

Web Service-based Business Process
Automation Using Matching Algorithms

Yanggon Kim1 and Juhnyoung Lee2

1 Computer and Information Sciences,
Towson University, Towson, MD 21252, USA,

ykim@towson.edu
2 IBM T. J. Watson Research Center

Yorktown Heights, New York 10598, USA,
jyl@us.ibm.com

Abstract. In this paper, we focus on two problems of the Web service-based
business process integration: the discovery of Web services based on the
capabilities and properties of published services, and the composition of
business processes based on the business requirements of submitted requests.
We propose a solution to these problems, which comprises multiple matching
algorithms, a micro-level matching algorithm and macro-level matching
algorithms. The solution from the macro-level matching algorithms is optimal
in terms of meeting a certain business objective, e.g., minimizing the cost or
execution time, or maximizing the total utility value of business properties of
interest. Furthermore, we show how existing Web service standards, UDDI
and BPEL4WS, can be used and extended to specify the capabilities of
services and the business requirements of requests, respectively.

1 Introduction

A business process refers to a process in which work is organized, coordinated, and
focused to produce a valuable product or service. Business processes comprise both
internal and external business partners and drive their collaboration to accomplish
shared business goals by enabling highly fluid process networks. A business process
solution consists of a model of the underlying business process (referred to as a
process model or a flow model) and a set of (flow-independent) business logic
modules. The abstractions of the elementary pieces of work in a flow model are
called activities; the concrete realizations of these abstractions at process execution
time are referred to as activity implementations. The prevalent technique for creating
business process solutions follows a manual and tedious approach involving
assimilation of varied process design and vendor specifications and writing vast
amount of code that produces a tight inflexible coupling between processes. Web

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Yanggon KimP1P and Juhnyoung LeeP2P

services provide a set of technologies for creating business process solutions in an
efficient, standard way. The promise of Web services is to enable a distributed
environment in which any number of applications, or application components, can
interoperate seamlessly within an organization or between companies in a platform-
neutral, language-neutral fashion. From the perspective of business process
solutions, a Web service could represent an activity within a business process, or a
composite business process comprising a number of steps [7]. A Building a
business process solution by using Web services involves specifying the potential
execution order of operations from a collection of Web services, the data shared
among the Web services, which business partners are involved and how they are
involved in the business process, and joint exception handling for collections of Web
services. A basis for these specification tasks is the discovery, composition, and
interoperation of Web services, which are primary pillars of automatic process
integration and management solutions. In this paper, we focus on the following two
problems of the Web service-based business process automation: the location of
services based the capabilities of published services, and the composition of business
processes based on the business requirements of submitted process requests. This
paper discusses solutions to these problems, and, especially, focuses on the following
aspects: the specification of the capabilities of services and the requirements of
requests, and algorithms for matching published services and submitted process
requests in terms of service capabilities and requested business requirements.

The rest of this paper is structured as follows: Section 2 summarizes the previous
work on the problems of interest, discusses their limitations, and explains how the
work presented in this paper addresses them. Section 3 addresses issues involved
with the specification of business requirements in process request documents.
Section 4 presents a matching algorithm for locating services based on service
capabilities and properties. Section 5 presents matching algorithms that are deigned
to satisfy the business requirements and provide optimal solutions in terms of
meeting certain business objectives. In Section 6, conclusions are drawn and future
work is outlined.

2 Related Work

Recently, there have been active studies related to the Web service-based process
automation in both academia and industry. Industrial effort for the business process
automation is centered around the Business Process Execution Language for Web
Services (BPEL4WS), which is an XML-based workflow definition language that
allows companies to describe business processes that can both consume and provide
Web services [14]. Along with complementary specifications, WS-Coordination and
WS-Transaction, BPEL4WS provides a basis for a business process automation
framework, and is viewed to become the basis of a Web service standard for
composition. With the BPEL4WS specification, vendors such as IBM provide
workflow engines (e.g., BPWS4J [13]) on which business processes written in
BPEL4WS can be executed. Running on Web application servers such as Apache
Tomcat, the workflow engines support the coordinated invocation, from within the

Web Service-based Business Process Automation Using Matching Algorithms 3

process, of Web services. There are some studies, mostly from academia, done for
the specification of service capabilities and process requests by using semantic
knowledge-based markup languages, notably, OWL-S(formerly known as DAML-S)
[2].

For matching published services and submitted process requests in terms of
service capabilities and requested business requirements, we propose a system
multiple matching algorithms, a micro-level matching algorithm, which matches the
capabilities and attributes of published services with activities in a process request,
and macro-level matching algorithms, which are used to compose a business process
by selecting one service for each activity among the candidate services selected by
the micro-level algorithm. Some previous work envisioned the task of business
process composition as an AI-inspired planning problem [3, 11]. They represent a
Web service by a rule that expresses the service capable of producing a particular
output, given a certain input. Then, a rule-based expert system is used to
automatically determine whether a desired composite process can be realized using
existing services, and construct a plan that instantiates the process.

3 Requirement Specification

In this section, we address issues involved with the specification of business
requirements and objectives in process request documents. We discuss what
information on business requirements and preferences need to be specified in process
request documents and how the information may be used in the discovery of services
and the composition of processes. We extend the BPEL4WS specification to
accommodate this information in business process documents. Business process
documents written in BPEL4WS mostly consist of the following parts, which are
primary components of BPEL4WS [14]:

• Process definition,
• Partner definition,
• Container definition,
• Flow model, and
• Fault handling.

Fig. 1 shows an example of specifying several requirements for a business
process, i.e., cost, time and quality of services. In Section 5, we will explain how
this requirement information is used in selecting services for composing a business
process with an algorithm for optimizing certain business objectives, or a multi-
attribute decision analysis algorithm that maximizes the total utility value of selected
service combinations.
<businessRequirements>

<requirement name="processBudget"
type="cost"
value="30000.00"
unit="USD"
limit="maximum"
weight="10" />

4 Yanggon KimP1P and Juhnyoung LeeP2P

<requirement name="processTime"
type="time"
value="365"
unit="days"
limit="maximum"
weight="7" />

<requirement name="processAvailability"
type="quality"
value="98.0"
unit="%"
limit="minimum"
weight="5" />

</businessRequirements>
Fig. 1. Specification of business requirement

In addition to business requirements, users of business processes sometimes need to
express their preferences in selecting Web services for implementing processes. An
example is the preference regarding whom a company prefers (or does not prefer)
partnering with in a business process depending on its existing business relationship
with service providers.

4 Service Discovery with Micro-Level Matching

This algorithm returns a (pre-specified) number of services that sufficiently match
with an activity in the request. It is based on the previous work in [3, 9] which allows
service providers to advertise their services in OWL-S service profile markup, and
match submitted requests again in OWL-S profile markup with appropriate services.
Unlike this previous work, our work does not depend on OWL-S profile, but utilizes
the specification of service capabilities and request requirements directly stored in
UDDI records and BPEL4WS documents, respectively. This algorithm is referred to
as a micro-level matching algorithm, because it mostly deals with a single atomic
process of a request.

Fig. 2. The micro-level matching algorithm

Web Service-based Business Process Automation Using Matching Algorithms 5

Fig.2 depicts the architecture of the micro-level matching algorithm. The Parser
module is capable of parsing an input BPEL4WS document and creates objects
storing business requirements specified in the documents. The Inference Engine
module parses and reasons with ontologies that provide the working model of
entities and interactions in knowledge domains of interest, specified in the OWL
language [5, 6]. The Capability Matching Engine is based on the semantic matching
algorithms outlined in [3, 9]. While the matching algorithm presented in [9] is
constrained to match only input and output messages of Web services, the algorithm
proposed in [3] generalized the previous algorithm to match for any attribute of
services and requests by parameterizing the match criteria such as quality, service
categories as well as input and output messages. Figure 4 outlines the main control
loop of the matching algorithm, which is based on the work in [3]. The degree of
match is a measure of the semantic distance between the conceptual meanings of the
service attributes [3, 9]. Each attribute has a lexical concept attached to it that is
defined in the Ontology Database available to the Inference Engine. We use three
different degrees of matches based on specialization relationship as defined in [9].
As given in the degreeOfMatch module of Fig.3 , the degrees of match are
preferentially ordered based on the semantic distance that the degree represents: an
EXACT match between concepts is preferred to a PLUG_IN match, and a PLUG_IN
match is preferred over a SUBSUMES match [9].

matchAttribute(request, service, matchCriteria) {
for each criteria in matchCriteria do {

requestAttributes = request(attributeCriteria);
serviceAttributes = service(attributeCriteria);
for each requestAttribute in requestAttributes do {

for each serviceAttribute in serviceAttributes do {
degreeMatch = degreeOfMatch(requestAttribute,

 serviceAttribute);
if (degreeMatch < matchLimit)

return fail;
if (degreeMatch < globalDegreeMatch)

globalDegreeMatch = degreeMatch;
}

}
}
return success;

}
degreeOfMatch(requestAttribute, serviceAttribute) {
 if requestAttribute is SameClassAs serviceAttribute return EXACT;
 if serviceAttribute is SubClassOf requestAttribute return PLUG_IN;
 if requestAttribute is SubClassOf requestAttribute return SUBSUMES;
 else return FAIL;
}

Fig. 3 Capability matching algorithm

6 Yanggon KimP1P and Juhnyoung LeeP2P

5 Macro-Level Matching

The micro-matching algorithm works with other matching algorithms, macro-level
matching algorithms, which are used to compose a business process by selecting one
service for each activity in the request. The output from the macro-level matching
algorithms satisfies the business requirements of the submitted request, and provides
optimal solutions in terms of meeting a certain objective, e.g., minimizing the cost or
execution time, or maximizing a certain quality measure. In this paper, we model the
macro-level matching problem as a variation of the multiple-choice knapsack
problem [8], and design a configurable, generic optimization engine, which can be
repeatedly run with variations of configuration criteria in search for a business
process solution best fit the need. In addition, we alternatively model the macro-
level matching problem as a multi-attribute decision making problem. This model is
particularly useful when it is not sufficient to provide an optimal solution for a single
measure, but requires maximizing the total utility value of multiple business
measures of interest. Our algorithm is based on multi-attribute decision analysis,
which computes the scores of the candidate service combinations by considering
their attributes values and capabilities, ranks the candidates by score, and selects
services among the top-rankers.

5.1 Multiple-Choice Knapsack Algorithm

Fig.4 displays the architecture of the macro-level matching algorithm. The input to
the matching algorithm is a set of Non-Dominated Match Vectors, one vector for
each atomic activity in the request, which were generated by the micro-level
matching algorithm. The output of the optimization engine is a set of services
selected from the input, one service from each Non-Dominated Match Vector. The
match engine can be customized for different business objectives and constraints as
specified in another input to the engine, the Configuration.

Fig.4. The macro-level matching algorithm

We model the macro-level matching problem as a variation of the multiple-choice
knapsack problem [8]. The "multiple-choice" term in this problem designation refers

Web Service-based Business Process Automation Using Matching Algorithms 7

to the requirement of selecting exactly one service from each candidate list, i.e., each
Non-Dominated Match Vector. For a specific example, consider the following
problem: We are given a set of m business activities in our business process request,
a1, ...,am such that activity, ai, contains ni candidates of Web services from the micro-
level matching step. The j-th candidate for activity ai has cost cij, and execution time
tij. Given the total execution time limit T for this business process, the goal of this
macro-level matching algorithm is to compose an implementation plan for this
business process by selecting one and only one Web service candidate from each
candidate list such that the overall cost is minimized without exceeding our total
execution time limit. If we use indicator variable xij to indicate whether the j-th
service from the candidate list for activity ai was selected, we can formalize the
problem with the following equations:

minimize ∑∑
= =

=
m

i

n

j
ijij

i

xcC
1 1

subject to Txt
m

i

n

j
ijij

i

≤∑∑
= =1 1

 ∑
=

==
in

j
ij mix

1
,...,1,1

 .,},1,0{ jixij ∀∈

The multiple-choice knapsack problem is known to be NP-hard [8]. It is possible to
exactly solve the above problems using branch-and-bound algorithms, but because
the worst-case running time of these algorithms is exponential in both the number of
activities and the number of candidates on each list, branch-and-bound algorithms
are often too slow to be useful. An alternative approach is to use dynamic
programming techniques, and there are a number of algorithms known in this
direction [8]. By using off-the-shelf software packages of optimization algorithms
such as IBM's OSL [12], the given problem can be implemented in a straightforward
manner. With this model in place, we can vary the problem with different objective
functions and constraints. The variation of the problem can be implemented by using
the Configuration component in Fig.4. For example, some processes may need to be
optimized for execution time, while other measures such as cost will be treated as a
constraint. In this case, the problem can be re-formulated as follows: We are given a
set of m business activities, a1, ...,am such that activity, ai, contains ni candidates of
Web services. The j-th candidate for activity ai has cost cij, and execution time tij.
Given the total cost budget C for this business process, the goal of this algorithm is
to compose an implementation plan for this business process by selecting one and
only one Web service candidate from each candidate list such that the overall
execution time is minimized without exceeding our total execution time limit.
If we use indicator variable xij to indicate whether the j-th service from the candidate
list for activity ai was selected, we can formalize the problem with the following
equations:

minimize ∑∑
= =

=
m

i

n

j
ijij

i

xtT
1 1

8 Yanggon KimP1P and Juhnyoung LeeP2P

subject to Cxc
m

i

n

j
ijij

i

≤∑∑
= =1 1

∑
=

==
in

j
ij mix

1
,...,1,1

 .,},1,0{ jixij ∀∈

Yet another variation of this problem is an optimization on an interesting metric such
as the degree of match described in the previous section. For example, the problem
can be formulated as follows: We are given a set of m business activities, a1, ...,am
such that activity, ai, contains ni candidates of Web services. The j-th candidate for
activity ai has combined degree of match dij, cost cij, and execution time tij. Given the
total cost budget C and the total execution time limit T for this business process, the
goal of this algorithm is to compose an implementation plan for this business process
by selecting one and only one Web service candidate from each candidate list such
that our overall degree of match is maximized without exceeding our total cost
budget and the total execution time limit.
If we use indicator variable xij to indicate whether the j-th service from the candidate
list for activity ai was selected, we can formalize the problem with the following
equations:

maximize ∑∑
= =

=
m

i

n

j
ijij

i

xdD
1 1

subject to Cxc
m

i

n

j
ijij

i

≤∑∑
= =1 1

Txt

m

i

n

j
ijij

i

≤∑∑
= =1 1

∑
=

==
in

j
ij mix

1
,...,1,1

 .,},1,0{ jixij ∀∈

The degree of match of an activity can be more important than those of other
activities. In such a case, the variant importance of degree of match of different
activities can be reflected in the model by the assignment of weight wi for each ai.
Then the objective model is slightly modified as follows:

maximize ∑ ∑
= =

=
m

i

n

j
ijiji

i

xdwD
1 1

5.2 Multi-Attribute Decision Analysis

Another approach to solving the macro-level matching problem is a multi-attribute
decision analysis. This method is particularly useful when it is not sufficient to

Web Service-based Business Process Automation Using Matching Algorithms 9

provide an optimal solution for a single measure, but requires maximizing the total
utility value computed by considering multiple business measures such as cost,
execution time, degree of match, quality, category, and business entity relationship.
The input to this algorithm is a set of n service combinations, s1, ..., sn such that
service combination, si, contains m Web services, one service for each activity in the
given business process. Also, each service combination has k business attributes, x1,
..., xk such that business attribute, xj, is assigned a relative weight wj (Remember the
weight attribute of the <requirement> tag in Fig. 1.). Then this algorithm uses
additive value function in order to compute the scores of the alternative service
combinations. The system then ranks the alternative combinations by score, and
selects the winning combinations among the top-rankers. The basic hypothesis of
this multi-attribute decision analysis algorithm is that in any decision problem, there
exists a real valued function U defined along the set of feasible alternatives, which
the decision maker wishes to maximize. This function aggregates the criteria x1, ...,
xk. Besides, individual (single-measure) utility functions U1(x1), ..., Un(xn) are
assumed for the k different attributes. The utility function translates the value of an
attribute into “utility units”. The overall utility for an alternative is given by the sum
of all weighted utilities of the attributes. For an outcome that has levels x1, ..., xk on
the k attributes, the overall utility for an alternative i is given by

∑
=

=…
k

i
i ixUwU

1
k1)() x, ,x(

The alternative with the largest overall utility is the most desirable under this rule.
Each utility function U(xi) assigns values of 0 and 1 to the worst and best levels on
that particular objective and

0,1
1

>=∑
=

i

k

i
i ww

Consequently, the additive utility function also assigns values of 0 and 1 to the worst
and best conceivable outcomes, respectively. A basic precondition for the additive
utility function is preferential independence of all attributes, which has been the topic
of many debates on multi-attribute utility theory [1, 4].

6. CONCLUDING REMARKS

In this paper, we addressed two primary problems of the Web service-based business
process automation: the location of services on the basis of the capabilities of
published services, and the composition of business processes on the basis of the
business requirements of submitted process requests. We proposed a solution, which
comprises multiple matching algorithms, a micro-level matching algorithm and a
macro-level matching algorithm. The first algorithm reasons with semantic
information of services and returns services that sufficiently match with an activity
in the request. The second algorithm solves a variation of the multiple-choice
knapsack problem that models the macro-level matching problem for optimizing a
business objective and fulfilling other business constraints. In addition, we proposed
a multi-attribute decision analysis algorithm, which can be used with the

10 Yanggon KimP1P and Juhnyoung LeeP2P

optimization algorithm in a complementary fashion for a better process composition
result. This algorithm is particularly useful when it requires maximizing the total
utility value computed by taking multiple business measures into account. For
securing information required for the execution of the matching algorithms, we
explained how existing standards, UDDI and BPEL4WS, could be used and
extended to specify service capabilities of services and business requirements,
respectively.

7. REFERENCES

1. R. T. Clemen, Making Hard Decisions: an Introduction to Decision Analysis,
Wadsworth Publishing Company, Belmont, CA, 1996.

2. DAML-S Coalition, "DAML-S: Web Service Description for the Semantic Web,"
Proceedings of the 1st International Semantic Web Conference, June 2002.

3. P. Doshi, R. Goodwin, R. Akkiraju, S. Roeder, "A Flexible Parameterized
Semantic Matching Engine," IBM Research Report, 2002.

4. W. Edwards, "How to Use Multi-Attribute Utility Measurement for Social
Decision Making," IEEE Transactions on Systems, Man, and Cybernetics SMC,
vol. 7:326-340, 1977.

5. D. Fensel, I. Horrocks, F. van Harmelen, D. L. McGuinness, and P. F. Pate, "OIL:
An Ontology Infrastructure for the Semantic Web," IEEE Intelligent Systems,
Vol. 16, No. 2, 2001.

6. J. Hendler, and D. L. McGuinness, "DARPA Agent Markup Language," IEEE
Intelligent Systems, Vol. 15, No. 6, 2001.

7. F. Leymann, D. Roller, and M. T. Schmidt, "Web Services and Business Process
Management," IBM Systems Journal, Vol. 41, No. 2, 2002.

8. S. Martello, and P. Toth, Knapsack Problems, Chichester, New York, John Wiley
& Sons, 1990.

9. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, "Semantic Matching of
Web Services Capabilities," Proceedings of the 1st International Semantic Web
Conference, June 2002.

10. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, "Importing the Semantic
Web in UDDI," Workshop on Web Services, e-Business, and the Semantic Web:
Foundations, Models, Architecture, Engineering and Applications, Toronto,
Ontario, Canada, May 2002.

11. S. R. Ponnekanti, and A. Fox, "SWORD: A Developer Toolkit for Web Service
Composition," Proceedings of the 11th World Wide Web Conference, Honolulu,
Hawaii, May 7-11, 2002

12. IBM Optimization Solutions and Library, http://www-
3.ibm.com/software/data/bi/osl/index.html.

13. "BPWS4J," IBM Corporation, http://alphaworks.ibm.com/tech/bpws4j, August
2002.

14. "Business Process Execution Language for Web Services, Version 1.0," BEA
Systems, IBM Corporation, and Microsoft Corporation, Inc.,
http://www.ibm.com/developerworks/library/ws-bpel/, July 2002.

	1 Introduction
	2 Related Work
	3 Requirement Specification
	4 Service Discovery with Micro-Level Matching
	5 Macro-Level Matching
	5.1 Multiple-Choice Knapsack Algorithm
	5.2 Multi-Attribute Decision Analysis
	6. CONCLUDING REMARKS
	7. REFERENCES

