

 120

ANALYSIS OF CLOCK TREE IMPLEMENTATION ON ASIC
BLOCK QOR

A Master's Thesis
Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya
by

Javier Antúnez Sánchez

In partial fulfilment
of the requirements for the degree of

MASTER IN ELECTRONIC ENGINEERING

Advisor: Francesc Moll Echeto

Barcelona, October 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/157808844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 120

 1

Title of the thesis: Analysis of clock tree implementation on ASIC block QoR

Author: Javier Antúnez Sánchez

Advisor: Francesc Moll Echeto

Abstract

The scope of this project is to develop a base methodology for clock tree synthesis that
can improve the base results regarding the clock structure. The analysis of results will be
done with a Quality of Results sets of metrics and by analysing the physical structure of
the clock.

The analysis has been performed on three blocks with different physical characteristics to
achieve a transversal solution. The initial tests performed have been focused on
configuration options of the EDA tool used but were disregarded. The main tests upon
this thesis is based are referred to the clock physical structure such as fanout constraints,
slew constraints and clock cell selection.

One of the main results obtained is the importance of the layout of the block to set up the
optimal constraints, limiting the transversal solution approach. It is as well an important
point considering the internal algorithms followed by the tool.

 2

Acknowledgements

I would like to acknowledge the help and knowledge provided by Ferran Martorell Cid and
all the ASIC and Layout Design engineers at Esilicon for all the help granted for the
development of this project, both in the project orientation as for help learning the
methodology to be followed.

I would like to thank Esilicon for the chance of doing my master thesis project as it has
been a great experience to go through.

I want to acknowledge too the help provided by Francesc Moll, to set up this project and
by helping me whenever is necessary and helping me polish the project as well as
structuring and giving format to this document.

 3

Revision history and approval record

Revision Date Purpose

0 13/10/2017 Document creation

1 15/10/2017 Document revision - Draft 1

2 15/10/2017 Document expansion - Draft 2

3 16/10/2017 Document expansion - Draft 3

4 17/10/2017 Document revision and correction - Draft 4

5 19/10/2017 Final Version

Written by: Reviewed and approved by:

Date 12/10/2017 Date 19/10/2017

Name Javier Antúnez Sánchez Name Francesc Moll

Position Project Author Position Project Supervisor

 4

Table of contents

Abstract .. 1

Acknowledgements... 2

Revision history and approval record .. 3

Table of contents .. 4

List of Figures ... 7

List of Tables .. 8

1. Introduction .. 11

1.1. Requirements and Specifications ... 11

1.2. Statement of purpose ... 12

1.3. Methods and procedures .. 12

1.4. Work plan ... 12

1.5. Gantt diagram ... 15

2. State of the art of the technology used or applied in this thesis 17

2.1. Planar CMOS to FinFET ... 17

2.1.1. Planar CMOS technology and its limitations .. 17

2.1.2. FinFET technology and its advantages .. 19

2.2. Terminology and Concepts ... 21

2.3. Adjustable Delay Buffers .. 22

2.4. Reconfigurable Clock Trees for Multi-Corner Multi-Mode designs..................... 23

3. Methodology and Project Development ... 25

3.1. Block Definition and Characteristics.. 25

3.1.1. Block 1 .. 26

3.1.2. Block 2 .. 28

3.1.3. Block 3 .. 30

3.1.4. Block 4 .. 32

3.2. Metrics Definition .. 34

3.2.1. Power Performance Analysis metrics .. 34

3.2.2. Support metrics ... 34

3.3. Scripts and Automatic Block Generation ... 35

3.3.1. Automatic Block generation ... 35

3.3.2. Reference shell blocks .. 36

 5

3.3.3. Configuration sets directory ... 36

3.3.4. Auxiliary scripts directory ... 37

3.3.5. General block directory: ... 37

3.3.6. Block generation script .. 37

3.4. Script Analysis and Explanation .. 38

3.4.1. Block Generation Script: run_gen.tcl ... 38

3.4.2. Reporter and parser: report_parser.tcl ... 38

3.4.3. Clock Structure Analyser: clock_structure_analyser.tcl 40

3.4.4. Clock pin modification script: replace_clockpin.tcl...................................... 41

3.4.5. Report combiner: block_combiner.tcl ... 41

3.5. Methodology and Experiment Sets ... 42

3.5.1. Reference block parameters .. 42

3.5.2. Initial Experiment Sets ... 42

3.5.2.1. Configuration options explanations and expected results 43

3.5.3. Slew Analysis .. 45

3.5.3.1. Experiment Set Definition .. 46

3.5.4. Fanout Analysis ... 47

3.5.4.1. Experiment Set Definition .. 47

3.5.5. Clock Cell Analysis .. 48

3.5.5.1. Experiment Set Definition .. 50

3.5.6. Concurrent Clock and Data Optimization analysis 51

3.5.6.1. Experiment Set definition... 52

3.5.7. Clock Placement Analysis ... 52

3.5.7.1. Experiment Set Definition .. 53

4. Results .. 55

4.1. Initial Experiment Sets .. 55

4.1.1. Block 1 analysis ... 56

4.1.2. Block 2 analysis ... 56

4.2. Change on the Original Approach ... 57

4.3. Slew Analysis ... 58

4.3.1. Block 1 analysis ... 58

4.3.2. Block 2 analysis ... 60

4.3.3. Block 3 analysis ... 62

4.4. Fanout Analysis .. 64

 6

4.4.1. Block 1 Analysis .. 65

4.4.2. Block 2 Analysis .. 67

4.4.3. Block 3 Analysis .. 69

4.5. Clock Cell Analysis ... 71

4.5.1. Block 1 analysis ... 72

4.5.2. Block 2 Analysis .. 75

4.5.3. Block 3 Analysis .. 79

4.6. Concurrent Clock and Data Optimization Analysis .. 84

4.6.1. Block 1 .. 84

4.6.2. Block 2 .. 86

4.7. Clock Placement Analysis .. 88

4.7.1. Blocks Clock Tree Trunk.. 88

4.7.2. Block 1 Analysis .. 94

4.7.3. Block 2 Analysis .. 95

4.7.4. Block 3 Analysis .. 97

5. Budget ... 99

6. Conclusions and future development ... 101

6.1. Slew Analysis ... 101

6.2. Fanout Analysis .. 101

6.2.1. Block 1 .. 102

6.2.2. Block 2 .. 102

6.2.3. Block 3 .. 102

6.3. Clock Cell Analysis ... 103

6.3.1. Block 1 .. 103

6.3.2. Block 2 .. 103

6.3.3. Block 3 .. 104

6.4. Concurrent Clock and Data Optimization Analysis .. 104

6.5. Clock Placement Analysis .. 105

6.6. Future development .. 106

Bibliography .. 107

Appendices ... 120

Glossary ... 181

 7

List of Figures

Figure 1.1: Thesis Gantt diagram. pp.17

Figure 2.1: Physical structure of a FinFET. [8] pp.22

Figure 2.3: Clock tree merging possibilities depending on scenario and mode
incompatibilities. pp.26

Figure 3.1: Memory and flip-flop distribution at Block 1. pp.29

Figure 3.2: Memory and flip-flop distribution at Block 2. pp.31

Figure 3.3: Memory and flip-flop distribution at Block 3. pp.33

Figure 3.4: Memory and flip-flop distribution at Block 4. pp.35

Figure 3.5: Automatic Block Generation Structure. pp.38

Figure 4.1: Clock tree trunk of Block 1 using the reference clock tree input pin with CCD
algorithm. pp.90

Figure 4.2: Clock tree trunk of Block 1 using the centred clock tree input pin with CCD
algorithm. pp.91

Figure 4.3: Clock tree trunk of Block 2 using the reference clock tree input pin with CCD
algorithm. pp.92

Figure 4.4: Clock tree trunk of Block 2 using the centred clock tree input pin with CCD
algorithm. pp.93

Figure 4.5: Clock tree trunk of Block 3 using the reference clock tree input pin with CCD
algorithm. pp.94

Figure 4.6: Clock tree trunk of Block 3 using the centred clock tree input pin with CCD
algorithm. pp.95

 8

List of Tables

Table 3.1: Block 1 characteristics. pp.28

Table 3.2: Block 2 characteristics. pp.30

Table 3.3: Block 3 characteristics. pp.32

Table 3.4: Block 4 characteristics. pp.34

Table 3.5: Block 1, Block 2 and Block 3 default parameters. pp.44

Table 3.6: Experiment set definition table for the slew constraint experiment set at Block 1,
Block 2 and Block 3. pp.48

Table 3.6: Experiment set definition table for the fanout constraint experiment set at Block
1, Block 2 and Block 3. pp.49

Table 3.7: Experiment set definition table for the clock cell selection with fanout variation
constellation at Block 1. pp.52

Table 3.8: Experiment set definition table for the clock cell selection with fanout variation
constellation at Block 2. pp.52

Table 3.9: Experiment set definition table for the clock cell selection with fanout variation
constellation at Block 3. pp.53

Table 4.1: Clock power and number of repeaters used and clock wirelength for the slew
variations considered at Block 1 for a logic activity factor of 10% and clock activity factor
of 200%. pp.61

Table 4.2: Repeater breakdown distribution at Block 1 for the different slew constraints
analysed. pp.62

Table 4.3: Repeater fanout breakdown distribution and average clock cells fanout at
Block 1 for the different slew constraints analysed. pp.62

Table 4.4: Clock power and number of repeaters used for the slew variations considered
at Block 2 for an activity factor of 10%. pp.63

Table 4.5: Repeater breakdown distribution at Block 2 for the different slew constraints
analysed. pp.64

Table 4.6: Repeater fanout breakdown distribution and average clock cells fanout at
Block 2 for the different slew constraints analysed. pp.64

Table 4.7: Repeater breakdown distribution at Block 3 for the different slew constraints
analysed for a fanout constraint of 32. pp.66

Table 4.8: Repeater fanout breakdown distribution and average clock cells fanout at
Block 3 for the different slew constraints analysed for a fanout constraint of 32. pp.68

Table 4.9: Repeater breakdown distribution at Block 1 for the different fanout constraints
analysed. pp.68

Table 4.10: Repeater fanout breakdown distribution and average clock cells fanout at
Block 1 for the different fanout constraints analysed. pp.70

Table 4.11: Repeater breakdown distribution at Block 2 for the different fanout constraints
analysed. pp.70

 9

Table 4.12: Repeater fanout breakdown distribution and average clock cells fanout at
Block 2 for the different fanout constraints analysed. pp.72

Table 4.13: Clock power, total power and clock power to total power distribution for all
test blocks at a logic activity factor of 10% and a clock activity factor of 200%. pp.72

Table 4.14: Repeater breakdown distribution at Block 3 for the different fanout constraints
analysed. pp.72

Table 4.15: Repeater fanout breakdown distribution and average clock cells fanout at
Block 3 for the different fanout constraints analysed. pp.75

Table 4.16: Repeater breakdown distribution at Block 1 for the different clock cell and
fanout constellations using the bigger repeater sets. pp.75

Table 4.17: Repeater fanout breakdown distribution and average clock cells fanout at
Block 1 for the different clock cell and fanout constellations using the bigger repeater sets.
pp.76

Table 4.18: Repeater breakdown distribution at Block 1 for the different clock cell and
fanout constellations using the smaller repeater sets. pp.78

Table 4.19: Repeater fanout breakdown distribution and average clock cells fanout at
Block 1 for the different clock cell and fanout constellations using the smaller repeater
sets. pp.77

Table 4.20: Repeater breakdown distribution at Block 2 for the different clock cell and
fanout constellations using the bigger repeater sets. pp.80

Table 4.21: Repeater fanout breakdown distribution and average clock cells fanout at
Block 2 for the different clock cell and fanout constellations using the bigger repeater sets.
pp.79

Table 4.22: Repeater breakdown distribution at Block 2 for the different clock cell and
fanout constellations using the smaller repeater sets. pp.80

Table 4.23: Repeater fanout breakdown distribution and average clock cells fanout at
Block 2 for the different clock cell and fanout constellations using the smaller repeater
sets. pp.80

Table 4.24: Repeater breakdown distribution at Block 3 for the different clock cell and
fanout constellations using the bigger repeater sets. pp.82

Table 4.25: Repeater fanout breakdown distribution and average clock cells fanout at
Block 3 for the different clock cell and fanout constellations using the bigger repeater sets.
pp. 82

Table 4.26: Repeater breakdown distribution at Block 3 for the different clock cell and
fanout constellations using the smaller repeater sets. pp.83

Table 4.27: Repeater fanout breakdown distribution and average clock cells fanout at
Block 3 for the different clock cell and fanout constellations using the smaller repeater
sets. pp.84

Table 4.28: Repeater breakdown distribution at Block 3 for the different clock cell and
fanout constellations using a mixed set. pp.85

 10

Table 4.29: Repeater fanout breakdown distribution and average clock cells fanout at
Block 3 for the different clock cell and fanout constellations using a mixed set. pp.85

Table 4.30: Repeater breakdown distribution at Block 1 for the different CCD block
variations analysed. pp.87

Table 4.31: Repeater fanout breakdown distribution and average clock cells fanout at
Block 1 for the different for the different CCD block variations analysed. pp.87

Table 4.32: Repeater breakdown distribution at Block 2 for the different CCD block
variations analysed. pp.88

Table 4.33: Repeater fanout breakdown distribution and average clock cells fanout at
Block 2 for the different for the different CCD block variations analysed. pp. 89

Table 4.34: Repeater breakdown distribution at Block 1 for the different clock pin
configurations analysed. pp.96

Table 4.35: Repeater fanout breakdown distribution and average clock cells fanout at
Block 1 for the different clock pin configurations analysed. pp.97

Table 4.36: Repeater breakdown distribution at Block 2 for the different clock pin
configurations analysed. pp.98

Table 4.37: Repeater fanout breakdown distribution and average clock cells fanout at
Block 2 for the different clock pin configurations analysed. pp.98

Table 4.38: Repeater breakdown distribution at Block 3 for the different clock pin
configurations analysed. pp.100

Table 4.39: Repeater fanout breakdown distribution and average clock cells fanout at
Block 3 for the different clock pin configurations analysed. pp.100

 11

1. Introduction

High frequency ASICs require large clock structures that toggle continuously. On the
state-of-the-art chip clock tree power becomes one of the main contributors to the total
power consumption.

Besides the direct consumption of power and area due to clock tree buffering there is
also the indirect effect of clock skew on the number of hold buffers and timing closure
effort.

Congestion problems can also be generated due to a bad clock tree building strategy.

The main goal of this project is to investigate ways to improve the clock tree building
using EDA tools and quantify and qualify the results obtained and the direct and indirect
effects of different clock tree building strategies using state-of-the-art blocks using sub-
20nm FinFET technologies.

1.1. Requirements and Specifications

The scope of this master thesis is to generate a set of constraints to optimize the clock
tree synthesis using EDA tools. To check the optimal constraints, they will be tested
against several test blocks with different physical characteristics.

To assess the results obtained, it will be defined a set of metrics that will conform the
Quality of Results. The Quality of Results will be used to determine from the metrics
checked, which yields the best results and consequences on why it happens.

The first objective of the master thesis will be focused on how different configuration
options provided by the EDA tool used on the test blocks can be used to improve the
Quality of Results of all the blocks and try to obtain a transversal solution.

The second objective will be focused on the optimization of the clock structure by
modifying constraints regarding their physical clock structure and design constraints.

 12

1.2. Statement of purpose

The main objectives that are being covered on this master thesis are the following ones:

 Learning of the EDA tools used by the company where this master thesis is being
developed.

 Analysis of state-of-the-art clock tree building techniques and methodologies
regarding clock tree structures.

 Assessment of Quality of Results metrics used to analyse the results obtained on
the different blocks being tested.

 Generation of experiment sets to be tested.

 Development of a test structure within the software to automatize the experiment
testing in each block and the extraction of the metrics.

 Analysis of the metrics obtained by the tool and selection of the best experiment
tests performed.

1.3. Methods and procedures

This project has been developed within ICC2 Synopsys EDA tools. The blocks upon the
project has been developed have been provided by Esilicon S.L. such as the basic flow
structure that runs on ICC2. Some additional scripts used have been designed by
Synopsys engineers being used to extract some of the Quality of Results metrics.

All the scripts included on this thesis have been developed personally and focus on
metric extraction. Some parts of the code have been inspired by codes provided by
Esilicon S.L. and Synopsys.

1.4. Work plan

The project in a general approach can be separated in two main tasks.

 Learning of the development environment: The project was developed on the
ICC2 EDA tool. The first part of the project involved gaining some competency in
how the software environment and the company flow works.

 Project development: The main tasks that have been developed regarding the
main project are the analysis of the blocks, generation of the auxiliary scripts and
result analysis.

In a more detailed list, the work plan in chronological order is the following one:

 Research on Clock Tree Synthesis:

a. Research on clock tree synthesis and basic metrics regarding CTS.

b. Research on methodologies focused on CTS improvement.

 13

 Software learning.

a. Basic courses around ICC2.

b. Company and software environment learning through a learning block
provided by the company through all the steps.

c. Analysis of the different company scripts to identify the procedures followed on
each step.

d. Learning of ICC2 and company environment through scripts and graphical
interface.

e. Analysis of the reports generated by the tool for future work.

 Milestone: Acquiring competence in the software and company environment to
develop the project.

 Generation of basic auxiliary scripts regarding report generation:

a. Selection of useful metrics of the data that can be provided by the tool and
generated reports.

b. Learning of TCL expressions regarding data parsing through tutorials and
Esilicon S.L. and Synopsys scripts.

c. Creation of the script that must call reports, obtain the relevant data and save
it on separate files depending on what area they belong.

 Test of the blocks to be analysed:

a. Unmodified flow running, script testing and initial metrics extraction.

 Generation of the initial experiment sets and results extraction:

a. Analysis of the tool configuration option sets using the online documentation
provided by Synopsys.

b. Addition of the configuration option sets to the company flow structure.

c. Running of the experiment sets on the test block and existing analysis blocks
and extraction of initial results.

d. Deprecation of the experiment sets due to faulty methodology.

 Generation of the test structure:

a. Automatic run generation without using the graphical interface.

b. Modification of the company flow to include several auxiliary scripts.

 14

c. Modification of the report scripts to use a modified set of the Quality of Results
Metrics.

 Generation of new experiment sets regarding physical modifications:

a. Selection of the variations with help from company colleagues.

b. Test of the configuration options in the blocks.

c. Extraction of results, previous analysis and further experiment sets
generations.

 Generation of a clock analysis script.

a. Analysis of the report structure.

b. Test of regular expressions to extract information.

c. Basic script generation.

d. Refinement of the script adding further functionalities.

 Final analysis of the experiment sets.

a. Inclusion of final test block.

b. Running missing experiment sets.

c. Creation of a block combiner script.

d. Obtaining QoR data and analysis.

 Thesis documentation

 15

1.5. Gantt diagram

Figure 1.1: Thesis Gantt diagram.

 16

 17

2. State of the art of the technology used or applied in this
thesis

The state-of-the-art will cover the current technology used in the project as well as
information on clock tree synthesis techniques.

2.1. Planar CMOS to FinFET

The development of this Master Thesis is focused on the optimization of clock tree
building in ASIC blocks. The technology on which all the blocks have been developed is
sub-20nm FinFET and thus will be part of the state-of-the-art of this project.

2.1.1. Planar CMOS technology and its limitations

During a long time, planar CMOS technology has been the standard on IC design. In
general terms it is reliable, cheap to design and it was possible to scale while improving
the performance.

The Moore’s Law, formulated in 1965 by Gordon Moore, predicted doubling on the
number of transistors on integrated circuits every 18 months. This theorem explained the
scaling of transistor’s node technology up to 2010 approximately.

Planar CMOS technology has provided improvements in performance with scaling up to
the 28 nm technology node. The main limitation for further scaling using planar CMOS is
the increase of the leakage current as the technology nodes become smaller.

In general terms, the power consumption of a given integrated circuit can be expressed
as:

 (1)

The dynamic power depends of the circuit capacitance, the transistor capacitance, the
number of gates, the power supply voltage, the frequency and the activity factor of the
circuit. The activity factor of a given circuit depends on the probability of the integrated
circuit working. This activity factor takes in consideration clock gating and cutting of
power to certain parts of the circuit.

The usage of smaller technology nodes seeks mainly to increase the maximum frequency
achievable, the optimization of power consumption.

The increase of the maximum frequency requires decreasing the transistor parasitic
capacitance. One of the parameters to define the maximum frequency is the transition
frequency. It is defined as the frequency on which the small signal gain of a transistor is 1.

 18

It is defined as:

 (2)

 (3)

Usually, the maximum frequency will be decades below the transition frequency, however
it serves to determine an approximate maximum frequency. From expression (3),
increasing the transition frequency are increasing the drain current, the aspect ratio of the
transistors or reducing the gate capacitance of a transistor.

Assuming that the aspect ratio cannot be increased indefinitely and that increasing the
drain current results on an increase of the power consumption, it is discarded.

Thus, the main option to increase the maximum frequency is reducing the gate
capacitance. The gate capacitance depends on the transistor size, thus transistor scaling
reduces the parasitic capacitance and increases the maximum achievable frequency.

The reduction on the transistor size requires lowering the supply voltage to keep in check
the electric field of the transistor. With the reduction of the power supply, it is needed a
reduction on the threshold voltage to keep a correct switching operation.

Thus in general terms, from expression (1), the dynamic power consumption is kept on
check with the reduction of the power supply despite the frequency increase, assuming a
constant activity factor and capacitance.

Regarding the leakage power, it depends mainly on two factors, the circuit power supply
and the leakage power. As seen before, technology scaling requires a reduction on the
power supply voltage to keep a stable electric field.

The leakage current or subthreshold current on a transistor can be defined as:

 (4)

 (5)

Assuming Io being approximately constant and knowing that the thermal voltage at a
given temperature will also be constant, the subthreshold current will depend on the
threshold voltage. Given that it is required to reduce the threshold voltage to ensure a
correct switching operation, this results on an increase of the subthreshold current as the
threshold voltage is reduced.

Then, considering the leakage power expression in (1), technology node scaling causes
an exponential increase on the subthreshold voltage and a linear decrease on the power
supply.

Moreover, the reduction on the technology node and thus the channel length, makes it
impossible to achieve a completely off-state while keeping a good on-state current drive.

 19

Usually, the maximum frequency will be decades below the transition frequency, however
it serves to determine an approximate maximum frequency. From expression (3),
increasing the transition frequency are increasing the drain current, the aspect ratio of the
transistors or reducing the gate capacitance of a transistor.

Assuming that the aspect ratio cannot be increased indefinitely and that increasing the
drain current results on an increase of the power consumption, it is discarded.

Thus, the main option to increase the maximum frequency is reducing the gate
capacitance. The gate capacitance depends on the transistor size, thus transistor scaling
reduces the parasitic capacitance and increases the maximum achievable frequency.

The reduction on the transistor size requires lowering the supply voltage to keep in check
the electric field of the transistor. With the reduction of the power supply, it is needed a
reduction on the threshold voltage to keep a correct switching operation.

Thus in general terms, from expression (1), the power dynamic power consumption is
kept on check with the reduction of the power supply despite the frequency increase,
assuming a constant activity factor and capacitance.

Assuming Io being approximately constant and knowing that the thermal voltage at a
given temperature will also be constant, the subthreshold current will depend on the
threshold voltage. Given that it is required to reduce the threshold voltage to ensure a
correct switching operation, this results on an increase of the subthreshold current as the
threshold voltage is reduced.

Then, considering the leakage power expression in (1), technology node scaling causes
an exponential increase on the subthreshold voltage and a linear decrease on the power
supply.

Moreover, the reduction on the technology node and thus the channel length, makes it
impossible to achieve a completely off-state while keeping a good on-state current drive.

2.1.2. FinFET technology and its advantages

As specified before, the technology used is sub-28nm FinFET. On this section, it will be
discussed the advantages and limitations of FinFET.

It has been seen that with newer technology nodes, the leakage current and thus the
leakage power increases being comparable to the dynamic power consumption on a
given integrated circuit.

FinFET technology uses a tri-dimensional gate, also called fin. FinFETs can have mainly
two structures, the double-gate structure and the tri-gate structure.

The double-gate structure has the drain and source connected by the fin. The gate of the
device is placed at both sides of the fin and covers with a ultra-thin layer of silicon the fin
to connect the gate at both sides.

On the other hand, on tri-gate structures, the gate covers completely the fin, allowing gate
control from either the sides or top of the fin.

One of the main advantages of the FinFET over planar technologies is the capability of
increasing the width of the channel in a much easier way. Considering a given fin
transistor, the effective width of the channel for a tri-gate structure will be:

 20

 (6)

Where Hfin is the fin height and Wfin is the fin width.

The physical structure of a FinFET is:

Figure 2.1: Physical structure of a FinFET. [8]

Knowing that the current is dependent on the width of the channel, it is possible to
increase the driving current of a given transistor by increasing the fin height. Moreover,
this tri-dimensional structure, makes possible to achieve higher levels of transistor density
by increasing the fin height instead of making wider transistors, when comparing to planar
CMOS.

Given the nature of the gate in tri-gate structures, it is easier to control the transistor in
smaller technology nodes, as opposed to planar CMOS where for a similar technology
node, the required threshold voltage would difficult a proper switching.

This results also on a reduced leakage current with a lower threshold voltage due to
better gate control. The use of the fin also makes redundant the doping of the channel in
order to prevent Drain Induced Barrier Lowering and other short-channel effects that
appeared in planar CMOS technology.

The reduction on the threshold voltage allows as well the reduction of the power supply
voltage, effectively lowering the dynamic and leakage power of a transistor.

The elimination of channel doping processes increases carrier mobility and reduces the
process variability.

On the other hand, the use of a tri-dimensional structure poses many challenges that
have to be solved.

There is less flexibility in the control of the on-state current drive due to the nature of the
fin. The effective channel width will depend on the fin height and on the number of fin
fingers used on the design.

 21

Multiple fins are used in order to limit the drain-source resistance introduced by reducing
the fin width. By using multiple fins, the total channel width can be estimated to:

 (7)

This expression considers that the fin width is negligible compared to the fin height. The
fin height will be fixed by the technology considering technical limitations and process
design.

As it can be seen, the channel width and thus the driving strength becomes quantized
and can only be increased by the number of fins, compared to planar CMOS where it is
possible to achieve better control the on-state current by modifying the channel width.

It must also be considered tri-dimensional structure for physical layout design. It must be
considered in closer detail the placement of transistors. Previously, for the designer it was
not as important to know the relationship between the design layout and the
manufacturing process.

This however cannot be applied to FinFET structures. It is necessary by the technology
provider to give detailed information on the physical characteristics of the device and it is
necessary for the designer to have knowledge on the manufacturing process.

2.2. Terminology and Concepts

The main topic of this thesis is the optimization of the clock structure on ASIC blocks. In
this section, it will be covered the main definitions regarding clock power.

The Worst Negative Slack is referred to the maximum difference between the clock and
data arrival at given flip-flop. If the Worst Negative Slack obtained is lower than zero, it
means that this path and the design is not meeting timing enclosure and thus will not
work at the desired frequency.

The Total Negative Slack is the sum of all the slack values obtained on a given design.

The Skew indicates the timing difference of the earliest clock signal arrival and the latest
clock signal arrival at the flip-flops of a design. The skew values obtained can be
misleading and thus the term Local skew is used.

The Local skew, in contrast with the Global Skew indicates the maximum timing
difference of the clock arrival at flip-flops of a given timing path. Local skew will then not
consider the maximum timing difference between flip-flops that do not share the same
timing path and will give more accurate timing information.

The Latency or Insertion delay, indicates which is the time it takes for the clock signal to
propagate from the clock source to the furthest flip-flop of the design.

The Utilization of a given design is the quotient between the area used by standard cells
and macro cells and the total area of a design. The tool used defines the utilization as
the quotient between the standard cell area and the total area.

 22

2.3. Adjustable Delay Buffers

The next sections will cover the use of several techniques referring to clock tree synthesis
and improvement on the clock tree structure. The first section will cover the use of
Adjustable Delay Buffers, while the second one will cover the use of reconfigurable clock
trees.

On current designs, the effect of process variations such as temperature, voltage on
multi-power mode designs can affect and degrade the performance of a given block. All
this processes variations and the problems they may cause, become much more severe
as technology scales down.

One of the main problems to arise is the hold and setup timing violations. The use of
hold-fixing and effective skew management techniques can be used in order to improve
results. Several other methodologies have been explored to deal with process variation
such as buffer insertion and sizing and wire sizing.

However on multi-power designs with on-chip-variations considered, the resulting clock
can present high wirelengths that may affect negatively signal routing or have no clock
distribution that meets the timing requirements of the design on all the scenarios.

Adjustable Delay Buffers (ADBs) are used on post-silicon tuning to deal with timing
enclosure. ADBs can have their delay modified by a control input.

By replacing some buffers on the base design by ADBs it can be possible to modify the
delay they present for different power modes or OCV. However, ADBs in comparison to
regular buffers they require a bigger area, additional control logic and have a higher
power consumption. This sets a limit on how many buffers can be inserted to avoid
excessive power consumption.

The problem for buffer insertion can be formulated as:

 Add the minimum number of buffers that allow meeting mode skew requirements
with the least power overhead.

 Meet the global skew requirements imposed by the design.

This first algorithm for ADB insertion takes into consideration the global design skew or
local module skew. Under these considerations, although the skew requirements are met,
there can be hold and setup time violations on individual nodes across multiple power
modes and domains.

Considering the setup and skew bounds as:

 (8)

 (9)

xi and xj are the clock arrival at sinks i and j (where data goes from i to j). Dmax(Ckti,j) and
Dmin(Ckti,j) are the maximum and minimum delays from the output of sink i to the input of
sink j. tclk is the clock period. tsetup and thold are the setup and hold constraints that must be
met. If the inequalities are met, then the design will have no setup or hold violations.

 23

The addition of ADBs will allow modifying the delay between the sinks and allowing
meeting the timing constraints.

Negative setup time violations are quite hard to fix as it will usually imply increasing the
clock period and thus lowering the maximum frequency of the circuit. It can also be fixed
by optimizing the datapath structure.

However, negative hold time violations imply that data can change before the clock
captures it. This can be fixed easier by adding delays to the datapath in order to delay the
data arrival.

By modifying existing ADB insertion algorithms to take into consideration setup and hold
time, it is possible to achieve designs that can meet timing enclosure as well as reducing
the number of violations of the design.

As explained before, as technology scales down, on-chip-variation effects become more
prevalent. This makes timing enclosure harder and thus worsens chip performance.
Frequency scaling has also limited the skew bounds to meet timing enclosure.

Process variations considered to be relevant to affect buffer delay are wire width, supply
voltage, temperature, load capacitance and input slew.

2.4. Reconfigurable Clock Trees for Multi-Corner Multi-Mode designs

Clock network of integrated circuits must be able to operate on multiple corners and
multiple modes (MCMM).

It is purposed the use of multiple clock trees to meet the skew requirements for each
scenarios. As building several clock trees it requires an increase of area and power
consumption, the bottom end of the tree is shared and always active.

To determine which parts of the clock network are active, or gates and a one-input n-
outputs demultiplexer is used.

Each scenario will have different skew constraints. The skew for each scenario will take
into consideration a safety margin.

If two subtrees are active on a group of scenarios, a feasible skew graph will be made.
This graph will contain a paired table of all sinks and skew constraints.

After applying the safety margin on the skew constraints, both subtrees will be paired and
if a common merging region exists (skew margin for the common sinks ≥ 0), both
subtrees can be merged obtaining a feasible clock schedule for the new tree.

If the merging region of both subtrees is empty (the skew margin for common sinks < 0).

Two type of incompatibility are considered, mode and scenario incompatibility. When two
subtrees are scenario incompatible but mode compatible it implies that there is no
common merging region. If by decreasing the safety margin applied initially a common
merging region exists then the two subtrees are scenario compatible and can be merged.

Mode incompatible trees will not be able to be merged in any case and will be buffered
and controlled by combinational logic on the final tree.

 24

Figure 2.2: Clock tree merging possibilities depending on scenario and mode

incompatibilities.

 25

3. Methodology and Project Development

The Master thesis was initially focused on analysing how the modifications of the
configuration options on the EDA tool used could improve the results obtained regarding
clock building.

Mid-project, that approach was abandoned due to the reasons presented in the next
chapter and a new focus was followed.

The new approach upon which the majority of the master thesis will be focused is
regarding clock tree structural changes such as the slew or the fanout constraint.

This chapter will cover how the project structure has been developed in order to generate
an automated block and report system.

It will also be presented the blocks being used on this thesis as well as which experiment
sets have been used and the reasoning behind them while the most relevant results will
be presented on the next chapter.

3.1. Block Definition and Characteristics

To test the different experiment sets that will be explained later it is necessary to select
different blocks to present a transversal picture. To make an appropriate block
constellation several conditions should be met:

 Same technology in all blocks: To have more reliable results due to the limitations
on the tests developed all blocks should be developed on the same technology to
reduce variability in the results and to ease analysis.

 Blocks with different characteristics: The blocks should be different enough and
have different characteristics in terms of physical layout.

By having different blocks it might be possible to give an optimal set of configurations for
all blocks.

Block selection will be done considering their layout distribution. Three blocks have been
selected: a block dominated by memory, a block dominated by logic and a mixed block.

The usage of memories affects how flip-flop distribution and routing is done. Most usually,
memory placement in a block requires of a restricted area around it where neither cells
nor routing can be done.

This differs from mostly logical blocks where this restriction does not exist usually
resulting on a better and easier block development.

 26

Asides from this block classification it will be considered the following characteristics to
define each bloc:

 Number of flip-flops

 Number of memory instances

 Number of logic instances

 Total area

 Memory area and memory area percentage

 Logic area and logic area percentage

 Memory to logic ratio

3.1.1. Block 1

This block is memory dominated and has the following characteristics:

Number of flip-flops 433,290

Number of memory instances 417

Number of logic instances 329177

Total area 5,924,460.81 um2

Utilization 0.3186

Memory area 3,329,044.77 um2

Memory area percentage 56.19%

Logic area 792194.14 um2

Logic area percentage 13.37%

Memory to logic ratio 4.2

Table 3.1: Block 1 characteristics.

 27

In terms of area and physical layout this is the most complex block. It has the most
memory instances taking roughly 60% of the total area with a memory to logic ratio of 4.2.

In the physical layout the memories are placed all across the block. Flip-flops are
distributed across all the block and in-between the memories. Open areas without
memory blockages are not fully used to place flip-flops.

The following figure shows the memory placement and flop distribution of Block 1. The
clock input pin is marked on green.

Figure 3.1: Memory and flip-flop distribution at Block 1.

 28

3.1.2. Block 2

This block is considered as mixed and its characteristics are the following ones:

Number of flip-flops 347,531

Number of memory instances 110

Number of logic instances 243,314

Total area 2,132,247.05 um2

Utilization 0.4576

Memory area 856,478.89 um2

Memory area percentage 40.16%

Logic area 570,155.27 um2

Logic area percentage 26.73%

Memory to logic ratio 1.5

Table 3.2: Block 2 characteristics.

This block is considered as a mixed block in terms of memory and logic distribution as it
has a memory to logic ratio of 4.2 compared to Block 1.

The physical layout on this case is different from Block 1. This block has less memory
instances which take less area than on the first case. There are open spaces with no
memory blockages that are used for flip-flop placement. The number of in-between
memories flip-flops is also lower than on the first block.

The following figure shows the memory placement and flop distribution of Block 2. The
clock input pin is marked on green.

 29

Figure 3.2: Memory and flip-flop distribution at Block 2.

 30

3.1.3. Block 3

The final block considered to perform the different experiment sets is purely logic. Its
characteristics are the following ones:

Number of flip-flops 339,959

Number of memory instances 0

Number of logic instances 2,084,106

Total area 1,276,547.46 um2

Utilization 0.3609

Memory area 0 um2

Memory area percentage 0

Logic area 460,769.45 um2

Logic area percentage 36.09%

Memory to logic ratio 0

Table 3.3: Block 3 characteristics.

On this case, there are no restrictions for flip-flop placement and routing as there are no
memory or other types of blockages in the block layout.

The following figure shows the clock pin placement as well as the flip-flop placement
across the block.

 31

Figure 3.3: Memory and flip-flop distribution at Block 3.

 32

3.1.4. Block 4

The final block does not classify into the test blocks used to develop this project. The
objective of this block was to make an initial test in the configuration options and
variations tested in the experiment blocks before passing them to the test blocks.

This block has a much simpler structure than the other blocks which allows having faster
runtimes to correct possible errors that may happen in the sets test.

The block characteristics are the following ones:

Number of flip-flops 39,785

Number of memory instances 11

Number of logic instances 284,307

Total area 194,977.09 um2

Utilization 0.4528

Memory area 66,240.06 um2

Memory area percentage 33.97%

Logic area 63,370.27 um2

Logic area percentage 32.5%

Memory to logic ratio 1.05

Table 3.4: Block 4 characteristics.

 33

Figure 3.4: Memory and flip-flop distribution at Block 4.

 34

3.2. Metrics Definition

To perform the analysis on the different experiment sets that have been performed, a
group of metrics have been used to define the Quality of Results.

The definition of the metrics have been classified under two groups.

 Power Performance Analysis metrics (PPA): These are the main metrics used to
analyse the results obtained, they are related to timing, clock power and clock
area metrics.

 Support metrics: These metrics are used to support the results obtained and
include skew, insertion delay, number of clock instances, utilization, DRC
violations and clock structure.

3.2.1. Power Performance Analysis metrics

This metrics specified are the most important considered . The Worst Negative
Slack is the main timing metric considered as it indicates if the block can work at the
specified frequency.

The clock power and area give a general idea on the optimization of the clock structure.
The clock power is relevant as the dynamic clock power can represent large portions of
the total power.

The clock area, albeit it is not relevant when considering to the total area of the circuit can
be used to compare different runs.

The number of clock instances can be used together with the clock power and area to
compare between different runs.

3.2.2. Support metrics

The support metrics are used together with the PPA metrics.

The skew gives an indication of the clock tree balance and indicates the maximum
difference of the clock arrival at the flip-flops of a block.

The latency is the maximum delay from the clock input pin to any of the end-points of the
block.

The number of clock instances can be used together with the clock power and area to
compare between different runs.

The utilization determines the total area used by the logic compared to the total block
area.

The number of DRC violations can be used to indicate possible problems on a block.
They indicate problems during the design in terms of spacing, overlapping, etc.

 35

3.3. Scripts and Automatic Block Generation

This section will cover how the block and report generation system has been build up.
The first part of this section will cover how the system in charge of generating blocks and
the modifications to be made, as well as running the block and extracting the information
of interest has been designed.

The second part of the section will cover the most relevant points of the scripts done in
order to have this system.

In general lines, the system had to be able to use the basic shell scripts provided by the
company that form the flow to be followed, while being flexible enough to introduce
modifications and report the desired values.

3.3.1. Automatic Block generation

The automatic block generation system is made out of several sub-blocks. Essentially the
system can be simplified in the following blocks:

 Reference shell blocks: Contains the reference blocks modified to fit the
automated system.

 Configuration sets directory: Folder that contains all the configuration scripts in
Tool Command Language (TCL)

 Auxiliary scripts directory: Folder that contains reporting scripts and other
modification scripts for some options in Tool Command Language (TCL)

 General block directory: Directory in which all blocks are run. Has several
subdirectories for each block type.

 Block generation script: Script in charge of copying the shell blocks, the auxiliary
scripts and chosen configuration sets in the main block directory and start the flow.

 36

The following figure summarizes the block structure used:

Figure 3.5: Automatic Block Generation Structure.

3.3.2. Reference shell blocks

The shell blocks contain the basic company flow, the constraints file and the floorplan file.
This file has the following modifications:

 Activation of all the scenarios at each step to avoid having any scenarios inactive.
This is necessary to obtain the best results across all scenarios by analysing the
worst case.

 Inclusion of the configuration sets in all steps. This is done as some configuration
options must be used first at different steps. By running in all steps this possible
error is avoided.

 At the final of the routing stage, runs all the reporting scripts and stores them in
the desired folders.

3.3.3. Configuration sets directory

As specified before, this directory contains all the desired configuration scripts. The script
specified at block generation script is copied and added into a selected folder on the
modified reference block.

Asides from some specified experiment sets that do require additional modification, the
configuration script will be the only one needed to generate the desired modification.

 37

3.3.4. Auxiliary scripts directory

This directory contains additional reports to add functionalities to the block generation
script as well as other scripts that must be used. Most scripts are added automatically to
the flow while some others are used manually for specific uses.

These auxiliary scripts can be classified on the following types:

 Reporter and parser scripts: Used to generate partial and final files that contain
the desired reported information for the Quality of Results

 Clock Structure Analyser: Extracts information about the clock structure and
stores it in a file.

 Clock pin modification script: This code changes the positioning of the clock pin
placement for an experiment set.

 Report combiner: This script combines the Quality of Results obtained by the
parser scripts and adds some mathematical operations to have more complete
comparison results.

3.3.5. General block directory:

All the block runs are placed in the same directory folder. For each block a new
subdirectory is needed. In each subdirectory the block flows are placed. The flows are
based on the reference company flow with some modifications done to fit the designed
system.

To ensure proper working it is needed to create the directory either manually or set it up
in the block generation generation script.

3.3.6. Block generation script

All the following scripts and directories are managed by the block generation script. The
block generation script follows this sequence.

 Creates block sub-directory in the general block directory.

 Copies the floorplan, scripts and auxiliary override folder.

 Copies the configuration script to the override folder and renames it.

 Copies the rest of auxiliary scripts.

 Changes to the subfolder and runs the start-up script from the copied flow.

Despite being able to automate the running of scripts flows it has some limitations that
must be taken into consideration else the script will fail at the start-up script or give an
erroneous block.

 38

 The shell block flows must be modified to take into account the scripts added that
must be run.

 The copied scripts must be placed at the same subdirectory within each block.

 In the block generator script, if any block should be added, the script must be
added manually, that is, it has no self-modification capabilities to include newer
blocks.

Within the specified parameters, the script behaves correctly while being quite inflexible if
the block structure or script placement is out of the planned norm.

3.4. Script Analysis and Explanation

This section will include more detailed explanations and remarks on the scripts that have
been used in the block generation script and other auxiliary scripts. Only the user-written
scripts will be explained and included on the annexes while giving general explanations
on company and Synopsys scripts.

3.4.1. Block Generation Script: run_gen.tcl

As explained on the previous section, this script is in charge of copying the desired
scripts and running the set-up flow script to start and run the block.

As specified before, the initial code block of the script will copy and rename the needed
scripts in the block folder.

After copying the desired scripts, sets up the main setup script of the flow, choosing
different memory assignation depending on the block type.

One of the main points to take into consideration from the setup script calling:

 Typical setups will call an interface and a Graphical User Interface (GUI) while this
script does not. This adds flexibility and reduces user managed steps, however it
removes tolerance to errors as a block error will shut down the current job and
give no error warning unless specified.

 User modifications are needed to change the memory requirements, log reports,
type of machine used amongst others.

3.4.2. Reporter and parser: report_parser.tcl

This is the script in charge of generating reports and parsing them in a more compact
format. The output files of this script are given in a Comma Separated Values format
(.csv) to use them in other programs in order to analyse results.

 39

The script has been designed to generate individual reports on different areas of interest
such as:

 Total power information.

 Clock power information.

 Insertion delay.

 Routing information.

 Local skew reports.

 Wirelength information

 Layer congestion.

 Utilization.

 Clock area information.

By running the report manually it is also possible to execute this script on any step by
selecting it in a script option.

Asides from the reports generation there are options to generate a more compact file with
the final selected QoR file format. To avoid problems regarding scenario name due it
being able to vary, the information is passed to the script manually.

The basic structure that is followed at each individual report and parsing of it is the
following one:

 Check existence of scenarios.

 Generates the report or uses an existing report if present in the flow.

 Line by line analysis using the regular expression structure provided in the TCL
package.

 Assignation to user made variables of the relevant information obtained via
parsing.

This procedure is repeated for all individual report types, parsing and storing the
information into user defined variables.

Once all the variables are obtained, individual CSV files are generated with all the
information. Asides from the individual reports, a final file is generated containing the
most relevant information. The information preparation and storage in a file is done as it
follows:

 First, it is checked if the file must be generated and pre-preparation of obtained
information is done.

 Once the data preparation is done, the file is created and opened. Then the
information is written and the file is closed to avoid errors. It is necessary to define
the separator used, to then make it available data sheet programs.

 40

Most scripts with certain complexity in TCL require argument declaration to work correctly.
The argument declaration is done outside of the main script and it must be parsed at the
beginning of the script to extract the information.

At the argument declaration it must be declared how it is called, a description, and which
type of variable it requires and whether it is optional or not.

3.4.3. Clock Structure Analyser: clock_structure_analyser.tcl

This script is in charge of analysing the physical clock structure file of a given block and
extract relevant information. The main information being obtained is:

 Number of repeaters, Integrated Clock Gating Cells (ICG), clock sinks, balance
pins and clock sources.

 Fanout of repeaters and ICGs.

 Types of repeaters and ICGs used.

 Location of clock cells and sink pins.

 Wire and cell capacitance.

Asides from this information, this script provides basic math support to extract average
fanout, average Manhattan distance between clock cells and sinks, average cell and wire
capacitance, etc.

Debugging code has been added to check if the assumptions made in terms of possible
line structures in the report exist.

Overall, the data parsing and handling has been done similarly to the report_parser.tcl
script with some modifications to data treatment, focusing more on the use of arrays
when possible as they prove to be better optimised and given the sheer size of the clock
reports analysed can cut some machine time needed.

As done previously, the first step is checking if a clock structure report file exists, if it does
not, or it is wanted anyways, a new file will be created on a user selected directory while
keeping old files.

When the file is extracted, several counters and auxiliary variables will be declared to be
used later. The counters will be used to obtain numbers on how many repeaters, ICGs,
sink pins and balance pins are obtained. The sink pins are the flip-flops of the design
while the balance pins are used to balance capacitance in the clock branches.

Five different structures have been found to be present in any clock structure file
generated by the tool reporter and thus taken into consideration. There is one line type
for clock sources, repeaters, ICGs, sink pins and balance pins.

For each type, it is checked if the current line follows its structure and then the
information is extracted following the same pattern used in the other scripts that need
parsing.

 41

The obtention of the average and maximum repater and ICG is done iterating over the
obtained arrays in the regular expression. For each position on the array, the fanout
obtained is read and several counters are increased depending on the value of the fanout.

The Manhattan distance is defined as the distance measured along the defined axis. On
this case, Cartesian axis are used and the total Manhattan distance will be defined as:

 (12)

On this case, the Manhattan distance has been calculated between and endpoint driver
and the downstream sinks and balance pins.

The capacitance information is also obtained via the attribute of the nets connected to an
endpoint driver.

3.4.4. Clock pin modification script: replace_clockpin.tcl

In some experiment sets, the input clockpin is centered and a superior layer is used to
check if better results can be obtained in terms of clock building. The pin movement was
done after the initial cell placement. To move the clock pin it is needed to give the initial
clock name to locate and remove it, and then create a new clockpin on the new position.

To perform the pin movement several information is needed:

 Current clockpin name.

 Block dimensions.

 Pin shape type

 Pin margin.

The block dimensions are used to calculate the middle point of the block, while the pin
margin is used to avoid conflict with other block tracks, memories, etc. The shape type is
defined in by the tool and is needed to create the shape.

To move the clockpin, the existing shape must be deleted and a new clockshape is
created.

3.4.5. Report combiner: block_combiner.tcl

Given how the block generator and report generation is done, one report is generated for
each block. Because of that reason, it is needed an auxiliary report to combine existing
report CSV files.

This script combines the existing reports given separated by block type and block name
and has the capability of performing some mathematical operations to simplify the
analysis. Similar to other blocks, the CSV file generation is done following a similar
procedure as in other cases.

 42

The block selection is done with an empty list that adds all the blocks on which data has
been defined. Similarly to other cases, the existing data has been parsed in order to
simplify the results.

For each list, the data is obtained using a regular expression as in previous cases. For
each block, the report parsed file is analysed which simplifies obtaining the data.

A math flag has been enabled to perform some percentages to ease further analysis.

Once the data is obtained, if the math flag is active, it will perform some percentages to
ease further analysis, the first block passed is used as a reference and the information
obtained is passed to a new set of variables.

3.5. Methodology and Experiment Sets

As explained before, the methodology followed in the thesis development and result
analysis has followed two main approaches. One followed on the selection of optimal
configuration options within the EDA tool and one focused on physical modifications in
the clock characteristics. On this section, all the experiment sets will be defined with
explanations on why they were chosen.

3.5.1. Reference block parameters

The reference parameters used on each block are the following ones:

Default Slew Constraint 80 ps

Default Clock Fanout Constraint 32

Default Repeater Inverters INV_D16, INV_D12 and INV_D6

CCD Application Active

Clock Pin Placement Default

Table 3.5: Block 1, Block 2 and Block 3 default parameters.

All the experiment sets performed after the initial set have been done by modifying one of the
given parameters unless it is specified on the experiment set definition.

3.5.2. Initial Experiment Sets

The initial approach from which the project was to work upon the configuration options of
the tool.

Compared to modifications in a block done by an engineer, modifications done in the
application options of a design tool do not affect as heavily the physical design of a block.

 43

To limit the scope of the project, the application options were intended to focus only on
the Clock Tree Synthesis of the block.

Given modifications on the application options of the design tool, it is desired to optimize
the design based around a given set of blocks with different physical characteristics.

The initial application options experiment sets that were considered were based around
the following considerations:

 Concurrent Clock and Data Optimization

 Layer Optimization

 Integrated Clock Gater Optimization

 Congestion Effort

 Clock Miscellaneous Configurations

 Local skew Optimization

 Other Configuration Options

3.5.2.1. Configuration options explanations and expected results

The explanation for the configuration options given before is the following one:

 Concurrent Clock and Data Optimization: Concurrent Clock and Data Optimization
(CCD) is a configuration option introduced by Synsopsys to help meeting timing
constraints on high frequency circuits.

The main application options that were covered in this experiment sets revolved
around enabling Concurrent Clock and Data Optimization were:

a. CCD enabling during placement, clock routing and general routing.

b. Boundary timing enabling: Concurrent Clock and Data Optimization can either
be applied to all the flip-flops in the design or only to non-boundary flip flops.
Omitting boundary flip-flops is useful when signals can be introduced from
outside, pin capacitance may not be stable or controlled and thus omitting
them from being applied to CCD can be benefitial.

c. Clock aware placement: Enables placement of Integrated Clock Gaters (ICG)
and their fanout cells considering timing criticality.

 Layer Optimization: Layer optimization considers layer resistance and
capacitance, as well as possible congestion problems to manage how routing is
distributed through different layers.

 44

a. Placement and clock routing layer optimization: If critical nets are detected,
those are assigned to upper metal layers to improve timing.

b. Layer overlapping: Metal layers are set in pairs, this option enables mixing the
metal layer pairs to improve the QoR obtained.

 Integrated Clock Gaters Optimization: Integrated Clock Gaters are clock cells
designed to switch off certain parts of the clock tree to avoid unnecessary power
consumption in certain scenarios.

a. Clock aware placement and trial clock tree: Enables an early clock tree during
placement used for ICG optimization flow.

b. ICG auto bound: Creates group bounds for ICGs automatically for placement.

c. ICG placement optimization: Enables ICG optimization with the specified
options.

d. ICG splitting: Enables ICG splitting to meet timing constraints unless specified
otherwise.

 Congestion Effort: Congestion is specified as the wiring resources used on a
metal layer compared to the total resources available. It must also be considered
local congestion where it may have over-usage of wiring resources. A high
congestion effort will typically trade runtime against overall layer congestion.

a. Placement congestion effort.

b. Clock routing congestion effort.

 Clock Miscellaneous Configurations

This set of configuration options considers, hold meeting effort, placement effort
and power recovery.

a. Hold fixing effort.

b. Clock coarse placement effort.

c. Clock Power Recovery: Enables power or area recovery in clock and general
routing.

 Other Configuration Options: This last set considers several configuration options
regarding clock routing, timing, power and area optimization.

 45

a. Timing effort optimization: Optimization effort on timing enclosure in placement
and clock routing.

b. Area effort optimization: Area recovery effort in placement and clock routing.

c. Placement path optimization.

d. Power mode optimization: Enables leakage power, dynamic power or total
power in pre-routing.

e. Power effort optimization: Controls the effort when power mode optimization is
enabled.

3.5.3. Slew Analysis

As explained in the Project Scope Changes regarding structural modifications, one of the
variations considered is the slew constraint.

Slew indicates which the maximum signal transition time at the input of an inverter is. Due
to the clock wiring tracks RC Elmore delay, the admitted slew correlates directly with the
buffer distance separation.

The slew selection is done in order to minimize process variability and clock jitter.
Process variability is inherent in manufacturing processes and must be accounter for
possible variations on the characteristics of transistors in a circuit.

Jitter is the variation on the rising and falling edges of a clock from their ideal values. One
of the causes of jitter is signal noise, which tends to be more relevant as power supply
voltage is reduced.

By using a more restrictive slew constraint, the effects of process variability and jitter can
be reduced.

In terms of jitter, by placing repeaters closer to each other, the possible mismatches in
signal transition and thus jitter are reduced.

Slew selection is done considering On-chip variation (OCV). On-chip variation is defined
as variations in the design due to manufacturing processes such as etching or oxide
thickness. In modern design and manufacturing techniques this problems will happen and
must be taken into consideration.

Process variability refers to the range on which for example the transistor width or
channel length that can vary from transistor to transistor. Voltage variations can be due to
multiple power supplies in a block or from other causes like IR-drop. IR-drops are related
to the current driven and the resistance of the track which will cause a voltage drop. IR-
drop effectively modify the voltage seen at any part of the circuit and must be taken into
consideration. Finally temperature affects performance on a circuit. It is likely to assume
that different parts of a block will have different power consumption. Higher power
consumption will result on higher chip dissipation and thus higher temperatures. Higher
temperature in a clock cell will usually result on it being slower; on the other hand, a lower
cell temperature will result on it being faster.

 46

By selecting a correct slew constraint it is ensured that the repeaters are placed close
enough to minimize the effects of process variability and clock jitter.

 The slew constraint is smaller than the optimal one: The repeaters will be placed
too close resulting on timing metric degradation and power increases due to the
increased number of repeaters used.

 The slew constraint is bigger than the optimal one: Targets across the corners will
not be met.

3.5.3.1. Experiment Set Definition

The slew analysis has been performed in the initial test block and the analysis blocks.
The target is the optimization of the QoR metrics. Several slew constraints have been
selected for each block.

The following table summarizes which are the slew constraints used on each block. The
slew constraints used in Block 3 have been derived from the results obtained on the first
two blocks.

Slew
constraint (ps)

100 80 70 60 40

Block 1 x

Block 2 x

Block 3

Table 3.6: Experiment set definition table for the slew constraint experiment set at Block 1, Block
2 and Block 3.

The slew analysis will be done block by block remarking the most noticeable aspects of
the experiment sets performed on each block. The complete results will be presented on
the annexes.

 47

3.5.4. Fanout Analysis

One of the main points that were considered as modifications to test was the maximum
clock fanout constraint.

On typical zero-skew balance clock tree structures, the increase of the clock fanout limit
usually results on a clock tree with less intermediate repeaters and higher grouping of
clock cells at the end-point cells that connect to the flip-flops of the design.

This reduction on repeaters can provide the following benefits:

 Reduction at the worst case insertion delay.
 Skew improvement: By simplifying the clock structure there are less intermediate

repeaters. This increases the common path between flip-flops that have a
common datapath which in terms results on a reduction of the skew.

 Reduction of the Worst Negative Slack: By reducing the intermediate clock cells in
the clock structure the disparity between different clockpaths which results on a
overall better WNS.

 Clock power reduction: The reduction on the number of repeaters will result on
reductions of the dynamic and leakage clock power.

It should be noted that ideally, heavily increasing the fanout constraint will require an
increase on the repeater cell size.

As it has been explained, the usage of Concurrent Clock and Data Optimization set of
options breaks the expected balancing around the modification of the fanout limit.

It has to be considered as well the physical layout of the used block. Flop and memory
placement can affect heavily how the modifications at the clock fanout will affect the
overall design.

3.5.4.1. Experiment Set Definition

The base fanout configuration selected for all the blocks was 32. The initial analysis has
been done only modifying the fanout without making further modifications to other
parameters.

The following table summarizes which fanout constraints were used on each block.

Fanout
constraint

32 64 128 256 512

Block 1

Block 2

Block 3 x

Table 3.7: Experiment set definition table for the fanout constraint experiment set at Block 1, Block
2 and Block 3.

 48

In all cases, fanout selection should be done considering the physical layout and should
be expected to be different from block to block.

Similar to the slew analysis the full data will be on the annex while only the most relevant
results on each block will be presented.

The analysis will be done based on the Quality of Results extracted and information on
the clock tree structure.

Due to the results obtained on Block 1 and Block2 block, the fanout analysis at 512 was
not done at Block 3

3.5.5. Clock Cell Analysis

After the experiments regarding slew and fanout were done the next step is analysing the
selection of invereters in the repeater selection.

When considering the selection of repeater cells for the clock tree only inverters have
been considered. The use of inverters is preferred over buffers due to the inherent
reduced delay.

Typically, inverters will have half the parasitic capacitance and thus transition delay of a
buffer using the same technology. However, when using a inverter it must be considered
the phase when the signal arrives at the desired point. On this case, the addition of an
additional inverter must be considered to invert the phase. This consideration is usually
not necessary when using buffers as the input buffer phase is the same as the output
buffer phase, whereas on inverters, the input and output phase are the opposite.

When selecting clock cells several considerations must be taken. The usage of big clock
cells will have the following consequences in the clock tree:

 Increased cell parasitic capacitance and cell delay.

 Increased cell dynamic power.

 Increased cell leakage power.

 Increased driving power.

On the other hand, it should be expected that the use of small clock cells will result in:

 Reduced cell parasitic capacitance and cell delay.

 Reduced cell dynamic power.

 Reduced cell leakage power.

 Reduced driving power.

It is understood as driving power, the capability of a clock cell to propagate a single
change to its output fanout correctly.

 49

An insufficient driving power will result on not being able to switch the clock signal at each
of the clock cells driven by the input driver. A higher fanout at the output of a repeater will
require of higher driving power, and a low fanout will require low driving power.

Asides from these variations when different size cells are used, other considerations must
be done regarding clock tree building.

As explained before the flow used has activated by default the Concurrent Clock and
Data Optimization (CCD) configuration option.

This configuration option builds the clock tree considering the datapath. With this option
active, it is sought to minimize the Worst Negative Slack of the design. This differs from
more typical zero-skew clock building technique where the key aspect is balancing each
tree branch to have the same delay from the clock pin to each of the flip-flops at the end
of the clock to reduce the skew.

It is to be expected then, that the usage of CCD modifies the expected behaviour
obtained when modifying the repeaters used, compared to a zero-skew balancing
technique.

In a zero-skew balancing technique, the modification of the clock cells in a tree branch
will result on applying the same modification in all the tree branches to keep the tree
balance.

Once Concurrent Clock and Data Optimization is applied, given the Worst Negative Slack
minimization strategy, several additional conditions must be considered.

The change of the clock tree wirelength, number of clock cells and even variation of parts
of the structure may be needed to keep the clock balance that yields the best results in
terms of Worst Negative Slack.

To build the clock tree three inverters are used. All the inverters are used on clock tree
building while the two smallest inverters are used on the balancing step.

Several experiment sets have been selected and performed regarding repeater usage.
The first experiment done involves the usage of bigger clock cells while the second
experiment is focused on the usage of smaller clock cells.

As seen before, the usage of bigger or smaller clock cells is correlated with the driving
power needed and thus the output fanout a repeater. Following this consideration, when
bigger clock cells have been used, they have been paired with larger fanout constraints.
On the other hand, when smaller clock cells have been used, the fanout constraint has
been more controlled with lower fanout constraints.

 50

3.5.5.1. Experiment Set Definition

The sets of clock cells used are the following ones.

 Reference repeater set:

a. Clock Tree Building: INV_D16, INV_D12, INV_D6

b. Clock Tree Balancing: INV_D12, INV_D6

 Bigger repeater set:

a. Clock Tree Building: INV_D24, INV_D16, INV_D8

b. Clock Tree Balancing: INV_D16, INV_D8

 Smaller repeater set:

a. Clock Tree Building: INV_D14, INV_D10, INV_D4

b. Clock Tree Balancing: INV_D10, INV_D4

The experiment sets selected for each block are summarized on the following tables:

Block 1 Fanout = 32 Fanout = 64 Fanout = 128 Fanout = 256 Fanout = 512

Bigger
repeaters

 X X X

Smaller
repeaters

 X X X

Table 3.8: Experiment set definition table for the clock cell selection with fanout variation
constellation at Block 1.

Block 2 Fanout = 32 Fanout = 64 Fanout = 128 Fanout = 256 Fanout = 512

Bigger
repeaters

 X X X

Smaller
repeaters

 X X X

Table 3.9: Experiment set definition table for the clock cell selection with fanout variation
constellation at Block 2.

 51

Block 3 Fanout = 32 Fanout = 64 Fanout = 128 Fanout = 256 Fanout = 512

Bigger
repeaters

 X X

Smaller
repeaters

 X X X

Table 3.10: Experiment set definition table for the clock cell selection with fanout variation
constellation at Block 3.

The first two blocks were done following the same constellations regarding fanout and
clock cell. For Block 3, the results and analysis on the first two blocks was done and it
was modified from the conclusions extracted.

Finally and due to problems in the selection of clock cells, a run in Block 3 was done
using several repeaters.

This last run used both the reference and the smaller repeater sets and it will be covered
due to the results obtained.

3.5.6. Concurrent Clock and Data Optimization analysis

In the development of the blocks, there is a set of options provided by Synopsys called
Concurrent Clock and Data Optimization. This set of options is designed in order to
achieve maximum frequency on high-performance designs.

Concurrent Clock and Data Optimization provides skew optimization and datapath
optimization to maximize the maximum frequency, and thus minimize the Worst Negative
Slack, of a design.

This set of options correlates the datapath and the clockpath in order to obtain the best
timing metrics. This however presents several both in the clock building strategy and the
expected behaviour in terms of metrics obtained when some changes are applied in a
design.

Typical clock building strategies use a zero-skew algorithm to generate the clock tree.
This type of structure tends to be simpler in times of clock building and have much more
predictable results in terms of metrics.

All the blocks analysed are configured to use Concurrent Clock and Data Optimization by
default. The experiment sets were configured to analyse the results obtained when this
application option set was deactivated under certain conditions.

The clock building step done at the company base flow can either use a The clock
building step done at the company base flow can either use a Synopsys compact
command or a custom set of commands to build and optimize the clock tree.

In terms of configuration options there is also the possibility of using local skew
optimization or not.

 52

Skew optimization can be done either globally or locally. Global skew is defined as the
timing difference between the earliest reaching flip-flop and the latest reaching flip-flop on
a block.

On the other hand, local skew optimization is the timing difference between the earliest
arrival and the latest arrival between flip-flops in the same clock path.

Global skew optimization can sometimes be inaccurate as it may be the maximum timing
between two flip-flops that do not share clock path and thus the timing difference has no
meaning in terms of clock arrival times.

3.5.6.1. Experiment Set definition

The experiment sets on this case have been designed to account for possible variations
when Concurrent Clock and Data Optimization configuration options are not applied.

The sets chosen are the following ones:

 Application of Concurrent Clock and Data Optimization.

 Concurrent Clock and Data Optimization not applied with Synopsys clock routing
command and local skew optimization.

 Concurrent Clock and Data Optimization not applied using a custom clock tree
building command set and local skew optimization.

 Concurrent Clock and Data Optimization not applied with Synopsys clock routing
command without local skew optimization.

This experiment set has been tested on Block 1 and Block 2. The analysis on Block 3 has
not been performed due to the results obtained on the first two blocks.

3.5.7. Clock Placement Analysis

In all the experiment sets that have been defined in this section, the placement of the
clock pin is the reference one given.

From the results obtained it has been seen that the clock building algorithm is done
through an iterative propagation process from the input clock pin.

In all the blocks that have been defined, the application of Concurrent Clock and Data
Optimization has been done.

From the analysis done regarding Concurrent Clock and Data Optimization it has been
seen that it is mandatory for high frequency circuits and gains even more importance on
circuits with a constrained block in terms of memory instances and placement.

When using this application option set, the clock algorithm will be focused on minimizing
the Worst Negative Slack and thus it does not focus on traditional clock balance metrics
such as skew or local skew minimization.

 53

The experiment set that will be performed will focus on the movement of the clock input
pin to the centre of the block entering by one of the upper metal layers used by clock on
the different blocks.

On this experiment set it will be checked if it is possible to optimize metrics such as
insertion delay and skew in the design while using Concurrent Clock and Data
Optimization and thus optimizing the Worst Negative Slack.

On the reference cases, the clock input pin is placed in a side of the block, thus by
centring the clock pin it should be ideally reduced the maximum clock wirelength from the
clock pin to the furthest flip-flop of the design.

This speculation is done without considering memory placement or the behaviour of
Concurrent Clock and Data Optimization algorithm and thus it will be tested which are the
results obtained and how they differ from the expected results presented on this section.

3.5.7.1. Experiment Set Definition

To simplify this analysis it has only been done on the blocks that yielded the best results.
Taking into account all the analysis but the first one, focused on configuration options,
that was discarded due to reasons previously presented, the blocks upon this last
experiment will be performed are the following one:

 Block 1:

c. Fanout constraint: 32

a. Slew constraint: 80ps

b. Repeater cells: INV_D16, INV_D12 and INV_D6

c. Concurrent Clock and Data Optimization options: Active

 Block 2: Optimal timing metrics

a. Fanout constraint: 32

b. Slew constraint: 80ps

c. Repeater cells: INV_D16, INV_D12 and INV_D6

d. Concurrent Clock and Data Optimization options: Active

 Block 2: Optimal power metrics

a. Fanout constraint: 64

b. Slew constraint: 80ps

c. Repeater cells: INV_D16, INV_D12 and INV_D6

d. Concurrent Clock and Data Optimization options: Active

 54

 Block 2: Reference block

a. Fanout constraint: 32

b. Slew constraint: 80ps

c. Repeater cells: INV_D16, INV_D12 and INV_D6

d. Concurrent Clock and Data Optimization options: Active

 Block 3: Optimal power metrics

a. Fanout constraint: 128

b. Slew constraint: 80ps

c. Repeater cells: INV_D16, INV_D12 and INV_D6

d. Concurrent Clock and Data Optimization options: Active

 Block 3: Optimal timing metrics

a. Fanout constraint: 32

b. Slew constraint 80ps

c. Repeater cells: INV_D16, INV_D12 and INV_D6

d. Concurrent Clock and Data Optimization options: Active

 Block 3: Slew modified Block

a. Fanout constraint: 128

b. Slew constraint: 100ps

c. Repeater cells: INV_D16, INV_D12 and INV_D6

d. Concurrent Clock and Data Optimization options: Active

 55

4. Results

This section will cover the analysis done on each of the experiment sets defined in the
previous section. The data obtained on all the experiment sets performed will be added
on the appendices and only some of the most relevant data will be presented here.

4.1. Initial Experiment Sets

The initial experiment sets were analysed in Block 1, Block 2 and the Test Block. From
these blocks, it will only be considered the results obtained on Block 1 and Block 2.

The results obtained on the test block will be added to the annex but will not be discussed
here because:

 Block is overly simple compared to the other blocks as it can be seen on the block
definition section.

 Block was initially assessed only as a test block, thus all the experiments are run
first on the test block to see if they are executed correctly, without considering the
obtained results as valid.

Although the Test Block was defined only to check for possible errors or problems for the
experiment set and to tests the different scripts generated.

On this experiment set, it was used to reduce the experiment sets performed at Block 1
and Block 2 to reduce the runtime and resource usage whenever possible.

Thus, from the initial experiment sets, the ones that were analysed in Block 1 and Block 2
were:

 Layer Optimization.

 Integrated Clock Gaters Optimization.

 Congestion Effort.

 Local skew Optimization.

Given the simplicity of the Test Block where the experiment sets were performed, several
conditions were imposed in order to select the final experiment sets to be performed on
Block 1 and Block 2.

 56

First of all, it was considered mandatory that all blocks met the timing enclosure, having a
zero or positive Worst Negative Slack. Asides from this condition, it was considered
positive to have improvements in either:

 Skew and insertion delay.

 Clock and general power.

 Clock area and number of instances.

 Utilization.

4.1.1. Block 1 analysis

From the selected experiment sets selected before, all configuration sets but the local
skew configuration sets yielded much worse results in terms of Worst Negative Slack with
different results in Total Negative Slack. The difference in Total Negative Slack depends
on the number of violating paths.

In general terms, skew improves in all experiment sets while latency varies depending on
the experiment sets. The optimization of ICGs and the modifications on the local skew
configuration help improving the insertion delay while the relaxation of the constraints
regarding congestion and the usage of layer optimization yielded worse results.

In terms of repeaters used, all experiment sets use more clock cells, having the highest
peak in the local skew experiment set. However, with the relaxation of the congestion
configuration options, fewer cells are used as it is expected.

Regarding power, all runs but congestion effort yield a higher clock power as it is
expected from the increase on the additional repeaters used on the clock network.

In terms of total power, all blocks suffer from the increased power derived from the clock
network, varying from increases ranging between 1.5% and 5% depending on the block.

4.1.2. Block 2 analysis

Compared to the other blocks, the WNS and TNS are overall worse in all blocks by a
huge margin. Insertion delay in all cases also increases while skew depends on the block.

Overall, regarding the usage of repeater cells, relaxing the congestion constraints of the
tool, yields mild decreases on cell instances and thus clock power. The other blocks,
following the trends observed on Block 1, suffer from increases on the clock power.

In terms of general power, the total power decreases only while relaxing the congestion
effort while in all other cases increase.

 57

4.2. Change on the Original Approach

In the initial experiments done it was not possible to attain improvements in power or
timing amongst other metrics without incurring in degradation in other metrics.

However the main problems regarding this set of experiments does not account by the
Quality of Results obtained but for how the methodology was performed.

The initial experiment sets were designed to focus on the configuration options provided
by the tool.

Several sets were made where several application options of the tool were grouped
depending on the function they performed as it has been explained on chapter 3.

Several results have been obtained although they have not been conclusive, giving
different results in both Block 1 and Block 2 where they were tested.

One of the main conclusions obtained in the development of this block is that even when
applying a group of application options that are correlated with each other, for example
layer optimization, it is impossible to discern which of the options modified accounts for
the variations obtained in the metrics.

To perform a full test regarding application options, it would have been necessary to
generate a test for each of the application options on each of the blocks which would
result on a number of experiment sets and analysis out of the scope of this master thesis.

With this result in mind, the change of approach has been focused around more
controlled modifications, this case regarding parameters of the clock structure with a
more limited approach.

 58

4.3. Slew Analysis

The analysis done on each block is specified in the tables in the experiment set definition
section. In this section it will be analysed the results obtained, which are presented on the
appendices.

The reference conditions upon which the analysis has been performed on this block are
the following ones:

 Reference clock fanout constraint: 32

 Reference slew constraint: 80 ps

 Reference set of repeater cells: INV_D16, INV_D12 and INV_D6.

 Application of Concurrent Clock and Data Optimization: Active

 Position of clock pin: Reference position

4.3.1. Block 1 analysis

As seen on the block characteristics, this block is memory dominated. There is a total of
417 memories distributed across all block. The flops are placed uniformly in the block and
in-between memories.

The slew analysis has been performed in 4 values; 100ps, 80ps, 60ps and 40ps. The
80ps block is the reference block.

In all the blocks analysed, the Worst Negative Slack has worse results, up to 47% at slew
constraint of 40ps, while the Total Negative Slack worsens by 58% on that same run.

Regarding insertion delay, only the run at a slew reference of 60ps, gives better results,
being 1.207 ns compared to the 1.37 ns obtained on the reference run.

In terms of repeater increase and power the results obtained are the following ones:

As the slew constraint is reduced, the number of clock repeaters increases on an
exponential rate, following a similar trend to the clock power. At 460 ps, the number of
clock repeaters used increases by 7% while at 40 ps this percentage increases up to
30% compared to the reference case. The clock power increases by 3.3% at 60 ps,
increasing up to 6.1% at 40ps.

Considering the clock wirelength, in all the cases where slew is analysed, the clock
wirelenfth increases, up to a 12% compared to the reference case, accounting for a part
of the dynamic power increase obtained in all the slew cases analysed.

Due to the increases on clock power, the total dynamic power suffers increases of up to
4% at a slew constraint of 40 ps.

 59

The number of repeaters, and power used for each slew constraint is:

Slew constraint 100ps 80ps 60ps 40ps

Number of repeaters 30,718 28,969 31,044 3,7598

Clock Wirelength
(µm)

1,815,786.69 1,682,771.29 1,815,399.50 1,886,413.97

Dynamic Power
(µW)

746,510.6 722,639.7 746,462.8 766,330.6

Leakage Power
(µW)

1,400.74 1,329.53 1,392.47 1,617.62

Table 4.1: Clock power and number of repeaters used and clock wirelength for the slew variations
considered at Block 1 for a logic activity factor of 10% and clock activity factor of 200%.

As it can be seen, the number of repeaters increases from 31044 to 37598 repeaters
when reducing the slew constraint from 60ps to 40ps, while when decreasing the slew
constraint from 80ps to 60ps, the number of repeaters only increases from 28969 to
31044.

This trend is followed in the leakage power, which only depends on the clock cells
increasing from 1329.53µW to 1392.47µW when lowering slew from 80ps to 60ps, while it
increases from 1392.47µW to 1617.62µW when lowering the slew from 60ps to 40ps.

When general metrics are regarded, the total dynamic power is driven up by the clock
power increase. On average, the dynamic power increase correlates correctly with the
total power increase.

From the reference block and all the slew analysis it can be seen that the clock dynamic
power represents 49.5% of the total power. When a slew constraint of 40ps is applied,
the clock power contribution to the total dynamic power rises to 50.8% due to the
increased number of repeaters and clock wirelength compared to the 49.1% of the
reference block.

Regarding the clock tree structure the smallest inverters used in the clock tree structure
suffer the highest absolute increase. The total results regarding repeater distribution by
size are the following ones:

Slew constraint 100ps 80ps 60ps 40ps

INV_D16 1,395 2,172 1,327 1,053

INV_D12 5,379 3,630 4,921 6,181

INV_D6 23,944 23,167 24,796 30,364

Table 4.2: Repeater breakdown distribution at Block 1 for the different slew constraints analysed.

 60

Slew constraint 100 ps 80ps 60ps 40ps

Average repeater fanout 14 15 14 12

Average ICG fanout 8 5 5 1

Cells fanout =< 16 21,446 20,264 21,730 28,318

Cells fanout => 32 10,790 11,078 10,768 10,598

Table 4.3: Repeater fanout breakdown distribution and average clock cells fanout at Block 1 for
the different slew constraints analysed.

From Table 4.2 it can be seen that the average ICG fanout drops to 1 when a slew
constraint of 40ps is applied, possibly indicating errors in the clock structure, thus the
results obtained should be treated carefully.

Overall, the repeaters INV_D16 are reduced from 2172 instances to 1053 at a slew
constraint of 40 ps compared to the reference value of 80 ps. On the other hand, the
intermediate and smallest repeaters suffer from the biggest increases, going up from
3630 to 6181 instances for INV_D12 and increasing from 23167 to 30364 instances for
INV_D6.

This increase on the number of repeaters can be seen in the repeater breakdown, where
the average repeater fanout tends to decrease while the low fanout cells increase from
20264 instances to 28318.

4.3.2. Block 2 analysis

As done in the previous block, slew analysis was done at 100ps, 80ps, 60ps and 40ps.
Similarly, the 80ps block is the reference run with the base values.

Regarding the QoR metrics obtained on this block, the Worst Negative Slack has worse
results in all the blocks analysed, going up from -0.06 ns to -0.134 ns at a slew constraint
of 100 ps, and having worse results in all the other cases analysed. The Total Negative
Slack shows a similar trend. It must be noticed however the reduction on the number of
violating paths at a 40 ps slew constraint, going down from 163 to 98.

The insertion delay increases as the slew constraint is reduced, increasing from 0.762 ns
to 0.799 ns at 40 ps.

In all cases the number of repeaters added suffers from a similar increase as the one
expected at the Block 1 slew analysis.

When lowering the slew from 80ps to 60ps the number of repeaters increases from
18036 to 20560, while when lowering the slew from 60ps to 40ps the number of repeaters
increases from 20560 to 32995.

 61

Considering the clock power consumption, the dynamic power suffers an increase from
429350.79µW to 460323.18µW when lowering the slew from 80ps to 40ps, while the
leakage power increases from 962.96µW to 1533.17µW.

Once again, the leakage power follows similar increases to the ones experienced in the
number of repeaters while the dynamic power is much more relaxed due to the increase
from the number of repeaters only being a part of the total clock dynamic power.

From these results it can be seen that halving the slew from 80ps to 40ps causes an
increase on the number of repeaters of 79.05%. Assuming an exponential trend, further
lowering the slew constraint would cause a much greater increase on the number of
repeaters coupled with a degradation of the power and timing metrics even more
pronounced.

Slew constraint 100ps 80ps 60ps 40ps

Number of repeaters 18,733 18,036 20,560 32,295

Dynamic Power
(µW)

436,811.42 429,350.79 433,174.58 460,323.18

Leakage Power
(µW)

992.23 962.96 1,091.38 1,533.17

Table 4.4: Clock power and number of repeaters used for the slew variations considered at Block
2 for an activity factor of 10%.

Data regarding clock structure was also obtained. The most relevant information when
slew is considered is the number of instances and how is distributed, as well as the
average repeater and ICG fanout.

Slew constraint 100ps 80ps 60ps 40ps

INV_D16 723 691 993 1295

INV_D12 2,449 2,270 3,101 4,624

INV_D6 15,561 15,075 16,466 26,376

Table 4.5: Repeater breakdown distribution at Block 2 for the different slew constraints analysed.

 62

Slew constraint 100ps 80ps 60ps 40ps

Average repeater fanout 14 14 13 9

Average ICG fanout 9 9 9 7

Cells fanout =< 16 18,182 17,518 19,968 31,830

Cells fanout => 32 8,058 8,156 7,836 6,975

Table 4.6: Repeater fanout breakdown distribution and average clock cells fanout at Block 2 for
the different slew constraints analysed.

The average fanout follows a similar trend where it decreases from 14 at 80ps to 9 at
40ps while the ICG decreases from 9 to 7. On this case, compared to Block 1, it is not
observed an extreme reduction on the average ICG at 40 ps.

The inverter INV_D16 almost doubles its instances when reducing the slew constraint
from 80 ps to 40 ps, increasing from 691 instances to 1295 instances. This trend is
followed in all the other inverters, increasing from 2270 to 4624 for INV_D12 and from
15075 to 26376 for INV_D6.

The biggest inverter suffers almost doubles from 80ps to 40ps, however the most
relevant increases are on the INV_D6_N cell increasing from 15075 at 80ps instances to
26376 instances at 40ps.

Considering the repeaters connected to the flip-flops, the number of high fanout nets
decreases from 8156 to 6975 while the number of repeaters with a fanout equal or lower
than 16.

4.3.3. Block 3 analysis

The slew analysis for Block 3 was done after the slew data and analysis on Block 1 and 2
was done.

The slew constraints selected on this case has been expanded, having a analysis at 100
ps, 80ps, 70ps, 60ps and 40 ps.

To check which the optimal slew for this case is several parameters have been analysed:

 User-defined Quality of Result metrics.

 Number of violating paths.

 Clock structure physical information.

 63

The Quality of Results will be the main tool to assess which slew constraint yields the
best results while the number of violating paths and the clock structure information will be
used to give a better insight on the results obtained.

The number of violating paths can be used to assess in this case how many clock cells
suffer from slew violations depending on the constraint applied in each case. It should be
expected less slew violations as the slew constraint becomes tighter.

The Worst Negative Slack and Total Negative Slack can be omitted from the analysis as
timing closure is not critical for Block 3. The worst WNS is obtained at a slew constraint of
100ps with a value of -0.007 ns.

The best results regarding slew and insertion delay are obtained at 100ps and 40ps. On
the first case the result obtained is due to the reduction on the number of repeater
instances used, which decreases by 20%. At 40ps, the reduction on the skew and latency
is probably due to a better clock structure as the number of instances increases.

Regarding the usage of inserters, similar results to the ones obtained on Block 1 and
Block 2 are observed. The number of instances increases as the slew constraint
decreases. At 40ps the number of instances used increases up to 50%.

The clock power follows a similar trend where it increases as the number of clock
repeaters grows. At 70 ps, despite the increase on the number of instances used, the
reduction on the clock wirelength, results on a reduction of 0.2% on the clock power.

Regarding general power, the dynamic power is determined by the dynamic clock power
variation while the leakage power tends to increase as the slew constraint is reduced.

Regarding the clock structure on Block 3 the results obtained are the following:

Slew constraint 100ps 80ps 70ps 60ps 40ps

INV_D16 268 433 481 449 626

INV_D12 1,388 1,623 1,550 1,674 2,704

INV_D6 6,840 8,513 9,462 10,082 12,074

Table 4.7: Repeater breakdown distribution at Block 3 for the different slew constraints analysed
for a fanout constraint of 32.

 64

Slew constraint 100ps 80ps 70ps 60ps 40ps

Average repeater fanout 19 16 15 15 12

Average ICG fanout 13 13 12 12 12

Cells fanout < 16 12,954 15,582 16,870 17,399 20,273

Cells fanout > 32 4,980 4,885 4,862 4,387 4,327

Table 4.8: Repeater fanout breakdown distribution and average clock cells fanout at Block 3 for
the different slew constraints analysed for a fanout constraint of 32.

In terms of repeater selection, the number of repeaters remains approximately constant
up to 40 ps where the number of instances of each instances suffers bigger increases.

 INV_D16: from 433 instances to 626.

 INV_D12: from 1623 instances to 2704.

 INV_D6: from 8513 instances to 12074.

The average repeater fanout tends to decrease as the number of repeaters used
increase, similarly to the results obtained in the previous blocks while the average ICG
fanout remains approximately constant.

Regarding the fanout breakdown, the number of clock cells with a fanout lower than 16
increases, as shown in the repeater breakdown as the slew constraint decreases.
Considering that the number of flops is fixed, this increase results on a reduction on the
number of higher fanout cells.

4.4. Fanout Analysis

As it was done for the slew analysis, the fanout experiment sets are the ones defined at
the tables in the experiment set definition and have been performed on Block 1, Block 2
and Block 3.

The reference parameters used on this experiment set are the following:

 Reference clock fanout constraint: 32

 Reference slew constraint: 80 ps

 Reference set of repeater cells: INV_D16, INV_D12 and INV_D6.

 Application of Concurrent Clock and Data Optimization: Active

 Position of clock pin: Reference position

 65

4.4.1. Block 1 Analysis

Considering the Quality of Results analysis it can be seen that:

The number of DRC violations at a fanout constraint of 64 increases by 50%
approximately and thus the results obtained on this run could contain errors and should
be considered for any analysis done on it.

The reference run with the smallest fanout has the best results regarding Worst Negative
Slack, yielding increases of up to 63% in the worst case.

The skew and latency tend to improve as the fanout constraint is increased. The
improvements of skew, up to 17% for the highest fanout constraint, is due to the increase
on the common path between flip-flops while the improvements of latency, decreasing
from 1.37 ns to 1.213 at a fanout constraint of 512, is due to the reduction on the number
of repeaters used.

Considering then number of instances used, it can be seen that the best result in terms of
instance reduction is observed at a fanout constraint of 128 with improvements of 26%,
compared to the 20% improvement at a fanout constraint of 512.

The reduction on the clock area follows a similar rend to the reduction on the numbers of
repeaters used.

Despite the reductions on the number of clock cells used, the dynamic power is only
reduced when a fanout constraint of 128 is used. When analysing the clock wirelength it
can be seen that for all the fanout cases analysed, there are increases on the wirelength
at a fanout constraint of 64, 256 and 512, compared to the reference case.

In terms of general power consumption, the total dynamic power increases in all blocks
but for 128 constraint, driven by the power increases of the clock tree. On the other hand,
the total leakage power increases up to 18% in the worst cases.

The results obtained regarding clock structure are summarized in the following tables:

Fanout constraint 32 64 128 256 512

INV_D16 2,172 1,206 1,157 1,203 1,254

INV_D12 3,630 4,671 3,774 4,013 3,862

INV_D6 23,167 24,675 16,402 19,131 17,811

Table 4.9: Repeater breakdown distribution at Block 1 for the different fanout constraints analysed.

 66

Fanout constraint 32 64 128 256 512

Average repeater fanout 15 14 19 17 18

Average ICG fanout 5 7 7 7 7

Cells fanout =< 16 20,264 21,222 17,630 20,619 19,138

Cells fanout => 32 11,078 10,755 5,944 5,920 5,933

Cells fanout => 64 0 0 2,632 2,628 2,576

Cells fanout => 128 0 0 42 45 36

Cells fanout => 256 0 0 0 0 0

Table 4.10: Repeater fanout breakdown distribution and average clock cells fanout at Block 1 for
the different fanout constraints analysed.

The main results to take into consideration are:

 From 128 and upwards, the fanout limit is not achieved.

 As fanout increases, the biggest inverters and the smallest ones are used less
while the middle sized inverters are used more.

 The average repeater fanout increases up to 128, upon which it starts to decrease
again.

As the repeater fanout increases, the average repeater fanout tends to increase,
excluding the fanout constraint of 64 case that could contain errors, up to 128 where it
starts to decrease again.
Similarly, the average ICG fanout increases from 5 to 7 as the maximum fanout constraint
increases.
From the results in Table 4.10 it can be seen that the fanout constraints of 256 and 512
are not achieved as no clock cells achieve those fanout constraints. Similarly, only 42
cells achieve a fanout constraint of 128 when the constraint is set at said value. From
these results the use of fanout constraints larger than 64 should be avoided.
As said before, it is possible that the run using a fanout constraint of 64 had errors. This
can be checked as for this run, no cells using a fanout constraint of 64 use this fanout.
In terms of clock optimization, the use of fanout constraints that cannot be achieved due
to block layout or other constraints should be avoided as it may yield a degraded clock
structure.

 67

4.4.2. Block 2 Analysis

Regarding metric analysis the main points regarding the Quality of Results are the
following ones.

The reference run with a fanout of 32 and the block with a fanout of 64 constraint yields
the best results in terms of Worst Negative Slack, -0.06 ns and -0.07 ns respectively,
while on the other cases degrade up to -0.165 ns with a fanout constraint of 512.

The skew obtained in all blocks yields worse results than on the reference block, albeit it
tends to improve as the fanout constraint increases, due to the increase on the clock
common path. In terms of latency, the best result is obtained when using a fanout
constraint of 64, where it improves by 3.4% compared to the reference case, being worse
in all other cases.

By analysing the number of repeaters used, it can be seen that the best results are
obtained at a fanout constraint of 64 and 128, decreasing by 30% approximately while for
a fanout constraint of 256 and 512 it only improves by 15% approximately. This indicates
that in terms of repeater usage, the use of high fanout constraints on this block is not
suitable.

In terms of power, the best result is obtained when using a fanout constraint of 64,
decreasing by 3.5% approximately, compared to the 3% improvement obtained at 128. In
terms of clock wirelength, similar results are obtained to the ones regarding clock cells. At
64 and 128 fanout constraints, the clock wirelength is 6% lower compared to the 3%
reduction on the other cases when compared to the reference run.

When comparing the 64 and 128 fanout blocks, there are small reductions on dynamic
power that could be attributed to differences in the clock routing wirelength, however the
64 fanout block has less leakage power consumption, indicating that smaller clock cells
are used on average, as the only contributor to the leakage clock power are the repeaters
and clock gaters used.

These results check out with the previous block where unattainable fanout constraints
yielded worse results due the algorithms followed by the program. On this block, the
result is less pronounced as the block has less memory instances that take less block
area.

In terms of general power, the trends followed in the general dynamic power follows the
clock power variations while the leakage power is heavily reduced at a fanout constraint
of 64 by 6%, while on the other cases, less significant reductions are observed.

 68

When considering the clock structure the following results are obtained:

Fanout constraint 32 64 128 256 512

INV_D16 691 688 746 737 1007

INV_D12 2,270 2,086 2,861 3,425 3,433

INV_D6 15,075 10,073 9,187 11,906 10,948

Table 4.11: Repeater breakdown distribution at Block 2 for the different fanout constraints
analysed.

Fanout constraint 32 64 128 256 512

Average repeater fanout 14 18 18 16 16

Average ICG fanout 9 9 9 9 9

Cells fanout =< 16 17,518 15,619 16,190 18,748 18,656

Cells fanout => 32 8,156 5,045 4,387 4,423 4,435

Cells fanout => 64 0 2,902 1,696 1,608 1,581

Cells fanout => 128 0 0 338 332 320

Cells fanout => 256 0 0 0 0 0

Table 4.12: Repeater fanout breakdown distribution and average clock cells fanout at Block 2 for
the different fanout constraints analysed.

From the results obtained regarding the clock structure it can be seen that:

The average fanout increases from 14 to 18 for fanout constraints of 64 and 128 while it
lower at 256 and 512. The fanout distribution indicates that there are no cells using fanout
constraints larger than 256 despite increasing the maximum fanout constraint up to 512.

A low number of cells with a fanout constraint of 128 is added when the maximum
constraint is raised to that value, compared to the results obtained when raising the
fanout constraint from 32 to 64 where 2902 cells use the maximum constraint allowed
while lowering the number of cells with a fanout lower than 16 and bigger than 32.

Overall, when using a fanout constraint higher than 128, there are general increases in all
the inverter types compared to the other cases.

This indicates degradation on the clock structure for large fanout constraints on this block.

 69

The fanout constraint of 128 could also be discarded in terms of structure due to the low
number of cells using the maximum fanout given, compared to the results obtained at
lower fanouts.

4.4.3. Block 3 Analysis

After the initial fanout analysis was performed on the first to blocks it was checked the
heavy correlation between the block physical layout and the maximum fanout constraint
that can be applied without incurring in degradation of the clock structure, and via CCD of
the datapath.

However, in comparison with the other blocks analysed regarding fanout, the
characteristics of Block 3 differ greatly.

The lack of memories, and thus blockages, results on an overall smoother clock and data
routing with more flexibility on the placement of cells. It is important to note too, that due
to the lack of memories, the in-between memory flop placement cannot occur, which
resulted on the main cause of fanout limitation and worse initial timing conditions.

It was initially planned to perform fanout analysis up to 64 as it was marked as the
maximum fanout providing improvements on Block 2, however as it has been explained,
the lack of memories makes it more likely that higher fanout constraints can be achieved
while providing better results.

Based on this assumption, the analysis has been extended up to a limit constraint of 256
instead of 64 as it was planned at the beginning of the analysis.

Regarding timing metric analysis, the first noticeable result is the initial Worst Negative
Slack and Total Negative Slack. In all blocks analysed, the worst result obtained is -0.002
ns, compared to -0.346 ns of Block 1 which has the worst initial results in terms of timing
while for the Total Negative Slack is zero due to rounding in all fanout cases.

In terms of skew and insertion, improved results are obtained at a fanout constraint of
128, decreasing by 21% and 3.5% respectively, while on the other cases analysed,
increments are observed.

Regarding the use of repeaters, less instances are used on each case as the fanout
increases, ranging from 33% at a constraint of 64 up to 38% when a constraint of 256 is
used. This trend is followed in the dynamic clock power reduction, scaling from 2.7% up
to 3.1% as the fanout increases.

On the other hand, the leakage power varies, giving improvements of 7.1% at a 64
constraint, 6.4% at 128 and 7% at 256. From this results and the repeater area, it is likely
that the average repeater size for a fanout constraint is much lower than on 128 and 256
due to the correlation between leakage power and repeater size.

The total clock power decreases accordingly to the reductions of the clock power
considering that, on this block, compared to other blocks, the clock power takes up to
89% of the total dynamic power.

Considering the reference blocks of all the test blocks, the percentages between clock
power, general dynamic power and general power is the following:

 70

Block Clock Total
Power (µW)

Total
Dynamic

Power (µW)

Total Power
(µW)

Clock Power
/ Total

Dynamic
Power

Clock Power /
Total Power

Block 1 723,969.24 1,170,000 1,440,000 61.82% 50.31%

Block 2 430,313.75 875,000 942,000 49.18% 45.68%

Block 3 425,355.94 474,000 486,000 89.73% 87.52%

Table 4.13: Clock power, total power and clock power to total power distribution for all test blocks
at a logic activity factor of 10% and a clock activity factor of 200%.

Block 3 has the highest clock power to total power ratio due to the lack of memories
which in turn yields the best improvements to the general metrics when looking for an
optimized configuration.

When considering the clock structure analysis the following results are obtained:

Fanout constraint 32 64 128 256

INV_D16 433 378 422 409

INV_D12 1,623 1,210 1,675 1,623

INV_D6 8,513 5,469 4,725 4,486

Table 4.14: Repeater breakdown distribution at Block 3 for the different fanout constraints
analysed.

Fanout constraint 32 64 128 256

Average repeater fanout 16 21 21 22

Average ICG fanout 13 14 14 14

Cells fanout =< 16 15,582 13,935 14,162 13,847

Cells fanout >= 32 4,885 3,206 2,706 2,696

Cells fanout >= 64 0 1,542 924 918

Cells fanout >= 128 0 0 279 269

Cells fanout >= 256 0 0 0 0

Table 4.15: Repeater fanout breakdown distribution and average clock cells fanout at Block 3 for
the different fanout constraints analysed.

 71

As the maximum fanout constraint increases, the average repeater fanout increases in all
the cases analysed. In terms of the cell breakdown, the number of cells with a fanout
lower than 16 shows a decreasing trend lowering from 15582 cells up to 13847 for the
biggest fanout constraint.

For the number of cells with a larger fanout of 32, it decreases up to 128, where it
stabilizes at 2706 instances, without further improving when increasing the maximum
fanout to 256.

A similar result is seen when the number of cells with fanouts larger than 64, with a
reduction on the number of instances from 1542 to 924.

One of the points to note is that the fanout constraint of 256 is never achieved at the
highest fanout constraint run, while the number of cells at 128 is approximately the same
to the one obtained with a fanout constraint of 128.

From these results, it can be seen that using a fanout constraint of 256, does not result
on big improvements in terms of cell distribution as its maximum constraint is not used.
The possible degradation on the clock structure is not as noticeable as on the other
blocks analysed due to the lack of memory blockages in the layout.

4.5. Clock Cell Analysis

The selection of the constellations used for each repeater combination has been limited
to certain fanouts to reduce the length of the experiment.

When using bigger inverters only high fanout constraints have been considered, with the
addition of the reference fanout set to provide a complete constellation.

In a similar fashion, the smaller repeater sets have been tested with lower fanout
constraints, on this case 32 and 64 in all cases. To complete the constellations, it has
been added the results at the same fanout constraints using the reference repeater sets.

The reference parameters of the blocks on these analyses are the following:

 Reference clock fanout constraint: 32

 Reference slew constraint: 80 ps

 Reference set of repeater cells: INV_D16, INV_D12 and INV_D6.

 Application of Concurrent Clock and Data Optimization: Active

 Position of clock pin: Reference position

 72

4.5.1. Block 1 analysis

When using bigger repeaters, the most relevant results obtained are the following ones:

Regarding timing metrics, the use of bigger clock cells yields a Worst Negative Slack and
Total Negative Slack on average twice as much as in the reference case, increasing from
-0.346 ns to -0.662 ns at the reference fanout and slew constraint. When increasing the
fanout the results do not further degrade but improve in terms of Total Negative Slack,
showing a reduction on the number of violating clock paths.

The skew is worse in all cases, 0.598 ns at the reference block and increasing up to
0.681ns when a fanout constraint of 256 and bigger clock cells are used, showing an
increased unbalancing in terms of clock arrival at the different flop.. The insertion delay
remains approximately the same which indicates a similar maximum downstream
capacitance from the clock pin to the furthest away flip-flop.

Regarding the usage of clock cells several results must be remarked. At both fanout
constraints, when compared with their reference cell counterpart more repeater instances
are used, 15% more instances with the reference fanout and 11% more instances with
the 256 fanout constraint compared to their reference counterpart.

This causes large clock power increases of 10% on average.To further analyse the
increase on dynamic power, it can be seen that the clock wirelength is on average 11%
bigger than on the reference case. Part of the dynamic power increase will be related to
the larger wirelength, while the other part will be due to the increase of instances and the
increase on the individual power consumption per repeater due to the increased size.

This result coupled with the increase on the number of instances used, makes it fair to
assume that the usage of bigger cells caused unbalance in terms of WNS, and
capacitance balancing which forced using more instances and larger clock tracks.

Regarding general power, the increase on the dynamic power is mainly due to the
increase on the clock power.

 73

When the clock cell structure is considered the following results are obtained:

Contellation (fanout;
repeater size)

32;16_12_6 256;32_12_6 32;24_16_8 256;24_16_8

INV_D16 2,172 1,203 X X

INV_D12 3,630 4,013 X X

INV_D6 23,167 19,131 X X

INV_D24 X X 2,013 1,370

IND_D16 X X 2,018 5,567

INV_D8 X X 26,441 20,712

Table 4.16: Repeater breakdown distribution at Block 1 for the different clock cell and fanout
constellations using the bigger repeater sets.

Contellation (fanout;
repeater size)

32;16_12_6 256;32_12_6 32;24_16_8 256;24_16_8

Average repeater fanout 15 17 13 15

Average ICG fanout 5 7 7 7

Cells fanout =< 16 20,264 20,619 24,108 24,385

Cells fanout => 32 11,078 5,920 10,642 5,502

Cells fanout => 64 0 2,628 0 2,480

Cells fanout => 128 0 45 0 414

Cells fanout => 256 0 0 0 0

Table 4.17: Repeater fanout breakdown distribution and average clock cells fanout at Block 1 for
the different clock cell and fanout constellations using the bigger repeater sets.

From the results in Table 4.17 it can be seen that by increasing the clock cell size the
average repeater fanout is reduced. The increase on the lower fanout cells is due to the
delay balancing.

The main contributor on the number of instances used is the smaller repeater size of the
set. The average fanout is also reduced while the low fanout nets are increased by 20%
approximately when compared to the reference set.

 74

The results obtained on the usage of smaller clock cells are the following ones:

It must be considered that the block using the smaller cells and a fanout constraint of 64
has an increase on the number of DRCs of 66% compared to the reference set and it is
likely to have errors in the development and in the results obtained.

As seen on the previous analysis on bigger cell usage, the Worst Negative Slack
increases by 60% on average in all the cases analysed.

The skew obtained improves by 8% in the set with the reference fanout and smaller
repeaters while it is reduced to 0.7% when increasing the fanout to 64.

In both cases analysed when using smaller cells the insertion delay is reduced, an
expected result on reducing the repeater parasitic capacitance.

The number of repeaters is reduced when using the reference fanout and smaller
repeaters by 14% compared to the base case while it increases when the fanout is
increased to 64. This increase is probably due to possible errors obtained on the run.

Regarding clock cell instances used, at a fanout constraint of 32, there is a reduction of
15% while for 64, there is a small increase on the number of instances used when
comparing the smaller clock cell and the bigger clock cell values.

When considering the clock power, at a fanout constraint of 32 there are reductions on
the dynamic and leakage power. The clock wirelength at 32 is also lower than on the
reference case.

Regarding clock power, at a fanout of 32 using smaller cells the dynamic power is
reduced by 3.9% while the leakage power is reduced by 33% due to the reduction on the
number of repeaters used.

In terms of clock structure analysis the following results are obtained:

Contellation (fanout;
repeater size)

32;16_12_6 64;16_12_6 32;14_10_4 64;14_10_4

INV_D16 2,172 1,203 X X

INV_D12 3,630 4,013 X X

INV_D6 23,167 19,131 X X

INV_D14 X X 1,889 1,325

IND_D10 X X 3,987 4,699

INV_D4 X X 18,413 25,370

Table 4.18: Repeater breakdown distribution at Block 1 for the different clock cell and fanout
constellations using the smaller repeater sets.

 75

Contellation (fanout;
repeater size)

32;16_12_6 64;16_12_6 32;14_10_4 64;14_10_4

Average repeater fanout 15 14 17 13

Average ICG fanout 5 7 7 7

Cells fanout =< 16 20,264 21,222 14,934 22,072

Cells fanout => 32 11,078 10,755 11,042 10,682

Table 4.19: Repeater fanout breakdown distribution and average clock cells fanout at Block 1 for
the different clock cell and fanout constellations using the smaller repeater sets.

As specified before, the results on the run using a fanout of 64 and smaller clock cells is
likely to have errors and it should be taken into consideration with the results obtained.

The reduction of the cell capacitance on the inverters used has the following
consequences:

The biggest inverters are used more due to the reduced capacitance, similarly to the mid-
sized inverters. The reduction on size allows lower fanouts to be used and increase the
possible fanout brackets on each cell.

The smallest inverters have a reduced use as they qualify only for low fanouts due to the
reduction on the cell capacitance.

4.5.2. Block 2 Analysis

The selection of the constellations has been done following the same reasoning as in
Block 1.

The analysis done regarding the usage of bigger clock cells is the following :

The Worst Negative Slack on the two test cases analysed increases from -0.06 ns in the
reference case to -0.138 ns when the reference fanout is used and -0.125 ns when the
fanout is increased to 256.

The results obtained regarding the Total Negative Slack when using a fanout of 256 and
bigger repeaters is 9.7 ns compared to the 3.7 ns obtained on its reference counterpart.
This indicates an increase on the number of violating paths from 163 in the reference
case to 1089.

As it was obtained previously, the usage of bigger clock cells yields a bigger skew due to
increased unbalancing on the clock tree structure when using Concurrent Clock and Data
Optimization. Compared to the reference case, the skew increases by 1% when using the
reference case, but it is increased by to 37% when the fanout constraint is increased to
256.

 76

Similarly, the insertion delay increases in both cases and is more noticeable when the
fanout is increased. When using the reference fanout, by using bigger repeaters the
insertion delay increases by 3%, while by using a fanout constraint of 256, it increases by
14.5%.

Regarding repeater use, both cases using smaller clock cells use less repeater instances.
On the other hand, the area and power increase due to the increase on the cell size.

The repeater area is increased by 32% when the reference fanout is used and by 10%
when it is increased up to 10%. The total power increases respectively by 3.2% and 1.2%.

In terms of clock wirelength, the run using bigger repeaters and the reference fanout has
a similar fanout, increasing only by 1%, while when the fanout is increased; the clock
wirelength is reduced by 6% compared to the 3% obtained before.

Regarding the clock tree structure, the results obtained are summarized on the following
tables:

Contellation (fanout;
repeater size)

32;16_12_6 256;16_12_6 32;24_16_8 256;24_16_8

INV_D16 691 737 X X

INV_D12 2,270 3,425 X X

INV_D6 15,075 11,280 X X

INV_D24 X X 1,048 930

IND_D16 X X 2,033 2,579

INV_D8 X X 14,550 10,215

Table 4.20: Repeater breakdown distribution at Block 2 for the different clock cell and fanout
constellations using the bigger repeater sets.

 77

Contellation (fanout;
repeater size)

32;16_12_6 256;16_12_6 32;24_16_8 256;24_16_8

Average repeater fanout 14 16 14 17

Average ICG fanout 9 9 9 9

Cells fanout =< 16 17,518 18,748 17,147 17,506

Cells fanout => 32 11,078 4,423 8,360 4,192

Cells fanout => 64 0 1,608 0 1,695

Cells fanout => 128 0 332 0 501

Cells fanout => 256 0 0 0 0

Table 4.21: Repeater fanout breakdown distribution and average clock cells fanout at Block 2 for
the different clock cell and fanout constellations using the bigger repeater sets.

From the results obtained it can be seen that when using smaller cells, more INV_D24
cells are used compared to INV_D16 while less instances are used on the smaller
repeater cells used.

The usage of bigger clock cells helps increasing the number of nets that can be promoted
to higher fanout nets. The results are more pronounced at a fanout constraint of 256
where the average repeater fanout is increased. The bigger clock cells are increased 737
to 930 instances while the smaller inverters have a reduction on 1911 instances.

On this case, the results are the expected, the average fanout increases, resulting on a
higher number of high fanout nets with the reduction on the lower fanout side.

The results obtained when using the smaller set of repeaters is the following:

On the test using the reference fanout it has been observed an increase on the number of
DRC violations of 682% compared to the reference case and thus will not be included on
this analysis.

The Worst Negative Slack in both cases analysed when using smaller clock cells is worse.
From the reference value of -0.06 ns it increases up to -0.131 ns when a fanout of 64 is
used.

Regarding skew, it is reduced when the smaller inverters are used, lowering from 0.206
ns to 0.204ns. The insertion delay is increased by 1.44% compared to the reference
case.

The number of repeaters used on the block using a fanout constraint of 64 is reduced by
20%. This results on a reduction on the clock dynamic and leakage power by 3.4% and
18% respectively.

In terms of general power, the dynamic power is reduced by 1.37% mainly due to the
reductions on the clock power. The reduction on the number of repeaters used is due to
the increase on the fanout constraint.

 78

Regarding the clock cell structure, the results obtained are the following ones:

Contellation (fanout;
repeater size)

32;16_12_6 64;16_12_6 32;14_10_4 64;14_10_4

INV_D16 691 688 X X

INV_D12 2,270 2,086 X X

INV_D6 15,075 10,073 X X

INV_D14 X X 1,155 1,340

IND_D10 X X 3,625 4,479

INV_D4 X X 12,763 8,610

Table 4.22: Repeater breakdown distribution at Block 2 for the different clock cell and fanout
constellations using the smaller repeater sets.

Contellation (fanout;
repeater size)

32;16_12_6 64;16_12_6 32;14_10_4 64;14_10_4

Average repeater fanout 14 18 14 17

Average ICG fanout 9 9 9 9

Cells fanout =< 16 17,518 15,619 16,936 16,607

Cells fanout => 32 11,078 5,045 8,213 5,113

Cells fanout => 64 0 2,902 0 2,261

Table 4.23: Repeater fanout breakdown distribution and average clock cells fanout at Block 2 for
the different clock cell and fanout constellations using the smaller repeater sets.

When comparing the usage of clock cells it can be seen that when using the set with
smaller cells, there are more instances using the bigger cells as it will allow for lower
fanouts compared to the use of the cells in the reference set. The usage of the smaller
repeaters in the smaller set of cells also decreases as some nets will be using bigger
cells leaving only the really low fanout nets.

By analysing the repeater breakdown it can be seen that overall the average fanout
decreases, as it should be expected of using sets with lower driving power.

 79

4.5.3. Block 3 Analysis

The selection of constellations regarding the selection of clock cells in Block 1 and Block
2 have been done considering that high fanout constraint were achievable.

As it has been seen on the analysis done regarding clock cells and fanout and clock cell
selection in Block 1 and Block 2, the clock building algorithm tends to use the biggest
fanout available even though it yields sub-par results.

This limited the usefulness of using different size clock cells due to the following reasons:

 A lower effective maximum fanout constraint limit due to area restrictions made
the usage of bigger repeaters unnecessary.

 The initial clock structure was limited by the placement of memories resulting on
increased Worst Negative Slack.

On Block 3, however there are no area restrictions due to the absence of memories. As
seen on the fanout analysis, it is possible to achieve fanout constraints up to 256 without
severe degradation on the metrics obtained.

Taking into account the results obtained in the fanout analysis, the set of constellations
defined on the experiment sets for Block 3 have been used.

Regarding the usage of bigger clock cells, the results obtained are the following ones:

The Worst Negative Slack is worse than on the reference block, however, the initial
results regarding timing makes it not critical.

The skew in all the cases analysed by using bigger clock cells improves up to 45%
compared to the reference block, when the fanout is increased to 256. Similar results are
obtained in the insertion delay, where the fanout constraint of 256 run yields the best
result, improving by 14% compared to the reference run.

The number of repeaters used follows a similar trend to the one obtained when using the
reference cells, improving by 33% when a fanout constraint of 128 is used and by 41%
when a fanout constraint of 256 is used.

The clock power improvements are more modest due to the increase on the bigger clock
cells, reducing the clock power by 1.3% and 1.9% respectively compared to its reference
repeater size counterpart where it sports reductions of 2.8% and 3.1%.

In terms of general power, the total power is reduced on both cases mainly due to the

 80

The clock tree structure results obtained are the following ones:

Contellation
(fanout;
repeater size)

32;16_12_6 128;16_12_6 256;16_12_6 32;24_16_8 128;24_16_8 256;24_16_8

INV_D16 433 422 409 X X X

INV_D12 1,623 1,675 1,623 X X X

INV_D6 8,513 4,725 4,486 X X X

INV_D24 X X X 477 409 369

IND_D16 X X X 1,116 1,303 1,305

INV_D8 X X X 8,595 5,374 4,544

Table 4.24: Repeater breakdown distribution at Block 3 for the different clock cell and fanout
constellations using the bigger repeater sets.

Contellation
(fanout; repeater
size)

32;16_12_6 128;16_12_6 256;16_12_6 32;24_16_8 128;24_16_8 256;24_16_8

Average
repeater fanout

16 21 22 17 21 23

Average ICG
fanout

13 14 14 13 14 14

Cells fanout =<
16

15,582 14,162 13,847 15,181 14,630 13,678

Cells fanout =>
32

4,885 2,706 2,696 4,970 2,711 2,626

Cells fanout =>
64

0 924 918 0 881 875

Cells fanout =>
128

0 279 269 0 308 408

Cells fanout =>
256

0 0 0 0 0 0

Table 4.25: Repeater fanout breakdown distribution and average clock cells fanout at Block 3 for
the different clock cell and fanout constellations using the bigger repeater sets.

 81

When analysing the clock structure it can be seen that when using bigger clock cells, the
inverter INV_D24 and INV_D16 are less used to its counterpart on the reference clock
cell set, INV_D16 and INV_D12, as the increase on driving power will make the cells be
selected only for high fanout nets. On the other hand, the smallest cell, INV_D8, is used
in the low fanout nets as well as some higher nets that do not use INV_D12.

Overall, considering the cell breakdown, the average fanout tends to increase at high
fanout constraints giving a better use to the cell set using bigger inverters, as it can be
seen on the fanout distribution, where the number of cells with a fanout greater of 128
increase while having slight decreases for low and mid fanout cells.

On the other hand, the results when using smaller clock cells are the following ones:

Similar to the results obtained when using bigger clock cells, there is a slight degradation
regarding Worst Negative Slack but it is not critical on the design.

The skew obtained is improved by 11.1% and 25% when setting the fanout constraint to
32 and 64 respectively and smaller clock cells are used. The insertion delay in both cases
improves by 4.2% and 5.81% respectively, as expected from the reduction on the clock
cell parasitic capacitance by lowering its size.

The reduction on the number of instances used follows a similar trend to the obtained
when using the reference clock cells, decreasing by 3.4% with the reference clock cells
and by 30% when the fanout is increased to 64.

Regarding clock power, the run using the reference fanout and smaller repeaters have a
1.6% reduced total power, while it sports a reduction of 2.4% when the fanout is
increased to 64.

In terms of general power, the clock dynamic power reduction causes the reduction on
the overall dynamic power while the leakage power varies in both cases. Overall, in both
cases the total power is reduced, mainly due to the reduction in the clock power.

The clock structure information obtained is the following one:

Contellation (fanout;
repeater size)

32;16_12_6 64;16_12_6 32;14_10_4 64;14_10_4

INV_D16 433 378 X X

INV_D12 1623 1210 X X

INV_D6 8513 5469 X X

INV_D14 X X 464 555

IND_D10 X X 2177 2251

INV_D4 X X 7569 4775

Table 4.26: Repeater breakdown distribution at Block 3 for the different clock cell and fanout
constellations using the smaller repeater sets.

 82

Contellation (fanout;
repeater size)

32;16_12_6 64;16_12_6 32;14_10_6 64;14_10_4

Average repeater
fanout

16 21 17 19

Average ICG fanout 13 14 13 14

Cells fanout =< 16 15,582 13,935 15,181 14,620

Cells fanout => 32 4,885 3,206 4,879 3,216

Cells fanout => 64 0 1,542 0 1,328

Table 4.27: Repeater fanout breakdown distribution and average clock cells fanout at Block 3 for
the different clock cell and fanout constellations using the smaller repeater sets.

The reduction on the repeater size, and thus driving power will result on less high fanout
repeaters, while the nets with lower fanout increase. This lowers the average fanout
obtained when a fanout of 64 is used, being reduced from 21 to 19.

When considering the inverter usage, the biggest inverters, INV_D14 and INV_D10, are
more used compared to its reference cells counterpart with a reduction on the usage on
the smallest repeaters. This result is as expected as the biggest inverters will qualify for a
larger fanout bracket while the smallest cells will only be used for smaller fanouts,
compared to their reference counterpart.

The last analysis that will be covered in Block 3 was due to an error obtained on the
definition of the clock cells. On this case, the reference and the smaller repeater set was
used. The most relevant results obtained on this case are referred to the clock tree
structure.

 83

 The results obtained are summarized on the following tables:

Contellation (fanout;
repeater size)

64;16_12_6 64;mixed_sizes

INV_D16 378 137

INV_D12 1,210 169

INV_D6 5,469 2,730

INV_D14 X 385

IND_D10 X 1,678

INV_D4 X 2,241

Table 4.28: Repeater breakdown distribution at Block 3 for the different clock cell and fanout
constellations using a mixed set.

Contellation (fanout;
repeater size)

64;16_12_6 64;mixed_sizes

Average repeater
fanout

21 20

Average ICG fanout 14 14

Cells fanout =< 16 13,935 14,096

Cells fanout => 32 3,206 3,218

Cells fanout => 64 1,542 1,438

Table 4.29: Repeater fanout breakdown distribution and average clock cells fanout at Block 3 for
the different clock cell and fanout constellations using a mixed set.

From the results obtained it can be seen that:

When using 6 clock cells, two of the repeaters are not selected favouring others.

 INV_D16 has 137 instances compared to the 378 instances of INV_D14.

 INV_D12 has 169 instances compared to the 1678 instances of INV_D10.

On the last pair of inverters, the results are more balanced, although INV_D6 is favoured
over INV_D4.

 84

Taking this into consideration, the usage of multiple repeater sets is not useful nor
justified as some repeater sizes will be favoured over other that will have a low utilization
ratio.

4.6. Concurrent Clock and Data Optimization Analysis

The analysis regarding Concurrent Clock and Data Optimization has only been performed
in Block 1 and Block 2. The result analysis in those blocks was decisive enough to not
perform the analysis in Block 3.

The reference parameters of the blocks on these analyses are the following:

 Reference clock fanout constraint: 32

 Reference slew constraint: 80 ps

 Reference set of repeater cells: INV_D16, INV_D12 and INV_D6.

 Application of Concurrent Clock and Data Optimization: Active

 Position of clock pin: Reference position

The different tests used have the following parameter variations:

 Concurrent Clock and Data Optimization not applied with Synopsys clock routing
command and local skew optimization.

 Concurrent Clock and Data Optimization not applied using a custom clock tree
building command set and local skew optimization.

 Concurrent Clock and Data Optimization not applied with Synopsys clock routing
command without local skew optimization.

4.6.1. Block 1

The most relevant results regarding the Quality of Results at Block 1 are the following
ones:

The Worst Negative Slack and Total Negative Slack are much worse than the results
obtained on the reference run. The degradation is due to both not using Concurrent Clock
and Data Optimization and the physical layout of the block. By having blockages due to
memory placement, the clock routing is much more limited and the base metrics become
much worse by default.

The Total Negative Slack increases, shows an increase on the number of violating paths
from 10243 to 17585 in the worst case observed when the CCD application options are
disabled and local skew is not used.

By disabling Concurrent Clock and Data Optimization options, the skew improves by up
to 77% when the routing command and the local skew configuration options are applied.
This indicates the change on the clock tree building a zero-skew algorithm.

 85

Regarding the number of repeaters used, in all cases there is a reduction on the number
of cells used by 16.7% on the best of cases.

This reduction on the number of clock cells used, results on a reduction of 1.2% on
average on the total power. On the other hand, the total power increases by 4% on
average mainly driven by increases on the total leakage power.

The clock tree structure with a zero-skew balancing strategy will require a simpler
structure with fewer repeaters. The reduction on the number of clock cells used on
clockpaths will result on better insertion delay and the skew improvement is related to the
clock tree building strategy followed.

Due to the reduction on the number of repeaters used and the reduced clock wirelength,
both the clock dynamic and leakage power are lower than on the reference design with
Concurrent Clock and Data Optimization activated.

On the other hand, the general dynamic and leakage power suffer increases from the
lack of datapath optimization that was performed with Concurrent Clock and Data
Optimization.

When the clock structure is analysed the following results are obtained:

Block
reference

noccd_reference_block noccd_route_local noccd _custom_local noccd _route_nolocal

INV_D16 2,172 2,096 785 914

INV_D12 3,630 4,789 6,421 3,824

INV_D6 23,167 17,254 18,116 21,038

Table 4.30: Repeater breakdown distribution at Block 1 for the different CCD block variations
analysed.

Block reference noccd_reference_block noccd_route_local noccd _custom_local noccd _route_nolocal

Average
repeater fanout

15 17 17 16

Average ICG
fanout

5 7 7 7

Cells fanout =<
16

20,264 14,833 16,066 16,509

Cells fanout =>
32

11,078 11,515 11,515 11,513

Table 4.31: Repeater fanout breakdown distribution and average clock cells fanout at Block 1 for
the different for the different CCD block variations analysed.

 86

From the results obtained it can be seen that overall, when CCD is deactivated the
number of instances used are reduced, having the most noticeable reductions for the
biggest repeaters used when a custom tree is used. In all cases, the usage of the
smallest inverter is reduced.

This can be seen with the average repeater fanout which increases from 15 to 17 when
local optimization is applied and the overall reduction of the number of cells with a fanout
lower than 16 while larger fanout cells are kept more or less constant.

4.6.2. Block 2

The results regarding QoR obtained on Block 2 are akin to the results obtained in Block 1.
In all the cases where Concurrent Clock and Data Optimization configuration options
were deactivated, the Worst Negative Slack and Total Negative Slack results were
degraded.

Similarly, the skew improved due to the variation on the clock building strategy up to 40%
when the routing command is used and the local skew optimization is enabled. On the
other hand, the insertion delay is worse when local skew optimization is applied.

A reduction on the number of instances is seen when a custom tree algorithm is used and
local optimization is enabled and when the routing command is used without local
optimization.

Regarding clock power, only when the local skew is disabled improvements in clock
power are achieved, reducing by 1.3% compared to the other cases where increases on
the clock power of 1.94% and 0.24% are observed.

On the same line as in Block 1, the leakage increases by 15% on average while the
dynamic power variations are mostly due to the clock power variations.

The clock structure data obtained is the following one:

Block
reference

noccd_reference_blo
ck

noccd_route_local noccd _custom_local noccd _route_nolocal

INV_D16 691 1,466 494 980

INV_D12 2,270 2,808 5,092 1,446

INV_D6 15,075 12,771 13,844 14,032

Table 4.32: Repeater breakdown distribution at Block 2 for the different CCD block variations
analysed.

 87

Block type noccd_reference_blo
ck

noccd_route_local noccd _custom_local noccd _route_nolocal

Average
repeater
fanout

14 13

13 15

Average ICG
fanout

9 9 9 9

Cells fanout
=< 16

20,264 16,487 18,922 15,934

Cells fanout
=> 32

11,078 8,364 8,335 8,363

Table 4.33: Repeater fanout breakdown distribution and average clock cells fanout at Block 2 for
the different for the different CCD block variations analysed.

Regarding the clock instances used, it can be seen that the best results obtained are in
block using the Synopsys clock routing command without clock optimization. This can be
seen by the increase on the average repeater fanout.

When considering the fanout breakdown, the results follow the expected trend from the
change of structure where the number of end-point repeaters decrease and their fanout
increases compared to the reference run.

 88

4.7. Clock Placement Analysis

As defined before, the experiment set is based around centring the clock pin in order to
improve metrics such as the insertion delay and skew with CCD active in order to not
degrade the Worst Negative Slack results as it has been seen in the previous section.

4.7.1. Blocks Clock Tree Trunk
This initial analysis regarding clock pin position has been done under the following
conditions:

The reference parameters of the blocks on these analyses are the following:

 Reference clock fanout constraint: 32

 Reference slew constraint: 80 ps

 Reference set of repeater cells: INV_D16, INV_D12 and INV_D6.

 Application of Concurrent Clock and Data Optimization: Active

Figure 4.1: Clock tree trunk of Block 1 using the reference clock tree input pin with CCD

algorithm.

 89

In Block 1, it can be seen that the clock tree propagation algorithm traces different
branches on which they are balanced regarding Worst Negative Slack minimization. This
causes the clock tree to not be balanced around a zero-skew structure.

When the clock input pin is changed it can be seen that the structure is simplified in most
clock branches.

Figure 4.2: Clock tree trunk of Block 1 using the centred clock tree input pin with CCD

algorithm.

 90

Figure 4.3: Clock tree trunk of Block 2 using the reference clock tree input pin with CCD

algorithm.

When comparing the structures in block 2, the clock structure obtained is worse than the
results obtained in terms of clock branches and clock trunk wirelength.

 91

Similarly to the previous case, the application of Concurrent Clock and Data Optimization
requires correlation between the datapath and the clockpath. This is reflected on the
clock tree where the clock branches of the different clockpaths are treated independently
to minimize the Worst Negative Slack.

Figure 4.4: Clock tree trunk of Block 2 using the centred clock tree input pin with CCD

algorithm.

 92

Figure 4.5: Clock tree trunk of Block 3 using the reference clock tree input pin with CCD

algorithm.

In Block 3, the structure does not vary much by centring the clock tree as the physical
layout had no memories.

 93

Figure 4.6: Clock tree trunk of Block 3 using the centred clock tree input pin with CCD

algorithm.

 94

4.7.2. Block 1 Analysis

For Block 1 it has only been tested the parameter combination regarding fanout and clock
cell selection that gave the best results, that is:

 Fanout constraint: 32

 Repeater size: INV_D16, INV_D12 and INV_D6

From the structure, it should be expected that the latency would improve while the skew
will depend on Concurrent Clock and Data Optimization algorithm.

On the case analysed, it has been obtained an increase on the number of DRC violations
by 50% and thus it should be taken into consideration when the results are analysed.

Regarding the metrics obtained it can be seen that:

The Worst Negative Slack suffers from a slight degradation increasing by 13%, compared
to a 33% increase of the Total Negative Slack.

By changing the position of the clock pin, the latency is improved by 21% due to the
change of the clock pin position.

The number of repeaters sports an increase of 6% and the clock wirelength increases by
10%.

The clock dynamic power increases by 3.7% and the leakge power increases by 2.68%.
Regarding general power, the total dynamic power increases is mainly due to the
increase of the clock power while the leakage power increases by 14%

The results obtained in the clock structure are:

Block reference reference_block centred_clockpin

INV_D16 2,172 1,242

INV_D12 3,630 4,600

INV_D6 23,167 24,841

Table 4.34: Repeater breakdown distribution at Block 1 for the different clock pin configurations
analysed.

 95

Block reference reference_block centred_clockpin

Average repeater fanout 15 14

Average ICG fanout 5 7

Cells fanout =< 16 20,264 21,343

Cells fanout => 32 11,078 10,719

Table 4.35: Repeater fanout breakdown distribution and average clock cells fanout at Block 1 for
the different clock pin configurations analysed.

The biggest repeaters decrease, which is expected from the simplification of the clock
tree structure, on the other hand, the smallest repeaters increase from 3630 to 4600 for
INV_D12 and from 23167 to 24841 for INV_D6.

The additional repeaters added result on a reduction on the average repeater fanout.

4.7.3. Block 2 Analysis

From the experiment sets defined, the reference block with the modified clock pin source
gave problems at route optimization and thus it will not be considered at the analysis.

The parameters of the block analysed is the following one:

 Fanout constraint: 64

 Repeater size: INV_D16, INV_D12 and INV_D6

It should be considered that this run may contain errors as the maximum fanout
constraint is not achieved, as specified in Table 4.35

In terms of Worst Negative Slack, degrades from -0.06 ns to -0.121 ns. Similar to Block 1
and as expected due to the change on the position of the clock pin it improves by 17%.

The number of clock cells used and thus the dynamic and leakage power are worse than
its reference clock pin placement block counterpart.

Regarding repeater usage, the number of repeaters is reduced by 1.2%. The dynamic
power lowers by 0.11% while the leakge power increases by 1%. The increase on the
leakage power is mainly due to an increase on the average repeater size as it can be
seen in Table 4.34.

The clock wirelength on the case where the clock pin was moved is larger than on the
base case and about 6% bigger than on its default clock pin placement.

 96

Regarding the clock structure information the results obtained are the following ones:

Constellation 32 64 64_moved_pin

INV_D16 691 688 898

INV_D12 2,270 2,086 2,365

INV_D6 15,075 10,073 14,561

AND2_D1 5,880 5,880 5,880

Table 4.36: Repeater breakdown distribution at Block 2 for the different clock pin configurations
analysed.

Constellation 32 64 64_moved_pin

Average repeater fanout 14 18 14

Average ICG fanout 9 9 9

Cells fanout =< 16 17,518 15,619 17,276

Cells fanout => 32 8,156 5,045 8,149

Cells fanout => 64 0 2,902 0

Table 4.37: Repeater fanout breakdown distribution and average clock cells fanout at Block 2 for
the different clock pin configurations analysed

When considering the repeater usage when the clock pin is moved, the biggest increases
obtained are in INV_D6 compared to its reference placement counterpart. This increase
should be considered as a result of the maximum fanout achieved on this case. Taking
this result into consideration, the results obtained are similar to the ones obtained at the
reference block and should probably not be taken into consideration.

 97

4.7.4. Block 3 Analysis
The variations considered on clock pin movement from this block are:

 Reference run with moved pin:

a. Fanout constraint: 32

b. Slew constraint: 80 ps

c. Repeater size: INV_D16, INV_D12 and INV_D6.

 Fanout constraint of 128 run with moved pin:

a. Fanout constraint: 128

b. Slew constraint: 80 ps

c. Repeater size: INV_D16, INV_D12 and INV_D6.

 Fanout constraint of 128 run with modified slew with moved pin:

a. Fanout constraint: 128

b. Slew constraint: 100 ps

c. Repeater size: INV_D16, INV_D12 and INV_D6.

The second experiment set defined did not achieve the defined fanout of 128 and was
restricted to the reference fanout of 32 as it can be seen on Table 4.37, and thus the
results obtained could contain errors.

The third variation analysed is focused around the best results obtained in the analysis
done previously.

Regarding the Quality of Results metrics obtained the results are the following:

The results obtained regarding Worst Negative Slack are not relevant as the block has no
problems in timing closure.

As in the other blocks analysed, the latency improves over the reference block by 18% on
the best cases.

The number of repeater cells used increases on both cases, having the worse results
when using a fanout constraint of 128 with a 37% increase. In terms of power, the same
trends as in the repeater usage with worse power results when comparing the blocks with
the initial and the moved pin placement.

In terms of general power, the dynamic power is modified mainly by the clock power. It
must be noted that the leakage power shows a decrease compared to all the other cases
analysed on this experiment set.

The last case analysed includes the best sets obtained in Block 3, with a fanout
constraint of 128 and a slew constraint of 100 ps. The most relevant results obtained are:

The insertion delay improves by 10%. On the other hand, the number of clock repeaters
is reduced by 55% compared to the 33% improvement of the set using a fanout constraint
of 128 with the reference clock pin.

This reduction on the number of repeaters results on a reduction on the dynamic and
leakage power with an overall clock power reduction of 3.2%.

 98

The total power is also reduced mainly due to the reduction on the clock power, while the
DRC violations are reduced by 20%.

The clock tree structure information obtained is summarized in the following table:

Constellation 32 128 32_moved_pin 128_moved_pin 128_slew100_moved_pin

INV_D16 433 422 441 486 274

INV_D12 1,623 1,675 1,436 1,559 1,328

INV_D6 8,513 4,725 8,436 8,791 3,060

Table 4.38: Repeater breakdown distribution at Block 3 for the different clock pin configurations
analysed.

Constellation 32 128 32_moved_pin 128_moved_pin 128_slew100_moved_pin

Average repeater
fanout

16 21 16 16 30

Average ICG
fanout

13 14 13 13 14

Cells fanout =< 16 15,582 14,162 15,309 15,832 11,606

Cells fanout >= 32 4,885 2,706 4,892 4,837 2,722

Cells fanout >= 64 0 924 0 0 953

Cells fanout >=
128

0 279 0 0 303

Cells fanout >=
256

0 0 0 0 0

Table 4.39: Repeater fanout breakdown distribution and average clock cells fanout at Block 3 for
the different clock pin configurations analysed.

From the last analysis performed, where the slew and fanout were modified it can be
seen that the average repeater fanout increases from 21 to 30, resulting on a reduction
on the number of cells with a fanout lower than 16. On the other hand, the biggest fanout
cells increase.

Regarding the clock cell distribution , on the last analysis performed, there is an overall
reduction on all the inverter sizes used, probably mostly due to the variation on the fanout
constraint.

 99

5. Budget

Due to the nature of the project, the budget will only include the costs referring to the
personal hour works.

The dedication of this project has been of 1050 hours. Considering a salary of 15€ an
hour as an estimation of a junior engineering in Physical Design, the personal cost would
amount to:

Total Cost: 1050 hours · 15€/hour = 15750€

It will not be covered the cost of the software and licenses used during the development
of this project.

 100

 101

6. Conclusions and future development

This section will include the conclusions and optimal results for each type of block
considering the analysis done previously. It will be covered all the experiment sets but the
initial set which will be omitted for the reasons given previously.

6.1. Slew Analysis

As explained in chapter 3, the slew constraint is selected in order to minimize variability
and clock jutter and it correlates with the separations between repeaters in the clock
structure.

This becomes even more important when multiple scenarios are considered where power
supply voltage and temperature variations are checked.

From the results obtained several conclusions can be obtained:

 Using a larger slew constraint than the optimal one will result on an increase on
the number of violating paths due to repeaters having slew violations.

 Using a smaller slew constraint than the optimal one will result in an increase on
the number of repeaters used on the design.

Typically, when using a smaller slew constraint will result on an increase of the smallest
end-point repeaters while the ICG fanout remains mostly constant as it is fixed in the
design.

In Block 1 and Block 2, further reductions on the slew constraint did not provide
improvements on the quality of results obtained but rather resulted on increases on the
number of clock instances and clock power.

From the results obtained, the optimal slew constraints for the different blocks are:

 Block 1: 80ps

 Block 2: 80ps

 Block 3: 100ps

6.2. Fanout Analysis

The selection of the fanout constraint is vital in terms of obtaining the best result in an
optimization process. From the tests made it is not possible to obtain a fanout constraint
that suits all blocks giving the best result possible as it has been seen.

The physical layout of the block is the main conditioner on the selection of fanout. When
considering timing metrics, the usage of Concurrent Clock and Data Optimization has to
be considered as to how the metrics can evolve, and the indeterminacy it adds compared
to zero-skew balanced structures.

The placement of memories has several consequences that have to be considered.

 102

 Usage of memories reduces the non-blocked space present on the block to place
cells and perform routing.

 Placing memories close with small distances between them.
 Placing flip-flops in-between memories will further degrade the results obtained in

terms of metrics.

6.2.1. Block 1

The usage of a high number of memory instances placed all across the block with flip-
flops placed in-between the memories limits the maximum fanout attainable.

For blocks with high memory density the fanout should be kept at a low fanout constraint
to avoid clock structure degradation.

On this particular case, a fanout of 32 has been selected as further increasing causes
and overall QoR degradation. Lowering the clock fanout constraint can actually be
detrimental as the number of clock cells used would increase.

6.2.2. Block 2

On this case, the physical layout contains less memory instances. Coupled with a
reduced memory density with less memory instances and an improved flop placement,
the base metric results are better.

On the particular case analysed and extended to blocks with similar physical layout
characteristics, the fanout chosen was 64, up from the reference fanout of 32. Higher
fanout values cause clock tree degradation due to the clock tree building algorithm.

6.2.3. Block 3

The physical layout on this case is the extreme opposite of Block 1. The lack of memories
and thus of additional restrictions in cell placement and routing allows higher fanout
constraints without incurring in a clock tree structure degradation.

On the analysed block, the optimal fanout chosen was 128. Although at a fanout
constraint of 256 provided slightly better power improvement, the increase of skew and
insertion delay over the fanout constraint of 128 made it so it was discarded.

 103

6.3. Clock Cell Analysis

The usage and selection of clock cells is highly determined by the physical layout of a
block as it will set the maximum achievable fanout constraint without incurring in
degradation of the clock structure.

This degradation appears due to the clock building algorithm as high fanout nets are
weighted against low fanout nets as it results in an overall decrease of the number of
clock cells that must be used.

However, this increase on the maximum fanout can incur in power increases due to
increased wirelength due to separation between clock cells and flip-flops.

Moreover, due to the application of Concurrent Clock and Data Optimization and the
correlation between datapath and clock structure to minimize the Worst Negative Slack,
these penalizations in terms of power and timing can increase providing no benefit at all
due to the reduction in clock cells.

Having this into consideration, two main experiments were performed regarding clock
cells, the usage of a bigger set of repeaters and a smaller set of repeaters at each of the
experiment blocks.

The use of bigger repeaters is conditioned by the downstream capacitance, and thus
maximum fanout expected at a given clock cell. If it is possible to achieve high fanouts on
a given design, increasing the clock cell and thus its driving power will result on having a
much higher number of nets having a higher fanout constraint.

6.3.1. Block 1

On Block 1, the usage of bigger repeaters was not useful due to the limited fanout,
resulting on a degradation of the Quality of Results with fanout constraints higher than 32.

On the other hand, the usage of smaller repeaters, results on a degradation of the clock
structure, in this case due to clock branches capacitance balance and the application of
Concurrent Clock and Data Optimization.

The optimal result on this case is the usage of the reference clock cells and a fanout
constraint of 32.

6.3.2. Block 2

The placement of memories on this case has less of a negative effect due to the physical
layout of this block allowing an optimal constraint of 64.

Akin to the results obtained on Block 1, the limitation on the achievable fanout limits the
usage of bigger clock cells.

The usage of smaller cells yields worse results due to clock tree balance.

The optimal result on this case is using the reference clock cells and a fanout constraint
of 64.

 104

6.3.3. Block 3

At Block 3, as it has been seen, it is a block with no memory instances. This simplifies the
design and allows a much smoother clock structure with a much higher fanout constraint.
At the fanout analysis, it was tested that the best results obtained were using a fanout
constraint of 128, however at 256, there were not heavy penalizations obtained in terms
of power or timing.

Due to that, when using bigger clock cells, it was observed that the design did not suffer
much in terms of Worst Negative Slack, mainly due to good timing results. Moreover,
when using a fanout constraint of 256, improvements were observed in skew, insertion
delay and number of instances used. The power gains at the clock structure were modest
as the bigger clock cells have greater power consumption.

It should be noted, that at Block 3, there are twice as many ICGs compared to the
number of repeaters, 14595 ICGs and 7086 repeaters, in the reference block.

This fixes a huge part of the power consumption as ICGs will typically have higher power
consumption and cannot be reduced at the design as they are needed for clock gating
strategies. This limits in all cases the possible power gains on the clock structure.

The optimal results on this case are:

 Fanout constraint of 256 using the bigger clock cells with best results in skew,
insertion delay, and repeater instances.

 Fanout constraint of 128 using the reference clock cells with best results in Worst
Negative Slack, clock power and global power with improvements over the
reference block in skew, latency and clock repeaters.

6.4. Concurrent Clock and Data Optimization Analysis

The application of Concurrent Clock and Data Optimization is usually recommended for
high frequency circuits. This need becomes more prevalent when the physical layout
contains blockages or has flip-flop placement in-between memories that limits the
maximum fanout and degrades the Worst Negative Slack.

The improvements in terms of repeater instances, skew, insertion delay and clock power
are not enough to justify the heavy degradation in timing metrics and overall power due to
the lack of optimization of the datapath considering the clockpath.

Moreover, the improvements in terms of skew and latency depend on how the initial
physical layout is. On Block 2, where less memory instances are used and where less
flip-flops are placed in-between memories, the improvements obtained are more
moderate.

Due to the results obtained, this experiment set was not performed in Block 3.

Overall, the use of Concurrent Clock and Data Optimization is mandatory in the blocks
analysed.

 105

6.5. Clock Placement Analysis

In all the blocks where the pin placement has been tested some general results are
obtained:

 Insertion delay improvement due to the reduction on the maximum clockpath
length.

 Increase on the overall wirelength due to Concurrent Clock and Data Optimization
implementation.

 Increase on the number of clock cells used compared to the base placement of
the clock pin.

 Increase on the Worst Negative Slack.

From the blocks analysed, the best results obtained in terms of skew are obtained on
Block 3 where there are no memories on the floorplan. On the other cases, the placement
of memories and thus the added limitations on clock routing limit the improvements of
skew to be obtained.

In all blocks where a fanout constraint higher than 32 is applied and the clock pin has
been moved, the maximum fanout constraint has not been used. It is likely that errors
appeared during the runs performed overriding the constraint that was set.

The modification of the clock placement also results on the overall degradation of the
Worst Negative Slack and Total Negative Slack. By modifying the clock pin input, it is
possible to unbalance the different clock paths asides from possible problems with
memory placements amongst other things.

Overall, in all the blocks, the movement of the clock pin has yielded worse results than
the ones obtained in the reference block in terms of Worst Negative Slack, repeater
instances and power.

In order to improve the possible results obtained on this case several conditions should
be taken into consideration:

 Study of flip-flop density and memory placement to place the clock pin.

 Placement of the clock pin input in the top-design block layers.

 106

6.6. Future development

During the development of the project several parts could have been modified. The initial
experiment set could have been performed correctly in order to obtain relevant data with
the refined methodology used on the rest of the experiment sets.

Several results obtained also yielded errors limiting the usefulness of certain parts of the
analysis, which should be redone.

Parts of the original thesis were left out such as the analysis of multi-source clock
structures and further analysis using PrimeTime.

It should also be tested if the individual optimal results obtained in the experiment sets
can be used together without incurring in metrics degradation.

 107

Bibliography

[1] Solvnet Synopsys Online Help [Online] Available: https://www.solvnet.synopsys.com

[2] S. Tam. Clocking in Modern VLSI Systems, Springer-Verlag, USA, 2009.

[3] J. Kim, D. Joo, T. Kim. “An optimal algorithm of adjustable delay buffer insertion for
solving clock skew variation problem” In 2013 50th ACM/EDAC/IEE Design
Automation Conference, 2013, 29 May -7 June, Austin, USA. pp. 1-6, July 2013.

[4] R. Ewetz, S. Janarthanan, C. Koh. “Construction of reconfigurable clock trees for
MCMM designs” In Design Automation Conference (DAC), 2015 52nd
ACM/EDAC/IEEE, 2015, 8-12 June 2015, San Francisco, USA. pp. 1-6. doi:
10.1145/2744769.2744811.

[5] C.Deng, Y. CAi, Q. Zhou, Z. Chen “An efficient buffer sizing algorithm for clock trees
considering process variations” In 6th Asia Symposium on Quality Electronic Design,
ASQED 2015, 4-5 August 2015 Kula Lumpur, Malaysia. pp. 108-113 doi:
10.1109/ACQED.2015.7274017.

[6] J. Kawa. “FinFET Design, Manufacturability, and Reliability” Synopsys. [Online]
Available: https://www.synopsys.com/designware-ip/technical-bulletin/FinFET-
design.html [Access: 3 October 2017]

[7] M. Hartman, J. Taylor. “Design How-To Solve leakage and dynamic power loss”
[Online] Available: https://www.eetimes.com/document.asp?doc_id=1275132
[Access: 1 October 2017]

[8] I. Ringworm. “Double Gate FinFET” [Online] Available:
https://commons.wikimedia.org/wiki/File:Doublegate_FinFET.PNG [Access: 10
October 2017]

https://www.solvnet.synopsys.com
https://www.synopsys.com/designware-ip/technical-bulletin/
https://www.eetimes.com/document.asp?doc_id=1275132
https://commons.wikimedia.org/wiki/File:Doublegate_

 120

Appendices

This section will cover all the additional data used during the analysis. It will be provided the raw data and comparisons upon it has been
done. All the user-made scripts will also be added.

Block 1 results:
Slew Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.346 -581.8 0.598 1.37 33161 28969 8771.69 7095.875 722639.71 1329.525 723969.235
slew100 -0.497 -746.1 0.609 1.325 34909 30718 9176.871 7501.141 746510.595 1400.738 747911.333
slew60 -0.441 -809.3 0.587 1.207 35235 31044 9142.199 7466.469 746462.848 1392.468 747855.316
slew40 -0.509 -925 0.649 1.4 41789 37598 10582.308 8906.579 766330.606 1617.621 767948.227

Slew General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3186 792194.1384 1.17E+06 2.68E+05 1.44E+06 62607
slew100 0.3121 776143.4184 1.20E+06 3.12E+05 1.51E+06 52118
slew60 0.3108 772940.6429 1.20E+06 3.15E+05 1.52E+06 87510
slew40 0.3166 787205.706 1.22E+06 3.21E+05 1.54E+06 76238

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
slew100 43.6416185 28.239945 1.839464883 -3.284671533 5.271252375 6.03748835 4.619189689 5.71129001 3.303289962 5.356273857 3.30706014
slew60 27.4566474 39.10278446 -1.839464883 -11.89781022 6.254334911 7.162829231 4.223918082 5.222668099 3.296682658 4.734247194 3.299322657
slew40 47.10982659 58.98934342 8.528428094 2.189781022 26.01851573 29.7870137 20.64160954 25.51769866 6.046013718 21.66909235 6.074704542

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
slew100 -2.040175769 -2.026109412 2.561912895 16.18195377 5.072967338 -16.75371764
slew60 -2.448210923 -2.430401156 2.647309991 17.59880686 5.489923558 39.77670229
slew40 -0.62774639 -0.629698221 4.269854825 19.79865772 7.157748436 21.77232578
Appendix 1: Slew Data Comparison for Block 1.

 121

Bigger Repeaters Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.346 -581.8 0.598 1.37 33161 28969 8771.69 7095.875 722639.71 1329.525 723969.235
fanout256 -0.566 -990.6 0.506 1.248 28538 24347 7608.784 5933.054 736840.221 1129.969 737970.19
ccd_32_24-16-8 -0.662 -1302.9 0.707 1.364 37663 33472 12546.551 10870.821 802971.812 2065.426 805037.238
ccd_256_24-16-8 -0.634 -836 0.681 1.36 31840 27649 10878.732 9203.003 790426.755 1743.659 792170.414

Bigger Repeaters General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3186 792194.1384 1.17E+06 2.68E+05 1.44E+06 62607
fanout256 0.3104 771863.3026 1.19E+06 3.10E+05 1.50E+06 67696
ccd_32_24-16-8 0.3167 787506.2714 1.26E+06 3.19E+05 1.58E+06 70852
ccd_256_24-16-8 0.3195 794432.6426 1.25E+06 3.14E+05 1.56E+06 98690

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout256 63.58381503 70.26469577 -15.38461538 -8.905109489 -13.94107536 -15.95498636 -13.25749086 -16.38728134 1.965088661 -15.00957109 1.933915742
ccd_32_24-16-8 91.32947977 123.9429357 18.22742475 -0.437956204 13.5761889 15.54420242 43.03459197 53.19916148 11.11648044 55.35067035 11.19771381
ccd_256_24-16-8 83.23699422 43.69199037 13.87959866 -0.729927007 -3.983595187 -4.556594981 24.02093553 29.6951116 9.38047606 31.14901939 9.420452652

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
fanout256 -2.573760201 -2.566395636 1.964133219 15.398956 4.517025712 8.128484035
ccd_32_24-16-8 -0.596359071 -0.591757345 7.429547395 18.7546607 9.589993051 13.16945389
ccd_256_24-16-8 0.282485876 0.282570154 6.746370623 17.22595078 8.686587908 57.63413037

Appendix 2: Fanout Data Comparison for Block 1.

 122

Bigger Repeaters Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.346 -581.8 0.598 1.37 33161 28969 8771.69 7095.875 722639.71 1329.525 723969.235
fanout256 -0.566 -990.6 0.506 1.248 28538 24347 7608.784 5933.054 736840.221 1129.969 737970.19
ccd_32_24-16-8 -0.662 -1302.9 0.707 1.364 37663 33472 12546.551 10870.821 802971.812 2065.426 805037.238
ccd_256_24-16-8 -0.634 -836 0.681 1.36 31840 27649 10878.732 9203.003 790426.755 1743.659 792170.414

Bigger Repeaters General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3186 792194.1384 1.17E+06 2.68E+05 1.44E+06 62607
fanout256 0.3104 771863.3026 1.19E+06 3.10E+05 1.50E+06 67696
ccd_32_24-16-8 0.3167 787506.2714 1.26E+06 3.19E+05 1.58E+06 70852
ccd_256_24-16-8 0.3195 794432.6426 1.25E+06 3.14E+05 1.56E+06 98690

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout256 63.58381503 70.26469577 -15.38461538 -8.905109489 -13.94107536 -15.95498636 -13.25749086 -16.38728134 1.965088661 -15.00957109 1.933915742
ccd_32_24-16-8 91.32947977 123.9429357 18.22742475 -0.437956204 13.5761889 15.54420242 43.03459197 53.19916148 11.11648044 55.35067035 11.19771381
ccd_256_24-16-8 83.23699422 43.69199037 13.87959866 -0.729927007 -3.983595187 -4.556594981 24.02093553 29.6951116 9.38047606 31.14901939 9.420452652

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
fanout256 -2.573760201 -2.566395636 1.964133219 15.398956 4.517025712 8.128484035
ccd_32_24-16-8 -0.596359071 -0.591757345 7.429547395 18.7546607 9.589993051 13.16945389
ccd_256_24-16-8 0.282485876 0.282570154 6.746370623 17.22595078 8.686587908 57.63413037

Appendix 3: Bigger Repeater Set Data Comparison for Block 1.

 123

Smaller Repeaters Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.346 -581.8 0.598 1.37 33161 28969 8771.69 7095.875 722639.71 1329.525 723969.235
fanout64 -0.56 -872.2 0.587 1.314 34743 30552 8962.985 7287.255 748887.924 1360.174 750248.097
ccd32_14104 -0.577 -853.1 0.545 1.298 28480 24289 6366.909 4691.18 694170.666 883.809 695054.475
ccd64_14104 -0.529 -848.5 0.594 1.306 35585 31394 9173.501 7497.771 754713.571 1395.08 756108.651

Smaller Repeaters General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3186 792194.1384 1.17E+06 2.68E+05 1.44E+06 62607
fanout64 0.3134 779322.6319 1.21E+06 3.18E+05 1.53E+06 91461
ccd32_14104 0.3141 780970.0013 1.15E+06 3.12E+05 1.46E+06 51076
ccd64_14104 0.3079 765687.4596 1.21E+06 3.09E+05 1.52E+06 104297

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout64 61.84971098 49.91405981 -1.839464883 -4.087591241 4.770664335 5.464462011 2.180822624 2.697059912 3.632268423 2.305259397 3.629831315
ccd32_14104 66.76300578 46.63114472 -8.862876254 -5.255474453 -14.11597961 -16.15520039 -27.41525293 -33.88863248 -3.939590311 -33.52445422 -3.993921095
ccd64_14104 52.89017341 45.84049502 -0.668896321 -4.671532847 7.309791623 8.371017294 4.580770638 5.663797629 4.438430459 4.930708336 4.439334497

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
fanout64 -1.632140615 -1.624791939 3.15969257 18.68008949 6.045865184 46.0874982
ccd32_14104 -1.412429379 -1.416841726 -2.220324509 16.29381059 1.250868659 -18.41806827
ccd64_14104 -3.358443189 -3.345982697 3.15969257 15.21252796 5.420430855 66.58999792

Appendix 4: Smaller Repeater Set Data Comparison for Block 1.

 124

Smaller Repeaters Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.346 -581.8 0.598 1.37 33161 28969 8771.69 7095.875 722639.71 1329.525 723969.235
noccd_route_local -0.569 -1400.3 0.135 1.049 29513 25322 8085.022 6409.292 713926.249 1236.565 715162.814
noccd_custom_local -0.787 -1583.7 0.577 1.359 28330 24139 7980.721 6304.991 714527.096 1222.844 715749.939
noccd_route_nolocal -0.713 -1810 0.548 1.354 29967 25776 7771.29 6095.561 713722.291 1145.161 714867.451

Smaller Repeaters General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3186 792194.1384 1.17E+06 2.68E+05 1.44E+06 62607
noccd_route_local 0.3057 760266.1147 1.17E+06 3.24E+05 1.49E+06 58041
noccd_custom_local 0.3128 777911.2538 1.17E+06 3.29E+05 1.50E+06 75924
noccd_route_nolocal 0.3097 770183.8889 1.16E+06 3.32E+05 1.50E+06 62541

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
noccd_route_local 64.45086705 140.6840839 -77.42474916 -23.43065693 -11.00087452 -12.58931962 -7.828229224 -9.675804605 -1.205782201 -6.991970817 -1.216408181
noccd_custom_local 127.4566474 172.206944 -3.511705686 -0.802919708 -14.56831821 -16.67299527 -9.017293133 -11.14568675 -1.122636064 -8.023993532 -1.135310121
noccd_route_nolocal 106.0693642 211.103472 -8.361204013 -1.167883212 -9.631796387 -11.0221271 -11.40487181 -14.09711981 -1.234006224 -13.86690735 -1.257205909

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
noccd_route_local -4.048964218 -4.030328193 -0.426985482 20.84265474 3.544127867 -7.293114189
noccd_custom_local -1.820464532 -1.802952573 0.085397096 22.66964952 4.308547603 21.27078442
noccd_route_nolocal -2.793471438 -2.778390856 -0.597779675 23.60178971 3.961084086 -0.105419522

Appendix 5: CCD Set Data Comparison for Block 1.

Moved Clock Pin Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.346 -581.8 0.598 1.37 33161 28969 8771.69 7095.875 722639.71 1329.525 723969.235
reference_moved -0.391 -774 0.593 1.079 34874 30683 8988.318 7312.588 749885.134 1365.216 751250.35

Moved Clock Pin General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3186 792194.1384 1.17E+06 2.68E+05 1.44E+06 62607
reference_moved 0.3047 757709.7662 1.20E+06 3.07E+05 1.50E+06 93314

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
reference_moved 13.00578035 33.03540736 -0.836120401 -21.24087591 5.165706704 5.916669543 2.46962672 3.054070146 3.770263884 2.684492582 3.768269932

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
reference_moved -4.362837414 -4.353020368 2.134927412 14.35495899 4.447533009 49.04723114

Appendix 6: Moved Clock Pin Data Comparison for Block 1.

 125

Slew Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.06 -1.6 0.206 0.762 27032 18036 6396.44 4211.829 429350.789 962.957 430313.746
slew100 -0.134 -1.7 0.169 0.773 27731 18733 6576.683 4391.9 436811.415 992.236 437803.651
slew60 -0.186 -2.5 0.188 0.77 29557 20560 7138.401 4953.703 433174.586 1091.385 434265.971
slew40 -0.152 -1.1 0.214 0.799 41292 32295 9840.319 7655.622 460323.178 1533.174 461856.352

Slew General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.4576 570155.2752 8.75E+05 6.72E+04 9.42E+05 13289
slew100 0.457 569390.1814 8.88E+05 6.72E+04 9.55E+05 11833
slew60 0.4545 566276.5702 8.82E+05 6.52E+04 9.47E+05 12492
slew40 0.4617 575355.5657 9.07E+05 6.92E+04 9.76E+05 13094

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
slew100 123.33333 6.25 -17.96116505 1.443569554 2.585824208 3.864493236 2.817864312 4.275363506 1.737652798 3.040530366 1.740568381
slew60 210 56.25 -8.737864078 1.049868766 9.340781296 13.99423375 11.5995929 17.61405793 0.890599738 13.33683643 0.918451952
slew40 153.33333 -31.25 3.883495146 4.855643045 52.75229358 79.05854957 53.84055819 81.76478675 7.213772466 59.21520899 7.330141389

General QoR Comparison

Set Utilization (%)Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
slew100 -0.1311189 -0.134190427 1.474454223 0 1.369426752 -10.95643013
slew60 -0.6774476 -0.680289242 0.765801806 -2.873734366 0.50955414 -5.997441493
slew40 0.895979 0.912083204 3.646130986 3.022632519 3.609341826 -1.467379035

Appendix 7: Slew Data Comparison for Block 2.

 126

Block 2 results:
Fanout Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.06 -1.6 0.206 0.762 27032 18036 6396.44 4211.829 429350.789 962.957 430313.746
fanout64 -0.07 -3 0.272 0.736 21844 12847 5326.668 3141.971 414481.485 777.867 415259.352
fanout128 -0.123 -3.9 0.253 0.774 21791 12794 5467.098 3282.401 416227.742 809.724 417037.466
fanout256 -0.096 -3.7 0.22 0.82 24439 15442 6090.306 3905.609 433184.419 910.349 434094.768
fanout512 -0.165 -2.8 0.217 0.784 24386 15388 6165.79 3981.007 427895.235 928.163 428823.399

Fanout General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.4576 570155.2752 8.75E+05 6.72E+04 9.42E+05 13289
fanout64 0.4549 566832.2906 8.61E+05 6.27E+04 9.24E+05 12861
fanout128 0.4587 571506.2203 8.61E+05 6.79E+04 9.28E+05 13098
fanout256 0.4576 570219.1925 8.78E+05 6.62E+04 9.44E+05 13043
fanout512 0.458 570738.8131 8.77E+05 6.66E+04 9.44E+05 16781

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout64 16.66666667 87.5 32.03883495 -3.412073491 -19.19206866 -28.7702373 -16.7244905 -25.40126866 -3.463206399 -19.22100364 -3.498469231
fanout128 105 143.75 22.81553398 1.57480315 -19.38813258 -29.06409403 -14.52905053 -22.06708772 -3.056486057 -15.91275623 -3.085255845
fanout256 60 131.25 6.796116505 7.611548556 -9.59233501 -14.38234642 -4.786005966 -7.270475606 0.892889939 -5.463172291 0.87866633
fanout512 175 75 5.339805825 2.887139108 -9.788398935 -14.68174762 -3.605912039 -5.480326955 -0.339012769 -3.613245451 -0.346339622

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
fanout64 -0.590034965 -0.582820987 -1.600182878 -6.611078023 -1.942675159 -3.220708857
fanout128 0.240384615 0.236943366 -1.645902389 1.057176891 -1.44373673 -1.437278953
fanout256 0 0.011210508 0.377185964 -1.488981537 0.25477707 -1.851155091
fanout512 0.087412587 0.10234719 0.262887187 -0.818939845 0.191082803 26.27737226

Appendix 8: Fanout Data Comparison for Block 2.

 127

Bigger Repeaters Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.06 -1.6 0.206 0.762 27032 18036 6396.44 4211.829 429350.789 962.957 430313.746
fanout256 -0.096 -3.7 0.22 0.82 24439 15442 6090.306 3905.609 433184.419 910.349 434094.768
ccd_32_24-16-8 -0.138 -2.6 0.208 0.784 26633 17631 7748.385 5563.26 442784.367 1250.884 444035.251
ccd_256_24-16-8 -0.125 -9.7 0.283 0.873 22722 13724 6826.84 4642.057 434365.334 1072.2 435437.534

Bigger Repeaters General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.4576 570155.2752 8.75E+05 6.72E+04 9.42E+05 13289
fanout256 0.4576 570219.1925 8.78E+05 6.62E+04 9.44E+05 13043
ccd_32_24-16-8 0.4576 570244.5538 8.88E+05 6.62E+04 9.54E+05 11644
ccd_256_24-16-8 0.4632 577104.8371 8.83E+05 7.19E+04 9.55E+05 10596

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout256 60 131.25 6.796116505 7.611548556 -9.59233501 -14.38234642 -4.786005966 -7.270475606 0.892889939 -5.463172291 0.87866633
ccd_32_24-16-8 130 62.5 0.970873786 2.887139108 -1.476028411 -2.245508982 21.13589747 32.08655907 3.128811765 29.90029669 3.18872105
ccd_256_24-16-8 108.3333333 506.25 37.37864078 14.56692913 -15.94406629 -23.90774008 6.728742863 10.21475468 1.167936598 11.34453563 1.190709813

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
fanout256 0 0.011210508 0.377185964 -1.488981537 0.25477707 -1.851155091
ccd_32_24-16-8 0 0.015658647 1.463024346 -1.444312091 1.263269639 -12.37865904
ccd_256_24-16-8 1.223776224 1.218889345 0.880100583 7.057772484 1.326963907 -20.26488073
Appendix 9: Bigger Repeater Set Data Comparison for Block 2.

 128

Smaller Repeaters Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.06 -1.6 0.206 0.762 27032 18036 6396.44 4211.829 429350.789 962.957 430313.746
fanout64 -0.07 -3 0.272 0.736 21844 12847 5326.668 3141.971 414481.485 777.867 415259.352
ccd32_14104 -0.092 -3 0.204 0.729 26540 17543 5640.886 3456.188 420373.182 799.444 421172.626
ccd64_14104 -0.131 -1.1 0.211 0.773 23427 14429 5395.47 3210.687 414770.937 788.01 415558.947

Smaller Repeaters General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.4576 570155.2752 8.75E+05 6.72E+04 9.42E+05 13289
fanout64 0.4549 566832.2906 8.61E+05 6.27E+04 9.24E+05 12861
ccd32_14104 0.4562 568389.9816 8.63E+05 6.83E+04 9.31E+05 103953
ccd64_14104 0.4579 570519.1582 8.63E+05 6.66E+04 9.30E+05 10267

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout64 16.66666667 87.5 32.03883495 -3.412073491 -19.19206866 -28.7702373 -16.7244905 -25.40126866 -3.463206399 -19.22100364 -3.498469231
ccd32_14104 53.33333333 87.5 -0.970873786 -4.330708661 -1.820065108 -2.733422045 -11.81210173 -17.94092305 -2.090972517 -16.9803013 -2.124291888
ccd64_14104 118.3333333 -31.25 2.427184466 1.443569554 -13.33604617 -19.99889111 -15.64886093 -23.76976843 -3.395790196 -18.16768558 -3.428846775

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
fanout64 -0.590034965 -0.582820987 -1.6 -6.696428571 -1.910828025 -3.220708857
ccd32_14104 -0.305944056 -0.309616288 -1.371428571 1.636904762 -1.167728238 682.2484762
ccd64_14104 0.065559441 0.063821737 -1.371428571 -0.892857143 -1.27388535 -22.74061254

Appendix 10: Smaller Repeater Set Data Comparison for Block 2.

 129

Smaller Repeaters Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.06 -1.6 0.206 0.762 27032 18036 6396.44 4211.829 429350.789 962.957 430313.746
noccd_route_local -0.312 -20.1 0.122 0.809 28432 19430 7097.331 4912.206 437564.51 1097.615 438662.125
noccd_custom_local -0.353 -17.3 0.124 0.784 26021 17025 6523.704 4339.092 430351.475 999.851 431351.326
noccd_route_nolocal -0.311 -25.1 0.142 0.76 25455 16458 6030.644 3845.947 423600.927 897.865 424498.792

Smaller Repeaters General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.4576 570155.2752 8.75E+05 6.72E+04 9.42E+05 13289
noccd_route_local 0.4614 574917.5981 8.83E+05 7.81E+04 9.61E+05 13705
noccd_custom_local 0.4585 571336.0884 8.73E+05 7.54E+04 9.49E+05 12485
noccd_route_nolocal 0.4594 572472.6622 8.70E+05 7.77E+04 9.47E+05 11104

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
noccd_route_local 420 1156.25 -40.77669903 6.167979003 5.179047055 7.728986472 10.95751699 16.628809 1.913055993 13.98380198 1.940067934
noccd_custom_local 488.3333333 981.25 -39.80582524 2.887139108 -3.740011838 -5.605455755 1.989606719 3.021561417 0.233069561 3.831323725 0.241121742
noccd_route_nolocal 418.3333333 1468.75 -31.06796117 -0.262467192 -5.833826576 -8.74916833 -5.718743551 -8.687009848 -1.339199123 -6.759595704 -1.351328898

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
noccd_route_local 0.83041958 0.835267708 0.925820094 16.22989875 2.027600849 3.130408609
noccd_custom_local 0.196678322 0.207103793 -0.182878043 12.2096486 0.711252654 -6.050116638
noccd_route_nolocal 0.393356643 0.406448401 -0.605783518 15.6938654 0.552016985 -16.44217022

Appendix 11: CCD Set Data Comparison for Block 2.
Moved Clock Pin Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.06 -1.6 0.206 0.762 27032 18036 6396.44 4211.829 429350.789 962.957 430313.746
fanout64 -0.07 -3 0.272 0.736 21844 12847 5326.668 3141.971 414481.485 777.867 415259.352
fanout64_moved -0.121 -2.5 0.193 0.633 26825 17824 6435.796 4250.756 428838.885 972.374 429811.259

Moved Clock Pin General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.4576 570155.2752 8.75E+05 6.72E+04 9.42E+05 13289
fanout64 0.4549 566832.2906 8.61E+05 6.27E+04 9.24E+05 12861
fanout64_moved 0.4572 569658.5026 8.77E+05 6.50E+04 9.42E+05 14462

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout64 16.66666667 87.5 32.03883495 -3.412073491 -19.19206866 -28.7702373 -16.7244905 -25.40126866 -3.463206399 -19.22100364 -3.498469231
fanout64_moved 101.6666667 56.25 -6.310679612 -16.92913386 -0.7657591 -1.175426924 0.615279749 0.924230305 -0.119227451 0.977925286 -0.11677224

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
reference_moved -0.590034965 -0.582820987 -1.6 -6.696428571 -1.910828025 -3.220708857
fanout64_moved -0.087412587 -0.087129353 0.24 -3.348214286 0 8.826849274

Appendix 12: Moved Clock Pin Data Comparison for Block 2.

 130

Block 3 results:
Slew Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.001 0 0.261 0.619 25164 10569 11261.779 2527.103 423489.869 1866.069 425355.938
slew100 -0.007 -1 0.145 0.534 23091 8496 10755.239 2020.563 421452.094 1783.15 423235.244
slew70 -0.003 0 0.239 0.584 26088 11493 11449.076 2714.4 422587.64 1894.401 424482.042
slew60 -0.001 0 0.217 0.543 26800 12205 11602.614 2867.938 425602.362 1918.639 427521.002
slew40 -0.003 0 0.171 0.536 29999 15404 12474.265 3739.589 433862.807 2065.309 435928.117

Slew General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3609 460734.1469 474300 11930 486200 660
slew100 0.3598 459311.0878 472400 11880 484300 686
slew70 0.361 460853.5848 473200 12280 485500 717
slew60 0.3611 460957.6574 476600 12440 489000 634
slew40 0.3624 462575.0959 484600 12970 497600 848

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
slew100 600 0 -44.44444444 -13.73182553 -8.237958989 -19.61396537 -4.49786841 -20.04429578 -0.481186245 -4.443512003 -0.498569271
slew70 200 100 -8.429118774 -5.654281099 3.671912256 8.742548964 1.663120898 7.41153012 -0.213046183 1.518271832 -0.205450523
slew60 0 0 -16.85823755 -12.27786753 6.501351137 15.47923172 3.026475657 13.48718275 0.498829643 2.817151992 0.509000535
slew40 200 0 -34.48275862 -13.40872375 19.21395645 45.74699593 10.76638069 47.97928695 2.449394604 10.67698997 2.485489929

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
slew100 -0.304793572 -0.30886773 -0.400590344 -0.419111484 -0.390785685 3.939393939
slew70 0.027708507 0.025923388 -0.231920725 2.933780386 -0.143973673 8.636363636
slew60 0.055417013 0.048511816 0.484925153 4.274937133 0.575894694 -3.939393939
slew40 0.415627598 0.399568604 2.171621337 8.71751886 2.344714109 28.48484848

Appendix 13: Slew Data Comparison for Block 3.

 131

Fanout Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.001 0 0.261 0.619 25164 10569 11261.779 2527.103 423489.869 1866.069 425355.938
fanout64 -0.001 0 0.311 0.667 21652 7057 10471.61 1736.934 411942.47 1733.845 413676.315
fanout128 -0.002 0 0.205 0.597 21417 6822 10518.134 1783.458 411557.955 1746.139 413304.094
fanout256 -0.001 0 0.272 0.65 21113 6518 10444.363 1709.687 410351.784 1735.122 412086.906

Fanout General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3609 460734.1469 4.74E+05 1.19E+04 4.86E+05 660
fanout64 0.3608 460599.2009 4.63E+05 1.20E+04 4.75E+05 517
fanout128 0.3619 462004.0387 4.63E+05 1.24E+04 4.75E+05 495
fanout256 0.3611 460966.9966 4.61E+05 1.21E+04 4.73E+05 520

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout64 0 0 19.15708812 7.754442649 -13.95644572 -33.22925537 -7.016378141 -31.26777975 -2.726723789 -7.08569726 -2.745846938
fanout128 100 0 -21.4559387 -3.554119548 -14.8903195 -35.45273914 -6.603264014 -29.42677841 -2.81752053 -6.426879178 -2.833355062
fanout256 0 0 4.214559387 5.008077544 -16.09839453 -38.3290756 -7.258320377 -32.34597086 -3.102337497 -7.017264635 -3.119512581

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
fanout64 -0.027708507 -0.029289342 -2.320675105 0.840336134 -2.263374486 -21.66666667
fanout128 0.277085065 0.275623547 -2.320675105 4.201680672 -2.263374486 -25
fanout256 0.055417013 0.050538841 -2.742616034 1.680672269 -2.674897119 -21.21212121 .

Appendix 14: Fanout Data Comparison for Block 3.

 132

Bigger Repeaters Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.001 0 0.261 0.619 25164 10569 11261.779 2527.103 423489.869 1866.069 425355.938
fanout128 -0.002 0 0.205 0.597 21417 6822 10518.134 1783.458 411557.955 1746.139 413304.094
fanout256 -0.001 0 0.272 0.65 21113 6518 10444.363 1709.687 410351.784 1735.122 412086.906
ccd_32_24-16-8 -0.001 0 0.153 0.554 24783 10188 11871.849 3137.173 431723.836 1997.39 433721.226
ccd_128_24-16-8 -0.003 0 0.213 0.625 21681 7086 11089.562 2354.886 417989.922 1857.151 419847.073
ccd_256_24-16-8 -0.007 -1 0.142 0.533 20813 6218 10847.545 2112.869 415497.709 1815.432 417313.141

Bigger Repeaters General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3609 460734.1469 4.74E+05 1.19E+04 4.86E+05 660
fanout128 0.3619 462004.0387 4.63E+05 1.24E+04 4.75E+05 495
fanout256 0.3611 460966.9966 4.61E+05 1.21E+04 4.73E+05 520
ccd_32_24-16-8 0.3607 460416.0456 4.83E+05 1.24E+04 4.95E+05 703
ccd_128_24-16-8 0.3636 464136.2141 4.69E+05 1.29E+04 4.82E+05 570
ccd_256_24-16-8 0.362 462145.4107 4.66E+05 1.20E+04 4.78E+05 515

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout128 100 0 -21.4559387 -3.554119548 -14.8903195 -35.45273914 -6.603264014 -29.42677841 -2.81752053 -6.426879178 -2.833355062
fanout256 0 0 4.214559387 5.008077544 -16.09839453 -38.3290756 -7.258320377 -32.34597086 -3.102337497 -7.017264635 -3.119512581
ccd_32_24-16-8 0 0 -41.37931034 -10.50080775 -1.514067716 -3.604882203 5.417172544 24.14108171 1.944312628 7.037306766 1.966655982
ccd_128_24-16-8 200 0 -18.3908046 0.969305331 -13.84120172 -32.95486801 -1.529216654 -6.814799397 -1.298719852 -0.477903014 -1.295118866
ccd_256_24-16-8 600 100 -45.59386973 -13.89337641 -17.29057384 -41.16756552 -3.678228813 -16.39165479 -1.887213977 -2.713565254 -1.890839243

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
fanout128 0.277085065 0.275623547 -2.320675105 4.201680672 -2.263374486 -25
fanout256 0.055417013 0.050538841 -2.742616034 1.680672269 -2.674897119 -21.21212121
ccd_32_24-16-8 -0.055417013 -0.069042267 1.835443038 4.033613445 1.872427984 6.515151515
ccd_128_24-16-8 0.748129676 0.738401359 -1.054852321 8.151260504 -0.843621399 -13.63636364
ccd_256_24-16-8 0.304793572 0.30630762 -1.603375527 0.420168067 -1.58436214 -21.96969697

Appendix 15: Bigger Repeater Set Data Comparison for Block 3.

 133

Smaller Repeaters Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.001 0 0.261 0.619 25164 10569 11261.779 2527.103 423489.869 1866.069 425355.938
fanout64 -0.001 0 0.311 0.667 21652 7057 10471.61 1736.934 411942.47 1733.845 413676.315
ccd32_14104 -0.003 0 0.232 0.593 24805 10210 10698.233 1963.557 416620.506 1750.003 418370.509
ccd64_14104 -0.005 0 0.195 0.583 21935 7340 10425.742 1691.066 413623.763 1723.575 415347.338

Smaller Repeaters General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3609 460734.1469 4.74E+05 1.19E+04 4.86E+05 660
fanout64 0.3608 460599.2009 4.63E+05 1.20E+04 4.75E+05 517
ccd32_14104 0.3606 460345.7023 4.68E+05 1.18E+04 4.79E+05 674
ccd64_14104 0.3612 461106.0266 4.65E+05 1.22E+04 4.77E+05 613

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout64 0 0 19.15708812 7.754442649 -13.95644572 -33.22925537 -7.016378141 -31.26777975 -2.726723789 -7.08569726 -2.745846938
ccd32_14104 200 0 -11.11111111 -4.200323102 -1.426641234 -3.396726275 -5.004058417 -22.30008037 -1.622084376 -6.219812879 -1.642254962
ccd64_14104 400 0 -25.28735632 -5.815831987 -12.83182324 -30.55161321 -7.423667255 -33.0828225 -2.329714763 -7.636052043 -2.352994071

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
fanout64 -0.027708507 -0.029289342 -2.320675105 0.840336134 -2.263374486 -21.66666667
ccd32_14104 -0.08312552 -0.084309922 -1.265822785 -0.840336134 -1.440329218 2.121212121
ccd64_14104 0.08312552 0.080714595 -1.898734177 2.521008403 -1.851851852 -7.121212121

Appendix 16: Smaller Repeater Set Data Comparison for Block 3.

 134

Moved Clock Pin Clock QoR metrics

Set WNS (ns) TNS (ns) Skew (ns) Latency (ns) Clock Cells Clock Repeaters Area Clock Cells (um2) Repeater Area (um2) Dynamic Clock Power (uW) Leakage Clock Power (uW) Total Clock Power (uW)
reference_run -0.001 0 0.261 0.619 25164 10569 11261.779 2527.103 423489.869 1866.069 425355.938
fanout128 -0.002 0 0.205 0.597 21417 6822 10518.134 1783.458 411557.955 1746.139 413304.094
reference_run_moved -0.001 0 0.215 0.504 25431 10836 11320.841 2586.165 423633.947 1875.401 425509.348
fanout128_moved -0.001 0 0.232 0.502 24908 10313 11181.069 2446.392 421164.578 1851.209 423015.788
fanout128_slew100_moved -0.003 0 0.161 0.553 19257 4662 9980.349 1245.673 410150.211 1657.778 411807.989

Moved Clock Pin General QoR metrics

Set Utilization Total Stdcell Area (um2) Total Dynamic Power (uW) Total Leakage Power (uW) Total Power (uW) Number of DRCs
reference_run 0.3609 460734.1469 4.74E+05 1.19E+04 4.86E+05 660
fanout128 0.3619 462004.0387 4.63E+05 1.24E+04 4.75E+05 495
reference_run_moved 0.361 460814.7146 4.74E+05 1.21E+04 4.86E+05 642
fanout128_moved 0.3605 460242.8863 4.72E+05 1.18E+04 4.84E+05 612
fanout127_slew100_moved 0.3611 460965.7114 4.61E+05 1.21E+04 4.73E+05 526

Clock QoR Comparison

Set WNS (%) TNS (%) Skew (%) Latency (%) Clock Cells (%) Clock Repeaters (%) Area Clock Cells (%) Repeater Area (%) Dynamic Clock Power (%) Leakage Clock Power (%) Total Clock Power (%)
fanout128 100 0 -21.4559387 -3.554119548 -14.8903195 -35.45273914 -6.603264014 -29.42677841 -2.81752053 -6.426879178 -2.833355062
reference_run_moved 0 0 -17.62452107 -18.57835218 1.06103958 2.526256032 0.524446448 2.33714257 0.034021593 0.500088689 0.036066265
fanout128_moved 0 0 -11.11111111 -18.90145396 -1.017326339 -2.422178068 -0.716671851 -3.193815211 -0.549078306 -0.796326395 -0.550162767
fanout128_slew100_moved 200 0 -38.31417625 -10.66235864 -23.47401049 -55.88986659 -11.37857527 -50.70747017 -3.149935566 -11.16202027 -3.185085193

General QoR Comparison

Set Utilization (%) Total Stdcell Area (%) Total Dynamic Power (%) Total Leakage Power (%) Total Power (%) Number of DRCs (%)
fanout128 0.277085065 0.275623547 -2.466793169 3.520536463 -2.324146442 -25
reference_run_moved 0.027708507 0.017486809 0.021083702 1.089689858 0.041135335 -2.727272727
fanout128_moved -0.110834026 -0.106625611 -0.527092557 -1.089689858 -0.555327026 -7.272727273
fanout128_slew100_moved 0.055417013 0.050259895 -2.740881299 1.257334451 -2.632661456 -20.3030303
Appendix 17: Moved Clock Pin Data Comparison for Block 3.

 135

Other results:
Clock Wirelength across all experiment sets:

Block Block 1
Experiment Set reference_run slew100 slew60 slew40 fanout64 fanout128 fanout256 fanout512 ccd_32_24-16-8 ccd_256-24-16-8 ccd32_14104 ccd64_14104 noccd_local_route noccd_local_custom noccd_nolocal_route reference_moved
Total Wirelength (um) 1682771.29 1815786.69 1815399.50 1886413.97 1827782.79 1672609.45 1756044.33 1723189.54 1892205.13 1857162.11 1615131.10 1854979.26 1588709.34 1581253.43 1628813.51 1856928.93
% To reference_block 100.00 107.90 107.88 112.10 108.62 99.40 104.35 102.40 112.45 110.36 95.98 110.23 94.41 93.97 96.79 110.35

Block Block 2
Experiment Set reference_run slew100 slew60 slew40 fanout64 fanout128 fanout256 fanout512 ccd_32_24-16-8 ccd_256-24-16-8 ccd32_14104 ccd64_14104 noccd_local_route noccd_local_custom noccd_nolocal_route fanout64_moved
Total Wirelength (um) 1341773.04 1374205.26 1364944.85 1341692.14 1261267.90 1251015.02 1303121.56 1294262.16 1354980.17 1260463.57 1301396.39 1264796.69 1306348.96 1339627.00 1306348.96 1343597.60
% To reference_block 100.00 102.42 101.73 99.99 94.00 93.24 97.12 96.46 100.98 93.94 96.99 94.26 97.36 99.84 97.36 100.14

Block Block 3
Experiment Set reference_run slew100 slew70 slew60 slew40 fanout64 fanout128 fanout256 ccd_32_24-16-8 ccd_128_24-16-8 ccd_256-24-16-8 ccd32_14104 ccd644_14104 reference_moved fanout128_moved fanout128_slew100_moved
Total Wirelength (um) 981898.35 984931.32 971968.26 974390.65 989553.73 936849.36 928990.85 920691.88 987161.64 936273.78 922644.75 968134.13 934195.61 985925.12 973986.83 916847.33
% To reference_block 100.00 100.31 98.99 99.24 100.78 95.41 94.61 93.77 100.54 95.35 93.97 98.60 95.14 100.41 99.19 93.37

Appendix 18: Clock wirelength across all experiment sets and blocks.

Number of Clock Violating Paths across all experiment sets:

Block Block 1
Experiment Set reference_run slew100 slew60 slew40 fanout64 fanout128 fanout256 fanout512 ccd_32_24-16-8 ccd_256-24-16-8 ccd32_14104 ccd64_14104 noccd_local_route noccd_local_custom noccd_nolocal_route reference_moved
Number of Violating Paths 10243 11307 11417 13163 12853 10364 12621 10560 14763 12192 11630 11450 15238 13132 17585 10836
% To reference_block 100.00 110.39 111.46 128.51 125.48 101.18 123.22 103.09 144.13 119.03 113.54 111.78 148.77 128.20 171.68 105.79

Block Block 2
Experiment Set reference_run slew100 slew60 slew40 fanout64 fanout128 fanout256 fanout512 ccd_32_24-16-8 ccd_256-24-16-8 ccd32_14104 ccd64_14104 noccd_local_route noccd_local_custom noccd_nolocal_route fanout64_moved
Number of Violating Paths 163 166 229 98 296 579 718 216 454 1089 278 120 1167 1040 1290 495
% To reference_block 100.00 101.84 140.49 60.12 181.60 355.21 440.49 132.52 278.53 668.10 170.55 73.62 715.95 638.04 791.41 303.68

Block Block 3
Experiment Set reference_run slew100 slew70 slew60 slew40 fanout64 fanout128 fanout256 ccd_32_24-16-8 ccd_128_24-16-8 ccd_256-24-16-8 ccd32_14104 ccd644_14104 reference_moved fanout128_moved fanout128_slew100_moved
Number of Violating Paths 39 532 41 16 7 32 60 41 29 91 445 37 40 27 29 39
% To reference_block 100.00 1364.10 105.13 41.03 17.95 82.05 153.85 105.13 74.36 233.33 1141.03 94.87 102.56 69.23 74.36 100.00

Appendix 19: Number of Violating Paths across all experiment sets and blocks.

 136

Appendix 18: Script run_gen.tcl

function run_gen () {

 ### Creates the block folder, copies override, scripts and floorplan.def file
 ### Copies the floorplan.def, the scripts directory and the override directory to the generated folder.

 mkdir $1/$2
 cp -r $1/ref_run_shell/floorplan.def $1/ref_run_shell/scripts $1/ref_run_shell/override $1/$2

 ### Copies the configuration file and renames it.
 cp -r sets_folder/$3 $1/$2/override/
 mv $1/$2/override/$3 $1/$2/override/set_con.tcl

 ### Copies the reporters onto the scripts folder of the block.
 cp -r sets_folder/report_parser.tcl $1/$2/scripts
 cp -r sets_folder/report_parser_v2.tcl $1/$2/scripts
 cp -r sets_folder/proc_QoR.tcl $1/$2/scripts
 cp -r clock_structure_analyzer.tcl $1/$2/scripts

 ### Launches a job depending on the block chosen selecting 4 cores and the needed memory with
margin.

 cd $1/$2

 echo "Following files were copied:"
 echo "report_parser.tcl generates basic report files"
 echo "proc_QoR.tcl generates timing information reports"
 echo "report_parser_v2.tcl combines reports from report_parser and proc_QoR"
 echo "clock_structure_analyzer.tcl generates a CSV file with clock structure information"

 echo "Directory was changed to $1/$2"

 if [$1 = "Block_4"]; then
 escad_lsf -noemail -m $mem 4-t version_tool -q $numcore -name iccjob4 "icc2_shell -f
/$1/$2/scripts/flow_run_all.tcl" -mastercpus $cpu
 fi

 if [$1 = "Block_1"]; then
 escad_lsf -noemail -m $mem1 -t version_tool -q $numcore -name iccjob1 "icc2_shell -f
/$1/$2/scripts/flow_run_all.tcl" -mastercpus $cpu
 fi

 if [$1 = "Block_2"]; then
 escad_lsf -noemail -m $mem2 -t version_tool -q $numcore -name iccjob2 "icc2_shell -f
/$1/$2/scripts/flow_run_all.tcl" -mastercpus $cpu
 fi

 if [$1 = "Block_3"]; then
 escad_lsf -noemail -m $mem3 -t version_tool -q $numcore -name iccjob3 "icc2_shell -f
/$1/$2/scripts/flow_run_all.tcl" -mastercpus $cpu
 fi

 echo "Returning to base directory"

 cd ../..
}
echo "run_gen var1=block var2=directory on block var3=script_name"
echo "block = block_1 / block_2 / block_3 /block_4"
echo "directory = folder name on destination"
echo "script_name = script name from sets_folder"

 137

Appendix 19: Script report_parser.tcl

#General Procedure for report parsing:

proc report_parser {args} {

 parse_proc_arguments -args $args results

 #Input proc arguments
 set global_power_flag [info exists results(-global_power)]
 set clock_power_flag [info exists results(-clock_power)]
 set latency_flag [info exists results(-latency)]
 set general_routing_flag [info exists results(-general_routing)]
 set local_skew_flag [info exists results(-local_skew)]
 set wirelength_flag [info exists results(-wirelength)]
 set congestion_flag [info exists results(-layer_congestion)]
 set unit_flag [info exists results(-units)]
 set utilization_flag [info exists results(-utilization)]
 set clk_area_flag [info exists results(-clk_area)]
 set power_flag [info exists results(-power_scenario)]
 set timing_flag [info exists results(-timing_scenarios)]
 set report_flag [info exists results(-report_flag)]
 set compact_flag [info exists results(-compact)]
 set QoR_file_flag [info exists results(-QoR_file)]
 set QoR_reformat_flag [info exists results(-QoR_reformat)]
 set summary_flag [info exists results(-summary)]

 if {[info exists results(-step)]} { ;# If step is defined:
 if {!$report_flag} { ;# If report_flag (i.e) file already exists and reports are not needed again.
 set step_sel $results(-step)
 rec_mkdir reports/$step_sel/selected
 } else {
 set step_sel $results(-step)
 }
 }

 if {[info exists results(-power_scenario)]} {
 set pw_scen $results(-power_scenario)
 } else {
 echo "Power scenario not found. It will be atempted to be obtained from the active scenario
list.\n"
 }

 if {[info exists results(-timing_scenarios)]} {
 set list_timing $results(-timing_scenarios)
 } else {
 echo "Timing scenarios not found. It will be atempted to be obtained from the active scenario
list.\n"
 }

 if {$QoR_file_flag} {
 set QoR_file_name $results(-QoR_file)
 }

 #-tee settings:

 if {[info exists results(-tee)]} {
 set tee "-tee -var"
 } else {
 set tee "-var"
 }
 if {[info exists results(-units)]} {
 set unit $results(-units)
 }

 138

 set nil "~"

 # Unit specificatoin

 if {$unit_flag} {
 if {string match $unit "ps"} {
 set unit 1000000
 } else {
 set unit 1000
 }
 } else {
 catch {redirect -var y {report_units}}

 if {[regexp {(\S+)\s+Second} $y match unit]} {
 if {[regexp {e-12} $unit]} {
 set unit 1000000
 } else {
 set unit 1000
 }
 } elseif {[regexp {ns} $y]} {
 set unit 1000
 } elseif {[regexp {ps} $y]} {
 set unit 1000000
 }
 }

 #Layer obtention

 set LAYERS_CONGETION [get_attr [get_layers -filter "layer_type == interconnect"] name]

 if {$::synopsys_program_name == "icc2_shell"} {
 if {$global_power_flag} {

 echo -n "Running Global Power Report\n"

 #Obtains all the power scenarios and puts them on a list called $power_scenario
 if {$power_flag} {
 set power_scenario $pw_scen
 echo "Power scenario found\n"
 } else {

 set list1 [get_object_name [all_scenarios]]

 foreach list_scenario $list1 {
 if {[regexp {(?=power)} $list_scenario]} {
 lappend power_scenario $list_scenario
 }
 }
 foreach scenario $power_scenario {
 regsub $scenario $list1 "" list1
 }
 echo "Power scenarios from active scenario list used\n"
 }

 foreach pow_scen $power_scenario {

 if {$report_flag} {
 set text_file [open "reports/${step_sel}/selected/report_power_${pow_scen}.rpt" "r"]
 set x [read $text_file]
 } else {
 redirect {*}$tee x {report_power -nosplit -scenario $pow_scen}
 echo "$x" > "reports/${step_sel}/selected/report_power_${pow_scen}.rpt"

 139

 }

 set group_power_just_set 0

 foreach line [split $x "\n"] {
 if {[regexp {^\s*io_pad\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match internal
switching leakage total a b]} {
 set group_perc(io_pad) [concat ab]
 set group_int(io_pad) $internal
 set group_switch(io_pad) $switching
 set group_leak(io_pad) $leakage
 set group_total(io_pad) $total
 } elseif {[regexp {^\s*memory\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match
internal switching leakage total a b]} {
 set group_perc(mem) [concat ab]
 set group_int(mem) $internal
 set group_switch(mem) $switching
 set group_leak(mem) $leakage
 set group_total(mem) $total
 } elseif {[regexp {^\s*black_box\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match
internal switching leakage total a b]} {
 set group_perc(bb) [concat ab]
 set group_int(bb) $internal
 set group_switch(bb) $switching
 set group_leak(bb) $leakage
 set group_total(bb) $total
 } elseif {[regexp {^\s*clock_network\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line
match internal switching leakage total a b]} {
 set group_perc(clk) [concat ab]
 set group_int(clk) $internal
 set group_switch(clk) $switching
 set group_leak(clk) $leakage
 set group_total(clk) $total
 } elseif {[regexp {^\s*register\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match
internal switching leakage total a b]} {
 set group_perc(reg) [concat ab]
 set group_int(reg) $internal
 set group_switch(reg) $switching
 set group_leak(reg) $leakage
 set group_total(reg) $total
 } elseif {[regexp {^\s*sequential\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match
internal switching leakage total a b]} {
 set group_perc(seq) [concat ab]
 set group_int(seq) $internal
 set group_switch(seq) $switching
 set group_leak(seq) $leakage
 set group_total(seq) $total
 } elseif {[regexp {^\s*combinational\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line
match internal switching leakage total a b]} {
 set group_perc(comb) [concat ab]
 set group_int(comb) $internal
 set group_switch(comb) $switching
 set group_leak(comb) $leakage
 set group_total(comb) $total

 set group_power_just_set 1
 } elseif {[regexp {^\s*Total\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$}
$line match internal a switching b leakage c total d]} {
 if {$group_power_just_set} {
 set group_perc(tot) $nil
 set group_int(tot) [concat $internal$a]
 set group_switch(tot) [concat $switching$b]
 set group_leak(tot) [concat $leakage$c]
 set group_total(tot) [concat $total$d]

 140

 set internal_total [concat $internal$a]
 set switching_total [concat $switching$b]
 set leakage_total [concat $leakage$c]
 set total_total [concat $total$a]
 set group_power_just_set 0
 }
 }
 }
 }
 }
 if {$clock_power_flag} { #OK ATM, only has 1 clock/scenario

 if {$power_flag} {
 set power_scenario $pw_scen
 } else {

 set list1 [get_object_name [all_scenarios]]
 foreach list_scenario $list1 {
 if {[regexp {(?=power)} $list_scenario]} {
 lappend power_scenario $list_scenario
 }
 }
 foreach scenario $power_scenario {
 regsub $scenario $list1 "" list1
 }
 }

 echo -n "Running Clock Power Report\n"

 foreach pow_scen $power_scenario {
 if {$report_flag} {
 set text_file [open "reports/${step_sel}/selected/clock_QoR_power_${pow_scen}.rpt" "r"]
 set x [read $text_file]
 } else {
 redirect {*}$tee x {report_clock_QoR -type power -nosplit -scenario $pow_scen}
 echo "$x" > "reports/${step_sel}/selected/clock_QoR_power_${pow_scen}.rpt"
 }

 foreach line [split $x "\n"] {
 if {[regexp {^\s*Total\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match clk_leakage
clk_internal sink_internal net_switching total_dyn total]} {
 set clk_clk_leakage $clk_leakage
 set clk_clk_internal $clk_internal
 set clk_sink_internal $sink_internal
 set clk_net_switching $net_switching
 set clk_total_dyn $total_dyn
 set clk_total $total
 }
 }

 }

 }

 if {$general_routing_flag} { ; #OK

 echo -n "Running General Routing Report\n"

 if {$report_flag} {
 set text_file [open "reports/${step_sel}/selected/check_route.rpt" "r"]
 set x [read $text_file]
 } else {
 redirect {*}$tee x {check_route -antenna true}
 echo "$x" > "reports/${step_sel}/selected/check_route.rpt"

 141

 }

 set group_general_route_just_set 0
 set gflag 0

 foreach line [split $x "\n"] {
 if {[regexp {^\s*Total number of nets =\s*(\S+)\s*, of which\s*(\S+)\s*are not extracted\s*$} $line
match total_nets not_extracted]} {
 set groute_total_nets $total_nets
 } elseif {[regexp {^\s*Total number of open nets =\s*(\S+)\s*, of which\s*(\S+)\s*are frozen\s*$}
$line match open_nets not_frozen]} {
 set groute_open_nets $open_nets
 } elseif {[regexp {^\s*Total Wire Length =\s*(\S+)\s*micron\s*$} $line match wire_length]} {
 set groute_wire_length $wire_length
 } elseif {[regexp {^\s*Total Number of Contacts =\s*(\S+)\s*$} $line match contacts]} {
 set groute_contacts $contacts
 } elseif {[regexp {^\s*Total Number of Wires =\s*(\S+)\s*$} $line match wires]} {
 set groute_wires $wires
 } elseif {[regexp {^\s*Total Number of Routed Wires =\s*(\S+)\s*$} $line match routed_wires]} {
 set groute_routed_wires $routed_wires
 } elseif {[regexp {^\s*Total Routed Wire Length =\s*(\S+)\s*micron\s*$} $line match
routed_wire_length]} {
 set groute_routed_wire_length $routed_wire_length
 } elseif {[regexp {^\s*Total Number of Routed Contacts =\s*(\S+)\s*$} $line match
routed_contacts]} {
 set groute_routed_contacts $routed_contacts
 } elseif {[regexp {^\s*Total number of DRCs =\s*(\S+)\s*$} $line match DRC]} {
 set groute_DRC $DRC
 } elseif {[regexp {^\s*Total number of antenna violations = \s*(\S+)\s*$} $line match antenna]} {
 set groute_antenna $antenna
 }
 }
 set groute_tot 0
 foreach line [split $x "\n"] {

 foreach layer $LAYERS_CONGETION {

 if {[regexp {^\t*\s*Redundant} $line match]} {
 set gflag 0
 continue
 } elseif {[regexp {^\s*DRC-SUMMARY:\s*$} $line match]} {

 set gflag 1
 continue

 }
 if {$gflag && [regexp "$layer" $line match]} {

 if {[regexp {^\t*\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match a layer tp length
micron]} {
 set groute_length($layer) $length
 set groute_tot [expr {$groute_tot + $length}]

 }
 }
 }
 }
 }

 if {$latency_flag} {

 if {$timing_flag} {

 142

 set list1 $list_timing
 echo "Timing scenarios found.\n"

 } else {
 #First of all obtains all timing scenarios to run the timing_scenario foreach

 set list1 [get_object_name [all_scenarios]]

 foreach list_scenario $list1 {
 if {[regexp {(?=power)} $list_scenario]} {
 lappend power_scenario $list_scenario
 }
 }
 foreach scenario $power_scenario {
 regsub $scenario $list1 "" list1
 }
 }

 echo -n "Running scenario latency reports\n"

 foreach timing_scenario $list1 {

 if {$report_flag} {
 set text_file [open "reports/${step_sel}/selected/latency_${timing_scenario}.rpt" "r"]
 set x [read $text_file]
 } else {
 redirect {*}$tee x {report_clock_QoR -type latency -show_paths -scenarios $timing_scenario -
nosplit}
 echo "$x" > "reports/${step_sel}/selected/latency_${timing_scenario}.rpt"
 }

 foreach line [split $x "\n"] {

 if {[regexp {^\s*Largest Path #1\s*$} $line match path_num]} {
 set path_1_set 1
 continue
 } elseif {[regexp {^\s*Mode\s*:\s*(\S+)\s*$} $line match mode_1]} {

 if {$path_1_set} {
 set group_modeL($timing_scenario) $mode_1
 set group_pathL($timing_scenario) "Large"
 }
 } elseif {[regexp {^\s*Corner\s*:\s*(\S+)\s*$} $line match corner_1]} {
 if {$path_1_set} {
 set group_cornerL($timing_scenario) $corner_1

 }
 } elseif {[regexp {^\s*Scenario\s*:\s*(\S+)\s*$} $line match scenario_1]} {
 if {$path_1_set} {
 set group_scenarioL($timing_scenario) $scenario_1
 }
 } elseif {[regexp {^\s*Latency\s*:\s*(\S+)\s*$} $line match latency_1]} {
 if {$path_1_set} {
 set group_latencyL($timing_scenario) $latency_1
 set path_1_set 0
 }
 }
 }

 }
 }

 if {$latency_flag} {

 if {$timing_flag} {

 143

 set list1 $list_timing
 echo "Timing scenarios found.\n"

 } else {
 #First of all obtains all timing scenarios to run the timing_scenario foreach

 set list1 [get_object_name [all_scenarios]]

 foreach list_scenario $list1 {
 if {[regexp {(?=power)} $list_scenario]} {
 lappend power_scenario $list_scenario
 }
 }
 foreach scenario $power_scenario {
 regsub $scenario $list1 "" list1
 }
 }

 echo -n "Running scenario latency reports\n"

 foreach timing_scenario $list1 {

 if {$report_flag} {
 set text_file [open "reports/${step_sel}/selected/latency_${timing_scenario}.rpt" "r"]
 set x [read $text_file]
 } else {
 redirect {*}$tee x {report_clock_QoR -type latency -show_paths -scenarios $timing_scenario -
nosplit}
 echo "$x" > "reports/${step_sel}/selected/latency_${timing_scenario}.rpt"
 }

 foreach line [split $x "\n"] {

 if {[regexp {^\s*Smallest Path #1\s*$} $line match path_num]} {
 set path_1_set 1
 continue
 } elseif {[regexp {^\s*Mode\s*:\s*(\S+)\s*$} $line match mode_1]} {

 if {$path_1_set} {
 set group_modeS($timing_scenario) $mode_1
 set group_pathS($timing_scenario) "Small"
 }
 } elseif {[regexp {^\s*Corner\s*:\s*(\S+)\s*$} $line match corner_1]} {
 if {$path_1_set} {
 set group_cornerS($timing_scenario) $corner_1
 }
 } elseif {[regexp {^\s*Scenario\s*:\s*(\S+)\s*$} $line match scenario_1]} {
 if {$path_1_set} {
 set group_scenarioS($timing_scenario) $scenario_1
 }
 } elseif {[regexp {^\s*Latency\s*:\s*(\S+)\s*$} $line match latency_1]} {
 if {$path_1_set} {
 set group_latencyS($timing_scenario) $latency_1
 set path_1_set 0
 }
 }
 }

 }
 }

 if {$utilization_flag} {
 echo -n "Running utilization report\n"

 if {$report_flag} {

 144

 set text_file [open "reports/${step_sel}/selected/utilization.rpt" "r"]
 set x [read $text_file]
 } else {
 redirect {*}$tee x {report_utilization}
 echo "$x" > "reports/${step_sel}/selected/utilization.rpt"
 }

 foreach line [split $x "\n"] {

 if {[regexp {^\s*Utilization Ratio:\s*(\S+)\s*$} $line match u_ratio]} {
 set utilization $u_ratio
 } elseif {[regexp {^\s*Total Area:\s*(\S+)\s*$} $line match area]} {
 set total_area $area
 } elseif {[regexp {^\s*Total Capacity Area:\s*(\S+)\s*$} $line match area]} {
 set total_cap_area $area
 } elseif {[regexp {^\s*Total Area of cells:\s*(\S+)\s*$} $line match area]} {
 set total_cell_area $area

 } elseif {[regexp {^\s*- hard_macros\s*:\s*(\S+)\s*$} $line match area]} {
 set hard_macros_area $area
 } elseif {[regexp {^\s*- macro_keepouts\s*:\s*(\S+)\s*$} $line match area]} {
 set macro_keepouts_area $area
 } elseif {[regexp {^\s*- soft_macros\s*:\s*(\S+)\s*$} $line match area]} {
 set soft_macros_area $area
 } elseif {[regexp {^\s*- io_cells\s*:\s*(\S+)\s*$} $line match area]} {
 set io_cells_area $area
 } elseif {[regexp {^\s*- hard_blockages\s*:\s*(\S+)\s*$} $line match area]} {
 set hard_blockages_area $area
 }
 }
 }

 if {$clk_area_flag} { ;#Must be adapted for multiple clocks

 echo -n "Running clock area report\n"

 if {$report_flag} {
 set text_file [open "reports/${step_sel}/selected/clock_area.rpt" "r"]
 set x [read $text_file]
 } else {
 redirect {*}$tee x {report_clock_QoR -type area}
 echo "$x" > "reports/${step_sel}/selected/clock_area.rpt"
 }

 foreach line [split $x "\n"] {

 if {[regexp {^\s*Clock\s*Sinks\s*Clock\s*} $line]} {
 set clk_area_just_set 1

 continue
 } elseif {[regexp {^\s*Total\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line
match sinks cell_count stdcell_area repeater_count repeater_area physical_sinks sink_area macro_area]} {

 if {$clk_area_just_set} {
 set clk_sinks $sinks
 set clk_cell_count $cell_count
 set clk_stdcell_area $stdcell_area
 set clk_repeater_count $repeater_count
 set clk_repeater_area $repeater_area
 set clk_physical_sinks $physical_sinks
 set clk_sink_area $sink_area
 set clk_macro_area $macro_area
 set clk_area_just_set 0
 }
 }
 }

 145

 }
 if {$wirelength_flag} {
 echo -n "Running wirelength report\n"

 if {$report_flag} {
 set text_file [open "reports/${step_sel}/selected/design_wirelength.rpt" "r"]
 set x [read $text_file]
 } else {
 redirect {*}$tee x {report_design -routing}
 echo "$x" > "reports/${step_sel}/selected/design_wirelength.rpt"
 }

 set signal_wire 0
 set clock_wire 0
 set pg_wire 0
 set hv_wire 0
 set sflag 0

 set llist {}

 foreach line [split $x "\n"] {

 if {[regexp {^\s*Total wire length =\s*(\S+)\s*micron\s*$} $line match wire_length]} {
 set route_wirelength $wire_length
 } elseif {[regexp {^\s*Total number of wires =\s*(\S+)\s*$} $line match wire_number]} {
 set route_wire $wire_number
 } elseif {[regexp {^\s*Total number of contacts =\s*(\S+)\s*$} $line match contact_number]} {
 set route_contact $contact_number
 } elseif {[regexp {^\s*Clock wiring statistics\s*$} $line match]} {
 set sflag 0
 } elseif {[regexp {^\s*Signal Wiring Statistics\s*$} $line match]} {
 set sflag 1
 continue

 } elseif {$sflag && [regexp {^\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match layer numwires
percent_totalnumwires wirelength percent_totallength]} {
 lappend llist $layer
 }

}
 set tot_wire_s 0
 set tot_wire_c 0
 set tot_wire_pg 0
 set tot_wire_hv 0

 foreach layer $llist {

 foreach line [split $x "\n"] {

 if {[regexp {^\s*FINAL WIRING STATISTICS\s*$} $line match]} {
 set signal_wire 1
 set ll "s"
 continue
 } elseif {$signal_wire && [regexp "$layer" $line match]} {
 if {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match layer numwires
percent_totalnumwires wirelength percent_totallength]} {
 set group_numwire([concat $layer$ll]) $numwires
 set group_totwire([concat $layer$ll]) $percent_totalnumwires
 set group_wirelength([concat $layer$ll]) $wirelength
 set group_totlength([concat $layer$ll]) $percent_totallength
 set tot_wire_s [expr {$tot_wire_s + $wirelength}]
 set signal_wire 0
 }
 } elseif {[regexp {^\s*Clock wiring statistics\s*$} $line match]} {
 set clock_wire 1

 146

 set ll "c"
 continue ; # Sets a flag for clock wiring statistics.
 } elseif {$clock_wire && [regexp "$layer" $line match]} {
 if {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match layer numwires
percent_totalnumwires wirelength percent_totallength]} {
 set group_numwire([concat $layer$ll]) $numwires
 set group_totwire([concat $layer$ll]) $percent_totalnumwires
 set group_wirelength([concat $layer$ll]) $wirelength
 set group_totlength([concat $layer$ll]) $percent_totallength
 set tot_wire_c [expr {$tot_wire_c + $wirelength}]
 set clock_wire 0
 }
 } elseif {[regexp {^\s*P/G wiring statistics\s*$} $line match]} {
 set pg_wire 1
 set ll "pg"
 continue ; # Sets a flag for clock wiring statistics.
 } elseif {$pg_wire && [regexp "$layer" $line match]} {
 if {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match layer numwires
percent_totalnumwires wirelength percent_totallength]} {
 set group_numwire([concat $layer$ll]) $numwires
 set group_totwire([concat $layer$ll]) $percent_totalnumwires
 set group_wirelength([concat $layer$ll]) $wirelength
 set group_totlength([concat $layer$ll]) $percent_totallength
 set tot_wire_pg [expr {$tot_wire_pg + $wirelength}]
 set pg_wire 0
 }
 } elseif {[regexp {^\s*Horizontal/Vertical Wire Distribution\s*$} $line match]} {
 set hv_wire 1
 set ll "hv"
 continue ; # Sets a flag for clock wiring statistics.
 } elseif {$hv_wire && [regexp "$layer" $line match]} {
 if {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match layer numwires
percent_totalnumwires wirelength percent_totallength]} {
 set group_numwire([concat $layer$ll]) $numwires
 set group_totwire([concat $layer$ll]) $percent_totalnumwires
 set group_wirelength([concat $layer$ll]) $wirelength
 set group_totlength([concat $layer$ll]) $percent_totallength
 set tot_wire_hv [expr {$tot_wire_hv + $wirelength}]
 set hv_wire 0
 }
 }
 }
 }

 }
 if {$congestion_flag} {

 set sum_tot 0
 set sum_max 0
 set gmax_of 0

 if {$report_flag} {
 set text_file [open "reports/${step_sel}/selected/layers_congestion.rpt" "r"]
 set x [read $text_file]
 } else {
 redirect {*}$tee x {report_congestion -layers $LAYERS_CONGETION}
 echo "$x" > "reports/${step_sel}/selected/layers_congestion.rpt"
 }

 #Using $LAYERS_CONGESTION

 foreach line [split $x "\n"] {
 foreach layer $LAYERS_CONGESTION {
 if {[regexp "$layer" $line match]} {

 147

 if {[regexp
{^\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match layer
z tot_of x max_of y per_grc_of a b w grc_max_of]} {
 set group_tot_of($layer) $tot_of
 set group_max_of($layer) $max_of
 set group_perc_grc_of($layer) $per_grc_of
 set group_perc($layer) [concat ab]
 set group_grc_max_of($layer) $grc_max_of
 set sum_tot [expr {$tot_of + $sum_tot}]
 set sum_max [expr {$group_max_of($layer) + $sum_max}]
 if {$group_max_of($layer) > $gmax_of} {
 set gmax_of $group_max_of($layer)
 }
 continue
 set sum_tot [expr {$tot_of + $sum_tot}]

 set sum_max [expr {$group_max_of($layer) + $sum_max}]
 if {$group_max_of($layer) > $gmax_of} {
 set gmax_of $group_max_of($layer)
 }
 }
 }
 }
 }
 }

if {$local_skew_flag} {

 #If the timing_flag is set to 1, timing scenarios are given when calling the proc and are used for the reports.
 #Else it will get the scenarios following a regular expression.

 if {$timing_flag} {
 set list1 $list_timing
 echo "Timing scenarios found.\n"

 } else {
 #First of all obtains all timing scenarios to run the timing_scenario foreach

 set list1 [get_object_name [all_scenarios]]

 foreach list_scenario $list1 {
 if {[regexp {(?=power)} $list_scenario]} {
 lappend power_scenario $list_scenario
 }
 }
 foreach scenario $power_scenario {
 regsub $scenario $list1 "" list1
 }
 }
 set flag_lskew 0
 set lskew_flag_init 1
 set list_clks {}

 foreach timing_scenario $list1 {
 set lskew_flag_init 1
 set flag_lskew 0
 #If the report flag is set to 1 (i.e. report file already exists on the given directory), it accesses the report file,
saves it on a variable and uses it to parse and generate csv file.
 if {$report_flag} {
 set text_file [open "reports/${step_sel}/selected/local_skew_${timing_scenario}.rpt" "r"]
 set x [read $text_file]
 } else {
 redirect {*}$tee x {report_clock_QoR -type local_skew -nosplit -scenarios $timing_scenario}
 echo "$x" > "reports/${step_sel}/selected/local_skew_${timing_scenario}.rpt"
 }

 148

 foreach line [split $x "\n"] { ;# If All Clocks Line has not been
 if {$lskew_flag_init} {
 if {[regexp {^\s*### Mode:\s*(\S+),\s*Scenario:\s*(\S+)\s*$} $line match mode scenario]} {
 set lskew_mode($scenario) $mode
 set lskew_scenario($scenario) $scenario
 set flag_lskew 1
 continue
 } elseif {$flag_lskew} {
 if {[regexp {^\s*--------------------------------} $line match]} {
 set flag_lskew 0
 set lskew_flag_init 0
 } elseif {[regexp {^\s*(\S+)\s*(\S+)\s*,\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*(\S+)\s*$}
$line match clock a b sinks gskew maxlat locpair maxsetup maxhold]} {
 set lskew_clock([concat $scenario$clock]) $clock
 set attrs [concat ab]
 set lskew_attrs([concat $scenario$clock]) $attrs
 set lskew_sinks([concat $scenario$clock]) $sinks
 set lskew_gskew([concat $scenario$clock]) $gskew
 set lskew_maxlat([concat $scenario$clock]) $maxlat
 set lskew_paircount([concat $scenario$clock]) $locpair
 set lskew_maxsetup([concat $scenario$clock]) $maxsetup
 set lskew_maxhold([concat $scenario$clock]) $maxhold
 lappend list_clks $clock
 }
 }
 }
 }

 }
}
 } ;#If program selection

 if {$global_power_flag} {

 #Power reports csv file generation
 echo "Power reports csv file generation\n"

 set csv_file "reports/${step_sel}/selected/QoR_power.csv"
 set csv [open $csv_file "w"]

 set bar "-----------------"

 set list_gen_power {io_pad mem bb clk reg seq comb tot}

 puts $csv "sep=,"

 puts $csv "General Power Consumption\n"

 puts $csv "Power Group, Percentage Power, Internal Power, Switching Power, Leakage Power,
Total Power\n"

 foreach g $list_gen_power {
 puts $csv "$g, $group_perc($g), $group_int($g), $group_switch($g), $group_leak($g),
$group_total($g)\n"
 }

 close $csv

 } elseif {$clock_power_flag} {

 echo "Clock power csv file generation\n"

 149

 set csv_file "reports/${step_sel}/selected/QoR_power.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"

 puts $csv "Clock Power Consumption\n"

 puts $csv "Leakage Power, Internal Power, Internal Sink Power, Net Switching Power, Total
Dynamic Power, Total Power\n"

 puts $csv "$clk_clk_leakage, $clk_clk_internal, $clk_sink_internal, $clk_net_switching,
$clk_total_dyn, $clk_total\n"

 close $csv

 }

 if {$global_power_flag && $clock_power_flag} {
 echo "Power reports csv file generation\n"

 set csv_file "reports/${step_sel}/selected/QoR_power.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"

 puts "General Power Consumption\n"
 puts $csv "Power Group, Percentage power, Internal Power, Switching Power, Leakage Power,
Total Power\n"

 foreach g $list_gen_power {
 puts $csv "$g, $group_perc($g), $group_int($g), $group_switch($g), $group_leak($g),
$group_total($g)\n"
 }
 puts $csv "$bar\n"

 puts $csv "Leakage Power, Internal Power, Internal Sink Power, Net Switching Power, Total
Dynamic Power, Total Power\n"
 puts $csv "$clk_clk_leakage, $clk_clk_internal, $clk_sink_internal, $clk_net_switching,
$clk_total_dyn, $clk_total\n"

 close $csv

 }
 if {$general_routing_flag} {

 echo "Routing information csv file generation\n"

 set nil "~"

 if {![info exists total_nets]} {set total_nets $nil}
 if {![info exists open_nets]} {set open_nets $nil}
 if {![info exists wire_length]} {set wire_length $nil}
 if {![info exists contacts]} {set contacts $nil}
 if {![info exists wires]} {set wires $nil}
 if {![info exists routed_wires]} {set routed_wires $nil}
 if {![info exists routed_wire_length]} {set routed_wire_length $nil}
 if {![info exists routed_contacts]} {set routed_contacts $nil}
 if {![info exists groute_DRC]} {set groute_DRC $nil}
 if {![info exists groute_antenna]} {set groute_antenna $nil}

 set csv_file "reports/${step_sel}/selected/QoR_routing.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"

 150

 puts $csv "General information\n"
 puts $csv "Total Nets, Total Open Nets, Total Wirelength, Total Contacts, Total Wires, Total
Routed Wires, Total Routed Wirelength, Total Routed Contacts, Total DRC, Total Antenna
Violations\n"
 puts $csv "$total_nets, $open_nets, $wire_length, $contacts, $wires, $routed_wires,
$routed_wire_length, $routed_contacts, $groute_DRC, $groute_antenna\n"

 puts $csv "Layer information\n"

 foreach g $LAYERS_CONGETION {
 puts $csv "$g, $groute_length($g), microns"
 }

 close $csv
 }

 if {$latency_flag} {

 set bar "---------"
 echo "Latency Information csv file generation\n"

 set csv_file "reports/${step_sel}/selected/QoR_latency.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"

 puts $csv "Mode, Corner, Scenario, Latency, Path Type\n"
 foreach timing_scenario $list1 {
 puts $csv "$group_modeL($timing_scenario), $group_cornerL($timing_scenario),
$group_scenarioL($timing_scenario), $group_latencyL($timing_scenario),
$group_pathL($timing_scenario)"
 }

 puts $csv "$bar\n"
 foreach timing_scenario $list1 {
 puts $csv "$group_modeS($timing_scenario), $group_cornerS($timing_scenario),
$group_scenarioS($timing_scenario), $group_latencyS($timing_scenario),
$group_pathS($timing_scenario)"
 }

 close $csv

 }

 if {$clk_area_flag} {
 echo "Clock area information csv file generation\n"

 set csv_file "reports/${step_sel}/selected/QoR_area.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"

 puts $csv "Clock Sinks, Clock Cell Count, Standard Cell Area, Repeater Count, Repeater Area,
Physical Sinks, Sinks Area, Macro Area\n"
 puts $csv "$clk_sinks, $cell_count, $stdcell_area, $repeater_count, $repeater_area,
$physical_sinks, $sink_area, $macro_area\n"

 close $csv
 }

 if {$utilization_flag} {
 echo "Utilization information csv file generation\n"

 set csv_file "reports/${step_sel}/selected/QoR_area.csv"

 151

 set csv [open $csv_file "w"]

 puts $csv "sep=,"

 puts $csv "Utilization Ratio, Total Area, Total Capacity Area, Total Area of Cells, Hard Macros,
Macro Keepouts, Soft Macros, IO Cells, Hard Blockages\n"
 puts $csv "$utilization, $total_area, $total_cap_area, $total_cell_area, $hard_macros_area,
$macro_keepouts_area, $soft_macros_area, $io_cells_area, $hard_blockages_area\n"

 close $csv
 }

 if {$utilization_flag && $clk_area_flag} {
 echo "Utilization and clock area csv file generation\n"

 set bar "-----------------------"

 set csv_file "reports/${step_sel}/selected/QoR_area.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"

 puts $csv "Utilization Ratio, Total Area, Total Capacity Area, Total Area of Cells, Hard Macros,
Macro Keepouts, Soft Macros, IO Cells, Hard Blockages\n"
 puts $csv "$utilization, $total_area, $total_cap_area, $total_cell_area, $hard_macros_area,
$macro_keepouts_area, $soft_macros_area, $io_cells_area, $hard_blockages_area\n"
 puts $csv "$bar\n"

 puts $csv "Clock Sinks, Clock Cell Count, Standard Cell Area, Repeater Count, Repeater Area,
Physical Sinks, Sinks Area, Macro Area\n"
 puts $csv "$clk_sinks, $cell_count, $stdcell_area, $repeater_count, $repeater_area,
$physical_sinks, $sink_area, $macro_area\n"

 close $csv

 }

 if {$wirelength_flag} {

 echo "Wirelength csv file generation\n"
 set csv_file "reports/${step_sel}/selected/QoR_wirelength.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"
 puts $csv "Signal Wiring Statistics\n"
 puts $csv "Metal Layer, Num wires, % of total#, Wire length, % of total length\n"

 set ll "s"

 foreach g $llist {

 puts $csv "$g, $group_numwire([concat gll]), $group_totwire([concat gll]),
$group_wirelength([concat gll]), $group_totlength([concat gll])\n"
 }

 puts $csv "Clock Wiring Statistics\n"
 puts $csv "Metal Layer, Num wires, % of total#, Wire length, % of total length\n"

 set ll "c"

 foreach g $llist {

 puts $csv "$g, $group_numwire([concat gll]), $group_totwire([concat gll]),
$group_wirelength([concat gll]), $group_totlength([concat gll])\n"

 152

 }

 puts $csv "P/G Wiring Statistics\n"
 puts $csv "Metal Layer, Num wires, % of total#, Wire length, % of total length\n"

 set ll "pg"

 foreach g $llist {

 puts $csv "$g, $group_numwire([concat gll]), $group_totwire([concat gll]),
$group_wirelength([concat gll]), $group_totlength([concat gll])\n"
 }

 puts $csv "H/V Wiring Statistics\n"
 puts $csv "Metal Layer, Num wires, % of total#, Wire length, % of total length\n"

 set ll "hv"

 foreach g $llist {

 puts $csv "$g, $group_numwire([concat gll]), $group_totwire([concat gll]),
$group_wirelength([concat gll]), $group_totlength([concat gll])\n"
 }

 close $csv
 }

 if {$congestion_flag} {

 echo "Congestion csv file generation\n"
 set csv_file "reports/${step_sel}/selected/QoR_congestion.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"
 puts $csv "Layer congestion\n"
 puts $csv "Layer Name, Total Overflow, Max Overflow, #GRCs has overflow, (%), #GRCs has max
overflow\n"

 foreach g $LAYERS_CONGETION {
 puts $csv "$g, $group_tot_of($g), $group_max_of($g), $group_perc_grc_of($g),
$group_perc($g), $group_grc_max_of($g)"
 }
 close $csv
 }

 if {$local_skew_flag} {

 echo "Local skew csv file generation\n"

 foreach element $list_clks {dict set tmp $element 1}
 set hh [dict keys $tmp]

 set nil "~"
 foreach g $list1 {
 foreach h $hh {
 if {![info exists lskew_clock([concat gh])]} {set lskew_clock([concat gh]) $nil}
 if {![info exists lskew_attrs([concat gh])]} {set lskew_attrs([concat gh]) $nil}
 if {![info exists lskew_sinks([concat gh])]} {set lskew_sinks([concat gh]) $nil}
 if {![info exists lskew_gskew([concat gh])]} {set lskew_gskew([concat gh]) $nil}
 if {![info exists lskew_maxlat([concat gh])]} {set lskew_maxlat([concat gh]) $nil}
 if {![info exists lskew_paircount([concat gh])]} {set lskew_paircount([concat gh]) $nil}
 if {![info exists lskew_maxsetup([concat gh])]} {set lskew_maxsetup([concat gh]) $nil}
 if {![info exists lskew_maxhold([concat gh])]} {set lskew_maxhold([concat gh]) $nil}
 }
 }

 153

 set csv_file "reports/${step_sel}/selected/QoR_lskew.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"
 puts $csv "Local skew\n"

 foreach g $list1 {
 puts $csv "Clock Name, Attributes, Number of Sinks, Global Skew, Max Latency, Local skew
Pair Count, Max Setup Local skew, Max Hold Local skew\n"
 foreach h $hh {
 puts $csv "$lskew_clock([concat gh]), $lskew_attrs([concat gh]), $lskew_sinks([concat
gh]), $lskew_gskew([concat gh]), $lskew_maxlat([concat gh]), $lskew_paircount([concat
gh]), $lskew_maxsetup([concat gh]), $lskew_maxhold([concat gh])\n"
 }
 puts $csv "Mode is $lskew_mode($g), Scenario is $lskew_scenario($g)\n"
 puts $csv "-----------\n"

 }
 close $csv
 }

 if {$compact_flag} {

 echo "Compact reporting\n"

 set csv_file "reports/${step_sel}/selected/QoR_compact.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"
 puts $csv "Scenario, Utilization Ratio, Total Area of Cells, Clock Cell Count, Standard Cell Area,
Repeater Count, Repeater Area, Memory Power, Clock Power, Register power, Sequential Power,
Combinational Power, Total Power, Clock Leakage, Clock Internal, Clock Internal Sink, Clock
Switching, Clock Dynamic, Clock Total, Total Overflow, Max Overflow (SL), Max Overflow (AL), Signal
Wiring, Clock Wiring, H/V Wiring, Total Wirelength, Total Contacts, Total Wires, Total Routed Contact,
Total DRC, Total Routing (L), Global Skew, Max Setup Local skew, Max Hold Local skew, Latency (L),
Latency (S)"

 foreach timing_scenario $list1 {
 puts $csv "$timing_scenario, $utilization, $total_cell_area, $cell_count, $stdcell_area,
$repeater_count, $repeater_area, $group_total(mem), $group_total(clk), $group_total(reg),
$group_total(seq), $group_total(comb), $group_total(tot), $clk_clk_leakage, $clk_clk_internal,
$clk_sink_internal, $clk_net_switching, $clk_total_dyn, $clk_total, $sum_tot, $sum_max, $gmax_of,
$tot_wire_s, $tot_wire_c, $tot_wire_hv, $wire_length, $contacts, $wires, $routed_contacts,
$groute_DRC, $groute_tot, $lskew_gskew([concat $timing_scenario$clock]),
$lskew_maxsetup([concat $timing_scenario$clock]), $lskew_maxhold([concat
$timing_scenario$clock]), $group_latencyL($timing_scenario), $group_latencyS($timing_scenario)"
 }

 close $csv

 echo "Summary reporting \n"

 set worst_latency_long 0
 set worst_latency_short 0
 set worst_gskew 0
 set worst_setup_lskew 0
 set worst_hold_lskew 0

 foreach timing_scenario $list1 {

 154

 if {$group_latencyL($timing_scenario) > $worst_latency_long} {
 set worst_latency_long $group_latencyL($timing_scenario)
 }

 if {$group_latencyS($timing_scenario) > $worst_latency_short} {
 set worst_latency_short $group_latencyS($timing_scenario)
 }

 if {$lskew_gskew([concat $scenario$clock]) > $worst_gskew} {
 set worst_gskew $lskew_gskew([concat $scenario$clock])
 }

 if {$lskew_maxsetup([concat $timing_scenario$clock]) > $worst_setup_lskew} {
 set worst_setup_lskew $lskew_maxsetup([concat $timing_scenario$clock])
 }

 if {$lskew_maxhold([concat $timing_scenario$clock]) > $worst_hold_lskew} {
 set worst_hold_lskew $lskew_maxhold([concat $timing_scenario$clock])
 }
 echo "lskew_maxhold is $lskew_maxsetup([concat $timing_scenario$clock])"
 echo "Worst hold skew is $worst_setup_lskew"
 }

 set csv_file "reports/${step_sel}/selected/QoR_summary.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"
 puts $csv "Worst Case Summary\n"
 puts $csv "Scenario, Utilization Ratio, Total Area of Cells (um2), Clock Cell Count, Standard Cell
Area (um2), Repeater Count, Repeater Area (um2), Memory Power (uW), Clock Power (uW), Register
power (uW), Sequential Power (uW), Combinational Power (uW), Total Power (uW), Clock Leakage
(uW), Clock Internal (uW), Clock Internal Sink (uW), Clock Switching (uW), Clock Dynamic (uW), Clock
Total (uW), Total Overflow, Max Overflow (SL), Max Overflow (AL), Signal Wiring (um), Clock Wiring
(um), H/V Wiring (um), Total Wirelength (um), Total Contacts, Total Wires, Total Routed Contact, Total
DRC, Total Routing (L) (um), Global Skew (ns), Max Setup Local skew (ns), Max Hold Local skew (ns),
Latency (L) (ns), Latency (S) (ns)"

 puts $csv "---, $utilization, $total_cell_area, $cell_count, $stdcell_area, $repeater_count,
$repeater_area, $group_total(mem), $group_total(clk), $group_total(reg), $group_total(seq),
$group_total(comb), $group_total(tot), $clk_clk_leakage, $clk_clk_internal, $clk_sink_internal,
$clk_net_switching, $clk_total_dyn, $clk_total, $sum_tot, $sum_max, $gmax_of, $tot_wire_s,
$tot_wire_c, $tot_wire_hv, $wire_length, $contacts, $wires, $routed_contacts, $groute_DRC,
$groute_tot, $worst_gskew, $worst_setup_lskew, $worst_hold_lskew, $worst_latency_long,
$worst_latency_short"

 puts $csv "Scenario timing metrics\n"
 puts $csv "Scenario, Global Skew (ns), Max Setup Local skew (ns), Max Hold Local skew (ns),
Latency (L) (ns), Latency (S) (ns)"

 foreach timing_scenario $list1 {
 puts $csv "$timing_scenario, $lskew_gskew([concat $timing_scenario$clock]),
$lskew_maxsetup([concat $timing_scenario$clock]), $lskew_maxhold([concat
$timing_scenario$clock]), $group_latencyL($timing_scenario), $group_latencyS($timing_scenario)"
 }

 close $csv

 }

 if {$QoR_file_flag} {

 set text_file [open "${QoR_file_name}.csv" "r"]
 set x [read $text_file]

 foreach line [split $x "\n"] {

 155

 if {[regexp
{^\s*Summary,\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+)\s*$
} $line match q_wns q_skew q_tns q_avgskw q_nvp q_freq q_wnsh q_tnsh q_avgskwh q_nvph]} {
 echo "Data obtained from ${QoR_file_name}.csv - Worst case data across all scenarios\n"
 }
 }
 }

 if {$summary_flag} {

 if {[file exists summary/routeopt_summary.rpt]} {
 set text_file [open "summary/routeopt_summary.rpt" "r"]
 set x [read $text_file]

 foreach line [split $x "\n"] {

 if {[regexp {^\s*(\S+)\s*SETUP INTERNAL FEP\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match bar1 bar2
int_setup_fep]} {echo "Internal Setup FEP: $int_setup_fep\n"}
 if {[regexp {^\s*(\S+)\s*CLOCKSLEW FEP\s*(\S+)\s*(\S+)\s*(\S+)\s*$} $line match bar1 bar2
clockslew_fep]} {echo "CLOCKSLEW FEP: $clockslew_fep\n"}
 }
 }

 }

 if {$QoR_reformat_flag} {

 ### Reformat csv file:
 echo "Reformat .csv file\n"

 #If data from proc_QoR is not available
 if {![info exists q_wns]} {set q_wns "~"}
 if {![info exists q_tns]} {set q_tns "~"}
 if {![info exists int_setup_fep]} {set int_setup_fep "~"}
 if {![info exists clockslew_fep]} {set clockslew_fep "~"}

 set int_int_power [string map {"uW" ""} $group_int(tot)]
 set int_switch_power [string map {"uW" ""} $group_switch(tot)]
 set total_global_power [string map {"uW" ""} $group_total(tot)]
 set global_leakage_power [string map {"uW" ""} $group_leak(tot)]
 set total_dynamic_power [expr { $int_int_power + $int_switch_power}]
 set total_dynamic_power [format "%.4g" $total_dynamic_power]

 set csv_file "reports/${step_sel}/selected/QoR_reformat.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"

 ### Clock reformat data:

 puts $csv "Clock Formatted QoR\n"
 puts $csv "WNS (ns), TNS (ns), Setup FEP, Clockslew FEP, Skew (ns), Latency (ns), Clock Cells,
Clock Repeaters, Area Clock Cells (um2), Repeater Area (um2), Dynamic Clock Power (uW), Leakage
Clock Power (uW), Total Clock Power (uW)"
 puts $csv "$q_wns, $q_tns, $int_setup_fep, $clockslew_fep, $worst_gskew,
$worst_latency_long, $cell_count, $repeater_count, $stdcell_area, $repeater_area, $clk_total_dyn,
$clk_clk_leakage, $clk_total\n"

 ### General reformat data:

 puts $csv "General Formatted QoR\n"
 puts $csv "Utilization, Total Area (um2), Total Stdcell Area (um2), Total Dynamic Power (uW),
Total Leakage Power (uW), Total Power (uW), Number of DRCs"
 puts $csv "$utilization, $total_area, $total_cell_area, $total_dynamic_power,
$global_leakage_power, $total_global_power, $groute_DRC"

 156

 close $csv

 }
} ;#If proc

define_proc_attributes report_parser -info "USER PROC: reformats multiple reports" \
 -define_args {
 {-tee "Optional - displays the output of under-the-hood report_parser command" ""
boolean optional}
 {-units "Optional - specifies the units used" "<ns or ps>" one_of_string {optional value_help
{values {ps ns}}}}
 {-global_power "Optional - specifies if global power information is parsed. Requires active
power scenario" "" boolean optional}
 {-clock_power "Optional - specifies if clock power information is parsed. Requires active
power scenario" "" boolean optional}
 {-latency "Optional - specifies if latency information is parsed. Requires active timing
scenarios" "" boolean optional}
 {-general_routing "Optional - specifies if general routing information is parsed" "" boolean
optional}
 {-local_skew "Optional - specifies if local skew information is parsed. Usable at clockopt
onwards Requires active timing scenarios." "" boolean optional}
 {-wirelength "Optional - specifies if wirelength information is parsed" "" boolean optional}
 {-layer_congestion "Optional - specifies if congestion information is parsed" "" boolean
optional}
 {-utilization "Optional - specifies if the utilization report is used" "" boolean optional}
 {-clk_area "Optional - specifies if clock area information is used" "" boolean optional}
 {-report_flag "Optional - specifies wether the reports are generated or parsed from existing"
"" boolean optional}
 {-power_scenario "Optional - specifies the power scenario used for report generation" ""
string optional}
 {-timing_scenarios "Optional - specifies the timing scenarios used for report generation" "" list
optional}
 {-step "Required - Must be given to specify the step on which the parsing is made.
/reports/$step/selected" "" string required}
 {-compact "Optional - Makes a compact summary of metrics and prepares it as a csv." ""
boolean optional}
 {-QoR_file "Optional - QoR file obtained from proc_QoR.tcl to add information on WNS/TNS"
"" string optional}
 {-QoR_reformat "Optional - Specifies that the existing data must be reformatted" "" boolean
optional}
 {-summary "Optional - Specifies to extract FEP data from summary files" "" boolean optional}
 }

echo "\treport_parser"

Appendix 20: Script clock_structure_analyser.tcl

Script to extract information from clock structure:
Script extracts:
 #-Type of cells and number of each one.
 #-Fanout of intermediates and end drivers.
 #-Manhattan distance between drivers and end-point flops.
 #-Pin capacitance to be obtained from: report_timing -path_type full -nosplit -nets -capacitance -attributes -
physical
proc clock_structure_analyzer {args} {

 157

 parse_proc_arguments -args $args results

 set structure_flag [info exists results(-structure)]
 set debug_flag [info exists results(-debugger)]
 set cells_flag [info exists results(-repeater_cells)]
 set general_analysis_flag [info exists results(-general_analysis)]
 set endpoint_analysis_flag [info exists results(-endpoint_analysis)]
 set csv_flag [info exists results(-csv_file)]
 set detailed_csv_flag [info exists results(-detailed_csv)]
 set capacitance_analysis_flag [info exists results(-capacitance_analysis)]

 if {[info exists results(-tee)]} {
 set tee "-tee -var"
 } else {
 set tee "-var"
 }

 if {$cells_flag} {
 set list_clock_cells $results(-repeater_cells)
 }

 if {$::synopsys_program_name == "icc2_shell"} {
 if {$structure_flag} {
 #If the structure flag exists it will use either the selected (if existing) or the existing structure generated
by the reporter.
 if {[file exists "reports/routeopt/selected/clock_QoR_structure.rpt"]} {

 set text_file [open "reports/routeopt/selected/clock_QoR_structure.rpt" "r"]
 } else {

 set text_file [open "reports/routeopt/clock/clock_QoR_structure.rpt" "r"]
 }

 set x [read $text_file]

 } else {
 #If structure flag isnt set, it generates the report and saves it on selected directory
 redirect {*}$tee x {report_clock_QoR -type structure -nosplit}

 echo "$x" > "reports/routeopt/selected/clock_QoR_structure.rpt"
 echo "New structure is is saved on selected directory preserving the existing one\n"
 }

 ### Variable declaration

 set count_source 0 ;# Level zero, source pin
 set count_repeater 0 ;# Repeater intermediate cells
 set count_ICG 0 ;# ICG intermediate cells
 set count_sink 0 ;# Sink Pins
 set count_balance 0 ;# Balance Pins

 ### Fanout calculations

 set max_fanout_rep 0
 set average_fanout_rep 0
 set max_fanout_ICG 0
 set average_fanout_ICG 0

 ### Lists for repeaters and ICGs/Other clock cells

 list repeater_list {dummy}
 list ICG_list

 ### Flags for endpoint detection:

 158

 set repeater_flag 0
 set ICG_flag 0
 set driver 0
 set endpoint 0

 ### Other variables

 set sep "_" ; #Used to generate the identifier for sinks and balance points
 set repICG_celltype($driver) "unset"
 set current_celltype "unset"
 set line_pointer 0

 if {$general_analysis_flag} {

 foreach line [split $x "\n"] {

 # Possible Structs to be found:
 # 1) level zero: (Level) Clock Pin [in Port] [Location] [Net] [Fanout]
 # 2) intermediate drivers repeaters: (Level) Clock Pin [Reference cell] [Location] [Net] [Fanout]
 # 3) intermediate drivers ICGs: (Level) Clock Pin [Reference cell] [Location] [Net] [ICG] [Fanout]
 # 4) leafs: (Level) Clock Pin [Reference cell] [Location] [SINK PIN]
 # 5) balance pins: (Level) Clock Pin [Reference cell] [Location] [BALANCE PIN]

 if {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)in Port(\S+)\s*(\S+)Location (\S+), (\S+)]\s*(\S+)Net:
(\S+)]\s*(\S+)Fanout: (\S+)]\s*$} $line match level pin p1 p2 p3 xloc yloc p4 net p5 fanout]} { ;#Level zero OK
 set lvlm1 [string map {"(" ""} $level]
 set lvlm2 [string map {")" ""} $lvlm1]
 set source_level $lvlm2
 set source_pin $pin
 set source_xloc [string map {"(" ""} $xloc]
 set source_yloc [string map {")" ""} $yloc]
 set source_net $net
 set source_fanout $fanout
 set source_line $line
 incr count_source

 }

 if {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)Ref: (\S+)]\s*(\S+)Location (\S+), (\S+)]\s*(\S+)Net:
(\S+)]\s*(\S+)Fanout: (\S+)]\s*$} $line match level pin p1 cell_ref p2 xloc yloc p3 net p4 fanout]} {
;#Intermediate repeaters OK
 lappend list_repeater $line
 set lvlm1 [string map {"(" ""} $level]
 set lvlm2 [string map {")" ""} $lvlm1]
 set rep_level($count_repeater) $lvlm2
 set rep_pin($count_repeater) $pin
 set rep_cell($count_repeater) $cell_ref
 set rep_xloc($count_repeater) [string map {"(" ""} $xloc]
 set rep_yloc($count_repeater) [string map {")" ""} $yloc]
 set rep_net($count_repeater) $net
 set rep_fanout($count_repeater) $fanout
 incr count_repeater
 }

 if {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)Ref: (\S+)]\s*(\S+)Location (\S+), (\S+)]\s*(\S+)Net:
(\S+)]\s*(\S+)ICG(\S+)\s*(\S+)Fanout: (\S+)]\s*$} $line match level pin p1 cell_ref p2 xloc yloc p3 net p4 p5
p6 fanout]} { ;#Intermediate ICGs OK
 lappend list_ICG $line
 set lvlm1 [string map {"(" ""} $level]
 set lvlm2 [string map {")" ""} $lvlm1]
 set ICG_level($count_ICG) $lvlm2
 set ICG_pin($count_ICG) $pin
 set ICG_cell($count_ICG) $cell_ref
 set ICG_xloc($count_ICG) [string map {"(" ""} $xloc]
 set ICG_yloc($count_ICG) [string map {")" ""} $yloc]

 159

 set ICG_net($count_ICG) $net
 set ICG_fanout($count_ICG) $fanout
 incr count_ICG

 }

 if {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)Ref: (\S+)]\s*(\S+)Location (\S+), (\S+)]\s*(\S+)SINK
PIN(\S+)\s*$} $line match level pin p1 cell_ref p2 xloc yloc p3 p4]} { ;#Sink Pins OK
 lappend list_sink $line
 set lvlm1 [string map {"(" ""} $level]
 set lvlm2 [string map {")" ""} $lvlm1]
 set sink_level($count_sink) $lvlm2
 set sink_pin($count_sink) $pin
 set sink_cell($count_sink) $cell_ref
 set sink_xloc($count_sink) [string map {"(" ""} $xloc]
 set sink_yloc($count_sink) [string map {")" ""} $yloc]
 incr count_sink

 }

 if {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)Ref: (\S+)]\s*(\S+)Location (\S+), (\S+)]\s*(\S+)BALANCE
PIN(\S+)\s*$} $line match level pin p1 cell_ref p2 xloc yloc p3 p4]} { ;#Balance pins OK
 lappend list_balance $line
 set lvlm1 [string map {"(" ""} $level]
 set lvlm2 [string map {")" ""} $lvlm1]
 set balance_level($count_balance) $lvlm2
 set balance_pin($count_balance) $pin
 set balance_cell($count_balance) $cell_ref
 set balance_xloc($count_balance) [string map {"(" ""} $xloc]
 set balance_yloc($count_balance) [string map {")" ""} $yloc]
 incr count_balance

 }

 }
 }

 if {$debug_flag && $general_analysis_flag} {

 echo $count_source
 echo $count_repeater
 echo $count_ICG
 echo $count_sink
 echo $count_balance

 echo "rep level $rep_level(0)"
 echo "rep pin $rep_pin(0)"
 echo "rep cell $rep_cell(0)"
 echo "rep xloc $rep_xloc(0)"
 echo "rep yloc $rep_yloc(0)"
 echo "rep net $rep_net(0)"
 echo "rep fanout $rep_fanout(0)"

 echo "ICG level $ICG_level(0)"
 echo "ICG pin $ICG_pin(0)"
 echo "ICG cell$ICG_cell(0)"
 echo "ICG xloc $ICG_xloc(0)"
 echo "ICG yloc $ICG_yloc(0)"
 echo "ICG net $ICG_net(0)"
 echo "ICG fanout$ICG_fanout(0)"

 echo "sink level $sink_level(0)"
 echo "sink pin $sink_pin(0)"
 echo "sink cell $sink_cell(0)"
 echo "sink xloc $sink_xloc(0)"
 echo "sink yloc $sink_yloc(0)"

 160

 echo "balance level $balance_level(0)"
 echo "balance pin $balance_pin(0)"
 echo "balance cell $balance_cell(0)"
 echo "balance xloc $balance_xloc(0)"
 echo "balance yloc $balance_yloc(0)"
 }

 if {$general_analysis_flag} {

 echo "\n"
 echo "Number of Source Pins: $count_source"
 echo "Number of Repeaters: $count_repeater"
 echo "Number of ICGs: $count_ICG"
 echo "Number of Sink Pins: $count_sink"
 echo "Number of Balance Pins: $count_balance"
 echo "\n"

 set count512 0
 set count256 0
 set count128 0
 set countl16 0
 set counth64 0
 set counth100 0

 foreach {repeater_fanout fanout} [array get rep_fanout] {
 if {$debug_flag} {
 echo "$repeater_fanout and $fanout"
 }
 if {$fanout >= $max_fanout_rep} {
 set max_fanout_rep $fanout
 }
 if {$fanout >= 32} {incr count32}
 if {$fanout >= 128} {incr count128}
 if {$fanout >= 256} {incr count256}
 if {$fanout >= 512} {incr count512}
 if {$fanout < 16} {incr countl16}
 if {$fanout > 63} {incr counth64}
 if {$fanout > 100} {incr counth100}

 set average_fanout_rep [expr {$average_fanout_rep + $fanout}]
 }
 set average_fanout_rep [expr {$average_fanout_rep/$count_repeater}]

 echo "Max repeater fanout $max_fanout_rep"
 echo "Average repeater fanout $average_fanout_rep"
 echo "\n"

 foreach {ICG_fanout2 fanout} [array get ICG_fanout] {
 if {$debug_flag} {
 echo "$ICG_fanout2 and $fanout"
 }
 if {$fanout >= $max_fanout_ICG} {
 set max_fanout_ICG $fanout
 }

 if {$fanout >= 32} {incr count32}
 if {$fanout >= 128} {incr count128}
 if {$fanout >= 256} {incr count256}
 if {$fanout >= 512} {incr count512}
 if {$fanout < 16} {incr countl16}
 if {$fanout > 63} {incr counth64}
 if {$fanout > 100} {incr counth100}

 set average_fanout_ICG [expr {$average_fanout_ICG + $fanout}]

 161

 }
 set average_fanout_ICG [expr {$average_fanout_ICG/$count_ICG}]

 echo "Max ICG fanout $max_fanout_ICG"
 echo "Average ICG fanout $average_fanout_ICG"
 #echo "\n"

 echo "\n"
 echo "General fanout breakdown information"
 echo "Number of drivers with fanout equal or bigger than 512: $count512"
 echo "Number of drivers with fanout equal or bigger than 256: $count256"
 echo "Number of drivers with fanout equal or bigger than 128: $count128"
 echo "Number of drivers with fanout equal or bigger than 32: $count32"
 echo "Number of drivers with fanout higher than 100: $counth100"
 echo "Number of drivers with fanout higher or equal than 64: $counth64"
 echo "Number of drivers with fanout lower than 16: $countl16"

 if {$cells_flag} {
 echo "Cells breakdown information\n"

set ccount_rep 0

Obtention of clock cells via list
Repeater analysis:

foreach {cell_number cell} [array get rep_cell] {
 lappend repeater_list $cell
 set repeater_unique [lsort -unique $repeater_list]
}
foreach clockcell $repeater_unique {
 if {$clockcell == [lindex $repeater_unique $ccount_rep]} {
 set cell_type_repeater($ccount_rep) $clockcell
 set cell_rep1($ccount_rep) [lsearch -all $repeater_list $clockcell]
 set length_cell_rep1($ccount_rep) [llength $cell_rep1($ccount_rep)]
 if {$length_cell_rep1($ccount_rep) == 0} {break}
 incr ccount_rep
 }
}
#echo "Repeater cell breakdown\n"
if {$ccount_rep == 1} {
 echo "Cell $cell_type_repeater(0) Number of instances of $length_cell_rep1(0)"
} else {
 for {set counter 0} {$counter < $ccount_rep } {incr counter} {
 echo "Cell $cell_type_repeater($counter) Number of instances $length_cell_rep1($counter)"
 }
}

 ### ICG analysis:
 set ccount_ICG 0

 foreach {ICG_number ICG} [array get ICG_cell] {
 lappend ICG_list $ICG
 set ICG_unique [lsort -unique $ICG_list]
 }
 foreach ICGcell $ICG_unique {
 if {$ICGcell == [lindex $ICG_unique $ccount_ICG]} {
 set cell_type_ICG($ccount_ICG) $ICGcell
 set cell_ICG1($ccount_ICG) [lsearch -all $ICG_list $ICGcell]
 set length_cell_ICG1($ccount_ICG) [llength $cell_ICG1($ccount_ICG)]
 if {$length_cell_ICG1($ccount_ICG) == 0 } {break}
 incr ccount_ICG
 }
 }
 echo "ICG cells breakdown\n"
 if {$ccount_ICG == 1} {

 162

 echo "Cell $cell_type_ICG(0) Number of instances $length_cell_ICG1(0)"
 } else {
 for {set counterICG 0} {$counterICG < $ccount_ICG} {incr counterICG} {
 echo "Cell $cell_type_ICG($counterICG) Number of instances
$length_cell_ICG1($counterICG)"
 }
 }
 #echo "\n"

 ### Leaf cell analysis:
 set ccount_sink 0

 foreach {leaf_number leaf} [array get sink_cell] {
 lappend leaf_list $leaf
 set leaf_unique [lsort -unique $leaf_list]
 }

 foreach leafcell $leaf_unique {
 if {$leafcell == [lindex $leaf_unique $ccount_sink]} {
 set cell_type_leaf($ccount_sink) $leafcell
 set cell_leaf1($ccount_sink) [lsearch -all $leaf_list $leafcell]
 set length_cell_leaf1($ccount_sink) [llength $cell_leaf1($ccount_sink)]
 if {$length_cell_leaf1($ccount_sink) == 0 } {break}
 incr ccount_sink

 }
 }
 echo "Leaf cells breakdown\n"
 if {$ccount_sink == 1} {
 echo "Cell $cell_type_leaf(0) Number of instances $length_cell_leaf1(0)"
 } else {
 for {set counterleaf 0} {$counterleaf < $ccount_sink} {incr counterleaf} {
 echo "Cell $cell_type_leaf($counterleaf) Number of instances
$length_cell_leaf1($counterleaf)"
 }
 }
 #echo "\n"

 ### Balance cell analysis:
 set ccount_balance 0

 foreach {leaf_number balance} [array get balance_cell] {
 lappend balance_list $balance
 set balance_unique [lsort -unique $balance_list]
 }

 foreach balancecell $balance_unique {
 if {$balancecell == [lindex $balance_unique $ccount_balance]} {
 set cell_type_balance($ccount_balance) $balancecell
 set cell_balance1($ccount_balance) [lsearch -all $balance_list $balancecell]
 set length_cell_balance1($ccount_balance) [llength $cell_balance1($ccount_balance)]
 if {$length_cell_balance1($ccount_balance) == 0 } {break}
 incr ccount_balance

 }
 }
 echo "Balance cells breakdown\n"
 if {$ccount_balance == 1} {
 echo "Cell $cell_type_balance(0) Number of instances $length_cell_balance1(0)"
 } else {
 for {set counterbalance 0} {$counterbalance < $ccount_balance} {incr counterbalance} {
 echo "Cell $cell_type_balance($counterbalance) Number of instances
$length_cell_balance1($counterbalance)"
 }
 }

 163

 }

 }

 #echo "\n"
 ### Made with elseif to avoid use of flags to go to next line of loop
 if {$structure_flag} {
 #If the structure flag exists it will use either the selected (if existing) or the existing structure generated
by the reporter.
 if {[file exists "reports/routeopt/selected/clock_QoR_structure.rpt"]} {

 set text_file [open "reports/routeopt/selected/clock_QoR_structure.rpt" "r"]
 } else {

 set text_file [open "reports/routeopt/clock/clock_QoR_structure.rpt" "r"]
 }

 set x [read $text_file]

 } else {
 #If structure flag isnt set, it generates the report and saves it on selected directory
 redirect {*}$tee x {report_clock_QoR -type structure -nosplit}

 echo "$x" > "reports/routeopt/selected/clock_QoR_structure.rpt"
 echo "New structure is is saved on selected directory preserving the existing one\n"
 }

 if {$endpoint_analysis_flag} {
 set sink_number2 0
 set balance_number2 0

 foreach line [split $x "\n"] {
 #echo $line_pointer
 if {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)in Port(\S+)\s*(\S+)Location (\S+), (\S+)]\s*(\S+)Net:
(\S+)]\s*(\S+)Fanout: (\S+)]\s*$} $line match level pin p1 p2 p3 xloc yloc p4 net p5 fanout]} { ;#Level zero OK
 echo "First line is not considered as it always drives a repeater/ICG on single source"
 echo "When source is met, counter starts"
 set lvl1_a [string map {"(" ""} $level]
 set lvl2_a [string map {")" ""} $lvl1_a]
 set level_a($line_pointer) $lvl2_a

 lappend list_celltype "source"
 lappend list_fanout $fanout
 lappend list_level $lvl2_a
 lappend list_xloc [string map {"(" ""} $xloc]
 lappend list_yloc [string map {")" ""} $yloc]
 lappend list_pointer $line_pointer
 lappend list_pin $pin
 incr line_pointer
 } elseif {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)Ref: (\S+)]\s*(\S+)Location (\S+), (\S+)]\s*(\S+)Net:
(\S+)]\s*(\S+)Fanout: (\S+)]\s*$} $line match level pin p1 cell_ref p2 xloc yloc p3 net p4 fanout]} {
;#Intermediate repeaters
 set lvl1_a [string map {"(" ""} $level]
 set lvl2_a [string map {")" ""} $lvl1_a]
 set level_a($line_pointer) $lvl2_a
 lappend list_pointer $line_pointer
 lappend list_celltype "driver"
 lappend list_fanout $fanout
 lappend list_level $lvl2_a
 lappend list_xloc [string map {"(" ""} $xloc]
 lappend list_yloc [string map {")" ""} $yloc]
 lappend list_pin $pin

 164

 incr line_pointer
 } elseif {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)Ref: (\S+)]\s*(\S+)Location (\S+), (\S+)]\s*(\S+)Net:
(\S+)]\s*(\S+)ICG(\S+)\s*(\S+)Fanout: (\S+)]\s*$} $line match level pin p1 cell_ref p2 xloc yloc p3 net p4 p5
p6 fanout]} { ;#Intermediate ICGs OK
 set lvl1_a [string map {"(" ""} $level]
 set lvl2_a [string map {")" ""} $lvl1_a]
 set level_a($line_pointer) $lvl2_a
 lappend list_pointer $line_pointer
 lappend list_celltype "driver"
 lappend list_fanout $fanout
 lappend list_level $lvl2_a
 lappend list_xloc [string map {"(" ""} $xloc]
 lappend list_yloc [string map {")" ""} $yloc]
 lappend list_pin $pin

 incr line_pointer
 } elseif {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)Ref: (\S+)]\s*(\S+)Location (\S+), (\S+)]\s*(\S+)SINK
PIN(\S+)\s*$} $line match level pin p1 cell_ref p2 xloc yloc p3 p4]} { ;#Sink Pins OK
 set lvl1_a [string map {"(" ""} $level]
 set lvl2_a [string map {")" ""} $lvl1_a]
 set level_a($line_pointer) $lvl2_a
 lappend list_pointer $line_pointer
 lappend list_celltype "sink"
 lappend list_fanout "sink"
 lappend list_level $lvl2_a
 lappend list_xloc [string map {"(" ""} $xloc]
 lappend list_yloc [string map {")" ""} $yloc]
 lappend list_pin $pin

 incr line_pointer
 incr sink_number2
 } elseif {[regexp {^\s*(\S+)\s*(\S+)\s*(\S+)Ref: (\S+)]\s*(\S+)Location (\S+),
(\S+)]\s*(\S+)BALANCE PIN(\S+)\s*$} $line match level pin p1 cell_ref p2 xloc yloc p3 p4]} { ;#Balance pins
OK
 set lvl1_a [string map {"(" ""} $level]
 set lvl2_a [string map {")" ""} $lvl1_a]
 set level_a($line_pointer) $lvl2_a
 lappend list_pointer $line_pointer
 lappend list_celltype "sink"
 lappend list_fanout "sink"
 lappend list_level $lvl2_a
 lappend list_xloc [string map {"(" ""} $xloc]
 lappend list_yloc [string map {")" ""} $yloc]
 lappend list_pin $pin

 incr line_pointer
 incr balance_number2
 }

 }
 echo $sink_number2
 echo $balance_number2
 set line_pointer [expr {$line_pointer - 1}] ;#Last increase leads to void data
 ### Variable declaration:

 set driver 0
 set endpoint 0
 set sep "_"

 set driver 0
 set endpoint 0
 set sep "_"

 set current_xloc 0
 set current_yloc 0

 165

 set current_fanout 0

 set line_pointer_max [expr {$line_pointer + 1}]
 set unique_fanout 0

 foreach value_pointer $list_pointer {
 set next_pointer [expr {$value_pointer + 1}]
 set prev_pointer [expr {$value_pointer - 1}]

 set current_celltype [lindex $list_celltype $value_pointer]
 set current_fanout [lindex $list_fanout $value_pointer]
 set current_xloc [lindex $list_xloc $value_pointer]
 set current_yloc [lindex $list_yloc $value_pointer]
 set current_level [lindex $list_level $value_pointer]
 set current_pin [lindex $list_pin $value_pointer]

 set next_celltype [lindex $list_celltype $next_pointer]
 set next_level [lindex $list_level $next_pointer]
 #echo "$current_fanout $current_celltype"

 if {$current_celltype == "driver" && $current_fanout == 1} {
 if {$next_celltype == "driver"} {
 echo "Intermediate driver - Ignored on endpoint driver considerations"
 } elseif {$next_celltype == "sink"} {
 incr unique_fanout
 set repICG_driver_xloc($driver) $current_xloc
 set repICG_driver_yloc($driver) $current_yloc
 set repICG_driver_fanout($driver) [expr {$current_fanout - 1}]
 set repICG_driver_pin($driver) $current_pin

 set repICG_id($driver) $driver$current_celltype$current_fanout

 set endpoint 0
 set repICG_endpoint_xloc($driver$sep$endpoint) [lindex $list_xloc $next_pointer]
 set repICG_endpoint_yloc($driver$sep$endpoint) [lindex $list_yloc $next_pointer]
 set repICG_endpoint_celltype($driver$sep$endpoint) "sink"
 set repICG_endpoint_pin($driver$sep$endpoint) [lindex $list_pin $next_pointer]

 set repICG_endpoint_pin($driver$sep$endpoint) [lindex $list_pin $next_pointer]

 set endpoint_id($driver$sep$endpoint) $driver$next_celltype$endpoint$sep$current_level
 #echo $driver
 incr driver
 set aux_driver [expr {$driver -1 }]

 set repICG_driver_endpoint($aux_driver) 0

 }
 }
 if {$current_celltype == "driver" && $current_fanout > 1} {
 set repICG_driver_xloc($driver) $current_xloc
 set repICG_driver_yloc($driver) $current_yloc
 set repICG_driver_pin($driver) $current_pin
 set repICG_driver_fanout($driver) [expr {$current_fanout - 1}]
 #set repICG_driver_celltype($driver) $current_celltype

 set repICG_id($driver) $driver$current_celltype$current_fanout

 set endpoint 0
 incr driver

 set driver_endpoint [expr {$driver - 1}]
 set level_sinks [expr {$current_level + 1}]
 set new_pointer [expr {$value_pointer - 1}]

 166

 for {set endpoint_fanout $value_pointer} {$endpoint_fanout < $line_pointer_max} {incr
endpoint_fanout} {; #All next value pointers.

 set aux_level [lindex $list_level $endpoint_fanout]
 if {$aux_level == $level_sinks} {
 set sink_celltype [lindex $list_celltype $endpoint_fanout]
 set repICG_endpoint_xloc($driver_endpoint$sep$endpoint) [lindex $list_xloc
$endpoint_fanout]
 set repICG_endpoint_yloc($driver_endpoint$sep$endpoint) [lindex $list_yloc
$endpoint_fanout]
 set repICG_endpoint_celltype($driver_endpoint$sep$endpoint) [lindex $list_celltype
$endpoint_fanout]
 set repICG_endpoint_pin($driver_endpoint$sep$endpoint) [lindex $list_pin $endpoint_fanout]

 set endpoint_id($driver_endpoint$sep$endpoint)
$driver_endpoint$sink_celltype$endpoint$sep$aux_level

 incr endpoint

 if {$endpoint == $current_fanout} {
 if {$driver == 172} {echo "in"}
 set aux_driver [expr {$driver -1 }]

 set repICG_driver_endpoint($aux_driver) [expr {$endpoint - 1}]

 incr driver_endpoint

 break
 }
 }
 }

 set aux_driver_endpoint [expr {$driver_endpoint - 1}]

 for {set noendpoint 0} {$noendpoint < $endpoint} {incr noendpoint} {
 set aux_endpoint [expr {$endpoint - 1}]
 if {$repICG_endpoint_celltype($aux_driver_endpoint$sep$noendpoint) == "sink"} {
 #echo "sink found"
 break
 } elseif {$noendpoint == $aux_endpoint} {
 set driver [expr {$driver - 1}]
 set driver_endpoint [expr {$driver_endpoint - 1}]
 #echo "All drivers!"
 }
 }

 }
 #echo $driver
 if {$value_pointer == $line_pointer_max} {break} ;#$line_pointer_max
 }

 foreach {endpoint_number endpoint_fanout_array} [array get repICG_driver_endpoint] {
 #echo "$endpoint_number for $endpoint_fanout_array"
 lappend end_list $endpoint_fanout_array
 set length_lst [llength $end_list]

 #set leaf_unique [lsort -unique $leaf_list]
 }
echo $length_lst

 set effective_driver [expr {$driver - 1}]
 set csv_file "reports/routeopt/selected/ordering.csv"
 set csv [open $csv_file "w"]
 for {set counter_driver 0} {$counter_driver < $driver} {incr counter_driver} {

 167

 puts $csv "$repICG_id($counter_driver)"
 for {set counter_endpoint 0} {$counter_endpoint <= $repICG_driver_endpoint($counter_driver)} {incr
counter_endpoint} {
 puts $csv "\t$endpoint_id($counter_driver$sep$counter_endpoint)"
 }
 }
 #echo $driver
 close $csv
 ### Sink counter to see if math checks
 if {$debug_flag && $endpoint_analysis_flag} {

 set max_endpoint([expr {$driver - 1}]) $endpoint
 set tot_endpoints 0

 for {set counter_driver 0} {$counter_driver < $driver} {incr counter_driver} {
 #echo $max_endpoint($counter_driver)
 set tot_endpoints [expr {$tot_endpoints + $max_endpoint($counter_driver)}]
 }
 #echo $tot_endpoints

 foreach {id_number identifier} [array get repICG_id] {
 lappend array_ids $identifier
 set array_ordered [lsort -dictionary $array_ids]
 #echo "Array position $id_number with identifier $identifier"

 }
 #foreach array_pos $array_ordered {echo $array_pos}
 }

 ##### MANHATTAN DISTANCE #####

 set max_manhattan_xdistance 0
 set max_manhattan_ydistance 0
 set max_manhattan_distance 0

 set total_manhattan_xdistance 0
 set total_manhattan_ydistance 0
 set total_manhattan_distance 0

 echo "\n"

 set csv_file "reports/routeopt/selected/manhattan_test.csv"
 set csv [open $csv_file "w"]

 ### Note that all manhattan distance calculations are done for any endpoint driver to all its fanout.
Intermediate drivers on the hybrid fanout are also taken into consideration.

 for {set counter_driver 0} {$counter_driver < $driver} {incr counter_driver} {
 set temporal_driver_xloc $repICG_driver_xloc($counter_driver)
 set temporal_driver_yloc $repICG_driver_yloc($counter_driver)

 puts $csv "$temporal_driver_xloc, $temporal_driver_yloc, $repICG_id($counter_driver),
$repICG_driver_fanout($counter_driver)"

 set max_manhattan_xdistance_driver($counter_driver) 0
 set max_manhattan_ydistance_driver($counter_driver) 0

 set max_manhattan_distance_driver($counter_driver) 0

 set total_manhattan_xdistance_driver($counter_driver) 0
 set total_manhattan_ydistance_driver($counter_driver) 0

 set total_manhattan_distance_driver($counter_driver) 0

 for {set counter_endpoint 0} {$counter_endpoint <= $repICG_driver_endpoint($counter_driver)} {incr
counter_endpoint} {

 168

 set temporal_endpoint_xloc $repICG_endpoint_xloc($counter_driversepcounter_endpoint)
 set temporal_endpoint_yloc $repICG_endpoint_yloc($counter_driversepcounter_endpoint)

 set manhattan_xdistance_temporal [expr {$temporal_endpoint_xloc - $temporal_driver_xloc}]
 set manhattan_ydistance_temporal [expr {$temporal_endpoint_yloc - $temporal_driver_yloc}]

 set manhattan_xdistance($counter_driver$sep$counter_endpoint) [expr
{abs($manhattan_xdistance_temporal)}]
 set manhattan_ydistance($counter_driver$sep$counter_endpoint) [expr
{abs($manhattan_ydistance_temporal)}]

 set manhattan_distance($counter_driver$sep$counter_endpoint) [expr
{$manhattan_xdistance($counter_driversepcounter_endpoint) +
$manhattan_ydistance($counter_driversepcounter_endpoint)}]

 puts $csv "\t$temporal_endpoint_xloc, $temporal_endpoint_yloc,
$endpoint_id($counter_driversepcounter_endpoint),
$manhattan_distance($counter_driversepcounter_endpoint)"

 ### Max overall manhattan distance

 if {$manhattan_xdistance($counter_driversepcounter_endpoint) > $max_manhattan_xdistance}
{set max_manhattan_xdistance $manhattan_xdistance($counter_driversepcounter_endpoint)}
 if {$manhattan_ydistance($counter_driversepcounter_endpoint) > $max_manhattan_ydistance}
{set max_manhattan_ydistance $manhattan_ydistance($counter_driversepcounter_endpoint)}

 ### Max manhattan distance for each individual driver

 if {$manhattan_xdistance($counter_driversepcounter_endpoint) >
$max_manhattan_xdistance_driver($counter_driver)} {set
max_manhattan_xdistance_driver($counter_driver)
$manhattan_xdistance($counter_driversepcounter_endpoint)}
 if {$manhattan_ydistance($counter_driversepcounter_endpoint) >
$max_manhattan_ydistance_driver($counter_driver)} {set
max_manhattan_ydistance_driver($counter_driver)
$manhattan_ydistance($counter_driversepcounter_endpoint)}
 if {$manhattan_distance($counter_driversepcounter_endpoint) >
$max_manhattan_distance_driver($counter_driver)} {set max_manhattan_distance_driver($counter_driver)
$manhattan_distance($counter_driversepcounter_endpoint)}

 ### Average manhattan distance overall

 set total_manhattan_xdistance [expr {$total_manhattan_xdistance +
$manhattan_xdistance($counter_driversepcounter_endpoint)}]
 set total_manhattan_ydistance [expr {$total_manhattan_ydistance +
$manhattan_ydistance($counter_driversepcounter_endpoint)}]
 set total_manhattan_distance [expr {$total_manhattan_distance +
$manhattan_distance($counter_driversepcounter_endpoint)}]

 ### Average manhattan distance for each individual driver

 set total_manhattan_xdistance_driver($counter_driver) [expr
{$total_manhattan_xdistance_driver($counter_driver) +
$manhattan_xdistance($counter_driversepcounter_endpoint)}]
 set total_manhattan_ydistance_driver($counter_driver) [expr
{$total_manhattan_ydistance_driver($counter_driver) +
$manhattan_ydistance($counter_driversepcounter_endpoint)}]
 set total_manhattan_distance_driver($counter_driver) [expr
{$total_manhattan_distance_driver($counter_driver) +
$manhattan_distance($counter_driversepcounter_endpoint)}]

 }
 }
 close $csv

 169

 for {set counter_driver 0} {$counter_driver < $driver} {incr counter_driver} {
 set effective_endpoint [expr {$repICG_driver_fanout($counter_driver) + 1}]

 set average_xdistance_driver($counter_driver) [expr
{$total_manhattan_xdistance_driver($counter_driver)/$effective_endpoint}]
 set average_ydistance_driver($counter_driver) [expr
{$total_manhattan_ydistance_driver($counter_driver)/$effective_endpoint}]
 set average_distance_driver($counter_driver) [expr {$average_xdistance_driver($counter_driver) +
$average_ydistance_driver($counter_driver)}]
 }
 }

 ##

 if {$endpoint_analysis_flag && $capacitance_analysis_flag} {
 ### Gathering net fanout based on endpoint drivers
 ### Conversion from pins to nets using get_attribute
 for {set counter_driver 0} {$counter_driver < $driver} {incr counter_driver} {
 for {set counter_endpoint 0} {$counter_endpoint <= $repICG_driver_endpoint($counter_driver)}
{incr counter_endpoint} {
 set temporal_celltype_value
$repICG_endpoint_celltype($counter_driver$sep$counter_endpoint)
 if {$temporal_celltype_value == "sink"} {
 set temporal_net [get_attribute -class pin -name net_name -objects
$repICG_endpoint_pin($counter_driversepcounter_endpoint)]
 } else {
 set temporal_net "nil"
 }
 ### Populates intermediate list with all values from temporal net.
 if {$temporal_net != "nil"} {
 lappend temporal_list $temporal_net
 }

 }
 ### When exiting first loop, sorts all unique values from existing list and stores the list into an array
 set net_list_driver [lsort -unique $temporal_list]
 set net_list($counter_driver) $net_list_driver

 set temporal_list {}

 }
 for {set counter_driver 0} {$counter_driver < $driver} {incr counter_driver} {
 set total_wire_cap($counter_driver) 0
 set total_total_cap($counter_driver) 0
 set total_pin_cap($counter_driver) 0
 foreach value $net_list($counter_driver) {

 ### Extraction of the individual values
 set temp_wire_cap [get_attribute -class net -name wire_capacitance_max -objects $value]
 set temp_total_cap [get_attribute -class net -name total_capacitance_max -objects $value]

 if {$temp_wire_cap != "" && $temp_total_cap != ""} {
 set temp_pin_cap [expr {$temp_total_cap - $temp_wire_cap}]
 } else {
 set temp_wire_cap 0
 set temp_total_cap 0
 set temp_pin_cap 0
 }

 170

 set total_wire_cap($counter_driver) [expr {$total_wire_cap($counter_driver) +
$temp_wire_cap}]
 set total_total_cap($counter_driver) [expr {$total_total_cap($counter_driver) +
$temp_total_cap}]
 set total_pin_cap($counter_driver) [expr {$total_pin_cap($counter_driver) + $temp_pin_cap}]

 lappend wire_cap($counter_driver) $temp_wire_cap
 lappend total_cap($counter_driver) $temp_total_cap
 lappend pin_cap($counter_driver) $temp_pin_cap

 if {$csv_flag} {
 echo ".csv file generation\n"
 set csv_file "reports/routeopt/selected/QoR_clock_structure.csv"
 set csv [open $csv_file "w"]

 puts $csv "sep=,"

 if {$general_analysis_flag} {
 echo "General data formatting\n"
 puts $csv "Number of source pins, Number of repeaters, Number of ICGs, Number of sink
pins, Number of balance pins"
 puts $csv "$count_source, $count_repeater, $count_ICG, $count_sink, $count_balance"
 puts $csv "Maximum repeater fanout, Average repeater fanout, Maximum ICG fanout,
Average ICG fanout"
 puts $csv "$max_fanout_rep, $average_fanout_rep, $max_fanout_ICG,
$average_fanout_ICG"

 puts $csv "\n"
 puts $csv "General fanout breakdown information"
 puts $csv "#Drivers fanout >= 512, $count512"
 puts $csv "#Drivers fanout >= 256, $count256"
 puts $csv "#Drivers fanout >= 128, $count128"
 puts $csv "#Drivers fanout >= 32, $count32"
 puts $csv "#Drivers fanout > 100, $counth100"
 puts $csv "#Drivers fanout >= 64, $counth64"
 puts $csv "#Drivers fanout < 16, $countl16"

 if {$ccount_rep == 1} {
 puts $csv "\n"
 puts $csv "Repeater cells breakdown\n"
 puts $csv "Cell reference, Number of instances"
 puts $csv "$cell_type_repeater(0), $length_cell_rep1(0)"
 } else {
 puts $csv "\n"
 puts $csv "Repeater cells breakdown\n"
 puts $csv "Cell reference, Number of instances"
 for {set counter 0} {$counter < $ccount_rep} {incr counter} {
 puts $csv "$cell_type_repeater($counter), $length_cell_rep1($counter)"
 }
 }
 if {$ccount_ICG == 1} {
 puts $csv "\n"
 puts $csv "ICG cells breakdown\n"
 puts $csv "Cell reference, Number of instances"
 puts $csv "$cell_type_ICG(0), $length_cell_ICG1(0)"
 } else {
 puts $csv "\n"
 puts $csv "Repeater cells breakdown\n"
 puts $csv "Cell reference, Number of instances"
 for {set counter 0} {$counter < $ccount_ICG} {incr counter} {
 puts $csv "$cell_type_ICG($counter), $length_cell_rep1($counter)"
 }
 }
 if {$ccount_sink == 1} {
 puts $csv "\n"

 171

 puts $csv "Sink cells breakdown\n"
 puts $csv "Cell reference, Number of instances"
 puts $csv "$cell_type_leaf(0), $length_cell_leaf1(0)"
 } else {
 puts $csv "\n"
 puts $csv "Sinks cells breakdown\n"
 puts $csv "Cell reference, Number of instances"
 for {set counter 0} {$counter < $ccount_sink} {incr counter} {
 puts $csv "$cell_type_leaf($counter), $length_cell_leaf1($counter)"
 }
 }

 if {$ccount_balance} {
 puts $csv "\n"
 puts $csv "Balance cells breakdown\n"
 puts $csv "Cell reference, Number of instances"
 puts $csv "$cell_type_balance(0), $length_cell_balance1(0)"
 } else {
 puts $csv "\n"
 puts $csv "Balance cells breakdown\n"
 puts $csv "Cell reference, Number of instances"
 for {set counter 0} {$counter < $ccount_balance} {incr counter} {
 puts $csv "$cell_type_balance($counter), $length_cell_balance1($counter)"
 }
 }
 }
 if {$endpoint_analysis_flag && $capacitance_analysis_flag} {
 puts $csv "\n"
 puts $csv "Driver capacitance and Manhattan distance analysis"
 puts $csv "Downstream capacitance information, on endpoint drivers only sink and balance
capacitance will be considered.\n"
 puts $csv "Driver Idenfifier, Driver fanout, Max x-distance, Max y-distance, Max Distance,
Average x-distance, Average y-distance, Average distance, Driver Total Capacitance, Driver Pin
capacitance, Driver Wire Capacitance"
 for {set counter_driver 0} {$counter_driver < $driver} {incr counter_driver} {

 puts $csv "$repICG_id($counter_driver), $repICG_driver_fanout($counter_driver),
$max_manhattan_xdistance_driver($counter_driver),
$max_manhattan_ydistance_driver($counter_driver),
$max_manhattan_distance_driver($counter_driver), $average_xdistance_driver($counter_driver),
$average_ydistance_driver($counter_driver), $average_distance_driver($counter_driver),
$total_total_cap($counter_driver), $total_pin_cap($counter_driver), $total_wire_cap($counter_driver)"
 }
 if {$detailed_csv_flag} {
 echo "Driver fanout and manhattan distances\n"
 puts $csv "Driver identifier, Driver fanout, Driver x-location, Driver y-location"
 for {set counter_driver 0} {$counter_driver < $driver} {incr counter_driver} {
 puts $csv "$repICG_id($counter_driver), $repICG_driver_fanout($counter_driver),
$repICG_driver_xloc($counter_driver), $repICG_driver_yloc($counter_driver)"
 puts $csv "\tEndpoint identifier, Endpoint x-location, Endpoint y-location, Driver
manhattan distance"
 for {set counter_endpoint 0} {$counter_endpoint <=
$repICG_driver_endpoint($counter_driver)} {incr counter_endpoint} {
 puts $csv "\t$endpoint_id($counter_driver$sep$counter_endpoint),
$repICG_endpoint_xloc($counter_driversepcounter_endpoint),
$repICG_endpoint_yloc($counter_driversepcounter_endpoint),
$manhattan_distance($counter_driversepcounter_endpoint)"
 }
 }
 }
 }

 close $csv
 }
 }
}

 172

define_proc_attributes clock_structure_analyzer -info "Extracts information from the clock structure" \
 -define_args {
 {-tee "Optional - displays the output of under-the-hood clock_structure_analyzer command" ""
boolean optional}
 {-structure "Optional - specifies if existing structure is used or new file is generated via
report_clock_QoR -type structure" "" boolean optional}
 {-debugger "Optional - Sets up a flag to see debugging information" "" boolean optional}
 {-repeater_cells "Optional - Specifies if cells analisis is done" "" boolean optional}
 {-general_analysis "Optional - Specifies if general analysis on cell distribution and other metrics
is done" "" boolean optional}
 {-endpoint_analysis "Optional - Specifies if analysis on the sinks/balance and their drivers is
done" "" boolean optional}
 {-csv_file "Optional - specifies that a .csv file will be generated storing available info of other
options" "" boolean optional}
 {-detailed_csv "Optional - Adds detailed information on manhattan distance for each endpoint and
all endpoint drivers" "" boolean optional}
 {-capacitance_analysis "Optional - Adds information on net fanout" "" boolean optional}
 }

echo "\tclock_structure_analyzer"

Appendix 21: Script replace_clockpin.tcl

Script to reposition the input clock pin:

proc replace_clockpin {args} {
 parse_proc_arguments -args $args results

 set shape_type $results(-shape)
 set init_point $results(-init_point)
 set end_point $results(-end_point)
 set clock_name $results(-clock_name)
 set bbox_margin $results(-bbox_margin)
 set layer $results(-layer)

 set i 0
 foreach point $init_point {
 set initial_point($i) $point
 #echo $initial_point($i)
 incr i
 }

 set i 0

 foreach point $end_point {
 set final_point($i) $point
 #echo $final_point($i)
 incr i
 }
 for {set j 0} {$j < 2} {incr j} {
 set midpoint($j) [expr {$initial_point($j) + $final_point($j)}]
 set averagepoint($j) [expr {$midpoint($j)/2}]
 echo $averagepoint($j)
 }
 set bbox_minus_x [expr {$averagepoint(0) - $bbox_margin}]
 set bbox_minus_y [expr {$averagepoint(1) - $bbox_margin}]

 set bbox_plus_x [expr {$averagepoint(0) + $bbox_margin}]
 set bbox_plus_y [expr {$averagepoint(1) + $bbox_margin}]

 echo "{$bbox_minus_x $bbox_minus_y}{$bbox_plus_x $bbox_plus_y}"

 173

 set sysClk_shape [get_shapes -of_objects [get_ports -of_objects $clock_name]]
 remove_shapes -force -verbose $sysClk_shape
 echo "create_shape -shape_type $shape_type -layer $layer -shape_use macro_pin_connect -port
$clock_name -boundary {{$bbox_minus_x $bbox_minus_y} {$bbox_plus_x $bbox_plus_y}}"
 set aux_boundary "{{$bbox_minus_x $bbox_minus_y} {$bbox_plus_x $bbox_plus_y}}"
 create_shape -shape_type $shape_type -layer $layer -shape_use macro_pin_connect -port $clock_name -
boundary $aux_boundary

}

define_proc_attributes replace_clockpin -info "Creates a new input clock point" \
 -define_args {
 {-tee "Optional - displays the output under-the-hood replace_clockpin command" "" boolean
optional}
 {-init_point "Optional - x,y base point collection of the block" "" list optional}
 {-end_point "Optional - x,y final point collection of the block" "" list optional}
 {-bbox_margin "Optional - margin left on the bbox from the center point to the extremes" "" float
optional}
 {-clock_name "Optional - name of the clock port to be moved" "" string optional}
 {-shape "Optional - boundary type" "" string optional}
 {-layer "Optional - layer to be moved " "" string optional}

 }
echo "\treplace_clockpin"

Appendix 22: Script block_combiner.tcl

proc block_combiner {args} {
 parse_proc_arguments -args $args results

 ### Flag definition

 set block_4_exists [info exists results(-block_4_list)]
 set block_1_exists [info exists results(-block_1_list)]
 set block_2_exists [info exists results(-block_2_list)]
 set multi_files_flag [info exists results(-separate_files)]
 set math_flag [info exists results(-math)]
 set block_3_exists [info exists results(-block_3_list)]

 ### Pre_lists populating

 if {$block_4_exists} {
 set list_block_4 $results(-block_4_list)
 }
 if {$block_1_exists} {
 set list_block_1 $results(-block_1_list)
 }
 if {$block_2_exists} {

 174

 set list_block_2 $results(-block_2_list)
 }
 if {$block_3_exists} {
 set list_block_3 $results(-block_3_list)
 }

 ### -tee settings:
 if {[info exists results(-tee)]} {
 set tee "-tee -var"
 } else {
 set tee "-var"
 }

 ### List generation for metrics:

 list clock_QoR_block_4 ""
 list clock_QoR_Block_1 ""
 list clock_QoR_Block_2 ""
 list clock_QoR_block_3 ""

 list general_block_4 ""
 list general_Block_1 ""
 list general_Block_2 ""
 list general_block_3 ""

 set clock_QoR_flag 0
 set general_QoR_flag 0
 set iteration_flag 0

list blocklist ""
if {$block_4_exists} {lappend blocklist "block_4"}
if {$Block_1_exists} {lappend blocklist "block_1"}
if {$Block_2_exists} {lappend blocklist "block_2"}
if {$block_3_exists} {lappend blocklist "block_3"}

 #set blocklist {block_4 Block_1 Block_2}

 set clock_QoR_baseline "Set, WNS (ns), TNS (ns), Setup FEP, Clockslew FEP, Skew (ns), Latency
(ns), Clock Cells, Clock Repeaters, Area Clock Cells (um2), Repeater Area (um2), Dynamic Clock
Power (uW), Leakage Clock Power (uW), Total Clock Power (uW)"
 set general_QoR_baseline "Set, Utilization, Total Area (um2), Total Stdcell Area (um2), Total
Dynamic Power (uW), Total Leakage Power (uW), Total Power (uW), Number of DRCs"

 echo "A .csv file will be generated by each existing block"

 ## Index a foreach with each list name
 list temporal_list {}
 foreach blocktype $blocklist {
 if {$blocktype == "block_4" && $block_4_exists} {set temporal_list $list_block_4}
 if {$blocktype == "block_1" && $block_1_exists} {set temporal_list $list_block_1}
 if {$blocktype == "block_2" && $block_2_exists} {set temporal_list $list_block_2}
 if {$blocktype == "block_3" && $block_3_exists} {set temporal_list $list_block_3}

 foreach blockname $temporal_list {
 #set temporal_block $block
 set text_file [open "$blocktype/$blockname/reports/routeopt/selected/QoR_reformat.csv" "r"]
 echo "$blocktype/$blockname/reports/routeopt/selected/QoR_reformat.csv"
 set x [read $text_file]

 foreach line [split $x "\n"] {
if {$clock_QoR_flag} {
 set clock_QoR_flag 0
 if {[regexp
{^\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+)\

 175

s*$} $line match wns tns setup_fep clockslew_fep skew latency ccells crepeaters ccells_area
crepeaters_area dyn_clock_power leak_clock_power tot_clock_power]} {
 echo "Data fetched"

 ### Array assignment to populate csv
 set wns_format($blocktype$blockname) $wns
 set tns_format($blocktype$blockname) $tns
 set setup_fep_format($blocktype$blockname) $setup_fep
 set clockslew_fep_format($blocktype$blockname) $clockslew_fep
 set skew_format($blocktype$blockname) $skew
 set latency_format($blocktype$blockname) $latency
 set ccells_format($blocktype$blockname) $ccells
 set crepeaters_format($blocktype$blockname) $crepeaters
 set ccells_area_format($blocktype$blockname) $ccells_area
 set crepeaters_area_format($blocktype$blockname) $crepeaters_area
 set dyn_clock_power_format($blocktype$blockname) $dyn_clock_power
 set leak_clock_power_format($blocktype$blockname) $leak_clock_power
 set tot_clock_power_format($blocktype$blockname) $tot_clock_power

 }
}
if {$general_QoR_flag} {
 if {[regexp {^\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+),\s*(\S+)\s*$} $line match utilization tot_area
tot_stdcellarea tot_dyn_power tot_leak_power tot_tot_power DRC_number]} {
 echo "Data fetched"
 echo "$utilization $tot_area $tot_stdcellarea"

 ### Array assignment to populate csv
 set utilization_format($blocktype$blockname) $utilization
 set tot_area_format($blocktype$blockname) $tot_area
 set tot_stdcellarea_format($blocktype$blockname) $tot_stdcellarea
 set tot_dyn_power_format($blocktype$blockname) $tot_dyn_power
 set tot_leak_power_format($blocktype$blockname) $tot_leak_power
 set tot_tot_power_format($blocktype$blockname) $tot_tot_power
 set DRC_number_format($blocktype$blockname) $DRC_number
 }
}
 if {[regexp {^\s*WNS} $line match]} {
 set clock_QoR_flag 1
 }
 if {[regexp {^\s*Utilization} $line match]} {
 set general_QoR_flag 1
 }
 }
 }
 set temporal_list {}
 }

 if {$math_flag} {
 echo "Percentage generation compared to the first block given"
foreach blocktype $blocklist {
 if {$blocktype == "block_4" && $block_4_exists} {set temporal_list $list_block_4}
 if {$blocktype == "block_1" && $block_1_exists} {set temporal_list $list_block_1}
 if {$blocktype == "block_2" && $block_2_exists} {set temporal_list $list_block_2}
 if {$blocktype == "block_3" && $block_3_exists} {set temporal_list $list_block_3}

 set reference_initialblock [lindex $temporal_list 0]

 ###Reference values to obtain percentages:

 ###Clock metrics
 set ref_wns $wns_format($blocktype$reference_initialblock)
 set ref_tns $tns_format($blocktype$reference_initialblock)
 set ref_setup_fep $setup_fep_format($blocktype$reference_initialblock)
 set ref_clockslew_fep $clockslew_fep_format($blocktype$reference_initialblock)
 set ref_skew $skew_format($blocktype$reference_initialblock)

 176

 set ref_latency $latency_format($blocktype$reference_initialblock)
 set ref_ccells $ccells_format($blocktype$reference_initialblock)
 set ref_crepeaters $crepeaters_format($blocktype$reference_initialblock)
 set ref_ccells_area $ccells_area_format($blocktype$reference_initialblock)
 set ref_crepeaters_area $crepeaters_area_format($blocktype$reference_initialblock)
 set ref_dyn_clock_power $dyn_clock_power_format($blocktype$reference_initialblock)
 set ref_leak_clock_power $leak_clock_power_format($blocktype$reference_initialblock)
 set ref_tot_clock_power $tot_clock_power_format($blocktype$reference_initialblock)

 ###General Metrics
 set ref_utilization $utilization_format($blocktype$reference_initialblock)
 set ref_tot_area $tot_area_format($blocktype$reference_initialblock)
 set ref_tot_stdcellarea $tot_stdcellarea_format($blocktype$reference_initialblock)
 set ref_tot_dyn_power $tot_dyn_power_format($blocktype$reference_initialblock)
 set ref_tot_leak_power $tot_leak_power_format($blocktype$reference_initialblock)
 set ref_tot_tot_power $tot_tot_power_format($blocktype$reference_initialblock)
 set ref_DRC_number $DRC_number_format($blocktype$reference_initialblock)

 foreach blockname $temporal_list {
 ### Foreach block not being the reference one:
 ### Exceptions to be contempted:
 #NaN
 #ref == 0
 if {$blockname != "$reference_initialblock"} {

 ###Clock QoR metrics.

 set int [expr {$wns_format($blocktype$blockname) - $ref_wns}]
 if {$ref_wns != 0 && $ref_wns != "~"} {set perc_wns($blocktype$blockname) [expr
{$int*100/$ref_wns}]} else {set perc_wns($blocktype$blockname) "NaN"}

 set int [expr {$tns_format($blocktype$blockname) - $ref_tns}]
 if {$ref_tns != 0 && $ref_wns != "~"} {set perc_tns($blocktype$blockname) [expr
{$int*100/$ref_tns}]} else { set perc_tns($blocktype$blockname) "NaN"}
 #echo $perc_tns($blocktype$blockname)
 echo $blocktype$blockname
 echo $ref_setup_fep
 echo $setup_fep_format($blocktype$blockname)

 if {[string is integer $ref_setup_fep] && [string is integer
$setup_fep_format($blocktype$blockname)]} {set int [expr {$setup_fep_format($blocktype$blockname) -
$ref_setup_fep}]}
 if {[string is integer $ref_setup_fep] && [string is integer
$setup_fep_format($blocktype$blockname)]} {set perc_setup_fep($blocktype$blockname) [expr
{$int*100/$ref_setup_fep}]} else {set perc_setup_fep($blocktype$blockname) "NaN"}
 echo $ref_setup_fep
 if {[string is integer $ref_clockslew_fep] && [string is integer
$clockslew_fep_format($blocktype$blockname)]} {set int [expr
{$clockslew_fep_format($blocktype$blockname) - $ref_clockslew_fep}]}
 if {[string is integer $ref_clockslew_fep] && [string is integer
$clockslew_fep_format($blocktype$blockname)]} {set perc_clockslew_fep($blocktype$blockname) [expr
{$int*100/$ref_clockslew_fep}]} else {set perc_clockslew_fep($blocktype$blockname) "NaN"}

set int [expr {$skew_format($blocktype$blockname) - $ref_skew}]
if {$ref_skew != 0 && $ref_skew != "~"} {set perc_skew($blocktype$blockname) [expr
{$int*100/$ref_skew}]} else {set perc_skew($blocktype$blockname) "NaN"}

 set int [expr {$latency_format($blocktype$blockname) - $ref_latency}]
 if {$ref_latency != 0 && $ref_latency != "~"} {set perc_latency($blocktype$blockname) [expr
{$int*100/$ref_latency}]} else {set perc_latency($blocktype$blockname) "NaN"}

 177

 set int [expr {$ccells_format($blocktype$blockname) - $ref_ccells}]
 if {$ref_ccells != 0 && $ref_ccells != "~"} {set perc_ccells($blocktype$blockname) [expr
{$int*100/$ref_ccells}]} else {set perc_ccells($blocktype$blockname) "NaN"}

 set int [expr {$crepeaters_format($blocktype$blockname) - $ref_crepeaters}]
 if {$ref_crepeaters != 0 && $ref_crepeaters != "~"} {set
perc_crepeaters($blocktype$blockname) [expr {$int*100/$ref_crepeaters}]} else {set
perc_crepeaters($blocktype$blockname) "NaN"}

 set int [expr {$ccells_area_format($blocktype$blockname) - $ref_ccells_area}]
 if {$ref_ccells_area != 0 && $ref_ccells_area != "~"} {set
perc_ccells_area($blocktype$blockname) [expr {$int*100/$ref_ccells_area}]} else {set
perc_ccells_area($blocktype$blockname) "NaN"}

 set int [expr {$crepeaters_area_format($blocktype$blockname) - $ref_crepeaters_area}]
 if {$ref_crepeaters_area != 0 && $ref_crepeaters_area != "~"} {set
perc_crepeaters_area($blocktype$blockname) [expr {$int*100/$ref_crepeaters_area}]} else {set
perc_crepeaters_area($blocktype$blockname) "NaN"}

 set int [expr {$dyn_clock_power_format($blocktype$blockname) - $ref_dyn_clock_power}]
 if {$ref_dyn_clock_power != 0 && $ref_dyn_clock_power != "~"} {set
perc_dyn_clock_power($blocktype$blockname) [expr {$int*100/$ref_dyn_clock_power}]} else {set
perc_dyn_clock_power($blocktype$blockname) "NaN"}

 set int [expr {$leak_clock_power_format($blocktype$blockname) - $ref_leak_clock_power}]
 if {$ref_leak_clock_power != 0 && $ref_leak_clock_power != "~"} {set
perc_leak_clock_power($blocktype$blockname) [expr {$int*100/$ref_leak_clock_power}]} else {set
perc_leak_clock_power($blocktype$blockname) "NaN"}

 set int [expr {$tot_clock_power_format($blocktype$blockname) - $ref_tot_clock_power}]
 if {$ref_tot_clock_power != 0 && $ref_tot_clock_power != "~"} {set
perc_tot_clock_power($blocktype$blockname) [expr {$int*100/$ref_tot_clock_power}]} else {set
perc_tot_clock_power($blocktype$blockname) "NaN"}

 ### General metrics:

 set int [expr {$utilization_format($blocktype$blockname) - $ref_utilization}]
 if {$ref_utilization!= 0 && $ref_utilization != "~"} {set perc_utilization($blocktype$blockname)
[expr {$int*100/$ref_utilization}]} else {set perc_utilization($blocktype$blockname) "NaN"}

 set int [expr {$tot_area_format($blocktype$blockname) - $ref_tot_area}]
 if {$ref_tot_area != 0 && $ref_tot_area != "~"} {set perc_tot_area($blocktype$blockname)
[expr {$int*100/$ref_tot_area}]} else {set perc_tot_area($blocktype$blockname) "NaN"}

 set int [expr {$tot_stdcellarea_format($blocktype$blockname) - $ref_tot_stdcellarea}]
 if {$ref_tot_stdcellarea != 0 && $ref_tot_stdcellarea != "~"} {set
perc_tot_stdcellarea($blocktype$blockname) [expr {$int*100/$ref_tot_stdcellarea}]} else {set
perc_tot_stdcellarea($blocktype$blockname) "NaN"}

 set int [expr {$tot_dyn_power_format($blocktype$blockname) - $ref_tot_dyn_power}]
 if {$ref_tot_dyn_power != 0 && $ref_tot_dyn_power != "~"} {set
perc_tot_dyn_power($blocktype$blockname) [expr {$int*100/$ref_tot_dyn_power}]} else {set
perc_tot_dyn_power($blocktype$blockname) "NaN"}

 set int [expr {$tot_leak_power_format($blocktype$blockname) - $ref_tot_leak_power}]
 if {$ref_tot_leak_power != 0 && $ref_tot_leak_power != "~"} {set
perc_tot_leak_power($blocktype$blockname) [expr {$int*100/$ref_tot_leak_power}]} else {set
perc_tot_leak_power($blocktype$blockname) "NaN"}

 set int [expr {$tot_tot_power_format($blocktype$blockname) - $ref_tot_tot_power}]
 if {$ref_tot_tot_power != 0 && $ref_tot_tot_power != "~"} {set
perc_tot_tot_power($blocktype$blockname) [expr {$int*100/$ref_tot_tot_power}]} else {set
perc_tot_tot_power($blocktype$blockname) "NaN"}

 set int [expr {$DRC_number_format($blocktype$blockname) - $ref_DRC_number}]

 178

 if {$ref_DRC_number != 0 && $ref_DRC_number != "~"} {set
perc_DRC_number($blocktype$blockname) [expr {$int*100/$ref_DRC_number}]} else {set
perc_DRC_number($blocktype$blockname) "NaN"}

 }
 }
 unset ref_wns
 unset ref_tns
 unset ref_setup_fep
 unset ref_clockslew_fep
 }
 }
 if {$multi_files_flag} {
 echo "Each block will have its own .csv file"
 foreach blocktype $blocklist {
 ### Assigning temporal lists to manage less code for iterations:

 if {$blocktype == "block_4" && $block_4_exists} {set temporal_list $list_block_4}
 if {$blocktype == "Block_1" && $Block_1_exists} {set temporal_list $list_Block_1}
 if {$blocktype == "Block_2" && $Block_2_exists} {set temporal_list $list_Block_2}
 if {$blocktype == "block_3" && $block_3_exists} {set temporal_list $list_block_3}

 set reference_initialblock [lindex $temporal_list 0]

 ### Opening of individual csv file:

 set csv_file "csv_block_combiner/${blocktype}.csv"
 set csv [open $csv_file "w"]
 puts $csv "QoR for $blocktype"
 puts $csv "Clock QoR metrics\n"
 puts $csv $clock_QoR_baseline
 foreach blockname $temporal_list {

 puts $csv "$blockname, $wns_format($blocktype$blockname),
$tns_format($blocktype$blockname), $setup_fep_format($blocktype$blockname),
$clockslew_fep_format($blocktype$blockname), $skew_format($blocktype$blockname),
$latency_format($blocktype$blockname), $ccells_format($blocktype$blockname),
$crepeaters_format($blocktype$blockname), $ccells_area_format($blocktype$blockname),
$crepeaters_area_format($blocktype$blockname),
$dyn_clock_power_format($blocktype$blockname),
$leak_clock_power_format($blocktype$blockname),
$tot_clock_power_format($blocktype$blockname)"
 }
 puts $csv "\n"
 puts $csv "General QoR metrics \n"
 puts $csv $general_QoR_baseline
 foreach blockname $temporal_list {
 puts $csv "$blockname, $utilization_format($blocktype$blockname),
$tot_area_format($blocktype$blockname), $tot_stdcellarea_format($blocktype$blockname),
$tot_dyn_power_format($blocktype$blockname), $tot_leak_power_format($blocktype$blockname),
$tot_tot_power_format($blocktype$blockname), $DRC_number_format($blocktype$blockname)"
 }
 if {$math_flag} {
 puts $csv "\n"
 puts $csv "Clock QoR percentage metrics: value = (current_value -
reference_value)*100/reference_value"
 puts $csv $clock_QoR_baseline
 foreach blockname $temporal_list {
 if {$blockname != $reference_initialblock} {

 179

 puts $csv "$blockname, $perc_wns($blocktype$blockname),
$perc_tns($blocktype$blockname), $perc_setup_fep($blocktype$blockname),
$perc_clockslew_fep($blocktype$blockname),$perc_skew($blocktype$blockname),
$perc_latency($blocktype$blockname), $perc_ccells($blocktype$blockname),
$perc_crepeaters($blocktype$blockname), $perc_ccells_area($blocktype$blockname),
$perc_crepeaters_area($blocktype$blockname), $perc_dyn_clock_power($blocktype$blockname),
$perc_leak_clock_power($blocktype$blockname), $perc_tot_clock_power($blocktype$blockname)"
 }
 }
 puts $csv "\n"
 puts $csv "General QoR percentage metrics: value = (current_value -
reference_value)*100/reference_value"
 puts $csv $general_QoR_baseline
 foreach blockname $temporal_list {
 if {$blockname != $reference_initialblock} {
 puts $csv "$blockname, $perc_utilization($blocktype$blockname),
$perc_tot_area($blocktype$blockname), $perc_tot_stdcellarea($blocktype$blockname),
$perc_tot_dyn_power($blocktype$blockname), $perc_tot_leak_power($blocktype$blockname),
$perc_tot_tot_power($blocktype$blockname), $perc_DRC_number($blocktype$blockname)"
 }
 }
 }
 close $csv
 }
 } else {
 echo "A single csv file will be generated for all blocks\n"

 set csv_file "csv_block_combiner/merged_QoR.csv"
 set csv [open $csv_file "w"]

 foreach blocktype $blocklist {

 ### Assigning temporal lists to manage less code for iterations:

 if {$blocktype == "block_4" && $block_4_exists} {set temporal_list $list_block_4}
 if {$blocktype == "Block_1" && $Block_1_exists} {set temporal_list $list_Block_1}
 if {$blocktype == "Block_2" && $Block_2_exists} {set temporal_list $list_Block_2}
 if {$blocktype == "block_3" && $block_3_exists} {set temporal_list $list_block_3}

 set reference_initialblock [lindex $temporal_list 0]
 puts $csv "\n"
 puts $csv "QoR for $blocktype"
 puts $csv "Clock QoR metrics\n"
 puts $csv $clock_QoR_baseline

 foreach blockname $temporal_list {
 puts $csv "$blockname, $wns_format($blocktype$blockname),
$tns_format($blocktype$blockname), $setup_fep_format($blocktype$blockname),
$clockslew_fep_format($blocktype$blockname), $skew_format($blocktype$blockname),
$latency_format($blocktype$blockname), $ccells_format($blocktype$blockname),
$crepeaters_format($blocktype$blockname), $ccells_area_format($blocktype$blockname),
$crepeaters_area_format($blocktype$blockname),
$dyn_clock_power_format($blocktype$blockname),
$leak_clock_power_format($blocktype$blockname),
$tot_clock_power_format($blocktype$blockname)"
 }
 puts $csv "\n"
 puts $csv "General QoR metrics \n"
 puts $csv $general_QoR_baseline

 foreach blockname $temporal_list {
 puts $csv "$blockname, $utilization_format($blocktype$blockname),
$tot_area_format($blocktype$blockname), $tot_stdcellarea_format($blocktype$blockname),
$tot_dyn_power_format($blocktype$blockname), $tot_leak_power_format($blocktype$blockname),
$tot_tot_power_format($blocktype$blockname), $DRC_number_format($blocktype$blockname)"
 }

 180

 if {$math_flag} {
 puts $csv "\n"
 puts $csv "Clock QoR percentage metrics: value = (current_value -
reference_value)*100/reference_value"
 puts $csv $clock_QoR_baseline

 foreach blockname $temporal_list {
 if {$blockname != $reference_initialblock} {
 puts $csv "$blockname, $perc_wns($blocktype$blockname),
$perc_tns($blocktype$blockname), $perc_setup_fep($blocktype$blockname),
$perc_clockslew_fep($blocktype$blockname), $perc_skew($blocktype$blockname),
$perc_latency($blocktype$blockname), $perc_ccells($blocktype$blockname),
$perc_crepeaters($blocktype$blockname), $perc_ccells_area($blocktype$blockname),
$perc_crepeaters_area($blocktype$blockname), $perc_dyn_clock_power($blocktype$blockname),
$perc_leak_clock_power($blocktype$blockname), $perc_tot_clock_power($blocktype$blockname)"
 }
 }
 puts $csv "\n"
 puts $csv "General QoR percentage metrics: value = (current_value -
reference_value)*100/reference_value"
 puts $csv $general_QoR_baseline

 foreach blockname $temporal_list {
 if {$blockname != $reference_initialblock} {
 puts $csv "$blockname, $perc_utilization($blocktype$blockname),
$perc_tot_area($blocktype$blockname), $perc_tot_stdcellarea($blocktype$blockname),
$perc_tot_dyn_power($blocktype$blockname), $perc_tot_leak_power($blocktype$blockname),
$perc_tot_tot_power($blocktype$blockname), $perc_DRC_number($blocktype$blockname)"
 }
 }
 }

 }
 close $csv
 }
}

define_proc_attributes block_combiner -info "Merges existing reports into a single file" \
 -define_args {
 {-tee "Optional - displays the output of under-the-hood clock_structure_analyzer command" ""
boolean optional}
 {-block_4_list "Optional - Passes the name of the block_4 block reports to be merged" "" list
optional}
 {-block_1_list "Optional - Passes the name of the Block_1 block reports to be merged" "" list
optional}
 {-block_2_list "Optional - Passes the name of the Block_2 block reports to be merged" "" list
optional}
 {-separate_files "Optional - Specifies if one file per block is used on report_generation" "" boolean
optional}
 {-math "Optional - Specifies if percentages on values compared to the first block on each list is
made" "" boolean optional}
 {-block_3_list "Optional - Passes the name of the block_3 block reports to be merged" "" list
optional}
 }
echo "\tblock_combiner"

 181

Glossary

 182

ADB: Adjustable Delay Buffer

CCD: Concurrent Clock and Data Optimization

CSV: Comma Separated Values

DRC: Design Rule Check

EDA: Electronic Design Automation

GUI: Graphical User Interface

ICG: Integrated Clock Gating Cell

MCMM: Multi-Corner Multi-Mode

OCV: On-Chip Variation

PPA: Power Performance Analysis

PVT: Power-Voltage-Temperature

QoR: Quality of Results

TCL: Tool Command Language

TNS: Total Negative Slack

WNS: Worst Negative Slack

