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Abstract A novel strategy for the Hybridizable Discontinuous GalertiDG) solution of
heat bimaterial problems is proposed. It is based on eXtbRidte Element philosophy,
together with a level set description of interfaces. Hadeienrichment on cut elements
and cut faces is used to represent discontinuities acredstiirface. A suitable weak form
for the HDG local problem on cut elements is derived, acdagnfor the discontinuous
enriched approximation, and weakly imposing continuityusnp conditions over the ma-
terial interface. The computational mesh is not requirefit the interface, simplifying and
reducing the cost of mesh generation and, in particulaidaw@ continuous remeshing for
evolving interfaces. Numerical experiments demonsttaeX-HDG keeps the accuracy of
standard HDG methods in terms of optimal convergence anersopvergence.

Keywords interface- bimaterial- Hybridizable Discontinuous Galerkin (HDGhigh-
order- level-sets X-FEM - X-HDG

1 Introduction

Hybridizable discontinuous Galerkin (HDG) methods [4,E a family of discontinuous
Galerkin (DG) methods that have proved their efficiency mdy an the field of computa-

tional fluid dynamics [6,22, 23], but also in the context difxtic and wave problems [13,17,
19, 26]. In addition to the advantages of most DG methods6[21, 24] — such as intrinsic
stabilization thanks to numerical fluxes or suitability farde vectorization, parallel com-
putation and adaptivity— the hybridization process in HO®ves for a reduction in the

number of degrees of freedom in the final linear system, aflgito static condensation in
the context of high-order continuous finite elements, sea&iance [13]. In particular, for
a Laplace equation the globally coupled unknowns redudeg@pproximation of the trace
of the solution at the mesh skeleton, i.e., the sides (osfac8D) of the mesh. Moreover,
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convergence of ordef + 1 in the £2 norm is proved not only for the primal unknown, but
also for its derivative [4,7]. Therefore, a simple elembytelement postprocessing leads to
a superconvergent approximation of the primal variablés) eonvergence of ordet + 2

in the £2 norm.

HDG has also shown its suitability for the solution of bintatkproblems. In [18,25]
HDG is applied to the solution of bimaterial Stokes and Rwisgroblems. However, in
these algorithms the mesh needs to be adapted to properhe finterface geometry, re-
quiring continuous remeshing in the case of evolving iregs. In [8] an HDG method for
unfitted meshes is proposed, based on the definition of aiusatizons that are defined in the
whole computational domain and represent the disconi@sudver the interface. However,
convergence is proved only for linear and quadratic appmakibn, and numerical examples
show that higher order convergence may not be reached imajene

An alternative strategy for the solution of bimaterial deshs, based on HDG together
with eXtended Finite Element (X-FEM, see [2,9,11]) philpky, is proposed here: the
eXtended Hybridizable Discontinuous Galerkin (X-HDG) trel. X-HDG was first intro-
duced in [14] for the solution of problems with voids, andsitfurther developed here for
the solution of bimaterial interface problems by introdhgcan enriched approximation for
elements and faces cut by the interface in order to repressuntinuities across the inter-
face as usual in X-FEM methods for bimaterial problems. Aleet function is used for the
geometrical representation of interfaces which allowsafoomputational mesh not fitted to
the interface.

In the context of X-FEM, Heaviside enrichment is the usualicé to represent strong
discontinuities along interfaces, i.e., discontinuitieshe primal unknown. In the case of
weak discontinuities (i.e., the unknown is continuous waittiscontinuous derivative) sev-
eral options have been proposed in the context of high-ardetinuous finite element ap-
proximations. On the one hand, several authors proposefiemdir corrected ridge en-
richment functions that lead to approximations with a weiskahtinuity on the interface,
see for instance [2,9, 10]. However, these approximatioamg mot reach high-order conver-
gence rates. On the other hand, Heaviside enrichment cehkiith a proper weak form is
considered in [20], ensuring high-order convergence rates

In the context of high-order DG methods, a Heaviside enritinis the natural choice
for both kinds of discontinuities. The Heaviside enrichinetroduces a strong discontinu-
ity on the interface that can be treated with the same siestes the element-by-element
discontinuities of the approximation. In X-HDG, Heavisiderichment is applied to both
cut elements and cut faces.

Following HDG philosophy, a trace variable is defined on thesimskeleton (the union
of the faces of the elements) that allows stating the s@dé#dical problem in every element.
The local problem expresses the solution in every elemertims of the trace variable. For
elements not cut by the interface, the solution of the locablem is the standard HDG
local solver. For elements cut by the interface, a modifiedliproblem is derived, which
accounts for the discontinuous enriched approximatioidéihe element, and for the conti-
nuity or jump conditions over the interface. A new trace &bk is introduced representing
the trace of the solution on the interface, which is isolaédrwards using the interface
conditions. The resulting modified local solver for cut etens has the same structure as
for standard elements—the solution at the element is espdesxclusively in terms of the
trace variable on the mesh skeleton—but with modified medtien order to account for
the enriched approximation and the interface conditiorieérelement. The problem is then
closed with the so-called conservativity conditions tladier replacement of local solvers,
lead to the global problem: a system of equations involvinty ¢he trace variable on the
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mesh skeleton. Given the trace, the local problem can betosesgimpute the solution in-
side the elements in a second step. Then, as in standard HDGHDG superconvergent
solution can be computed through an element-by-elemetpmaessing algorithm that is
properly modified for cut elements to take the discontiesitinto account. In all compu-
tations, the robust and efficient methodology proposed 44 il considered for numerical
integration in cut elements and on cut faces. Is it based oolym@mial parametrization
of the interface in each element with the same degree as fte dlement approximation,
ensuring high-order convergence rates.

X-HDG inherits the advantages of X-FEM methods, i.e., thepotational mesh is
not required to fit the interface, simplifying and reducihg tost of mesh generation and,
in particular, avoiding continuous remeshing for evolvintgrfaces. At the same time, the
computational efficiency, stability, accuracy and optic@ivergence and superconvergence
of HDG is retained.

The X-HDG formulation for bimaterial problems is presenie&ection 2, introducing
the enriched approximation, recalling the HDG weak formhgf global problem and for
uncut elements, and proposing a modified local problem foelmments. For the sake of
simplicity, the formulation is detailed for a bimaterialoptem, but the extension to mul-
timaterial problems is straightforward. The ability of Xa#6 to handle elements that are
split by the interface into more than two regions is discdseesection 2.4. X-HDG allows
considering different enrichment functions in each eleniera natural way, which is not
straightforward for X-FEM based on continuous approxiorsi

Numerical examples in section 3 demonstrate the applicabil the method, and how
X-HDG keeps the accuracy, optimal convergence, and supezogence of HDG for the
solution of bimaterial interface problems.

2 X-HDG formulation with Heaviside enrichment for bimateri al problems

Let 2 c R? be a bounded domain divided in two disjoint subdomains
Q=0UR, HN2=10)

with an interface
7 =101N8s.

The following bimaterial problem is considered,

-V - (I/Vu) = f in 21 U (22,
[un] =0 onZ,
[vn-Vu]=0 onZ, @
U =up onlp,
—vn-Vu=gny OnIly,

whereu is the solutiony is a material coefficient with discontinuous definition asohe
interface (that isy = v; in £2; for« = 1,2), f is a given source term, are prescribed
values on the Dirichlet boundadyy, andgy is a prescribed flux on the Neumann boundary
Iy, with I'p Uy = 802. Thejump [[-] operator is defined at an interface (material interface
or, later, faces between elements), using values from theohs to the left and right of the
interface,

[©] = ©r + ©r, @
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always involving the normal vector. That is, for instandeha material interfac& between
the subdomaing?, and {22, the jump of a vectoww is [w - n] := wy - n1 + w2 - Ny =
(w1 —w32) -n1, wheren; is the normal vector exterior t9;, andw; denotes the restriction
of w to £2;.

The domain? is now assumed to be covered by a finite element meshrnwittdisjoint
elementsk;, such that

Nel
ﬁ:UFi’ Kiﬂszwfori;éj.
1=1

The union of alln; ¢ facesrI; (sides in 2D) is denoted as

Nel Nic

r:=\Jor;=J I1y.
i=1 f=1

In the discontinuous setting, equation (1) is expressediast arder system with some
equations local to the elements and some global equatidresiotal element-by-element
problems correspond to the statement of the PDE in (1) in elechenti’; subject to Dirich-
let boundary conditions, that is,

V.-g=f inKZ-
qg+vVu=0 ink; fZINK; =0, (3a)
u=1u O0nokK;

q+vVu=0 inK\Z
[un] =0 onZInK; » fZNK; #0, (3b)
[g-n]=0 onInkK;
u=1u O0nokK;

fori =1,...,ne . Two new variables are introduceglcorresponding to the flux af, split-
ting the PDE into two first order PDEs, afidcorresponding to the trace afat the mesh
facesI'. The traceu is a single valued variable on each face, with the same vahes\seen
from both sides of an interior face. Figure 1 shows an exammpan HDG computational
mesh, with elemental nodes and trace nodes. The local pnski@ve been particularized

.y

AV

Fig. 1 Example of a third degree HDG discretization. Nodal appr@tion at elements (gray nodes) for

andgq, and nodal approximation at sides (black nodes) for the fiaSome elements and sides are cut by the
interface.

for elements cut by the interior boundary (3b), including thterface conditions, and for
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standard elements (3a). Given the tracéhe local problems (3) can be solved in each ele-
ment to determine the solutianand the fluxg. Thus, the problem now reduces to determine
the traceu. This is done by imposing the so-calleshservativity conditions (also known as
global equations), that is, the continuity of the flux across element bouredari

[g-m] =0 onI\os, 4
and the boundary conditions, equivalent to the respectinditons in (1),
@ =Py(up)onlp, q-n=gyonly, 5)

wherePs(up) is the£? projection of the data, on the approximation space on the faces,
i.e., a least-squares fitting.

It is important noting that the continuity of the solutianacrossI” is imposed by the
Dirichlet boundary condition in the local problems (3) ahd fact thati is single valued on
I.

The discretization of the conservativity condition (4) dnel local problems (3), with the
boundary conditions (5), leads to the complete X-HDG foatiah. The following discrete
spaces for elemental variablesandg, and for the trace variabl@, are considered

Yh= {veL?(2) :v|g, € Pr(K;) if K,NZT=20,
A= Lo e £2(I) : |, € Pi(Ty) if ;NT=0,

|, € Pr(I) ® HP,(I3) if I;NT # 0},

whereP,, denotes the space of polynomials of degree less or equalAbis a Heaviside
function enriching the approximation in cut elements andwtrfaces, which can be defined,

for instance, as
H:{ 1 in

—1 in {25
to introduce discontinuities across the interface

Remark 1 In X-HDG the approximation space is enriched with a Heaedighction and,
therefore, the approximations are discontinuous acrasmtharface for both the solutiom
and the fluxq. This is a natural choice for enriching the flgx whose tangential compo-
nent is discontinuous across the interface. For the solutj@ven though it is continuous,
X-HDG considers a discontinuous approximation to keep tbeothtinuous setting of HDG
also across the interface. Continuity of the soluticemd the normal fluxg - n across the in-
terface is imposed weakly, as usually done across inta@asfin HDG. In fact, the X-HDG
method proposed here is formally equivalent to a standar® Hizthod applied on a cut
mesh combining triangular and quadrilateral elements aj®) polynomial approximation
(i.e., a completes-th degree polynomial basis also for quadrilaterals), bgaoized and
implemented in an alternative way to keep the original gidar computational mesh and
the original unknown structure, as usual in X-FEM methodausT X-HDG keeps the su-
perconvergence and stability properties of standard HDGnkaccordance with an X-FEM
philosophy.

Remark 2 For the sake of simplicity, all derivations in this secti@same that elements are
split into two regions only, which corresponds to the usitalasion. Thus, one Heaviside
enrichment is considered, see (6). However, with high+oag@roximations more compli-
cated situations, dividing elements or faces into moreoregimay appear, see section 2.4
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and the numerical example in section 3.5. In such a case ramerent with multiple Heav-
iside functions is proposed in section 2.4 to ensure an ewgnt approximation in each
region of the element or face.

Remark 3 The description of the interface can be done with a levelgsttfon as usual in
X-FEM methods, see for instance [14]. The level set funcisogiven by its nodal values

on the computational mesh using aith degree approximation. In most numerical tests a
k-th degree level set function is used for the X-HDG solutiod an additional level set
function with polynomial degreg + 1 is used for the postprocessed solution. Nevertheless,
for examples with evolving interfaces and more involveaiféice geometries an accurate
representation of the interface is crucial to keep the X-HigGuracy, see the kidney-shaped
interface example in section 3.4. According to the analigistandard HDG with meshes
fitted to the interface in [18], a level set function with degr = 2k + 1 ensures optimal
convergence of X-HDG in the more general situation.

The next sections present the details of the X-HDG formoihatstating the discretiza-
tion of the local problems for standard and cut elements laadiscretization of the conser-
vativity condition. The local problem at elements not cuthwy interface (3a) and the global
problem (4) are discretized as usual in HDG [5, 4] and redaliesections 2.1 and 2.3. The
discretization of the local problem for cut elements (3ljgseloped in section 2.2.

To simplify the presentation, in an abuse of notation, theesaotation is used for the
numerical approximation, belonging to the finite dimenaispaces (6), and the exact so-
lution, that isu, g andu.

2.1 Local problem for standard elements

This section recalls the standard HDG local problem on amefe /; not cut by the inter-
face. It corresponds to the discretization of (3a), thagigena € A", find u € P, (K;),
q € [Pi(K;)]? such that

/ vV-qu—l—/ TVU(U*iL\)dS:/ vfdV Vo € Py (K;)
K; 0K; K;

()
/ 1q-de—/ uV - wdV + Gw-ndS=0 VYwe [Py(K;)]
KV K; OK;

The first equation in (7) can be derived from the first equaitiof8a) by applying inte-
gration by parts, replacing the flux by the numerical flux

g:=q+7v(u—1u)n, (8)

and undoing the integration by parts. The second equatiobt&@ned from the weak form
of the second equation in (3a), applying integration by artd replacing the boundary
conditionu = u on the element boundary.

Remark 4 The parameter- in the definition of the numerical flux (8) is a non-negative
stabilization parameter usually taken of ord&fl). For each element, it may be taken as a
positive constant on all faces, or positive on one arbitfacg and zero at the rest (single
face). Both options lead to stable and optimally convergehitions, with superconvergent
postprocessed solutions. See for instance [12, 4] forldetaithe influence of this parameter
on the solution behavior.



X-HDG for bimaterial problems 7

The discretization of the local problem (7) leads to a systéequations of the form

A’ + Aliq’ + ANAT = £,
qu qqd tAGFA =0,

whereu® andq’ are the vectors of nodal values@findg in elementk;. The vectorA® is
the vector of nodal values af on then faces of the element(= 3 for triangles anch = 4
for tetrahedra),

A= |, (10)

GFin

whereii/ denotes the nodal values®@bn facel’y, andF;; is the number of thg-th face of
elementk;. Note that the subindices in the matrickgefer to the space for the weighting
function and the admissible solution, respectively.

System (9) can be solved fa andq’ in each element, obtaining the so-calledal

solver in the elemenk;,
u =UNA £ g =QMA £, (11)

with the following matrices and vectors

K; K; K;
|:U :| — _A! [Auﬁ] [fU

K; | K; |’ K;
Q Aqﬁ fQ

[Afﬁz‘ A{fﬂ

- K; A K;
Agi Ayq

—A?

gl
“ ] : (12)
0

In other words, the values of the _solutiuﬁ andq’ on element can be explicitly expressed
in terms of the trace on its faceA’.

2.2 Local problem for cut elements

The X-HDG local problem on an elemeat; cut by the interface corresponds to the dis-
cretization of (3b), that is: givedl € A", find u € Py (K;) ® HPy(K;), q € [Pp(K;) @
HPy(K;)]¢ anda’ € Py (I;) such that

/ vV-qu+/ Tuv(u—ﬂ)dSJrQ/ T{Vv(u—ﬂi)}dS:/ vfdV
K; aKi Z; K;

i

1 4 (13)
/ —q-de—/ uV - wdV + ﬂw~nd5’+/ W' fw-n]dS=0
Kiy K; 0K, Z;

for all v € Py (K;) ® HP,(K;) andw € [P (K;) ® HP,(K;)]%, and

/z, ilq-n] dS—l—QT/IiiF({Vu} f{y}ﬁzﬁ) dS =0 VvePy(Ty). (14)

i
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Note that the jump in/, v andu acrosszZ; := K; N Z is taken into account by jump and
mean operations. The mean operdtgris defined as taking values from the left and right
domains sharing the interface, in this case

{0} = % (91 + ©@2). (15)

A new trace variabl@’ € Py, (I;) is introduced in the local equations (13), which approxi-
mates the trace of the solution on the interfaceWith the new trace variabl&’, the local
equations (13) can be derived following the standard HD&gulare for each one of the
domains,K; N 21 and K; N 23, and summing the obtained weak forms. Compared to the
weak form for standard elements (7), the local equationsfout element (13) have two
additional terms corresponding to integrals along therfate Z;. They involve the new
trace variablg:’ and take the discontinuous nature of the approximationesipét account.
These new terms weakly impose the conditios= % on Z;, ensuring weak continuity of
u across the interface. The local problem is closed with (@t is, the weak form of the
conservativity condition across the interfage, n] = 0 onZ;, considering the numerical
flux defined in (8),i.e.g-n =q-n +7(u—a').

Remark 5 The aproximation spack; (I;) is represented by a one-dimensional polynomial
nodal basis of degrek on the 1D reference elemefit1,1), which is mapped to a nodal
basis on an approximation of the interfa€ge The mapping is done with anth degree
parametrization given by + 1 points on the interface. Theth degree parametrization of
the interface is also used for the definition of numericaldyature schemes within the cut
element, accounting for the discontinuous nature of theaqapation across the interface,
see [2,14] for details, and an example with degree 3 of the level set function in Fig-
ure 2. With the proposed approach, the integrals on botls sifine interface are computed
separately.

Fig. 2 Representation of the X-HDG discretization in an elememtbguthe interface (left): the elemental
variablesu and g are depicted by gray nodes, the trace variablby black nodes, and the trace on the
interfacew’ by circles. Representation of the reference element folement cut by the interface (right):
interface representation and numerical quadrature witlicqoarametrization of the interface. The color of
the nodes indicates the sign of the level set function ddfithie interface. Crosses are exemplary integration
points.

The discretization of the local equations (13) leads to &esy®f equations of the form

(Al + AT w' +AlGa + AISAT + AT = £

, , . , : (16)
Agiu’ TAGd +AGA +ATLE =0
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similar to the system for standard elements (9), but witkehmew matrices corresponding
to integrals on the interfacg (marked with the superindek), and the nodal values for the
new trace variabley®.
On other hand, the discretization of the conservativitydition (14) leads to a discrete
equation of the form
AL u +AI tr AL G =0,

utu®

which allows expressing the new trace vaIniéskn terms of the elemental values

u = TZui + f]qi 17)
with T}, = —[AZi_]7'AZ T} = [Aglﬁl]*lAI . This expression corresponds to a

Schur complement for eliminating the trace solutujnThis elimination of a trace variable
' in favor of the local variables; andg, is logically the opposite elimination as the one
expressed by the local solver. Substitutiifgn (16) by (17) leads to the final discrete local
problem

(A% + AT+ ALL T u' + Al + AL T o + AT = £
[AKUFAI Tl]u +[A51+A§U1Tz]qi+A§%’Ai:0. (18)

Now, system (18) can be solved faf andq’, obtaining theocal solver in the cut element
K;, i.e., equation (11) with (12) and

Al + Al + a7 Tl [Alf + Al T
A — uu
K; Z; K; Z;

Al +almi]  [Aly +alLTi]

The structure of the local solver is exactly the same as foraut elements (11), thanks
to the fact that the internal trace variatilehas been expressed in terms of the local vari-
ables. Note, however, that the size of the matrices invalvéide local solver is different for
a standard element and for a cut element due to the enriclpedxamation. In the simplest
case (see Remark 2), there are twice as many degrees ofritdedout elements and faces.

Remark 6 The extension of the formulation to other conditions on titeriface is straight-
forward. As an example, consider a problem with non-homeges conditions on the inter-
face,uz — u1 = c and[—vn - Vu] = g onZ;, whereu; denotes the restriction of function
u 10 £2;. Then, definingi’ as the trace ofi; (i.e.,u; = @' onZ;), we haveus = @ + o on
Z;, and therefore, new ternj§ Trovga and— jI aw? - ng appear in the right hand side of
the first and second equation in (13), respectlvely, andigit hand side of (14) becomes
fL- vgdS + fL- TroDadS.

2.3 Global problem

The local problem, both in a standard element or in a cut ei¢nheads to the local solver
(11) that expresses the solution in the elemerdndq, in terms of the trace values at its
boundary,i. Thus, the problem is reduced to determine the trace nodaesén’ };*;1
on the mesh skeletofn'. For this purpose the so-callegiobal problem is stated, which
corresponds to the discretization of the conservativitydition on1” (4), with the boundary
conditions (5), replacing by the numerical flux (8).
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The weak form for the global problem is: firide A" such thati = P2 (up) onI'p and

/ v]q - n] dS + 27—/ v ({vu} — {v}u) dS = vgn dS, (19)
r r I'n

for all 7 € A" with @ = 0 on I'p. In this weak form the definitions of the jump (2) and
mean (15) operators are extended for exterior faces, heteeoNeumann boundar¥;,
considering only the value from the unique element comgirthe face; that i§o] = ®
and{®} =t@only CT.

Remark 7 The Dirichlet boundary conditions of (5) could alternaljvbave been imple-
mented by setting the nodal values foon the faces on the Dirichlet boundary by interpo-
lation. However, anc? projection of the prescribed values has to be consideredsore a
superconvergence af*, see Remark 9. Otherwise, the avergfg(;u dV may not converge
with orderk + 2, andu® may not reach the full rate of convergerice- 2.

As usual in HDG, the discretization of (19) for every faceleads to an equation of the
form

,L ,L R ,R oy -
Agu uL(f)Jrqu qL(f) + Aéu uR(f)(f)qLAéq qR(f) + Agﬂuf 7gf. (20)

Inserting the expressions of the local solver (11) for tre@ntsK ;) and Ky,
in (20) for every facel’; leads to a system of equations involving only the trace iz
@y,

As usual in an HDG code, the implementation of the methodlvesa loop over ele-
ments. For each element, the matrices and vectors for tia¢ $otver (11) are computed,
and the contribution to the equation (20) is assembled foh é&ce of the element. Once
the system is assembled for all elements and Dirichlet bawyncbnditions are imposed ac-
cording to Remark 7, the system can be solved. Then, givetrahe variablega/}"'

f=1
the solutionu® andq’, can be computed for each element using (11).

Itis important noting that X-HDG keeps the structure of adtrd HDG code. The main
differences are: (i) the modified local problem for cut eletsg16), and the corresponding
matrices in the local solver, (i) the modified numericakgnation in cut elements and on
cut faces, (iii) the increased number of degrees of freedomnthe enriched approximation
in cut elements and on cut faces, which has to be taken intwuat@lso for the assembly
of the matrices involving cut faces.

Remark 8 Compared to standard HDG, the size of the system of equatiobe solved
for X-HDG is larger because the number of degrees of freedmneit faces doubles as
compared to a standard case (in the simplest case, see R&mnatlwever, in practical
applications cut faces are usually a small portion of thele/set of faces.

Remark 9 Similarly to standard HDG, a second element-by-elementpposessing can be
done to compute an X-HDG superconvergent solution. Forralata elementk; N Z = 0,
the superconvergent approximation is computed as in stadl2G: findu™ € Py (K;)
such that

/ vVu* ~VvdV=f/ qg-VodV Yve Pri(K;),
Ki Ki

u* dV = udV.
K; K;
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For an element cut by the interfack; N Z # 0, the superconvergent approximation is
computed finding:* € Py 1(K;) & HPy1(K;) such that

/ vVu* - VodV = —
K.

i

q-VodV Ve Py (K@ HPjq(K;),
K.

/u*dV:/ udV and /Hu*dV:/ HudV.

i

The solution of this element-by-element computatioh, converges with ordek + 2 in
the £o norm. See [4,7] for details and other possible computatains superconvergent
solution.

2.4 Cut element split into more than two regions
As mentioned in Remark 2, in the most general situation sdereents and faces may be

split by the interface into more than two regions, requidmgenrichment with several Heav-
iside functions. For instance, for a triangle split intoelregions, as shown in Figure 3, an

1
&

Fig. 3 Triangle split by the interface into 3 regions, with two ekmtal interfacesZi1 andIf, with corre-
sponding auxiliary trace variablég and@j. The approximation is enriched with two Heaviside funcsion

approximation with two Heaviside functions should be cdased to properly represent the
discontinuity. The local problem in this case is: find P (K;) ® H' Py (K;) @ H*Py(K;),
q € [Pr(K;) @ H'P,(K;) ® H*Py(K;)]? such that

/ vV . qdV + v v(u —u)dS
K; K

+2/Ii1 T{l/v(ufﬁ/i)}dS—l—Q/I?T{yv(ufﬁé)}dS:/Kivde

/ 1q~def/ uV-w dV + aw-nds+/ i [w-n] dS+/ Us[w-n]dS =0
KV K; OK; I} 72

forallv € Py (K;)@HP,(K;)®H?*Py(K;) andw € [Py (K;)®H Py (K;) @ H?* Py (K;)]4,
whereZ! andZ? are the interfaces splitting the element into three regiéflsand H? are
Heaviside functions to represent the discontinuities oth fiterfaces, and’ anda) are
new trace variables approximating the trace of the soluiiof,; andZ?, respectively. Fol-
lowing the rationale in section 2.2, the trace variablesindu?, are expressed in terms of
andq using the weak form of the conservativity condition (14) acleinterface. Inserting
them into the local problem again leads to a local solver withsame structure as (11),
expressing: andq in terms of the global trace variabile
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Obviously, at faces that are split by the interface into nibes two regions, an enrich-
ment with several Heaviside functions must also be consititara. A numerical example
showing the performance of X-HDG when some elements arenice: by the interface can
be found in section 3.5.

We note that in a DG framework the use of different enrichnfienttions in neighbor-
ing elements does not imply any difficulty. In X-HDG the contity between elements is
imposed in a weak form, giving total freedom for a decouplefinition of the approxima-
tion space in every element. This is not the case in the cbaf@ontinuous finite elements.
In X-FEM, the usual practice is considering a unique debnitf the level set functions in
the whole domain, to ensure continuity of the approximatioa simple way. For illustra-
tion purposes, Figure 4 shows a discretization example 2vitlrangles cut by an interface,
for a continuous approximation (left) and an HDG approxiora(right). In this situation,
the X-HDG discretization considers two Heaviside funcsiéor enrichment in elemerit’;
and the cut side, and one Heaviside function for enrichmeiémentk,. Continuity is
imposed weakly by the X-HDG formulation in a natural andigti&forward way. However,
a standard X-FEM approximation would consider a unique k#de function associated to
the interface in both elements, in order to keep the corttirafithe approximation on the
side shared by the triangles. This is because in X-FEM akaddve to be enriched with the
same enrichment function. This would lead to an artificiak Ibetween the solution in the
the two separated regions ki, with the consequent decrease of accuracy. An alternative

¥ o—o (O @

Fig. 4 Representation of 2 triangles cut by one interface for X-F@dhtinuous) and X-HDG. Element
K is split by the interface into 3 regions. The X-HDG discratian considers 2 Heaviside functions for
enrichment in elemenk’; and the cut side, and 1 Heaviside in elem&nt

in the context of continuous finite element is the so-call@usl Node Algorithm (VNA)
[1], which is based on a suitable duplication of nodes andhetds, instead of the classical
enrichment. However, the implementation of the VNA for cdicgted interfaces, as the one
depicted in Figure 4, may be cumbersome.

3 Numerical examples

The performance of novel X-HDG method is tested by severalatical examples in this
section. Both straight and curved interfaces with disew@us or continuous solutions
across the interface are considered. For verification ofédlalts obtained with X-HDG,
results are compared against a standard HDG setting whemthputational mesh fits the
interface. An example with cut elements that are split byitierface into more than two
regions is also considered, demonstrating the capability-DG to handle this kind of
situations. Finally the applicability of X-HDG to problemsth moving interfaces, avoiding
continuous remeshing to fit the interface, is shown with aenical test.
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3.1 Straight interface with zero jump conditions

In this first test case, the Poisson equation (1) is solvedagguare domai® = (—1,1)?
with a straight interfac€ atx = 0.2031. The material parameteris defined as;, = 1

in 27 andve = 2.5 in 2. In Figure 5, the linear interfacg separating the two material
domains can be seen for both the X-HDG and the HDG settingsXfH#DG the interface
is represented by the level set functigiiz,y) = = — 0.2031, and it is not fitted to the
computational mesh. Elements cut by the interface are tibic light gray. On other hand,
for HDG the interface needs to coincide with element bouiedaf the computational mesh.
Note that generating a computational mesh fitting the iaterfis simple in this example,
but may be cumbersome and costly for irregularly shapedecuimterfaces, specially for
evolving interfaces.

0.8 0.8

0.6 0.6

0.4 04

0.2 0.2

- -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Fig. 5 Linear interface with zero jump conditions: computationash for X-HDG and for standard HDG
after two mesh refinements. On the left, the X-HDG mesh noptadato the linear interface boundafy
which shown in black. Elements in white are standard elesiardomain one whereas elements in dark gray
are standard elements in domain two. Elements cut by thédn&Z are shown in light gray shade. On the
right, HDG mesh fitting to the linear interface is shown. E&mits in domain one are shown in white whereas
elements in domain two are shown in dark gray.

X-HDG HDG
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T
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Fig. 6 Linear interface with zero jump conditions: convergencdry of X-HDG and HDG with solid line
for the solutionu (Pk) and dashed line for the postprocessed superconvesgleibpnu* (Pk postp). Slopes
for each segment are shown.



14 C. Gurkan, M. Kronbichler, S. Fernandez-Méndez

The source term and Dirichlet boundary conditions are st that the analytical solu-

tion is
u(x) _ 5a° in 21,
T 22° + Ain 2y,

with A = 3(0.2031)5. Zero jump conditions across the interface are imposed.

Figure 6 shows the convergence of X-HDG and HDG for the binadtproblem with
straight interface. Starting with an initial mesh usingrfelements per coordinate direction,
four mesh refinement steps are considered—each refinemeblirdpthe number of ele-
ments per direction—both for X-HDG and HDG. The meshes foGHiI» not have uniform
mesh size in order to fit the interface. The characteristishnsgze in the convergence plots
is the mesh size of the uniform mesh with the same number ofegits. The approximation
degree is varied fromk = 1 to k = 4. The results confirm that the X-HDG strategy retains
the convergence rates and accuracy of standard HDG witheueted of mesh adaptation to
the interface. Optimal convergence of ordef 1 for «, andk + 2 for the postprocessed su-
perconvergent solution®, is observed, with a slight effect of rounding errors in thiigon
with the finer mesh and degrée= 4.

3.2 Straight interface with non-zero jump conditions

As a second example, X-HDG is tested with a discontinuoustisol over the interface,
seeRemark 6. The domain is agai? = (0,1)?, the level set function describing the in-
terface isp(z,y) = = — 0.4, the viscosity parameter is seti#o= 1 in the entire domain,
and homogeneous Dirichlet boundary conditions are imposethe boundary. The jump
conditions

ug—up =1, [n-Vu]=0 onZ,

are imposed on the interface, and the source term is chosérilsat the analytical solution
reads
u(z) = {sin(mc) sin(rmy) in (1,
sin(rz) sin(7y) + 1 in $25.

Figure 7 shows the coarsest mesh used in our X-HDG calcotats well as the an-
alytical solution. The mesh is refined three times—doubtimg number of elements per
direction in each refinement—uwith varying polynomial deggdetweer = 2 andk = 4
for the convergence studies presented in Figure 8. Agadmesults are compared against a
conventional HDG setting where the interface is fitted byabmputational mesh.

Figure 8 clearly shows that X-HDG performs equally well as standard HDG method
with a discontinuous solution over the interface withowt tteed for a matching computa-
tional mesh.

3.3 Circular interface with zero jump conditions: heatwdsttion over a steady state
bimaterial plate

In this example a circular interfacewith radiusR = 0.5 is considered to divide the square
domain2 = (-1, 1)2 into two regions,?2; and (2, as depicted in Figur@. The heat distri-
bution over a plate, which is made of two materials with déf@ thermal conductivities, is
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Fig. 7 Straight Interface with non-zero jump conditions: coar3esiDG mesh and the interfacg (left) and
analytical solution (right).
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Fig. 8 Straight Interface with non-zero jump conditions: conegrce history of X-HDG and HDG with solid
line for the solutionu (Pk) and dashed line for the postprocessed superconvesgkritonu* (Pk postp).
Slopes for each segment are shown.

computed. The analytical solution and the thermal conditiets are defined by

u(x)_{uil(:c2+y2)5/2 in 21, and V_{l in 2,
- 2 2\5/2 5 H - 1
L@+ + (£ - L)R® in, 100 in (2,
the corresponding source termfis= —25(z% + y2)3/2, Dirichlet boundary conditions are
set on the boundary, and zero jump conditions are set on tibwdane.

Figure 9 shows the mesh used in X-HDG calculations after teergfinement step as
well as the analytical solution. The mesh is isotropicadifired three times and the degree
of approximation is varied betweén= 1 andk = 3. Convergence plots for the X-HDG
solution are shown in Figure 10. Again optimal convergemtes are reached, for both the
solutionu and the superconvergence postproegssexcept for the last mesh with degree
k=3.

This convergence loss is the result of bad-cut situatioee Sgures 11 and 12, left
panels) causing an ill-conditioned matrix for the systerthefglobal problem. By a bad-cut
situation we mean a case where the area ratio of two matesiahuhs of a cut element
is less than 0.1. This situation is familiar from X-FEM ajggliions and there are plenty
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Fig. 9 Circular interface with zero jump conditions with = 1 andvs = 100: mesh used in X-HDG
calculations after one mesh refinement and the circularfateZ (left), analytical solution (right).
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-
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Fig. 10 Circular interface with zero jump conditiong = 1 andvs = 100: convergence history for the
solutionu (Pk, solid line), the superconvergent solutioh (Pk postp., dashed line), and fet with a slightly
modified mesh to avoid ill-conditioning (P3ostp.)

of strategies, complex or rather simple, to get rid of thigdnditioning problem, see for
instance [15]. Since the derivation of such stabilizatitvategies is not within the scope of
this work, we choose to simply slightly modify the mesh, nmgvthe nodes wherever we
detect a bad-cut situation. Figures 11 and 12 show a zoomeaftdification of the last
mesh in the convergence plot for degiee= 3. The condition number of the matrix for
the completely uniform mesh s ~ 104, leading to poor accuracy in the results. After
the slight modification of the mesh, avoiding the bad-cuiaibns, the condition number
is ko ~ 5 10°. The slight modification of the mesh clearly improves theditioning and
recovers optimal convergence, with rates of orkler 1 andk + 2 for the solution and the
post processed solution, respectively. Note that this ymoeing strategy is not proposed
as a general solution but rather to demonstrate that X-HD:oaverge optimally.

This problem was solved in [18] using standard HDG with a nféshg the circular
interface, using superparametric elements for the curlemients along the interface. In
this work, optimal convergence and similar levels of accyrare obtained with X-HDG
and standard isoparametric approximations, even in treepoe of the curved elements in
Figure 12. It is also worth mentioning that the analyticdlugon for this problem has a
singularity in the fifth derivative and, therefore, theaak convergence rates are available
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Fig. 11 Example of bad-cut situation for the circular interfaceomoof the original uniform mesh (left)
and of the modified mesh (right). Standard elements are stmwuhite, cut elements in gray and bad-cut
elements in dark gray. In this case, the vertex that is toseclo the interface is moved to be placed on to top
on it. The nodes of the affected elements are relocated h@eapiaigth sides.
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Fig. 12 Example of bad-cut situation for the circular interfaceomoof the original uniform mesh (left)
and of the modified mesh (right). Standard elements are stwuhite, cut elements in gray and bad-cut
elements in dark gray. Again, the vertexes that are too ¢t#ee interface are moved to be placed on to top
on it. If a face has two moved vertexes, the whole face is mewedcurved face fitting the interface.

up to degreé: = 3. Numerical experiments show that the convergence ratesfyneg: = 4
is lower thans.

Figure 13 shows the convergence history and the analytaisn in case of switching
the materials if2; and(2s, i.e., setting/; = 100 andv, = 1 and keeping the problem state-
ment the same. The mesh fixing strategy is also used in thipuatations in the presence of
bad-cut situations, again leading to optimal convergeatesr

3.4 Kidney-shaped interface
To study the behavior of X-HDG in the context of more involetgrfaces, a problem with a

kidney-shaped interface according to [18] is considered. fde domain is? = (—1,1)2,
the level set function is defined as

oz, y) = (3((&0 +05)%+4%) —a— 045)2 - ((ax 1+0.5)%+ y2) 0.1,
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Fig. 13 Circular interface with zero jump conditions with = 100 andvy = 1: analytical solution (left),
convergence history for the soluti@n(Pk, solid line) and the superconvergent solutign(Pk postp., dashed
line) (right).

and the material parameters afe= 10 in 21 = {(z,y) € 2|¢(z,y) > 0} (i.e., the outer
subdomain) andy = 1in 2, = 2\2;. The source term, the Dirichlet boundary conditions,
and the jump conditions on the interface are set such thairthlytical solution is

Locos(1—ax? —y?) for(z,y) € 2
u(z,y) = { u 2, .2
sin(2z® + y* + 2) + z for (z,y) € 2.

Figure 14 shows the convergence plots for varying approkimalegreek and mesh
sizeh. The left panel shows the X-HDG solution withketh degree level set function and
with degreek + 1 for the superconvergent solution, whereas the right pamaks the X-
HDG solution with a level set function of degrée+ 2. In this example, the geometrical
description of the interface crucially influences the aacyrof the solution, and a represen-
tation with degreé + 2 is required to reach optimal convergence. For coarse mesthes
degrees, thé-th degree interface representation induces substamt@bken the solution.
Nevertheless, it is worth noting that for finer meshes thesesbecome less relevant and
the accuracy of an interface representation of degreeslk+2, respectively, is similar. For
the last mesh and highest degree of approximation the efféiticonditioning is observed,
limiting the accuracy to errors around 3.

The need of an accurate representation of the interfaceatthreptimal convergence
rates is in accordance with the analysis in [18], where thbaaa claim that for standard
HDG with a mesh fitted to the interface, superparametric eteéawith a geometry descrip-
tion of degreek + 1 are necessary to ensure optimal convergence rates forltiimmeand
for superconvergent postprocessing. The natural exterafichis result to X-HDG is the
need of a level set function of degreg + 1 to ensure optimal convergence in the general
case. Nonetheless, in this example a geometrical deseriptithe interface of degrae+ 2
is enough to obtain maximum accuracy for each mesh and degree

3.5 Rectangular interface with double enrichment

The heat equation is solved over a rectangular plate (0, 10) x (0, 1.5), with an approx-
imation of degree 3. The plate is composed of two differertenas separated by a rectan-
gular interface. The subdomain inside the rectangularfatte isf2; = (0,7) x (0.65,0.85),
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Fig. 14 Kidney-shaped interface: mesh after two refinements tegetith the kidney shaped interface (left)

and solution (right).
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Fig. 15 Kidney interface: convergence plots with a level set fuorctdf degreek + 1 (left) and of degree

k + 2 (right).

with permittivity constani, = 1. The remainder of the domain §3; = 2\ 2 with per-

mittivity constant; = 10, see Figure 16. Homogenous Neumann boundary conditions are

imposed afx = 0} and{z = 10}, whereas afy = 0} and at{y = 1.5} Dirichlet boundary
conditions are set to 0 and 1, respectively.

10

Fig. 16 Rectangular Interface: domain and computational mesmé&is cut by the interface are shown in

light gray.

Considering the computational mesh shown in Figure 16, ldgraents cut by the inter-
face (in light gray) are split into three regions, two withter@al constanty = v, and the
interior one withv = 5. In this situation, cut elements and cut faces should beleswi
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Fig. 17 Rectangular Interface: representation of the two Heawiiidctions used for thdouble enrichment
at cut elements.
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Fig. 18 Rectangular Interface: X-HDG solution, with degriee= 3 anddouble enrichment at cut elements
and cut faces, from two different points of view (top), andtems on{z = 0} (bottom left) and on{z =

10} (bottom right). Vertical discontinuous and continuougfimepresent element boundaries and interfaces,
respectively.

with two Heaviside functions, as explained in section 24dve a completely independent
approximation for the solution in the three regions. Thairighe cut elements the solution
is approximated as

u~a+ Hib+ Haoc

whereq, b andc are polynomials of degrex andH; andH>, are the two Heaviside functions
represented in Figure 17. Faces cut by the rectangulafaneeare also enriched with these
two Heaviside functions, and the facesat= 7, shared by a cut element and a standard
element, is not enriched.
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Figure 18 shows the X-HDG solution from different viewingyées and over two cross
sections. By using double enrichment in the cut elemenésafiproximations in the three
regions are independent, and the X-HDG solution can fredjiysa to the kinks in the an-
alytical solution. The solution is verified to match with ad8 solution in a fine mesh
adapted to the interface. As expected, on the right boun@eymann boundaryz = 10}
with constant permittivity parameter= v, far enough to the material interface) the solu-
tion is close to a linear variation from temperature 0 to terafure 1. On the left boundary
(Neumann boundaryz = 0} with two materials) the solution is close to a linear vaaati
in the three regions, with larger slope for the interior oegiwhich has smaller permittivity
v = v2 < v1. In the interior of the domain the solution varies in a comtins way between
this two sections, with sharper variations close te: 7.

1, y € (0.85,0.65)

—1, y € (1,0.85)
—1, y € (0.65,0.5)

Fig. 19 Rectangular Interface: Heaviside function for tivegle enrichment solution.
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Fig. 20 Rectangular Interface: X-HDG solution , with degriee= 3 andsingle enrichment at cut elements
and cut faces, from two different points of view (top), andtems on{z = 0} (bottom left) and on{z =

10} (bottom right). Vertical discontinuous and continuoug$imepresent element boundaries and interfaces,
respectively. The approximation is not rich enough to capthe solution.
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To verify the convenience of considering two Heaviside@rients in the cut elements,
the problem is now solved with a single Heaviside functiohatfTis, the approximation at
cut elements is

u~a+ Hb

with the Heaviside functiorf represented in Figure 19. This would be the standard ap-
proach for an X-FEM formulation based on continuous finisnents: a single enrichment
function is defined in the whole domain, and for this examihiis, means a single Heaviside
enrichment in the cut elements.

Figure 20 shows the X-HDG solution with single enrichmegsia from different view-
ing angles and over two cross sections. The sectiofwos: 0} shows how the single en-
richment is not suitable to capture the solution, due to tvephysical dependency of the
approximation on the topy(> 0.85) and bottom { < 0.65) regions. This causes over-
and undershoots close to the interface, and large disetiginat the element boundaries,
demonstrating that the approximation with a single enriehims not rich enough to prop-
erly adjust to the kinks in the solution.

-z 1
_——
08 0.8

<02 0 02 04 0.6 08 1 12 14 16 0.2 0 02 04 0.6 08 1 1.2 1.4 16
y y

Fig. 21 Rectangular Interface: sections of the X-FEM solutionhvdegreek = 3, on {z = 0} (left) and
on {z = 10} (right), for 8 = 100 (dashed line) an@@ = 1000 (solid line). Vertical discontinuous and
continuous lines represent element boundaries and inésrfaespectively.

To corroborate this conclusion, the problem is also solvét an X-FEM formula-
tion based on continuous finite elements, with a unique Hewifunction defined in the
whole domain to represent the interface, that is, with thglsienrichment at cut elements.
Nitsche’s method (or, equivalently, the interior penaltgthod) is considered for weakly
imposing the continuity of the solution and of the normal facross the interface, see [20]
for details. Similarly to the X-HDG solution with single écihment, the X-FEM solution
is not able to properly represent the solution. Figure 2lvshibie section ofz = 0} for
two different values of the Nitsche parameter~or 3 = 100 the X-FEM solution presents
large discontinuities across the interface and the slapékd exterior region?; are not
properly captured. Increasing the parametes te 1000 improves the solution, with small
discontinuities and better approximation of the solutierthie elements in the exterior do-
main. However the approximation in the cut elements isfstilfrom the analytical solution.
Again, the approximation with single enrichment is not @blespresent the kinks of the so-
lution on the interface.

Thus, it can be concluded that two Heaviside enrichmentstielements are necessary
to properly capture the solution in this example. The apjpnation with double enrichment
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can be easily handled in the X-HDG formulation, where caritinof the approximation
between elements is imposed in weak form, whereas it is raagst-forward for a classical
X-FEM formulation.

3.6 Moving interface: circle collapsing at unit speed

The time-dependent heat equation

Ou _ V.- (wVu)=f in21(t)U2a(t),

ot
[un] =0 onZ(t),
[vn-Vu] =0 onZI(t), (21)
u=up onI'p = 912,
w(z,0) =uo(z) In21(¢) U 22(¢),

is solved over a square domaih = (—1,1)? split into two subdomainsR? = 2; U 2,
with an evolving circular interfacg(t). The time-dependent radius is

R(t) =08 —t,

and material parameters are= 5in 2>(t) = {(x,y) € 2]z*+y* < R(t)?*} andv; = 1in
21 = 2\2-. Boundary conditions and source term are set such that tigtamal solution
is

oy = [ n 00
1) = V%(xz +y2)5/2 + (VLI _ V%)R(t)s in 22(t).

The problem is discretized in time with a backward Euler rodthsing a time step size
At, leading to the local problems

u" T AV g =+ AT inK;
v =0 ink; PIEI"TINK; =0, (22a)
"t ="t onodk;

w4+ AV g = w4 AL in K\Z L
Tt Huvetl =0 in K\Z"H!
[u"tin] =0 onZI™t'nkK,; »if 7" NK; #0, (22b)
[¢" - n]=0 onI"t'nK;
u" T =3t ondk;

where the superscript denotes the time instant. As uswakdhution at time¢™ is assumed

to be known and the solution at tim&*! is to be computed in each time step. Following
the same rationale as in sections 2.1 (for standard elejreemis2.2 (for cut elements) the
local problems (22) are discretized leading to a local sadf¢he form (11)—(12) to express
w1 andg™t! in terms ofg™ 1, with a modified expression of the elemental matrices and
vectors. The local equations closing the problem are extiwtl same as for the steady case,
that is (4) and (5), now evaluated at tinfet!, with the corresponding discretizations in
section 2.3, now involving." ™1, ¢"T! and@™*!. Replacing the local solver in the global
equations leads to a linear system involving o@ifly ! in every time step.
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Fig. 22 Circle collapsing at unit speed: Interface location evryime steps withAt = 0.01 for¢ € [0,0.7]
(left) and convergence history (right). Initial positiom shown with a thicker line, gray elements are cut
elements fot = 0.7.

Similarly to the steady case, the X-HDG formulation différsm the standard HDG
formulation only in the enriched approximation space far @lements and cut faces, and
the weak form of the local problem in cut elements. The weak ffor the local problem in
standard elements and for the global problem are the sanoe stshdard HDG.

It is important noting that the enriched approximation ssaat timet™ and timet"+?
are not the same due to the fact that the interface locatianggs. Therefore, the Heaviside
enrichment function is different. To facilitate the implenmation of the discrete system, the
solution«™ is interpolated to the approximation space of titfig! in every time step in
this work, so that the enriched approximation space at titié can be considered for the
discretization of all terms in the equations.

The calculations are done on a sequence of four uniform rsesfta changing ap-
proximation degreé&. The time step sizelt = 0.01 leads to a time error that is smaller
than the spatial discretization errors. Figure 22 showsaitegtion of the interface every ten
time steps, fort € [0,0.7], and theh-convergence history. Optimal convergence rates are
recorded for both the solution and the superconvergentign|ushowing the applicability
and good performance of X-HDG for problems with moving ifdees.

4 Conclusions and final remarks

The eXtended Hybridizable Discontinuous Galerkin (X-HD@gthod is proposed for the
solution of heat bimaterial problems. X-HDG is a new methwsidive interface problems by
combining the Hybridizable Discontinuous Galerkin (HDGgttmod and the philosophy of
eXtended Finite Element Methods (X-FEM) together with andatred approximation at the
interface. The interface is represented as the 0-levef sfumction that is given by its nodal
values on the computational mesh (usually the signed distizrthe interface). The interface
can cut through the elements in an arbitrary way and, thexgtloe computational mesh does
not need to align with the interface. The solution is enritbg Heaviside functions in the
elements and faces cut by the interface, in order to propedsesent the discontinuities in
the derivatives of the solution, or even in the solutionpastthe interface.

The formulation for the global problem and for the local pesb on elements not cut
by the interface is the standard HDG formulation. For thenelets cut by the interface, a
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new HDG local problem is derived taking into account the diigtuous approximation in-
side the element and the interface conditions to be imposexsithe interface. Following
the HDG ideas, a new trace variable on the interface is cersitl which is locally elim-
inated afterwards using the interface conditions, leatling local problem with the same
structure as standard HDG. The main differences with stand®G are (i) the modified
local problem at cut elements and the corresponding matiitcéhe local solver, (ii) the
modified numerical integration in cut elements and on cutgagiii) the increased number
of degrees of freedom for the enriched approximation in rments and on cut faces, that
has to be taken into account for the assembly of the matriwed/ing cut faces, (iv) a mod-
ified postprocessing for the superconvergent solution ire@ments. Thus, X-HDG keeps
the structure and the computational efficiency of the HDGhmet but without the need of
fitting the mesh to the interface.

Numerical experiments also demonstrate that X-HDG keep$iDG optimal conver-
gence rates (of orddr+ 1 in the £2 norm for the primal unknown and for its derivatives,
and of ordelk + 2 for the post-processed solution), with similar levels afiaecy.

A numerical example also shows the capability of X-HDG todiarelements that are
split by the interface into more than two regions. In thisigiion, more than one enrich-
ment function should be considered to ensure an indepeagenbximation space in every
region. With an X-HDG formulation different enrichment fitirons can be considered in
each element, because continuity between elements is gdpos weak form. This is not
the case for X-FEM methods based on continuous approximgtfor which using different
enrichment spaces in each element is not possible or leadsitmbersome implementation.

In the last numerical test, X-HDG is used to solve a transggoblem, showing the
potential of X-HDG for the solution of problems with evolgrinterfaces, avoiding con-
tinuous remeshing to fit the interface. The assessment dfflegency of X-HDG for the
solution of problems with moving interfaces with arbitrayape, such as the Stefan prob-
lem, the comparison of different strategies for the progecof solutions between different
enriched spaces in case of moving interfaces, and the éxteathe formulation to bi-
material incompressible flow problems are subjects of arg@iork. The development of
robust techniques to avoid ill-conditioning due to bad-el#ments in X-HDG is also an
open issue.
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