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Abstract

In this paper we classify bm-Nambu structures via bm-cohomology. The complex of bm-forms is an extension of
De Rham complex which allows to consider singular forms. bm-Cohomology is well-understood thanks to Scott
[12] and it can be expressed in terms of De Rham cohomology of the manifold and the critical hypersurface
using a Mazzeo-Melrose-type formula. Each of the terms in bm-Mazzeo-Melrose formula acquires a geometrical
interpretation in this classification. We also give equivariant versions of this classification scheme. To cite this
article: A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Classification de structures bm-Nambu de degré maximal
On classifie les structures bm-Nambu de degré maximal en utilisant la bm-cohomologie. Le complexe des bm-

formes est une extension du complexe de De Rham et permet considérer des formes singulières. La bm-cohomologie
est bien comprise grâce à Scott [12] et elle peut être exprimée en termes de la cohomologie de De Rham de la
variété et de l’hypersurface critique en utilisant une formule de type Mazzeo-Melrose. Chacun des termes dans la
formule de bm-Mazzeo-Melrose acquiert une interpretation géométrique dans cette classification. On donne aussi
des versions équivariantes des théorèmes de classification.
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1. Introduction

In this article we focus our attention on bm-Nambu structures. Nambu structures were introduced by
Nambu [11] and Takhtajan [13] as a generalization of Poisson structures. Unlike the domain of Poisson
Geometry, Nambu geometry is not so well-explored. In this short note we give a classification theorem for
a class of Nambu structures using a generalization of De Rham cohomology called bm-cohomology. Our
result generalizes a former classification theorem by Mart́ınez-Torres for generic Nambu structures of top
degree [8].

Recently a class of Poisson structures called in the literature b-Poisson structures (see for instance,
[3],[4],[6] and [2]) has been widely studied. A b-Poisson manifold is an even dimensional Poisson manifold
(M2n,Π) where the Poisson structure Π satisfies the following transversality condition: Πn cuts the zero
section of the bundle Λ2nT (M2n) transversally. As a consequence the vanishing set of Πn is a smooth
submanifold of codimension 1 which is called critical hypersurface.

The transversality condition can be relaxed in a way the critical hypersurface is still a smooth subman-
ifold. This is the case of bm-Poisson manifolds introduced by Scott [12]. In this paper we generalize this
setting to the Nambu world and classify these structures. This class of singular Nambu structures was
already considered by Arnold in [1]. The classification theorem we prove here is an extension of Moser’s
classification theorem [10] for volume forms on a manifold. As an outcome of this classification scheme a
geometrical interpretation is given to the Mazzeo-Melrose decomposition theorem (see section 2.16 in [9]
for m=1 and [12] for general m) which expresses the bm-cohomology in terms of the classical De Rham
cohomology groups of the manifold and the critical hypersurface.

2. Constructions and classification of bm-Nambu structures

Nambu structures of bm-type can be described using forms which are singular along a smooth hyper-
surface. These forms, called bm-forms, were studied by Scott [12] in his thesis. We start introducing the
language of bm-forms: We follow [12] for these definitions and main properties. The set-up in Scott [12]
allows to consider smooth hypersurfaces without a globally defining function. For the sake of simplicity
in this paper we will consider Z a smooth hypersurfaces (not necessarily connected) and attach to it a
defining function f .

Take a local set of coordinates (x, . . . xn−1) in a neighborhood of a point p in the critical set, the
bm-tangent bundle can be defined as the bundle whose sections are locally generated by:

{xm ∂

∂x
,
∂

∂x1
, . . . ,

∂

∂xn−1
}, (1)

with x such that |x| = λ, and λ is the distance function to z. For globally defining functions f = x.
As done in the case m = 1 in [3] we can define the dual bundle, the bm-cotangent bundle bmT ∗(M).

Sections of powers of these bundles are called bm-forms.
A Laurent Series of a closed bm-form ω is a decomposition of ω in a tubular neighborhood U of the

critical set Z of the form

ω =
dx

xm
∧ (

m−1∑
i=0

π∗(αi)x
i) + β (2)

with π : U → Z the projection of the tubular neighborhood onto Z, αi a closed smooth De Rham form
on Z and β a De Rham form on M .
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In [12] it is proved that in a neighborhood of Z, every closed bm-form ω can be written in a Laurent
form of type (2) once a defining function has been fixed.

The complex of bm-forms endowed with a natural extension of De Rham differential defines bm-
Cohomology. The follow theorem tells us that bm-cohomology can be read off from de Rham cohomology
thus generalizing the classical Mazzeo-Melrose decomposition theorem in Section 2.16 in [9]:
Theorem 2.1 (bm-Mazzeo-Melrose, [12]) The bm-cohomology groups can be determined from De Rham
cohomology groups as follows:

bmHp(M) ∼= Hp(M)⊕ (Hp−1(Z))m. (3)

We now introduce bm-Nambu structures of top degree,
Definition 2.2 A bm-Nambu structure of top degree on a pair (Mn, Z) with Z a smooth hypersurface is
given by a smooth n-multivector field Λ such that there exists a local system of coordinates for which

Λ = xm1
∂

∂x1
∧ . . . ∧ ∂

∂xn
(4)

and Z is defined by x1 = 0 in a neighborhood of Z.
Dualizing the local expression of the Nambu structure we obtain the form

Θ =
1

xm1
dx1 ∧ . . . ∧ dxn (5)

(which is not a smooth de Rham form), but it is a bm-form of degree n defined on a bm-manifold. As it
is done in [3], we can check that this dual form is non-degenerate. So we may define a bm-Nambu form
as follows.

Mimicking the same condition as for bm-symplectic forms we can talk about non-degenerate bm-forms
of top degree. This means that seen as a section of Λn(bT ∗M) the form does not vanish.

Notation: We will denote by Λ the Nambu multivectorfield and by Θ its dual.
Definition 2.3 A bm-Nambu form is a non-degenerate bm-form of top degree.

We first include a collection of motivating examples, and then prove an equivariant classification theo-
rem.

2.1. Examples

(i) bm-symplectic surfaces: Any bm-symplectic surface is a bm-Nambu manifold with Nambu struc-
ture of top degree.

(ii) bm-symplectic manifolds as bm-Nambu manifolds: Let (M2n, ω) be a bm-symplectic manifold,
then (M2n, ω ∧ . . . ∧ ω︸ ︷︷ ︸

n

) is automatically bm-Nambu.

(iii) Orientable manifolds: Let (Mn,Ω) be any orientable manifold (with Ω a volume form) and let
f be a defining function for Z, then (1/fm)Ω defines a bm-Nambu structure of top degree having
Z as critical set.

Any Nambu structure can be written in this way if the hypersurface can be globally described as
the vanishing set of a smooth function.

(iv) Spheres: In [8], it was given special importance to the example (Sn,tiS(n−1)
i ) because of the

Schoenflies theorem 2 , which imposes the associated graph to be a tree. The nice feature of this ex-

2. The nature of this theorem is purely topological in dimension equal or greater than four, and so is its construction.
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ample is that O(n) acts on the bm-manifold (Sn, S(n−1)), and it makes sense to consider its classifica-
tion under these symmetries. This also works for other homogeneous spaces of type (G1/G2, G2/G3)
with G2 and G3 with codimension 1 in G1 and G2 respectively.

2.2. bm-Nambu structures of top degree and orientability

We start proving:
Theorem 2.4 A compact n-dimensional manifold M admitting a b2k-Nambu structure is orientable.

Proof: Consider a collar of charts for the b2k-Nambu structure such that in local coordinates the
Nambu structure can be written as x2k

1
∂

∂x1
∧ . . .∧ ∂

∂xn
with compatible orientations in a neighborhood of

each connected component of Z.
Consider a 2:1 orientable covering (M̃, Z̃) of the manifold and denote by ρ : Z/2Z × M̃ → M̃ the

deck transformation. For each point p ∈ Z̃ take a neighborhood Up which does not contain other points
identified by ρ thus Up

∼= π(Up) =: Vp, and Θ = 1
x2k dx1 ∧ . . . ∧ dxn. This form defines an orientation

on Vp \ π(Z). Take a symmetric covering of such neighborhoods to define a collar of Z with compatible
orientations, and compatible with the covering. The compatible orientations and the symmetric coverings
descend to (M,Z), thus defining an orientation in (M,Z). Thus, we have an orientation in V \ Z. By
perturbing Θ in V we obtain a volume form on V , ω̃, and thus an orientation in V . These can be glued
to define an orientation via the volume form Θ̃ on the whole M proving that M is oriented.

2.3. Classification of bm-Nambu structures of top degree and bm-cohomology

We present the definitions contained in [8] of modular period attached to the connected component of
an orientable Nambu structure using the language of bm-forms.

Let Θ be the dual to the multivectorfield Λ defining a Nambu structure. From the general decomposition
of bm-forms as it was set in Equation 2 we may write:

Θ = Θ0 ∧
df

fm

with Θ0 ∈ Ωn−1(M).
This decomposition is valid in a neighborhood of Z whenever the defining function is well-defined. For

non-orientable manifolds a similar decomposition can be proved by replacing the defining function f by
an adapted distance (see [7]).

With this language in mind, the the modular (n− 1)-vector field in [8] of Θ along Z is the dual of
the form Θ0 in the decomposition above which is indeed the modular (n− 1)-form along Z in [8].

Recall from [8] in our language:
Definition 2.5 The modular period TZ

Λ of the component Z of the zero locus of Λ is

TZ
Λ :=

∫
Z

Θ0 > 0.

In fact, this positive number determines the Nambu structure in a neighborhood of Z up to isotopy as
it was proved in [8].

The following theorem gives a classification of bm-Nambu structures.
Theorem 2.6 Let Θ0 and Θ1 be two bm-Nambu forms of degree n on a compact orientable manifold
Mn. If [Θ0] = [Θ1] in bm-cohomology then there exists a diffeomorphism φ such that φ∗Θ1 = Θ0.
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Proof: We will apply the techniques of [10] with the only difference that we work with bm-volume
forms instead of volume forms.

Since Θ0 and Θ1 are non-degenerate bm-forms both of them are a multiple of a volume form and thus
the linear path Θt = (1− t)Θ0 + tΘ1 is a path of non-degenerate bm-forms.

Because Θ0 and Θ1 determine the same cohomology class:

Θ1 −Θ0 = dβ

with d the bm-De Rham differential and β a bm-form of degree n− 1.
Now consider the Moser equation:

ιXt
Θt = −β. (6)

Observe that since β is a bm-form and Θt is non-degenerate. The vector field Xt is a bm-vector field.
Let φt be the t-dependent flow integrating Xt.

The φt gives the desired diffeomorphism φt : M → M , leaving Z invariant (since Xt is tangent to Z)
and φ∗t Θt = Θ0.

In particular we recover the classification of b-Nambu structures of top degree in [8]:
Theorem 2.7 (Classification of b-Nambu structures of top degree, [8]) A generic b-Nambu struc-
ture Θ is determined, up to orientation preserving diffeomorphism, by the following three invariants: the
diffeomorphism type of the oriented pair (M,Z), the modular periods and the regularized Liouville volume.
By Theorem 2.1,

bHn(M) ∼= Hn(M)⊕Hn−1(Z).

The first term on the right hand side is the Liouville volume image by the De Rham theorem, as it was
done in [4] for b-symplectic forms. The second term collects the periods of the modular vector field. So if
the three invariants coincide then they determine the same b-cohomology class.

In other words, the statement in [8] is equivalent to the following theorem in the language of b-
cohomology.
Theorem 2.8 Let Θ1 and Θ2 be two b-Nambu forms on an orientable manifold M . If [Θ1] = [Θ2] in
b-cohomology then there exists a diffeomorphism φ such that φ∗Θ1 = Θ2.

This global Moser theorem for bm-Nambu structures admits an equivariant version,
Theorem 2.9 Let Θ0 and Θ1 be two bm-Nambu forms of degree n on a compact orientable manifold
Mn and let ρ : G×M −→M be a compact Lie group action preserving both bm-forms. If [Θ0] = [Θ1] in
bm-cohomology then there exists an equivariant diffeomorphism φ such that φ∗Θ1 = Θ0.

Proof: As in the former proof, write
Θ1 −Θ0 = dβ

with d the bm-De Rham differential and β a bm-form of degree n − 1. Observe that the path Θt =
(1− t)Θ0 + tΘ1 is a path of invariant bm-forms.

Now consider Moser’s equation:

ιXt
Θt = −β. (7)

Since Θt is invariant we can find an invariant β̃. For instance take β̃ =
∫
G
ρ∗g(β)dµ with µ a de Haar

measure on G and ρg the induced diffeomorphism ρg(x) := ρ(g, x).

Now replace β by β̃ to obtain,

ιXG
t

Θt = −β̃ (8)

with XG
t =

∫
G
ρg∗Xtdµ. The vector field XG

t is an invariant b-vector field. Its flow φGt preserves the action
and φGt

∗Θt = Θ0.
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Playing the equivariant bm-Moser trick using the 2:1 cover of a non-orientable manifold and taking as
G the group of deck transformations we obtain,
Corollary 2.10 Let Θ0 and Θ1 be two bm-Nambu forms of degree n on a manifold Mn (not necessarily
oriented). If [Θ0] = [Θ1] in bm-cohomology then there exists a diffeomorphism φ such that φ∗Θ1 = Θ0.
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