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Abstract. . This research allow to infer that from seisngct®n and well data
it is possible to determine velocity anomalies atonhs in layers with
thicknesses below to the seismic resolution usewganal networks.

1. Introduction

The intelligent systems [Hollandt al, 1987; Towell & Shavlik, 1994; Garcia-
Martinez & Borrajo, 2000, Grossat al, 2005] have shown to be very useful in
prospective problems in which other approaches ailedd. The neuronal networks
as a particular case of intelligent systems [Hettal, 1991; Rich & Knight, 1991;
Setiono & Liu, 1996; Yao & Liu, 1998], have given prising results in fields like:
modeling, analysis of time series, patterns reda@mnamong others [Dow & Sietsma,
1991; Gallant, 1993; Bacét al, 1998]. In the field of the geosciences this tgbe
systems has contributed with conventional and navedtional developments of
interpretation and processing [Hegglaedal, 1999a; 1999b; 2000; An & Moon,
1993; Johnston, 1993; Wang & Huang, 1993; Ping,419Cai, 1994; Huang &
Williamson, 1994; Zhangt al, 1995a; 1995b, Suet al, 2001; Dekeet al, 2001,
Chengdang, 1993].

One open issue in high resolution inversion is thate is no way to obtain from
seismic data the top and the base of a geologmdton with a thickness under 15
meters (approximately). Considering that the olesgrseismic trace can be seen as
the real component of a complex trace, attributeeravelope amplitude, phase and
frequency can be separated and calculated. Eachofotigese attributes and the
combination of them could show the characterisiitg petrophisical variations of the
rock.

One of the petrophysical characteristics is therddt velocity variation. These
velocity variations can be inferred through a neatmetwork having as input wells
synthetic data and the calculation of the tracgbaties as envelope amplitude, phase
and frequency on an interpreted seismic horizon.
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2. Treatment of the Data

For the experimental treatment it has been stdrted a synthetic geologic model.
From this synthetic geologic model it has beenudated a synthetic seismic section
(direct method). A synthetic geologic model of platdayers was used. Gas velocity
and petroleum velocity have been assigned to sdrtieese layers. As it is observed
in Figure 1, we have five layers, the third laygellow) is around ten meters of
thickness. This layer has lateral and vertical vigexvariation (Table 1).
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Fig. 1. Geological Model

[NAME_PATTERN DIST VTOP VBOT DTOP DBOT
ci 0.00 3500.00 3500.00 2375.724 2375.724
| 8866.80  3500.00  3500.00 2375724  2375.724
cz [ ] 0.00  3500.00 3500.00 2375.724 2375.724
8866.80  3500.00  3500.00 2375724 2375.724

c3 0.00 3467.00 3467.00 2370.104 2370.104
CDP 11  Well1 2000.00 3467.00  3467.00 2370.104 2370.104
2500.00  3380.00  3467.00 2355.093 2370.104

CDP 31  Well2 3000.00  3380.00  3467.00 2355.093 2370.104
3500.00  3467.00  3467.00 2370.104 2370.104

5000.00  3467.00  3467.00 2370.104  2370.104

5500.00  3380.00  3467.00 2355.093 2370.104

CDP 51  well3 6000.00  3380.00  3467.00 2355.093 2370.104
6500.00  3467.00  3467.00 2370.104 2370.104

CDP72  Well4 BB66.80  3467.00  3467.00 2370.104  2370.104
0.00 3800.00 3800.00 2425073 2425.073

8866.80  3300.00  3800.00 2425.073  2425.073

C5 0.00 3900.00 3900.00 2440.373 2440.573
8866.80  3900.00  3000.00 2440.873 2440.873

Table 1. Velocity field
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In Table 1 DIST is the distance from the origin, VT@Rhe velocity of the top of
layer, VBOT is the velocity of the base of layer, DA'@ the density of the top of the
layer and DBOT is the density of the base of therda¥he involved densities has
been calculated with Gardner equation [Gardxeal, 1974]. This geological model
is used in the sinthetic sismic section calculat{&igure 2).
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Fig. 2. Synthetic Seismic Section

The used parameters for the processing of the symtkeismic section and for
wavelets calculation are showed in Table 2. Duehto ftequency content in the
synthetic seismic section, it is impossible to datre the top and the base of the

objective horizon. The velocity variation on thalrkorizon is in Fig. 3.
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Table 2. Wavelette and parameters used in the calculafitime Synthetic Seismic Section
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Fig. 3. Velocity variation on the Real Horizon

3. Model Based Inversion

In model based inversion [Russell, 1988; Tregklal, 1993; 1995; Stewast al.,

1984], the synthetic seismic data and the datarektwells (Well 1, Well 3 and Well
4) was process in a conventional way to calculatendial velocities model. The
initial model (Figure 4) has been taken from ars@sinterpretation over a horizon

near the target.
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When the initial velocities model is finished, tmisdel trace would differ from the
original seismic trace (fig. 2). Then least squarpmization makes the difference
between the original trace and the model as snsafiassible. The result shown in
figure 5 was reached after 50 iterations. Thisrgshows the velocity variation given
by the model-based inversion in the target horiZidre result show that the model
based inversion discriminates two low velocity zorie well2 and well3 (2150
mseqg.).
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Fig. 5. Velocity variation on the target Horizon (Model Bddnversion)

4. Artificial Neuronal Network Based Inversion

In this approach an artificial neuronal network veggplied to an interpreted horizon
with a Feed Forward Back Propagation algorithm ¢Rran & Skapura; 1991,
Haykin, 1998], defined with nine neurons of inpaufidden layer of five neurons and
one neuron of output. The neuronal network designlma appreciated in figure 6
with their inputs and outputs.

The input data include the seismic interpretatiaismic attributes calculated from
the interpreted horizon. The desired data was ¢hacity of the Wells from “Well1”,
“Well2” and “Well4” (the same input data than th@del based inversion). In order
to calculate the velocity in each trace with ldsnt1% error and 1000 iterations, the
neuronal network has been trained with the threstioeed wells. The velocity as a
Shot Point function (SP) and CDP’s has been repi@sén figure 7.
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Fig. 6. Artificial Neuronal Network Design
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Fig. 7. Velocity variation on the target Horizon accordindArtificial Neuronal Networks

It has been compared the velocity variation catedldrom Model based inversion
versus the one processed from artificial neuroeéivarks (figure 8), it is possible to
observe that the neural net has been able to migeie two low velocity zones. First
one is between CDP's 22 and 37, corresponding tB# ®Y and second between
CDP's 52 and 70, corresponding the Well 3. It ipanant to emphasize that this last
zone has been predicted by the neural network ssitdly because the Well3 has not
been used for the training of the network, this lsarcorroborated observing the field
of velocities given in Table 1. The intervals betw@&Y0m to 3000m and 5500m to
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6000m, the top velocity of the yellow horizon it 3380m/seg, associated to the
Wells2 and Well3 respectively.
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Fig. 8. Comparison of Velocity variation on the target khon

5. Conclusions

The experimental goal was to obtain the velocityiatemn with: [a] the data of the

seismic interpretation, [b] the calculated seisatitibutes in the interpreted seismic
horizon (amplitude, instantaneous frequency, irnat@ous phase, transformed
hilbert, amplitude envelope, seismic trace) anctlie] well data. The neural net was
able to discriminate better the low velocity amiserved in the Well3. This result
allow us to infer that it is possible to discrimi@avelocity variations, acoustic

impedances or any other well curve throughout &é@eof seismic cube using neural
net.

6. References

An, P. and Moon, W. 199Reservoir characterization using feedforward neunatworks
63rd Annual Internat. Mtg., Soc. Expl. Geophys.p&xded Abstracts, , 93, 258-262.

Back, B., Sere, K., & Vanharanta, H. 1998anaging complexity in large data bases using
self-organizing mapsAccounting Management & Information Technologle491-210.



8 Dario Sergio Cersdsimo, Claudia Ravazoli, Ramoén Gafa-Martinez

Cai, Y. 1994. The artificial neural network approach for hydrocarb prediction by
synthesizing multiple seismic informati&@®6th Mtg. Eur. Assoc. Expl. Geophys., Extended
Abstracts, , 94, Session:P153.

Chengdang, Z. 1993Application of Back-propagation Neural Networks andn@ated
Annealing Technique to Well Log Interpretatid¥ell Logging Technology, Vol. 17, No.4.

Deker, C.; Cersosimo, D.; Castagna, J. P.; and EMsa, 2001, Geophysical reservoir
characterization of Bermejo Field, Ecuadorlst Ann. Internat. Mtg: Soc. Of Expl.
Geophys., pp. 1668-1669.

Dow R. J. y Sietsma J. 199Creating Artificial Neural Networks that Generaliz§eural
Networks, vol. 4, no. 1, pp. 198-209.

Freeman, J. & Skapura, , D. 199Neural Networks: Algorithms, Applications, and
Programming Techniquesdison-Wesley.

Gallant, S. 1993\eural Network Learning & Experts SystetBT Press, Cambridge, MA.

Garcia Martinez, R. y Borrajo, D. 2008n Integrated Approach of Learning, Planning &
Executing Journal of Intelligent & Robotic Systems. Vol. 29per 1, Paginas 47-78.
Kluwer Academic Press. 2000.

Gardner, G.H.F., Gardner, L.W., and Gregory, A.R74l Formation velocity and density-the
diagnostic basics for stratigraphic trap&eophysics 39, 770-780.

Grosser, H., Britos, P. y Garcia-Martinez, R. 2@@#&tecting Fraud in Mobile Telephony Using
Neural NetworkslLecture Notes in Atrtificial Intelligence 3533:613%

Haykin S. 1998. Neural Networké&. Comprehensive FoundatioBecond Edition. MacMillan
Publishing Company (2nd Edition).

Heggland, R., Meldahl, P., Bril, B. & de Groot, P.928. The chimney cube, an example of
semi-automated detection of seismic objects byctiee attributes neural networks: Part
I;methodology Expanded Abstracts of the SEG 69th Annual Meetithguston, Oct. 31 —
Nov. 5,

Heggland, R., Meldahl, P., Bril, B. & de Groot, P998. The chimney cube, an example of
semi-automated detection of seismic objects byctilne attributes & neural networks: Part
II; interpretation, Expanded Abstracts of the SEG 69th Annual Meetitamuston, Oct. 31 —
Nov. 5.

Heggland, R., Meldahl, P., de Groot, P. & Aminzade000.Chimneys in the Gulf of Mexico
The American Oil & Gas Reporter, Feb. 2000.

Hertz J., A. Krogh y R. Palmer 199Introduction to the Theory of Neural Computation
Reading, MA: Addison-Wesley.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & agard, P. R. 198Tlassifier systems, Q-
morphisms, & inductionin L. Davis (Ed.), Genetic algorithms & simulataadeling pp. 116-
128.

Huang, Z. & Williamson, M. 1994Geological pattern recognition and modelling with a
general regression neural netwoi®an. J. Expl. Geophys., 30, no. 1, 60-68.

Zurada, J. 1993ntroduction to Artificial Neural System#/est Publishing Company.

Johnston, D. 1993eismic attribute calibration using neural network8rd Annual Internat.
Mtg., Soc. Expl. Geophys., Expanded Abstracts298;253.

Ping A. 1994.The effect of random noise in lateral reservoir retederization using feed-
forward neural networksGeological Survey of Canada. 1994

Rich E. y Knight, K. 1991Introduction to Artificial NetworksMac Graw-Hill. Publications.

Russell, B. 1988.Introduction to Seismic Inversion MethodSociety of Exploration
Geophysicists.

Setiono R. & Liu. H. 1996Symbolic representation of neural networkEEE Computer
Magzine, pag. 71-77, 1996.

Sun, Q.; Eissa, M. A.; Castagna, J. P.; Cersosimosid, S.; and Deker, C., 20(Horosity
from artificial neural network inversion from Berroekield, Ecuador,71st Ann. Internat.
Mtg: Soc. Of Expl. Geophys., pp. 734-737.



Identification of Velocity Variations in a SeismicCube Using Neural Networks9

Stewart, R., Huddleston, P. and Tze Kong Kan. 13ismic versus sonic velocities: A
vertical seismic profiling studyGeophysics, 49,1153-1168.

Towell G. & Shavlik, J. 1994.Knowledge-based artificial neural networkdrtificial
Intelligence, vol. 70, no. 1-2, pp. 119-165..

Treitel, S, Larry Lines, and Gary Ruckgal@ophysical Inversion and Applicatiori993 142
pages.

Treitel, S & Essenreiter, R. 199Bredictive Deconvolution Revisited with Neural Né&tgth
Mtg. Eur. Assoc. Expl Geophys. Extended Abstre@®s Session:P065.

Yao X.y Liu Y. 1998 Toward Designing Atrtificial Neural Networks by Ewidn. Applied
Mathematics & Computation, 91(1): 83-90

Wang, J. & Huang, Z. 199eural networks for robust recognition of seismiclegtfon
patterns 63rd Annual Internat. Mtg., Soc. Expl. Geoph¥spanded Abstracts, , 93, 246-
249.

Zhang, X., Li, Y., Hu, Q. & Feng, D. 1995&arly-stage reservoir analysis with SOMA: A
neural network approach65th Annual Internat. Mtg., Soc. Expl. GeophyExpanded
Abstracts, , 95, 138-141.

Zhang, X., Li, Y., Liu, F. & Wang, L. 1995lEstimating reservoir's lithological parameters
from seismic data using neural netwofi6th Annual Internat. Mtg., Soc. Expl. Geophys.,
Expanded Abstracts, , 95, 606-608.



