
 
 

 

UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 

 
 

Aquesta és una còpia de la versió author’s final draft d'un article 
publicat a la revista Journal of applied logic. 

URL d'aquest document a UPCommons E-prints: 
http://hdl.handle.net/2117/114682 

 
 

Article publicat / Published paper: 

Montserrat, J., Agell, N., Sanchez, M., Prats, F., Ruiz, F. Modeling group 
assessments by means of hesitant fuzzy linguistic term sets. "Journal 
of applied logic", Setembre 2017, vol. 23, p. 40-50. Doi: 
10.1016/j.jal.2016.11.005 

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
http://dx.doi.org/10.1016/j.jal.2016.11.005


Modeling Group Assessments by means of Hesitant Fuzzy
Linguistic Term Sets
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Abstract

Hesitant linguistic term sets have been introduced to capture the human way of reason-
ing using linguistic expressions involving different levels of precision. In this paper, a
lattice structure is provided to the set of hesitant fuzzy linguistic term sets by means
of the operations intersection and connected union. In addition, in a group decision
making framework, hesitant fuzzy linguistic descriptions are defined to manage situa-
tions in which decision makers are assessing different alternatives by means of hesitant
fuzzy linguistic term sets. Based on the introduced lattice structure, two distances be-
tween hesitant fuzzy linguistic descriptions are defined. These metric structures allow
distances between decision makers to be computed. A centroid of the decision making
group is proposed for each distance to model group representatives in the considered
group decision making framework.

Keywords: Linguistic modeling, Group decision making, Uncertainty and fuzzy
reasoning, Hesitant linguistic term sets.

Introduction

Different approaches have been developed in the fuzzy set literature involving lin-
guistic modeling to handle the imprecision and uncertainty inherent in human prefer-
ence reasoning [4, 9, 10, 12, 16]. In addition, several extensions of classic fuzzy sets
theory have been established to include different levels of precision or multi-granularity
in linguistic modeling [3, 7, 14]. Hesitant Fuzzy Linguistic Term Sets (HFLTSs) were
introduced to capture the human way of reasoning involving different levels of preci-
sion. To this end, a set of linguistic expressions is defined based on the concept of
hesitance [14].

L-fuzzy sets are considered as a generalization of the classic fuzzy sets with range
values of membership functions in a lattice L [6]. Classic fuzzy sets can be considered
as a special case of the L-fuzzy sets with L = [0, 1]. The relation between L-fuzzy sets
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and other extensions of fuzzy sets, such as intuitionistic fuzzy sets and interval-valued
fuzzy sets, has been analyzed in several studies [3, 18].

In this paper, we define a lattice structure on the set of HFLTSs over a set of lin-
guistic terms,HS , based on the literature related to absolute order-of-magnitude spaces
with different levels of precision or multi-granularity [5, 13, 17]. This allows us to
consider hesitant fuzzy linguistic descriptions (HFLDs) as L-fuzzy sets based on this
lattice. The set FH of all theHS -fuzzy sets is also introduced.

In group assessment processes where decision makers (DMs) are assessing differ-
ent alternatives by means of hesitant fuzzy linguistic term sets, the assessments pro-
vided by each DM are modeled as a HFLD. To study differences between HFLDs
representing the assessments of each DM of a group, we present two distances in HS
between HFLTSs, and their associated distances in FH between HFLDs.

Taking into consideration the different perspectives of the DMs in the decision-
making group, we present a HFLD that characterizes the group via an aggregation of
linguistic preferences. In addition, a centroid of the group is presented for each distance
in FH, as the HFLD that minimizes the addition of distances to the HFLDs of all the
DMs in the group. Distances between HFLDs are used to measure differences between
the DMs.

The rest of this paper is organized as follows: first, Section 1 presents the lattice of
hesitant fuzzy linguistic term sets. The concept of hesitant fuzzy linguistic description
is introduced in Section 2. In Section 3, two distances between HFLDs are defined
by means of two distances between HFLTSs. A new approach for group preference
modeling based on an aggregation of HFLDs and the distances between them is pre-
sented in Section 4. Finally, Section 5 contains the main conclusions and lines of future
research.

1. The Lattice of Hesitant Fuzzy Linguistic Term Sets

In this section, we briefly review some basic concepts related to HFLTSs [1, 13, 14,
15]. This enables us to provide the set of HFLTSs with a lattice structure, to define a
partial order and a compatibility relation in this set.

From here on, let S be a finite totally ordered set of linguistic terms, S = {a1, . . . , an},
with a1 < . . . < an.

Definition 1 ([14]) A hesitant fuzzy linguistic term set (HFLTS) over S is a subset of
consecutive linguistic terms of S, i.e. {x ∈ S | ai ≤ x ≤ aj}, for some i, j ∈
{1, . . . , n} with i ≤ j.

The HFLTS S is called the full HFLTS. and it is also denoted by the symbol ?.
Moreover, the empty set {} = ∅ is also considered as a HFLTS and it is called the
empty HFLTS.

From now on, the non-empty HFLTS H = {x ∈ S | ai ≤ x ≤ aj} is also denoted
by [ai, aj ]. If i = j, [ai, ai] is the singleton {ai}. The set of all HFLTSs over S is
denoted byHS :

HS = {[ai, aj ] | i, j ∈ {1, . . . , n}, i ≤ j} ∪ {∅}



A simple calculation proves that the cardinality ofHS is |HS | = 1 + n(n+1)
2 .

The union and complement [14] are not closed operations on the set HS . Indeed,
the union of two non-empty HFLTSs [ai, aj ] and [ai′ , aj′ ] is a HFLTS if and only if
[ai, aj ]∩[ai′ , aj′ ] 6= ∅ or i = j′+1 or i′ = j+1. On the other hand, the complement of
a non-empty HFLTS [ai, aj ] is a HFLTS if and only if i = 1 or j = n. The intersection
of HFLTSs is a closed binary operation on the setHS .

The connected union, t, of HFLTSs [13] is a closed binary operation on the set
HS , which is defined as follows:

Definition 2 The connected union of two HFLTSs is the least element of HS , based
on the subset inclusion relation ⊆, that contains both HFLTSs.

As proven in the general case of order-of-magnitude spaces over a well-ordered (fi-
nite or infinite) set [13], the binary operations intersection and connected union provide
a lattice structure to the setHS of HFLTSs.

Proposition 1 (HS ,t,∩) is a lattice.

PROOF. The two operations t and ∩ are clearly idempotent and commutative. The
intersection is associative, and (H1 t H2) t H3 = H1 t (H2 t H3) because H1 t
(H2tH3) is the least element that containsH1tH2 andH3. The two absorption laws
can be checked in a similar straightforward manner.

The lattice (HS ,t,∩) is not distributive. A counterexample in which the property
H1 ∩ (H2 tH3) = (H1 ∩H2)t (H1 ∩H3) does not hold is given in the case where S
has at least three linguistic terms, considering a1, a2, a3 ∈ S such that a1 < a2 < a3

and the following three HFLTSs: H2 = {a1}, H1 = {a2}, H3 = {a3}.
The partial order ≤ in the lattice is given by: H1 ≤ H2 ⇔ H1 t H2 = H1 ⇔

H1 ∩ H2 = H2 ⇔ H1 ⊇ H2. Therefore, this order is the inverse subset inclusion
relation and we call it to be less or equally precise than.

Definition 3 For any non-empty HFLTS [ai, aj ] and [ai′ , aj′ ], we say that [ai, aj ] is
less or equally precise than [ai′ , aj′ ] if and only if [ai, aj ] ⊇ [ai′ , aj′ ], i.e., i ≤ i′ and
j′ ≤ j.

Then, the least element in the lattice HS is 0HS = ? = S because it is the least
precise HFLTS, and the greatest element is 1HS = ∅ because H ⊇ ∅ for all H ∈ HS .

In Figure 1 the diagram of the lattice (HS ,t,∩) is depicted.
The relation to be compatible between non-empty HFLTSs is defined, inspired by

the concept of qualitative equality in absolute order-of-magnitude qualitative spaces
[17] as follows:

Definition 4 For any non-empty HFLTS [ai, aj ] and [ai′ , aj′ ], we say that [ai, aj ] and
[ai′ , aj′ ] are compatible if and only if [ai, aj ] ∩ [ai′ , aj′ ] 6= ∅, i.e., j ≥ i′ or j′ ≥ i.

Let us consider a simple example to illustrate the above definitions.



{a1} {a2} {an}{an−1}. . .

0HS = ?

[a1, a2] [an−1, an]

[a1, an−1] [a2, an]

1HS = ∅

{a3} {an−2}

[a2, a3] [an−2, an−1]

Figure 1: Diagram of the lattice (HS ,t,∩) [13]

Example 1 Given the set of linguistic terms: S = {a1, a2, a3, a4} with: a1 = slightly
good , a2 = moderately good , a3 = very good , a4 = extremely good , and the
following HFLTSs:
{a3} = very good,
[a1, a3] = not extremely good,
? = [a1, a4] = unknown, and
{a1} = slightly good,

identifying ai = {ai},∀i = {1, 2, 3, 4}.
The relation to be less or equally precise than among the first three HFLTSs gives:

? ⊇ [a1, a3] ⊇ {a3}. However, {a1} are {a3} are not comparable by this relation.
In addition, {a3}, [a1, a3] and ? are compatible since their pairwise intersections are
non-empty, while {a1} and {a3} are not compatible.

Two distances between HFLTSs will be introduced in Section 3 based on the prop-
erties of the lattice (HS ,t,∩).

2. Hesitant Fuzzy Linguistic Descriptions

The concept of an L-fuzzy set on a non-empty set Λ was introduced by Goguen in
[6] as a function f : Λ→ L, where L is a lattice. This concept is applied to the case of
the lattice (HS ,t,∩) of HFLTSs over a finite totally ordered set of linguistic terms S
in the following definitions.

Definition 5 AnHS -fuzzy set on Λ is a function FH : Λ→ HS .

Note that any f : Λ → {0, 1} defines an ordinary set or crisp set on Λ, that is, a
subset of Λ, whose characteristic function is f . If f : Λ → [0, 1], then f defines a



fuzzy set on Λ, where for each λ ∈ Λ, f(λ) is the degree of membership of λ. We can
therefore consider an HS -fuzzy set as a function FH : Λ → HS that assigns to each
element of Λ a HFLTS fromHS instead of a degree of membership.

Definition 6 The set FH of HS -fuzzy sets on Λ is:

FH = (HS)
Λ

= {FH | FH : Λ→ HS}.

Definition 7 A Hesitant fuzzy linguistic description (HFLD) of the set Λ by HS is an
HS -fuzzy set FH on Λ such that for all λ ∈ Λ, FH(λ) is a non-empty HFLTS, i.e.,
FH(λ) ∈ HS − {∅}.

From now on, the set Λ will represent a set of alternatives, and a HFLD will be
used to model a DM’s assessment of the alternatives in Λ. Note that missing values
(such as DK/NA/REF) will be considered as ?.

Example 2 Following Example 1, and given the same set S of linguistic terms, let us
consider Λ = {λ1, λ2, λ3, λ4}, then

FH : Λ −→ HS
λ1 7→ {a3}
λ2 7→ [a1, a3]
λ3 7→ ?
λ4 7→ {a1}

is a HFLD of the set Λ.

3. Distances between Hesitant Fuzzy Linguistic Descriptions

In order to define a first distance between HFLDs, that measures differences in
the assessments of DMs, we previously consider the following distance between non-
empty HFLTSs:

Definition 8 Given H1, H2 ∈ HS − {∅}, the distance D1 between H1 and H2 is
defined as:

D1(H1, H2) = card(H1 tH2)− card(H1 ∩H2)

As proven in the case of order-of-magnitude spaces over a finite well-ordered set in
[13], D1 fulfills the distance requirements. This distance between non-empty HFLTSs
induces a distance between HFLDs as follows:

Definition 9 Let us consider F 1
H and F 2

H two HFLDs of a finite set Λ = {λ1, . . . , λr}
by means ofHS , with F 1

H(λi) = H1
i and F 2

H(λi) = H2
i , for all i ∈ {1, . . . , r}. Then,

the distance DF1 between these two HFLDs is defined as:

DF1 (F 1
H , F

2
H) =

r∑
t=1

D1(H1
t , H

2
t ) (1)



Expression (1) provides a distance in the set (HS − {∅})Λ, i.e., a distance between
HFLDs. In fact, each HFLD FH of the set Λ by HS can be identified with the r-
dimensional vector (H1, . . . ,Hr) ∈ (HS − {∅})r = (HS − {∅})× · · · × (HS − {∅})
whose components are Hi = FH(λi), for all i ∈ {1, . . . , r}. Therefore the set (HS −
{∅})Λ can be identified with the Cartesian product (HS − {∅})r, and the Cartesian
product of metric spaces is a metric space using the product distance and the city-block
norm, which in this case results in Formula (1).

Remark 1 The maximum value for D1 between two HFLTSs from HS − {∅}, where
S = {a1, . . . , an}, is n. This case is given, for instance, when H1 = {a1} and
H2 = {an}, among others. Consequently, the maximum value for DF1 between two
HFLDs of the set Λ = {λ1, . . . , λr} is r · n.

Let us consider a simple example to illustrate the computation of this distance be-
tween HFLDs.

Example 3 Let us consider S = {a1, a2, a3, a4} as in Examples 1 and 2, and F 1
H and

F 2
H two HFLDs of the set Λ = {λ1, λ2, λ3, λ4} byHS given in Table 1.

Table 1: HFLDs F 1
H and F 2

H .

F 1
H F 2

H

λ1 {a3} {a1}
λ2 [a1, a3] {a4}
λ3 ? [a2, a4]

λ4 {a1} {a4}

Therefore:

DF1 (F 1
H , F

2
H) =

4∑
t=1

(card(H1
t tH2

t )− card(H1
t ∩H2

t )) =

(3− 0) + (4− 0) + (4− 3) + (4− 0) = 12.

In this case, the distance between two HFLDs ranges from 0 to 16, which gives us
a reference to frame the obtained result.

To capture differences among pairs of HFLTSs that are at the same distance D1,
we introduce the following measure of agreement that takes into consideration the gap
between a pair of HFLTSs:

Definition 10 Given H1, H2 ∈ HS − {∅}, the concordance between H1 and H2 is
defined as:

C(H1, H2) =

{
card(H1 ∩H2) if H1 ∩H2 6= ∅
−card((H1 tH2) ∩H1 ∩H2) if H1 ∩H2 = ∅



where H = {x ∈ S |x 6∈ H} is the complement of H with respect to S.

It is straightforward to see that if H1 = [ai, aj ] and H2 = [aj+k, al], with k > 0,
then C(H1, H2) = −(k − 1). Moreover, notice that the concordance between two
HFLTSs is positive if and only if the two HFLTSs are compatible. In addition, the aim
of the concordance is to consider how much in common two HFLTSs have or how big
is the gap between them in case that they have nothing in common. According to the
concordance, we present a new distance between non-empty HFLTSs as:

Definition 11 Given H1, H2 ∈ HS − {∅}, the distance D2 between H1 and H2 is
defined as:

D2(H1, H2) = card(H1 tH2)− C(H1, H2)

In order to prove that D2 is a distance, we will see that it is equivalent to the
geodesic distance in the graphHS−{∅}, based on measuring the length of the shortest
path between two elements of the graph [8]. In HS − {∅}, the shortest path between
two HFLTSs can always be reached passing through the connected union of both of
them. In Figure 2, we can see, as an example, the shortest path between {a1} and
[a2, a3] working with S = {a1, a2, a3, a4}. In this case, the length of the shortest path
is 3.

{a1}

[a2, a3]

[a1, a3]

{a2} {a3} {a4}

?

=

{a1} t [a2, a3]

Figure 2: Shortest path between {a1} and [a2, a3].

Lemma 1 D2 can be equivalently expressed as:

D2(H1, H2) = 2 · card(H1 tH2)− card(H1)− card(H2)

PROOF. We see that 2 · card(H1 tH2)− card(H1)− card(H2) = card(H1 tH2)−
card(H1 ∩H2) + card((H1 tH2)∩H1 ∩H2). Indeed, if H1 ∩H2 6= ∅, both parts are
equal to card(H1 tH2)− card(H1 ∩H2), while if H1 ∩H2 = ∅, then both parts are
card(H1 tH2) + card((H1 tH2) ∩H1 ∩H2).

Proposition 2 D2 is equivalent to the geodesic distance in the graphHS − {∅}.

PROOF. By Lemma 1, D2(H1, H2) = 2 · card(H1 tH2) − card(H1) − card(H2) =
(card(H1 tH2) − card(H1)) + (card(H1 tH2) − card(H2)) = `(H1, H1 tH2) +



`(H2, H1 tH2) = `(H1, H2), where `(H,H ′) is the length of the shortest path from
H to H ′.

Once we have proved thatD2 is a distance between HFLTSs, we can use it to define
an associated distance between HFLDs, analogously to what we did for D1:

Definition 12 Let us consider F 1
H and F 2

H two HFLDs of a set Λ = {λ1, . . . , λr} by
means ofHS , with F 1

H(λi) = H1
i and F 2

H(λi) = H2
i , for all i ∈ {1, . . . , r}. Then, the

distance DF2 between these two HFLDs is defined as:

DF2 (F 1
H , F

2
H) =

r∑
t=1

D2(H1
t , H

2
t )

Remark 2 The maximum value for D2 between two HFLTSs from HS − {∅}, where
S = {a1, . . . , an}, is 2n − 2. This case is given only when H1 = {a1} and H2 =
{an}. Consequently, the maximum value for DF2 between two HFLDs of the set Λ =
{λ1, . . . , λr} is r · (2n− 2).

In order to illustrate this new distance, let us see the following example:

Example 4 Let F 1
H and F 2

H be the two HFLDs from Example 3 of the set Λ by HS
given in Table 1. Therefore:

DF2 (F 1
H , F

2
H) =

4∑
t=1

(card(H1
t tH2

t )− C(H1
t , H

2
t )) =

(3− (−1)) + (4− 0) + (4− 3) + (4− (−2)) = 15.

In this case, the distance between two HFLDs ranges from 0 to 24, which gives us
a reference to frame the obtained result.

The two distances that have been proposed can be compared as follows:

Proposition 3 Given two non-empty HFLTSs, H1 and H2, fromHS − {∅},

D1(H1, H2) ≤ D2(H1, H2).

PROOF. It is enough to rewrite D2(H1, H2) as:

D2(H1, H2) = card(H1 tH2)− card(H1 ∩H2) + card((H1 tH2) ∩H1 ∩H2) =

D1(H1, H2) + card((H1 tH2) ∩H1 ∩H2) ≥ D1(H1, H2).

Proposition 3 can be generalized to the distance between HFLDs as follows:

Proposition 4 Given two HFLDs, F 1
H and F 2

H , of a set Λ = {λ1, . . . , λr},

DF1 (F 1
H , F

2
H) ≤ DF2 (F 1

H , F
2
H).



PROOF. Taking into account Definitions 9 and 12, then, by Proposition 3, the proof
becomes trivial.

To illustrate these two propositions, let us summarize the results from Examples 3
and 4 in the following table:

Table 2: Distances between HFLDs F 1
H and F 2

H .

F 1
H F 2

H D1(H1
t , H

2
t ) D2(H1

t , H
2
t )

λ1 {a3} {a1} 3 4

λ2 [a1, a3] {a4} 4 4

λ3 ? [a2, a4] 1 1

λ4 {a1} {a4} 4 6

DF1 (F 1
H , F

2
H) = 12 DF2 (F 1

H , F
2
H) = 15

4. Modeling Group Assessments

In this section, we analyze from two different perspectives how to summarize the
assessments given by a group of DMs that are assessing a set of alternatives by means
of HFLTSs. To this end, the lattice structure ofHS -fuzzy sets and the distances defined
in Section 3 are considered to aggregate the DMs’ assessments of alternatives.

We consider two possible representatives to summarize the group’s assessments:
Firstly, the connected union in HS -fuzzy sets and secondly, the HFLD of the set of
alternatives Λ that minimizes the addition of distances to the assessments of all the
DMs in the group, with respect to the two distances presented in Section 3, DF1 and
DF2 .

The connected union amongHS -fuzzy sets can be considered as a reasonable way
to model the group assessment, because it provides a HFLD compatible with all the
HFLDs in the group for all the alternatives. Notice that the intersection among HS -
fuzzy sets cannot be used to model the group assessments because some of its values
may result in the null HFLTS. If so, the intersection would not be a HFLD.

Definition 13 Let Λ be a set of alternatives and G a group of k DMs. Let F 1
H , . . . , F

k
H

be the HFLDs of Λ provided by the DMs in G. The HFLD of Λ associated to the
connected union of the assessments in group G is defined as:

FG
H : Λ −→ HS − {∅}

λ 7→ FG
H (λ) = F 1

H(λ) t . . . t F k
H(λ)



However, this way of representing the group’s assessment tends very fast to ? in
most of cases, because it is very sensitive to outliers. In addition, it does not consider
the precision that DMs in the group use. For this reason, to solve these drawbacks, a
representative of the group of DMs as a centroid of the group is defined by means of
the concept of a distance as follows:

Definition 14 Let Λ be a set of r alternatives,G a group of k DMs and F 1
H , . . . , F

k
H the

HFLDs of Λ provided by the DMs in G, then, for any distance DF in FH, a centroid
of the group with respect to DF is:

FC
H = arg min

FX
H ∈(HS−{∅})r

k∑
t=1

DF (FX
H , F

t
H),

identifying each HFLD FH with the vector (H1, . . . ,Hr) ∈ (HS − {∅})r, where
FH(λi) = Hi, for all i = 1, . . . , r.

In the specific case of the two distances presented in Section 3, DF1 and DF2 , the
corresponding centroids will be denoted as FC

H 1 and FC
H 2 respectively.

Note that, for a given distance, more than one HFLD can produce the minimum
value for the sum of distances in the above definition. Thus, a group of DMs can
have more than one centroid with respect to the same distance. In addition, neither
the HFLD of the connected union nor those of the centroids of the group with respect
to any distance have necessarily to coincide with any HFLD provided by a DM in the
group.

Example 5 Following Examples 1, 2, 3 and 4, where S = {a1, a2, a3, a4} and Λ =
{λ1, λ2, λ3, λ4}, let us consider a group G of five DMs. The HFLDs of the set Λ by
HS corresponding to the DMs inG are given in Table 3 (columns from 2 to 6). Column
7 shows the HFLD associated to the connected union, FG

H , columns 8 and 9 show the
two centroids of the group, FC1

H 1 and FC2

H 1, according to DF1 , and in the last column
we find the unique centroid of the group, FC

H 2, with respect to DF2 . An exhaustive
search has been conducted to obtain the centroids of the group FC1

H 1, FC2

H 1 and FC
H 2.

Table 3: The HFLDs in G corresponding to Example 5.

F 1
H F 2

H F 3
H F 4

H F 5
H FG

H FC1

H 1 FC2

H 1 FC1

H 2

λ1 {a3} {a1} [a1, a2] [a1, a3] {a2} [a1, a3] [a1, a2] [a1, a2] [a1, a2]

λ2 [a1, a3] {a4} {a1} {a4} {a1} ? {a1} {a1} [a1, a3]

λ3 ? [a2, a4] {a3} {a1} [a3, a4] ? [a3, a4] [a2, a4] [a2, a4]

λ4 {a1} {a4} [a3, a4] {a3} [a3, a4] ? [a3, a4] [a3, a4] [a3, a4]



Note that, as it can be seen in Table 3, the considered group of DMs has two cen-
troids according to DF1 that just differ in their values corresponding to λ3: [a3, a4] and
[a2, a4]. However, since [a2, a4] ⊇ [a3, a4], one can choose FC1

H 1 as the most precise
centroid representing the group with respect to DF1 .

Figure 3 depicts, for each element in Λ, a graphical representation of the HFLTSs
given by the DMs in G, together with the HFLTSs corresponding to the HFLD associ-
ated to the connected union, FHG, and to the three centroids of the group, FC1

H 1, FC2

H 1
and FC

H 2.

FG
H FC

H 2FC1

H 1
FC2

H 1

λ1 λ2

λ3 λ4

1

23 45

1

2

34

5

1 2

3

4

5

12

3

4

5

Figure 3: Graphical representation of Example 5.

Finally, Tables 4 and 5 present the matrices of distances, with respect to DF1 and
DF2 respectively, computed for each pair of HFLDs in the group G expanded with FG

H

and the corresponding centroids for each distance: FC1

H 1 and FC2

H 1 in the first case,
and FC

H 2 in the second case.
We can observe similar results by analyzing the values of the distances provided

in Tables 4 and 5. Assessments corresponding to the descriptions given by DM 3 and
DM 5 are the closest ones with respect to both distances. In the same way, the most
distant pairs of assessments correspond to the pairs: DM 1 and DM 2, DM 1 and DM
3 and DM 1 and DM 4 with respect to DF1 , Whilst according to DF2 , the tie is broken
and the most distant ones are DM 1 and DM 2. We can also observe that assessments
provided by DM 3 and DM 5 are the closest ones to the centroids of the group in both
cases. Finally, the assessment corresponding to the descriptions given by DM 1 is the
closest one to the assessment associated to the connected union with respect to both
distances. It is also one of the two most distant assessments from the centroids of the
group, together with the assessment given by DM 4.



Table 4: Distances DF1 between DMs, the connected union and the centroids FC1
H 1

and FC2
H 1

.

DF1 F 1
H F 2

H F 3
H F 4

H F 5
H FG

H FC1

H 1 FC2

H 1

F 1
H 0 12 12 12 10 6 11 10

F 2
H 0 8 8 8 10 7 6

F 3
H 0 9 2 9 1 2

F 4
H 0 11 9 10 10

F 5
H 0 9 1 2

FG
H 0 8 7

FC1

H 1 0 1

FC2

H 1 0

Table 5: Distances DF2 between DMs, the connected union and the centroid FC
H 2

.

DF2 F 1
H F 2

H F 3
H F 4

H F 5
H FG

H FC
H 2

F 1
H 0 15 12 13 11 6 9

F 2
H 0 10 8 10 9 6

F 3
H 0 12 2 9 4

F 4
H 0 14 9 10

F 5
H 0 9 4

FG
H 0 5

FC
H 2 0

Note that these distances matrices quantifying the similarity in between pairwise
linguistic expressions could be used in other pattern recognition contexts, such as clus-
tering, classification or ranking [2, 11]. In addition, the use of HFLTSs will allow
the definition of fuzzy outputs able to capture the inherent complexity underlying in
end-users’ opinions

5. Conclusions

This paper proposes a theoretical framework to model group assessments on the
basis of HFLTSs. To this aim, the concept of distance between DMs in group decision-
making when DMs’ assessments are expressed using HFLTSs is studied. This concept
allows similarities and differences among DMs’ opinions to be analyzed.



From a well-ordered set S of linguistic terms, the set of hesitant fuzzy linguistic
term sets HS has been provided with two closed aggregation operations, connected
union and intersection, which are suitable to be used on reasoning and comparisons.
In addition, the two operations provide HS with a lattice structure. The hesitant fuzzy
linguistic descriptions of a set Λ are defined asHS -fuzzy sets.

Two distances between HFLDs have been proposed. The first distance, D1, is built
directly from connected union and intersection. The second distance, D2, coincides
with D1 in the case that there is a non-empty intersection between the considered pair
of HFLTSs and, intuitively, corresponds to adding the gap between them to D1 if their
intersection is empty.

Finally, the concept of centroid of a decision-making group is introduced by min-
imizing the addition of distances to the assessments of all the DMs in the group. The
two proposed distances are used to do a further study of the corresponding centroids,
which can be used as representatives of the opinions of the group of DMs. Moreover,
the distances between each DM and the centroid can be considered as a measure of
agreement within the group. Lastly, most dissident DMs in the group can be easily
identified by means of distances to the centroid.

The proposed structure based on distances and centroids is not only limited to de-
cision making scenarios. It provides a general model suitable for comparing opinions
between end-users in general when expressed in terms of ordered linguistic terms.

Future research is oriented towards three main directions. First, the design of an
algorithm for the computation of the proposed centroids of a decision-making group.
Second, based on the proposed centroids, a study will be addressed to analyze risk mea-
surement and validity assurance of the actions derived from a decision outcome. This
analysis will be oriented towards the improvement of consensus reaching processes by
focussing in the dissident DMs. Finally, a real case study will be conducted in the
marketing research area to analyze customers preferences in a retailing context.
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