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Abstract— Most of the published works concerning action 

recognition, usually assume that the action sequences have been 

previously segmented in time, that is, the action to be recognized 

starts with the first sequence frame and ends with the last one. 

However, temporal segmentation of actions in sequences is not an 

easy task, and is always prone to errors.  In this paper we present 

a new technique to automatically extract human actions from a 

video sequence. 

Our approach presents several contributions. First of all, we 

use a projection template scheme and find spatio-temporal 

features and descriptors within the projected surface, rather 

than extracting them in the whole sequence. For projecting the 

sequence we use a variant of the R transform, which has never 

been used before for temporal action segmentation. Instead of 

projecting the original video sequence, we project its optical flow 

components, preserving important information about action 

motion. 

We test our method on a publicly available action dataset, 

and the results show that it performs very well segmenting 

human actions compared with the state-of-the-art methods. 
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I. INTRODUCTION  

Automatic recognition of human actions has attracted the 

interest of the pattern recognition and computer vision 

research communities in recent years. Applications of visual 

action recognition include gestural human-computer 

interaction, video surveillance, biometrics analysis, or 

disabled people assistance. 

Most of current literature on action recognition is mainly 

based on the recognition of actions previously segmented in 

time. In real world applications, actions occur continuously in 

time, without any identification of beginning or end. Our 

objective is to find a method to detect and determine the 

moment where a human action is taking place within a video 

sequence. 

Some authors have tried to solve the problem of temporal 

segmentation. In [1], they propose a unified framework that 

encodes spatio-temporal relationships among moving parts 

and the individual poses appearances. They use an 

unsupervised learning algorithm that automatically learns pose 

models and motion parts. The segmentation of periodical 

human movements in temporal cycles is considered in [9]. 

They use the Pyramid Correlogram of Oriented Gradients 

(PCOG) descriptor on Motion History Images (MHI) and 

Motion Energy Images (MEI) projection templates [15] to 

obtain shape and movement information. These descriptors are 

classified using a multi-class SVM with a RBF kernel. 

Unfortunately, they do not present any results on a public 

sequence dataset. In [6], authors propose a one-shot (one 

training sequence for each action) method based on 3D 

Histograms of Scene Flow (3DHOFs) and Global Histograms 

of Oriented Gradient (GHOGs) descriptors. They work on 

RGBD images, and also use SVMs as classifier. A unified 

method for gesture segmentation and gesture recognition is 

presented in [7]. They extend the Bag of Words (BoW) 

paradigm to the temporal domain, and use dynamic 

programming to maximize the selected class scores of a multi-

class SVM output. 

In this paper we present a template-based approach for 

temporal action segmentation. Templates are obtained by a 

variant of the R transform. Although the R transform was 

originally designed for object recognition, some authors have 

also used it for action recognition [2,3,4]. Most of these works 

apply the transform to silhouette images or to the human 

shapes previously segmented from video frames. This 

segmentation stage involves all the problematic issues 

concerning illumination changes, shades, noise... In [23], 

authors capture the geometrical distribution of interest points 

extending the R transform to 3D. Our method is able to 

segment human actions from a video sequence with no need of 

a previous shape or silhouette extraction. The R transform has 

never been used before for action segmentation. 

Using a variant of the R transform, namely Rf, we compute a 

projection surface from each video sequence. The projection is 

computed using the optical flow components of the sequence 

as input. Next, we find the spatio-temporal descriptors in the 

projected surface, rather than in the original sequence. For 

keypoint extraction and feature description we have used the 

Pyramid Histogram of Visual Words (PHOW) [8]. The 

PHOW descriptors are computed within a temporal window 

sliding along the Rf surface, in order to detect the beginning 

and end of an action in a sequence. As in most of current 

literature concerning action recognition, we have also used a 

SVM as classifier. A detailed description of the whole process 

is given in section 3. 
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II. THE R TRANSFORM 

The Radon transform [9] consists of a multiple angle 

projection of a given image I(x,y). The result of this projection 

is an integral line, that is, the cumulative sum of pixel values 

in all directions. It uses the polar expression of a straight line 

 

                         ρ=x cosθ+y sinθ.                        (1) 

The Radon transform can be expressed mathematically using 

(2). 
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where I(x,y) is the input image, is the Dirac function, is the 

distance from the line to the origin, and is the projection 

direction. The main drawback of the Radon transform is that it 

is not invariant to translation, scale, or rotation. There exist 

several approaches to achieve such invariances [10]. In [11], 

they presented a variant of the Radon transform, the R 

transform, which is invariant to translation and scale. 

The R transform is computed summing all squared values of 

the Radon transform for all image lines of a given direction . 

It can be expressed using (3). 

 

                             
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The result of the R transform is a function giving the 

normalized sum of pixel values for all orientations. It maps a 

2D image to a 1D signal. 

The Rf transform is a variant of the R transform, with f  being 

a generic function. It can be expressed in its general form: 

 

  )),(()( gfθRf  ,                            (4) 

where g() is the Radon transform and f is a function that 

can be tuned as a parameter, and is useful to adapt the 

transform to the problem being solved. 

For example, Rmax substitutes the squared values of the R 

transform by the supremum of the pixel absolute values. This 

transform is invariant to translation and, if correctly 

normalized dividing by the maximum of all pixel values, it is 

also invariant to scale. 
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Rdev uses the standard deviation instead of the sum of squared 

values. It is also invariant to translation. 
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Rmean uses the mean pixel value for each direction. Even 

though it is pretty similar to the original R transform, it has the 

advantage of considering the negative values of g(). 
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The properties of all these Rf transform are totally dependent 

on the function f chosen. Apart from their properties 

concerning invariances, they present different behaviours 

when applied to images that may contain negative values (like 

the optical flow images used in this work). 

Since an R transform projects a 2D image to a 1D signal, the 

result of applying the transform to a video sequence is a 2D 

surface template. 

We have tested the four transforms (Rmax, Rmean, Rdev and R) on 

the sequences taken from the Weizmann dataset. In section 4 

we show that the best results are obtained using Rmax.  

 

III. TEMPORAL ACTION SEGMENTATION  

 

First of all, we project the whole input sequence into a single 

template using the Rf transform. Instead of using the raw video 

sequence as input for the Rf transform, we apply the Rf 

transform to both Fx, Fy components of the optical flow, 

obtaining two surfaces Rfx and Rfy. These surfaces can be 

considered as spatio-temporal templates defining an action 

sequence.  An example of this surface is shown in Fig.1.a. 

Since Rfx and Rfy have been computed applying an Rf 

transform to each frame of the video sequence, each 

coordinate in the x axis corresponds to a frame of the video 
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sequence, while each coordinate in the y axis corresponds to 

the direction value of the Rf projection (from 0 to 180º).  

 The optical flow has been computed using the real-time 

algorithm presented in [14]. We have concatenated Rfx and Rfy 

to obtain a single surface for the classification and training 

stages. Therefore, we obtain an Fx360 template for a full 

sequence, with F being the number of frames of the sequence. 

Our temporal segmentation technique is based on a sliding 

window model. We slide an NxM window over the Rf surfaces 

and perform a recognition process within the window area, 

where N is the window width (i.e. the number of frames in the 

sequence), and M is the  range that the window spans (i.e. 

360º, the whole range of directions). Obviously, the window 

width N has to be narrower than the shortest action to be 

recognized i.e. N < F. We have chosen N = 25 for training and   

recognition stages. 

We compute a set of n PHOW descriptors D[d1,…..,dn] within 

each window on the Rf. In the recognition stage, we slide a 

window with the same size (25x360) over the input surface for 

each input frame. Fig.1 shows an example of the sliding 

window over an Rf surface, and PHOW computed within this 

surface fragment. We have worked on a single scale. The 

number of keypoints extracted within a window depends on 

the window size (NxM), the distance (D) chosen in the grid of 

dense SIFT, and the scale size (Sc) of the descriptors chosen. 

We have used N=25, M=360, D=1 and Sc=3. 

After this computation, we have used Bag of features (BoW) 

technique. To do this, similar descriptors are clustered using a 

k-means algorithm. The centers of these clusters define a 

Visual Codebook. For the classification stage, we have trained 

a SVM for each different action class q that we aim to 

segment. Similar to [6], we have trained a linear SVM for 

each class using a one-versus-all method. That is, for the class 

q, we consider positive examples all subsequences 

corresponding to actions Aq of class q, and negative examples 

all the remaining subsequences corresponding to the rest of 

the classes. At the end, we obtain a set of Q SVM linear 

classifiers, where Q is the number of action classes. 

In the recognition stage, since the response of class-q SVM 

will be high when it is fed with an input similar to training 

actions, and the rest of SVMs will give low scores, their 

output scores are used to determine the limits of each action. 

Therefore, we expect the highest SVMq score when the sliding 

window is over an action Aq on the projected surface, and low 

scores for the rest of SVM. When the window is over a non-

action region, or in a region overlapping two different actions, 

we obtain similar low scores in all SVM outputs because no 

model is predominant over the rest. 

Fig. 1. Example of a projection surface computed using Rmax transform on a 
‘bend’ action from the Weizmann dataset. This sequence contains 84 frames. 

up: sliding window over an Rmax surface. down: PHOW applied over the same 

Rmax surface. Circles show dense keypoints applied within the window. Not all 

distances in the grid are shown for visualization purposes. 

 

The scores given by the SVM classifiers are very noisy. We 

have applied Singular Value Decomposition (SVD) to filter 

them. We have computed SVD on the SVM outputs, removed 

all singular values but the first to obtain the filtered signal.  

As shown in Fig. 4, the filtered signals obtained can be easily 

segmented. Salient domes indicate the presence of a given 

action in the sequence. A local maximum evidences the 

presence of an action, and dome slopes determine the 

beginning and end of a given action. Fig. 2 depicts the block 

diagram of the whole process. 
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Fig. 2. Bloc diagram of the whole segmentation process. 

 

IV. RESULTS 

 

We propose two different experiments. The first one has 
the objective of detecting a learned human action among others 
in a sequence containing different actions. The second 
experiment has the objective of studying the performance of 
our approach to discriminate known human actions with 
respect to other type of motion in images. In this second 
experiment we do not aim to segment a particular human 
action, but whether it is a known human action or not.  

The algorithms used have been tuned as follows; For the 
BoW we have tested codewords from 100 to 1100 visual 
words. For PHOW we have tested distances from 1 to 5 pixels 
between keypoints , and scales from 2 to 10 for the size of the 
spatial bins. We obtained the best performance using a 1-pixel 
distance between keypoints in the dense SIFT grid, a 3 pixels 
size scale, and a Visual Vocabulary of 900 visual words. We 
have also tested different sizes for the sliding windows to be 
used in the training stage, obtaining the optimum performance 
using 360x25 windows. 

In our first experiment we have used the Weizmann dataset 
[12]. It is a widely used sequence database containing a set of 
human actions. The sequences have been recorded with static 
camera and background, there are no occlusions, and only a 
person is moving in all sequences. They do not present serious 
illumination changes either. This dataset consists in 10 
different actions by 9 different persons. Fig. 3 shows some 
snapshots of the Weizmann dataset. 

 

Fig. 3. Weizmann human actions. Bend, jack, jump, jump, run, side, skip, walk, 
wave1, wave2. 

 

Following the same procedure as the experiment reported 
in [7], for the training and segmentation stages, we have 
attached all the actions performed by the same person to build 
a single video sequence. We create longer video sequences by 
concatenating single-action sequences. These sequences 
including 10 different actions, are fed into the system. In this 
experiment, we have used leave-one-out cross validation 
method to evaluate our approach. We use the sequence 
consisting in the 10 actions done by a single person for testing, 
and the sequences of actions done by the remaining 8 persons 
are used for training. This process is repeated for all 9 persons.  

The same experiment has been repeated for the 4 different 

templates obtained by using the different Rf transforms (R, 
Rmax, Rmean,and Rdev). Table 1 shows rates of correct action 

segmentations for each different Rf . As mentioned in section 2, 

the Rmax transform yields the highest accuracy segmenting 
single actions from the complete sequences. 

 

TABLE I. Accuracy of action temporal segmentation using different Rf 
transforms. 

Transform  % 

R 92,2 

Rmax 96,6 

Rmean 80,5 

Rdev 92,2 
 

Since the projection using Rmax gives the best results, a 
96.6% of correct segmentations, we will use this transform 
hereinafter.  We only are aware that [1], and [7] tested their 
methods using no pre-segmented actions from Weizmann 
sequences, and they report an 88.9%, and 87.7% recognition 
rates respectively. Fig. 4 shows the outputs of the 10 SVM, 
each of them trained for a specific action. Domes in SVM 
outputs indicate the presence of a concrete action.  
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Fig. 4. 10 SVMs scores for a sequence containing 10 actions from Weizmann 
dataset. 

 

In the experiment described, we are segmenting a concrete 
action from a set of other human actions taken from the same 
dataset. Due to the fact that we did not include a null-class 
corresponding to non-action sequences, this is an experiment 
closer to action recognition than to action segmentation. In 
order to segment human actions in a sequence of different 
motion activities, we have designed a second experiment. In 
this second experiment we use the Hollywood dataset. This 
dataset consists in 430 videos including short sequences from 
32 movies. The resolution varies from 300*200 to 400*300 
depending on the videos. They are filmed with a non-static 
camera, and the sequences contain cluttered background and 
occlusions between persons. Figure 5 shows some actions 
taken from this dataset. 

Fig. 5.  Some frames from the Hollywood dataset. 

 

For the second experiment, we have labelled all training 
sequences of the Weizmann dataset as actions and all training 
sequences of the Hollywood dataset as no-actions. We have 
merged in single sequences actions of the Weizmann dataset 
and fragments of videos sequences of the Hollywood dataset. 
Since, all Weizmann actions and all Hollywood actions are 
labelled as actions and no-actions respectively, we have not 
concatenated two Weizmann actions or two Hollywood actions 
following each other, because the system would detect them as 
a single action. 

Similar to the first experiment, we have used the same 
leave-one-out cross validation scheme. We have considered a 

positive score of the SVM as a Hollywood motion and a 
negative score as a Weizmann human action. Fig.  6 shows the 
results obtained in this experiment. 

This figure shows that our method discriminates very well 
between Weizmann actions and Hollywood scenes. We have 
obtained a 100% rate segmenting the learned actions from 
other movements. Unfortunately, we are not aware of any 
similar experiments to establish a fair comparative. 

Fig. 6. Example of SVMs scores for a sequence of alternating Weizmann 
actions and Hollywood scenes. 

 

 

V. CONCLUSION 

In this paper we have proposed a novel technique for temporal 

segmentation of human actions with video sequences. It is 

based on the Rf transform that projects a sequence into a single 

template. PHOW spatio-temporal descriptors are extracted 

from these templates and fed to SVM classifiers in order to 

determine the limits of each human action in a sequence. 

A first experiment has shown that our technique overcomes 

many State Of Art techniques that used non pre-segmented 

actions on the Weizmann dataset. The second experiment has 

shown that our technique discriminates very well between 

Weizmann and Hollywood actions, obtaining a 100% 

recognition rate. 

The results of the first experiment show that our technique 

could also be used for action recognition. In order to recognize 

each concrete action, we could have considered the class 

corresponding to the SVM whose output presents the highest 

dome. We can report the results of previous works about 

action recognition using the Weizmann dataset. For example, 

Gorelick et al. [12] reported the recognition result of 97.8%, 

Scovanner et al. [17] 84,2%, Klaeser et al. [18] 84,3%, 

Niebles et al. [19]  90%, Jhuang et al. [20] 98,8%, 

Vishwakarma et al.[21] 96.64%, and Goudelis et al. [22] 93.4. 

Unfortunately, their results and ours are not directly 

comparable. These authors test their approaches with pre-
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segmented actions, therefore we can’t make a straight 

comparison of their results with the ones shown in our 

experiments.   
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