lemma 2 that a tree with at least 2m/5
leaves decomposes K2m+1(r) for each r ≥ 2 and m = (p − 1)/2 ≥ 5 edges,
where p > 10 is a prime. 2

Corollary 1 follows from Theorem 1 with r = 2, because K2m+1(2) is
isomorphic to K4m+2 \M , for M any matching of K4m+2. 2

Theorem 3 will follow from next deterministic result in the same way as
Theorem 1 follows from Theorem 2.

Theorem 7. Let p be a prime and let T be a tree with m = (p+ 1)/2 edges.
If T has more than 2m/5 leaves then T decomposes K6m−1 \ e for every edge
e of the complete graph.

Proof. Let z be a vertex of degree one in T and let yz be the edge
joining z to the tree. Let T ′ = T \ yz. The tree T ′ has (p− 1)/2 edges and
at at least 2(m− 1)/5 leaves.

By Lemma 5 there is an antisymmetric set S ⊂ Zp with |S| = (p− 1)/2
and a rainbow subgraph H of X = Cay(Zp, S) with maximum in–degree two
such that H(r) ⊂ X(3) = Cay(Zp × Z3, S × Z3) can be decomposed into
9 copies of T ′, each of them with the property that the their image by the

16



canonical projection π : Zp × Z3 → Zp is H. Let y′ the vertex in H which is
the image of our vertex y in T ′ by π.

We add two additional vertices α, β to X(3) and make them adjacent
from every vertex in X(3). Moreover we add to X(3) an oriented triangle in
each coclique. The underlying graph is K6m+5 \ e, where e = {α, β}.

Suppose first that y′ has in–degree one inH. In this case each of (y, 0), (y, 1), (y, 2) ∈
has in–degree three in H(3). We assign the three arcs added to X(3) from
each (y, j) to one of its three incoming trees bijectively. By repeating this
procedure to each translate H(3) + (z, 0), z ∈ Zp, in X(3) we obtain a de-
composition of K6m+5 \ e, into copies of T . This completes the proof in this
case.

Suppose now that y′ has in–degree two in H. In this case each of
(y, 0), (y, 1), (y, 2) ∈ has in–degree six in H(3). There are nine trees in
total incident to the three vertices (y, 0), (y, 1), (y, 2) in H(3), label them
T ′1, . . . , T

′
9. Without loss of generality we may assume that

(y, 0) is incident from T ′1, T
′
2, T

′
3, T

′
4, T

′
5, T

′
6

(y, 1) is incident from T ′1, T
′
2, T

′
3, T

′
7, T

′
8, T

′
9

(y, 0) is incident from T ′4, T
′
5, T

′
6, T

′
7, T

′
8, T

′
9.

In this case each tree T ′i can be completed to a copy of T by adding to it one
arc as depicted in Figure 7. By repeating this procedure to each translate

3

1

2
9

8
7

65
4

T1T2T3 T4T5T6

T4T5T6 T7T8T9

T7
T8
T9

T1
T2
T3

T4T5T6 T7T8T9

α

β

(y, 0)

(y, 1)

(y, 2)

Figure 7: Completion of copies of T ′ to copies of T .

H(3) + (z, 0), z ∈ Zp, in X(3) we obtain a decomposition of K6m+5 \ e, into
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copies of T . This completes the proof. 2

An argument analogous to the one used in the proof of Theorem 7 can
be extended to prove Theorem 4.

Proof of Theorem 4: We imitate the proof of Theorem 7. Choose
avertex y of degree one in T and delete the edge xy so that the resulting tree
T ′ has m edges and at least 2m/5 end vertices. By Lemma 2 we obtain a
decomposition of X(r) = Cay(Z2m+1×Zr, S×Zr) by copies of an orientation
of T ′.

Consider the oriented graph X ′(r) obtained from X(r) by adding (r +
1)/2 new vertices α1, . . . , α(r+1)/2 and all arcs from X(r) to these vertices.
Moreover we insert a regular tournament Tr in each stable set of X(r). By
removing the orientations, X(r)′ is isomorphic to Kr(2m+1)+ r+1

2
\K(r+1)/2 (the

vertices form a stable set in Y ′.)
We next add one leaf to each copy of T ′ by using the (r + 1)/2 arcs to

α1, . . . , α(r+1)/2 and the (r−1)/2 arcs in the regular tournament through that
vertex. This results in r copies of T in X(r)′. As in the proof of Theorem 7,
this addition is straightforward if there are no conflicting arcs in the rainbow
subgraph H used to obtain the decomposition of X(r) through Lemma 5, and
requires an argument otherwise. We omit the details of this last argument
here. 2
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