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Abstract

The Linux Kernel OS is a black box from the user-space point of view. In most cases, this is not a
problem. However, for parallel high performance computing applications it can be a limitation. Such
applications usually execute on top of a runtime system, itself executing on top of a general purpose
kernel. Current runtime systems take care of getting the most of each system core by distributing
work among the multiple CPUs of a machine but they are not aware of when one of their threads
perform blocking calls (e.g. I/O operations). When such a blocking call happens, the processing
core is stalled, leading to performance loss. In this thesis, it is presented the proof-of-concept of a
Linux kernel extension denoted User Monitored Threads (UMT). The extension allows a user-space
application to be notified of the blocking and unblocking of its threads, making it possible for a core
to execute another worker thread while the other is blocked. An existing runtime system (namely
Nanos6) is adapted, so that it takes advantage of the kernel extension. The whole prototype is tested
on a synthetic benchmarks and an industry mock-up application. The analysis of the results shows, on
the tested hardware and the appropriate conditions, a significant speedup improvement.
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Chapter 1

Introduction

1.1 Preamble and Motivation

High performance computing applications usually execute in worker threads that are handled by a userland

runtime system, itself executing on top of a general purpose operating system (OS). The main objective of

the runtime system is to provide maximum performance by getting the most out of available hardware

resources. On a multi-core machine, this translates to distribute the work of applications among the

machine’s available cores and balance each core workload to ensure that each possible CPU cycle is used

on behalf of the application’s purpose.

Runtime’s balancing capabilities are subject to the underlying OS scheduler policy. This scheduler

has to take decisions at various moments: when threads are created, when they finish, when they perform

I/O operations etc. The problem is that this general purpose scheduler takes decisions with a low-level

knowledge of what is executing in userland. This leads to performance loss. Indeed, when a thread

performs a blocking I/O operation against the OS kernel, the core where the thread was running becomes

idle until the operation finishes. This problem can lead to huge performance loss as some HPC or high-end

server applications perform lots of I/O operations because they heavily deal with file and network requests.

One approach to address this issue is to make the runtime system aware of when blocking and

unblocking events happen. In this way, it can chose to execute another worker thread while the first one is

blocked. This approach requires special kernel support, and although several solutions exist to do so, their

complexity has prevented them to make it into the Linux kernel mainland code.

In this thesis, several approaches to achieve the same goal are studied which conclude with the

following proposed contributions:

• A new, simple and lightweight Linux kernel extension in which the OS provides user-space

feedback by using the eventfd interface which allows to use, in user space, a file descriptor as an

event wait/notify mechanism.
• A modification for the Nanos6 task-based runtime of the OmpSs [1] programming model so that it

takes advantage of the kernel extension.
• An evaluation of the whole prototype using both a custom benchmark and an industry mock-up

application.

The remaining of this thesis is organized as follows: The Background chapter exposes the most relevant

parts of both the OmpSs runtime and the Linux Kernel, which forms the foundation this work relies on.

7



The Design and Implementation chapter highlights the models considered and the implementation details

for the integration of the OmpSs runtime and the Linux Kernel. The Experimentation chapter illustrates

the prototype’s test bed and comment on the results obtained. Finally, this thesis concludes with the final

remarks and observations in the Conclusions section.

1.2 Related Work

Mechanisms to provide feedback from kernel-space to user-space when a blocking operation occurs have

already been considered in the context of user-level threads. User-level threads provide a mechanism to

perform context switches in user-space between threads that belong to the same process, thus minimizing

the cost of context switching. This is also known as the N:1 model, in which N user-level threads are

mapped to a single kernel thread. The problem with this model is that when a user-level thread performs a

blocking operation, all user-level threads associated to the same kernel-level thread block. A palliative

approach exists, known as Hybrid approach in which a set of user-level threads are mapped to a set

of kernel threads. However, if just one of these user-level threads blocks, all other user-level threads

associated to the same kernel-level thread also block. The problem is that the kernel is not aware of

user-level threads.

Scheduler Activations (SA) [2] provide user-level threads with their own reusable kernel-level context

and a kernel to user-space feedback mechanism based on upcalls (function calls from kernel-space to

user-space). When a user-space thread blocks, a new type of kernel thread known as activation thread, is

created (or retrieved from a pool) to relieve it. The activation thread upcalls a special user-space function

that informs the user-space scheduler of the blocked thread. Then, still on the upcall (from the user-space

side), the user scheduler runs and schedules another user-space thread. When the blocking operation

finishes, another activation thread is created/retrieved and upcalls another user-space function to inform

the user-level scheduler that the user-space thread is ready again.

SA has an important drawback. The user-space scheduler thread cannot safely access shared resources

protected with a lock that it has not direct access to. For example, it is possible for a user-level thread to

get an internal glibc lock and block without releasing it because of a page fault. Then, the kernel will

wake up another user-level thread to handle the blocking event. If the user-level thread code that handles

the event also uses the same glibc resource as the blocked thread and tries to acquire the lock, a deadlock

happens. This extends to internal kernel locks, such as memory allocation locks.

SA were integrated into production OS’s such as NetBSD [3, 4] and FreeBSD [5] (under the name of

Kernel Schedule Entities or KSE). An implementation was proposed for the Linux Kernel [6, 7, 8] but

the SA concept itself was rejected because the associated complexity was to high [9]. In the NetBSD

5.0 version, support for SA was removed for the traditional 1:1 threading scheme because "The SA

implementation was complicated, scaled poorly on multiprocessor systems and had no support for real-

time applications" [10]. FreeBSD KSE support was also removed since their 7.0 version and changed it

for the 1:1 model.

Windows OS has a similar implementation called User-Mode Scheduling (UMS) [11], it is based on

the same principle of upcalls, userland context switches and in-kernel unblocked thread retention. The

interface is available since the 64 bit version of windows 7 and Windows Server 2008 R2. The locking

problem also arises in their implementation as noted in the "UMS Best Practices" section of the cited

document above: "To help prevent deadlocks, the UMS scheduler thread should not share locks with UMS
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worker threads. This includes both application-created locks and system locks that are acquired indirectly

by operations such as allocating from the heap or loading DLLs".

The K42 research OS [12, 13] proposed a more sophisticated mechanism to solve a similar problem.

The K42 kernel schedules entities called dispatchers, and dispatchers schedule user-space threads. A

process consists of an address space and one or more dispatchers. All threads belonging to a dispatcher

are bound to the same CPU as the dispatcher is. Hence, to achieve parallelism, multiple dispatchers are

required.

When a user-space threads invokes a kernel service1 to initiate an I/O request, a "reserved" thread

from the kernel space is dynamically assigned from a kernel maintained pool of reserved threads to

assist it. This thread is in charge of initiate the I/O operation against the underlying hardware and block

for it to complete. In the meantime, the kernel returns control to the user-space thread dispatcher so it

can schedule another user-space thread if it has one. When the I/O completes, the kernel notifies the

dispatcher with a signal-like mechanism so it can schedule the user thread again. Is worth noting that

because dispatchers schedule user-space threads, an unblocked thread is not going to run unless there is

some explicit interaction from the dispatcher scheduler.

The K42 user-level scheduling of dispatchers is provided by a trusted thread library. This library

suffers from the same problem as SA: it cannot share any lock with the user-level threads, otherwise a

deadlock would block the process if the dispatcher code to schedule a thread tried to get a lock that was

already taken by the blocked user-space thread.

The User-Monitored Thread (UMT) model described in the following sections is similar to SA and

K42 in the sense that both use a mechanism to notify a user-space thread whenever another thread blocks

or unblocks in kernel-space. Also, both use the notification to manage the active threads. The main

differences of UMT with SA and K42 are, on one hand, that unblocked threads are not retained anywhere

(hence, there is no locking problem with the user-space scheduler) and, on the other hand, the UMT

implementation is much more simple and lightweight. However, as a consequence of not retaining the

recently unblocked threads, UMT needs to deal with periods of over-subscription. The experimentation

chapter of this document carefully examines this drawbacks and shows the results obtained which, under

the appropriate work loads, improves performance.

1.3 Methodology

This thesis work follows a design research methodology. In such methodology three main cycles define

the workflow: The relevance cycle, the design cycle and the rigor cycle as shown in figure 1.1. The

relevance cycle encompasses the problem identification and the analysis of requirements for a possible

solution. In the design cycle, prototypes are build and tested based on the previously defined requirements.

Finally, in the rigor cycle, new knowledge is generated after studying the results obtained. In design

research, the workflow is not linear. Because neither the preliminary objectives nor the procedures to

follow might be clear at the beginning, initial plans might be altered as more information is gathered,

prototypes are tested and new knowledge is obtained. For this reason, a common design research pattern

is to move between the different research stages as the work advances.

1All Kernel services are handled by means of Protected Procedure Calls (PPC).
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Figure 1.1: Design Research Methodology [14]

This work departs from the objective of improving modern HPC environments settling the working

base on the Operating Systems and runtime engines for parallel computation. Based on the initial idea of

monitoring threads at kernel level to improve system resource usage, the viability and applicability of

such new feature was studied and contrasted with the current state of the art. An initial model was first

implemented on a stable Linux Kernel version from which several first conclusions were obtained. Next,

two more designs were proposed as the preceding ones were implemented and tested to solve unnoticed

flaws or to add better features. Finally, the resulting design and its corresponding implementation were

deeply analyzed and documented to obtain and share the contributions with the community.
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Chapter 2

Background

2.1 OmpSs

2.1.1 Introduction

OmpSs is a programming model developed at the Barcelona Supercomputing Center (BSC) with the

objective of guiding the development of the OpenMP programming model[15, 16]. The main OmpSs

focus is both asynchronous parallelism and device heterogeneity to distribute work among different

devices such as CPUs, GPUs and FPGAs. OmpSs is a research test bed for new features that is also being

used on a production environment at the BSC. The main components of OmpSs are the source to source

Mercurium Compiler and the Nanos library runtime. Mercurium translates source code pragmas into

Nanos library calls and Nanos manages the application’s execution flow at runtime.

OmpSs is a task based programming model, which means that all units of parallelism are expressed as

tasks. A task is an enclosed sequence of instructions specified by the developer that must be executed

sequentially. Multiple tasks can be executed in parallel as long as all their dependencies have been fulfilled.

Dependencies express which data a task require to perform its computation and which data it produces. In

fact, dependencies are expressed simply by specifying which variables a task uses as input, output or both.

The actual execution sequence of tasks is determined by the Nanos library at runtime.

2.1.2 The OmpSs/Nanos6 Threading Model

In the OmpSs/Nanos6 threading model, everything is a task. The first task created by the runtime is,

in fact, a wrapper around the main() function in the C programming language before the application

starts executing. Tasks are able to create other tasks (its childs) and wait for all or a subset of them to be

executed before continuing. The runtime names the list of tasks whose dependencies have been satisfied

and can be executed as the list of ready tasks. Tasks are continuously being executed as long as their

dependencies allows them to.

At startup, Nanos creates a special thread called the Leader Thread and a set of Worker Threads. The

leader thread role is simply to run periodically to perform miscellaneous work such as printing logs. The

Worker threads’ objective is to execute ready tasks.

Nanos creates a worker thread per CPU. Workers are pinned (bound) to their CPU to prevent the OS

from migrating them and polluting the cache. The Worker’s main body is called the Idle Loop. As long as
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there are available ready tasks, workers loop in the Idle Loop and ask the runtime task scheduler for a

ready task from the list. When no more tasks left, the current worker adds the CPU where it is running

into a list of Idle CPUs, adds itself to a list of idle Workers and voluntarily sleeps.

Once a worker acquires a task, it checks if the task already has a worker assigned (as explained later).

If this is the case, the current workers ceases its execution and wakes up the worker which currently owns

the task so it can continue running it. If the task’s worker is pinned to a different CPU, Nanos pins it

to the current CPU before waking it up. If the task does not have owner, the worker starts executing it

immediately. Tasks assigned to workers are non-transferable, i.e. tasks are not moved between workers.

After completing a task, the worker checks if another task’s dependencies have been satisfied due to

the current task having finished. If such condition is met, the affected tasks are unblocked and are placed

in the ready list of tasks to be executed.

Whenever a new task is created or an existing one is unblocked, it is checked if there is an idle CPU to

run it. If it is the case, both the idle CPU and and idle worker are removed from their respective idle lists

and the worker is woken up to run the task on the CPU. Otherwise, the task is queued on the list of ready

tasks.

When a worker encounters a taskwait clause, the current task is locked and stops executing. However,

the worker tied to it continues to execute the child tasks of the sleeping task, if any. Because any worker

can execute any task, it is possible for the taskwait worker to not be able to run some of its own child task

because other workers have acquired them first. If there are no more child task available for the taskwait

worker to run although they are not finished, the taskwait worker sleeps. When another worker executes

the last child task, it unlocks (not unblocks) the taskwait worker’s task and places it in the task scheduler

list of ready tasks (this is why workers can find tasks with already assigned workers in the idle loop).

By prioritizing the execution of the child tasks it is intended to advance work in the shortest direction to

unblock the current task.

The exact policy to retrieve the next task to execute from the ready list (and the actual list implementa-

tion) depends on the currently selected Nanos6 scheduler. Several solutions exists based on the expected

workload or the machine architecture. The default scheduler is a simple FIFO based on the assumption

that tasks are generally generated in the order that they are needed to be executed and that gives priority to

unlocked tasks before new tasks.

2.2 Linux Kernel

2.2.1 Introduction

The Linux Kernel is the core of all GNU/Linux distributions. It is a software layer that sits between the

underlying computer hardware and user applications. Its main role is to provide a hardware abstraction

layer, manage system resources such as main memory or network connections and schedule processes.

The Linux Kernel is Open Source software, which means that it’s possible to study its internals,

contribute to its development and use it in projects without almost any restriction. For this reason it has

become a test bed for research innovations. New ideas, as the one proposed in this thesis, can be tested on

Linux and make public when validated and accepted for the community. The Linux community is active

and responsive (when right questions are asked properly). As a result of the collaborative effort, a new

version is released regularly every two-three months with hundreds of new features. Because of its highly
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Figure 2.1: Top500 Operating System Family share June 1st, 2017

customizable module-based features, the Linux Kernel has became the standard solution from embedded

devices to HPC environments [17]. Figure 2.1 shows the evolution of Operating System family choice in

the Top500 supercomputer list as of June 1st, 2017.

Nowadays the Linux Kernel source code contains more than 25 millions of lines. To manage this huge

project, it is divided into subsystems which are in turn organized as a set of git1 trees. Each subsystem is

managed by one or more maintainers. Maintainers decide whether a patch is included or not into their

subsystem. At the top of the git tree, as the maintainer of the development version of Linux, sits Linus

Torvalds, the Linux kernel founder and the last authority in accepting a patch into the mainline kernel.

The Linux Kernel development cycle [18] is organized in time periods named Merge Windows. Patches

with new features are accepted when the merge window is opened. At this point Linus pulls changes

from the underlying git trees and adds them into its development git tree. After typically two weeks, the

merge windows closes and for six to ten weeks, only bug fixes are accepted. During this period, a release

candidate is released every week for developers to test the current version. When Linus decides, it releases

a the new kernel version and the cycle is repeated again by opening the next merge window.

The Linux kernel is a single big binary (monolithic kernel) capable of loading and unloading external

modules on-demand. It supports preemptive multitasking for both user and kernel processes (running

processes, even kernel processes, can be preempted by other processes to ensure runtime fairness). It also

1The git version control system was, in fact, developed by Linus Torvalds (the Linux Kernel creator) for the Linux Kernel project.
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supports threading, virtual memory and shared libraries among much other features.

The rest of this section summarizes the main roles of the different subsystems related with the scope

of this work: The generic structure of the process scheduler subsystem has been adapted to incorporate

this work extension. The kernel to user-space communication channels, in particular, the eventfd has been

used as the basis of this work to communicate block and unblock events. The understanding of the Linux

Kernel I/O path has been of extreme importance to propose design alternatives and understand the results

obtained.

2.2.2 The Process Scheduler Subsystem

In Linux, a process runs on a CPU indefinitely until the process scheduler subsystem decides that it needs

to be preempted2 for another one or the process voluntarily stops running either because it blocks or

because it ends. The currently running process invokes the kernel scheduler code at some specific code

locations when it is running in kernel mode by calling the scheduler() function. More specifically,

the scheduler code instruments the following points:

• The return points used by system calls to return from kernel-space to user-space.
• The interrupt’s return points in both user and kernel space.
• When the kernel enables preemption after disabling it to protect a critical region.
• When the timer interrupt handler is triggered or a new process is woken up, a flag to indicate that

the current process should be preempted as soon as possible in the points mentioned before (this is

necessary to avoid redundant checks).

It is interesting to note that because a process cannot preempt another at any point, scheduling a process

might suffer delays that highly depend on what the system is working with. This also applies to threads.

In Linux, there is almost no distinction between processes and threads. Threads are just processes

that share the same address space. Hereinafter in this document, the therm process and thread is used

indistinguishably3 unless otherwise stated.

The process scheduler subsystem manages processes among the available computer cores. Its main

task is to fairly distribute computational time among all system processes. Computational intensive

processes can be preempted for another one if certain conditions are met to avoid starvation. Also,

processes can be migrated between cores/sockets based on the load balancing policy of the scheduler. The

exact details that determine how this decisions are taken depend on the currently used scheduler.

In Linux, multiple process schedulers coexist although each process can belong to a single one at a

time. This infrastructure to manage multiple schedulers is known as "scheduler classes". Each scheduler

is a container of processes with its own set of data structures, rules and policies to organize the processes

that it contains. To mange multiple schedulers, each one is assigned a unique priority. The next process

to be run is chosen from the scheduler with higher priority that has at least one process ready to be run.

Once the scheduler is selected, the internal algorithm of the scheduler is used to select the next process

to run. The scheduler with smaller priority is always the "Idle Scheduler" that always contains an "Idle

Process" ready to run when no other process in the system requires a CPU. If at some point a process

2A process being preempted means that it is substituted by another processes that also deserves to run although the current
worker has not explicitly left the CPU voluntarily. Thereby, preempted processes are block involuntarily.

3In the Linux Kernel terminology the therm "task" is used for both processes and threads. However, here it is not used into avoid
confusion when mentioning tasks in the context of programming models.
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from a higher priority scheduler becomes ready, the current process would be preempted as soon as

possible. The scheduler classes framework helps new schedulers such as HPCSched [19] and mainline

schedulers to be seamlessly integrated into the kernel by just implementing the core functions required by

all schedulers4. The Linux Kernel 4.10.5 uses by default four schedulers5 from highest to lowest priority:

Deadline Scheduler, Real Time Scheduler, Completely Fair Scheduler and the Idle Scheduler.

The Deadline Scheduler has the most high priority processes in the system. It is an implementation

of the Earliest Deadline First (EDF) algorithm. Its usage is limited to applications that need to run for

a limited amount of time every certain period. For example, with the Deadline Scheduler it is possible

to specify that a process should run for 20ms within 100ms. A user with enough privileges is able to

configure three parameters when a process is moved into this scheduler: runtime, deadline and period. As

the name suggests, runtime is the expected runtime of the process. Deadline is the time windows when the

process should run, and period is the time from the start of one window to the start of the next one. It is a

requirement that runtime <= deadline <= period. When a process is moved into the deadline scheduler,

the Kernel checks whether is is feasible to accomplish the timing requirements of the new process and the

other process in the scheduler. If it is not possible, the Kernel will refuse to add it as a protection measure

for the other processes in the scheduler.

The Real Time Scheduler contains system critical processes. Examples of this processes are the

watchdog kernel thread that periodically checks if a process has been running in kernel mode for too long

to detect kernel bugs and the migration kernel thread used to expel a process that needs to be migrated

from its CPU. The Linux kernel Real Time scheduler only guarantees "soft" real time which means that a

process that wants to run can be delayed an undefined amount of time until it is finally run. Hence, no real

determinism behaviour can be expected although the delays are minimized as much as possible6. There

are 100 real time priorities that can be assigned to processes belonging to the Real Time Scheduler. A

process with higher priority than another will always preempt it (hence, a bad usage of this scheduler can

compromise the entire system by delaying other important processes). The scheduler’s behaviour when

multiple processes with the same priority are ready to run is determined by the policy selected by the user:

SCHED_RR or SCHED_FIFO. If SCHED_FIFO is selected, processes are served in a First Input First

Output basis. Instead, with SCHED_RR processes are run in a round robin fashion.

The Completely Fair Scheduler (CFS) is the default scheduler for common processes. Essentially, it

keeps track of the runtime spent for each process and when a new processes has to be selected to be run,

the one with the smaller time is chosen. This way, even interactive processes than do not run for large

periods of time are not starved by batch processes. A new process is chosen to be run when the currently

running process voluntarily stops or because the current process needs to be preempted. In CFS, a process

needs to be preempted when exists another ready process that has run less time than the current process

plus some margin to avoid over-scheduling. The actual runtime of each processes is weighted according

to its niceness (classic UNIX nice priority) and named "virtual runtime". The idea is that for processes

with higher niceness time accounting flows faster and for smaller niceness time flows slower. The list of

ready to run processes is kept in a red-black tree7 sorted by the virtual runtime as can be seen in figure 2.2.

4Although the C language does not support Object Oriented (OO) programming, the Kernel uses the abstraction "manually" in
several infrastructures such as file descriptors or scheduler classes.

5See man sched for more information about all types of schedulers.
6The RT_PREEMPT[20] kernel patch can be applied to further reduce the delays, although no hard real time is still guaranteed,
it depends on the exact system configuration.

7The Red-black tree is a kind of self-balancing binary tree.
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Figure 2.2: Completely Fair Scheduler (CFS) Red Black Tree [21]

Hence, the next process to be run (the one with smaller virtual runtime) is placed at the left-most leaf of

the tree and can be found in O(1). Adding and removing a process is done in O(log n).

CFS supports two policies: SCHED_OTHER and SCHED_BATCH. SCHED_OTHER (also called

SCHED_NORMAL) is used for regular desktop workloads. SCHED_BATCH does not preempt nearly as

often as SCHED_OTHER, thereby allowing tasks to run longer and make better use of caches but at the

cost of interactivity. This is well suited for batch jobs.

The Idle scheduler contains an Idle Thread per CPU whose main task is to do nothing the most

efficient possible way. Doing nothing is not as easy as it seems. In fact, the Idle Scheduler belongs to the

architecture dependent CPU Idle Subsystem [22] in charge to find a compromise between energy saving

and latency spent to schedule a non-idle process after the CPU has entered an energy saving mode.

2.2.3 The I/O Path

The GNU/Linux system I/O path consist of several layers as is depicted in figure 2.3. Each layer tries

to hide the latency of writing and reading to the underlying slower layer [23]. Each layer has its own

buffering scheme which in some cases might lead to redundant operations if not used correctly. Because

all this stacked layers are completely transparent to the user, this section details the main components and

kernel subsystems involved: The page cache, the I/O block layer, the I/O schedulers and the disk storage.

I/O requests start their journey at the application level, when a user processes wants to write or read

data from/into a memory buffer into/from a storage device. Usually, user space applications rely on

libraries such as glibc that perform its own buffering in the calling processes address space to minimize

system calls. This is the case for the family of functions fwrite(), fread() library functions. When

the glibc function fflush() is called, the library buffers are sent to the Linux Kernel through the write()

and read() system calls. The system call data is then buffered in the Linux Kernel page cache. The page

cache is a general purpose cache that keeps track of pages written and read to/from devices. When data

is to be written to these devices, it is, instead, written to the page cache. Later, a gang of kernel threads

named "flusher threads" periodically write or update these pages. Flusher threads send data to the block

I/O layer where I/O requests are placed in a set of queues pending to be sent to the device. The I/O

scheduler examines the queues and optimizes them by merging and sorting requests. When the I/O request

is moved from the I/O block layer queues to the device (through the device driver), it is first received

by the device controller. This controllers might cache the data in big volatile memories where more
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Figure 2.3: Simplified Linux System I/O path [23]

optimizations might be applied by the device’s firmware. When the device is able to, it finally writes the

data into the non-volatile storage.

A more detailed view of the complete Linux Storage path can be seen in figure 2.4.

2.2.3.1 The Page Cache

The page cache is a general software cache that buffers I/O operations in system memory. The need for

the page cache raises form the fact that current non-volatile devices such as hard disks or solid state drives

are slower than main memory. Whenever data is read of written to the slower device, it is temporarily

stored in the page cache because of the principle of temporal locality. Hence, further references to the

same data won’t need to access the slow device again. Also, data is read in fixed size blocks named pages

which might be larger than the requested memory to exploit the principle of temporal locality. In fact,

pages track smaller blocks simply named "blocks" which are the minimum data unit used by file-systems.

At the same time, blocks are composed of sectors, the smaller data chunk a hardware device work with.

Data stored in the page cache can be released at any time when pressure for free memory increases.

Data written through the page cache follows a write-back policy in which writes to the backing storage

(the non-volatile device) are deferred to some point in the future. The main advantages of this behaviour

are three. In the first place and as commented before, writes become fast and hence, non-blocking. In the

second place, multiple writes to the same in-memory sector will need a single write to the backing device

instead of one for each write because writes are "merged" in memory. In third place, buffering writes

might allow to reorder multiple small sparse sector writes in a single large sequential write of multiple

sectors. The main drawback is that data is not "completely" safe until it reaches the backing storage and a

power outage might lead to data lost.

When a page is written, it is first read from the backing device and copied into the page cache (if it

was not already there). The page is then updated in-memory and marked as dirty. In Linux, a gang of

threads called flusher threads are in charge of storing the dirty pages to the backing device and cleaning

the dirty flag, albeit other methods exists. The behaviour of the flusher threads can be configured through

the Linux /proc pseudo file system. In particular, pages are written to the backing device in the following

situations:
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Figure 2.4: Linux 4.10 Storage Diagram [24]
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• Pages start being written to disk when the amount of free memory is lower than the value stored in

/proc/sys/vm/dirty_background_ratio. However, subsequent write syscalls do not block yet.
• When the amount of free memory drops below /proc/sys/vm/dirty_ratio number of pages, the

hard-limit is reached and subsequent writes block until the flusher threads have backed up enough

pages.
• Dirty pages older than /proc/sys/vm/dirty_expire_centisecs are also written to disk every

/proc/sys/vm/dirty_writeback_centisecs centiseconds.
• Explicit sync() like syscalls. In this case, the thread issuing the syscall performs the write

operations instead of the flusher threads.

More details on this kernel variables can be found in the Linux Kernel source code repository file

Documentation/sysctl/vm.txt. Finally, is worth noting that the page cache might not be always beneficial

depending on the application needs. Because of the principles of spacial and temporal locality is likely

to be useful. However application’s performance using its own cache, not reusing data, not accessing

sequential data or working with more data than the main memory can hold, might worsen because of the

page cache overhead. For this reason, there are mechanisms in the Linux Kernel to avoid using the page

cache such as the O_DIRECT flag of the open() syscall. See again figure 2.4 for visual details in how

the page cache is bypassed with O_DIRECT.

2.2.3.2 The I/O Block Subsystem

The Linux Kernel I/O block Subsystem provides a general abstraction for random access memory devices

such as hard drives, or solid state devices. Processes issuing read or write requests to these devices

transparently use the I/O block subsystem to manage their petitions. Essentially, it provides queues of I/O

requests that are serviced to the hardware device following the currently selected I/O scheduler policy.

There are currently two implementations of the I/O block subsystem as can be seen in figure 2.4, the

traditional single queue implementation and the new multi-queue (blk-mq) implementation.

The single queue implementation maintains a single request queue shared for all cores and processes.

The I/O schedulers can easily traverse the queue and optimize it according to all system’s pending requests.

This is the default option in use, although this might change for the blk-mq. The main disadvantage is the

queue’s locking on a multi-core system. Adding, removing or optimizing the queue requires to acquire a

lock. When multiple processes in multiple cores try to acquire the same lock in parallel, the memory line

where the lock resides moves from one core cache to the other, forcing to invalidate the cache line in the

other cores. This might create a huge contention, specially in Non-Uniform Memory Access (NUMA)

systems where the cache line needs also to move between sockets. The I/O schedulers supported fort this

approach are: The Deadline I/O Scheduler, the Completely Fair Queuing I/O Scheduler and the Noop I/O

Scheduler.

The blk-mq implementation supports multiple software requests queues, one for each CPU (or socket,

as specified in the configuration), and multiple hardware queues (if the device supports it) as detailed

in [25]. A software request queue is maintained per CPU to avoid the locking problems mentioned

in the single queue approach. If the underlying hardware device only accepts a single requests queue

(hardware queue), the software queues need to be merged and the contention might occur again. For this

reason, modern hardware storage devices such as NVMe devices also support multiple hardware queues

so mapping a software queue to a hardware queue can be done directly in a 1:1 mapping if the number
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of software and hardware queues are the same (ideal case) or in a M:N mapping otherwise8. Currently

only two I/O schedulers are supported for this approach: The Budget Fair Queuing I/O Scheduler and the

Kyber I/O Scheduler.

It is also possible for driver implementations to bypass the block I/O layer, however, this is discouraged

because the driver needs to do its own queue processing instead of using the generic one. Some high

performance drivers have used this options in order to bypass the contention of the single queue block I/O

layer. However, this should change with the new blk-mq implementation [26].

Regardless of the block layer implementation, the objects stored in the requests queues are of type

struct request_queue. Each requests is a set of at least one struct bio. Each bio structure contains a set

of <page,address,length> that describe several contiguous segments to be read or written. Overall, the

data written on a request must be physically contiguous on the storage device although is not necessary to

be contiguous in-memory (scatter gather operation). A request can hold multiple bio structures because

merging requests is then simplified by just adding to one of the requests the bio structures of the other

instead of merging the bio structures itself.

As mentioned before, each block layer implementation as its own set of I/O schedulers. The I/O
scheduler purpose is to examine the software requests queues before they are sent to the hardware queues

to perform two basic operations: reorder and merge requests. Reorder means changing the order in which

the requests are sent to the storage device controller while merge is the action of joining multiple requests

into a single one. Several strategies are implemented in the form of multiple I/O schedulers based on

this two simple operations. However, only one I/O scheduler can be set per device, although different

schedulers can be set for different devices.

I/O schedulers are deeply influenced by the low level characteristics of the underlying storage device,

in particular for how traditional hard drives work. For a rotational device, the seek time (time spent to

move the disk head) adds a significant overhead to the I/O operation, and specially for direction changes.

For this reason, it is of interest for the I/O scheduler to reorder requests in order to take advantage of

straight linear movements instead of performing irregular sweeps. Modern SSDs do not rely on mechanical

components and do not suffer from this penalty. However, they do still benefit from merging requests.

The rest of this section summarizes the strategies implemented by the most common I/O schedulers.

2.2.3.3 Single Queue I/O Schedulers

The Noop I/O Scheduler is the simplest of the current I/O schedulers. The block I/O request queue is

implemented as a FIFO and its only task is to scan it to merge multiple adjacent requests into a single one.

This is useful for SSDs because they do not have special restrictions in the order in which operations are

issued.

The Deadline I/O Scheduler applies special policies to avoid starvation of both read and write

operations. Read operations are usually more critical than write operations. When a processes issues a

read operation it usually cannot continue until the data is ready. Unlike reads, writes can be deferred

and the process can continue. Hence, reads are synchronous operations while writes asynchronous

operations. If the scheduler does not differentiate reads form writes, there is the risk of starving a

few critical reads when a big write operation is in course. To avoid this, the deadline I/O scheduler

8Even if the number of software queues is larger that the number of hardware queues, contention is minimized by merging a
subset of software queues into a single hardware queue.
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maintains three queues: A FIFO for only writes, another FIFO for only reads and a third queue sorted

to minimize disk seeks with both read and writes. When requests arrive to the block layer, a default

timeout of 2ms for reads and 10ms for writes is assigned to it. While no request timeout has expired,

the deadline scheduler services requests from the sorted queue. When a timeout expires of either the

read or write FIFO, it switches to that queue and starts servicing request from there. Hence, this

mechanism minimizes seeks by default, but also ensures that no request is indefinitely deferred, specially

read operations because of their substantially smaller timeout. The exact parameters of the Deadline

scheduler can be tuned at runtime through the /sys/devices/<device-path>/queue/iosched/ kernel directory,

where <device-path> is the chain of hardware buses and devices to a particular storage device such as

pci0000:00/0000:00:1f.2/ata2/host1/target1:0:0/1:0:0:0/block/sda. For instance, the file read_expire and

write_expire can be used to set the timeout for reads and writes respectively. Also the file fifo_batch

allows to determine how many requests are processed in a batch before checking for expired timeouts,

this feature prevents the scheduler from switching between read and write queues too often. More details

can be found in the kernel source tree file Documentation/block/deadline-iosched.txt

The Completely Fair Queuing I/O Scheduler (CFQ) (not to be confused with the CFS process

scheduler) is based on the idea that all processes should have its fair share of I/O bandwidth. To do so, it

maintains a sorted queue per processes issuing synchronous requests. Then, requests are selected from

queues using round robin taking into consideration each processes priority. The number of requests taken

from each queue can be configured at runtime. Asynchronous requests for all processes are classified by

their processes priority in a queue per priority instead of a queue per processes.

CFQ supports idling9 as a method for buffering requests: when the scheduler has finished processing

a batch of requests of a process, it waits some time on the empty queue even if there are other requests

pending in another queue. The rationale for this is that a processes uses to issue requests to physically

close locations. Hence, waiting a bit on the current queue might minimize seeks if another request

is about to come. If the processes does not issue any other request while idling, the time is wasted.

However, if seeks are slow, the performance generally improves. For fast SSDs, this feature is disabled

by default because there is no seek penalty. More details can be found in the kernel source tree file

Documentation/block/cfq-iosched.txt.

2.2.3.4 Multiple Queue I/O Schedulers

The multi-queue block layer supports two dedicated I/O schedulers that were included in the Linux Kernel

4.12. The single queue deadline I/O scheduler was ported to the multi-queue approach in the Linux Kernel

4.11, however, it was ported as a proof of concept, instead of a real solution [27] and hence, the adaptation

is not explained here10.

The Budget Fair Queuing (BFQ) I/O Scheduler is intended to be a general scheduler for both HDDs

and SSDs and designed to achieve good interactive response. BFQ was forked from the CFQ scheduler.

Such as CFQ, it creates a request queue for each process in the system. For each queue, a budged is

assigned which determines for how much time requests are sent to the storage device from the current

9The idling feature was the main feature of the Anticipatory I/O scheduler.This scheduler was removed from the kernel tree
because CFQ could behave similarly.

10In fact, neither the dedicated I/O schedulers nor the deadline scheduler were present the last time the Linux Kernel 4.10.5
source code was forked from the Linus tree to implement the changes proposed in this thesis. However, the multi-queue
schedulers are briefly detailed for completeness in this section.
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process. The budget is determined by the scheduler itself and is based on the process priority and

observations of the process’s I/O behaviour. It also features a series of heuristics to improve performance

under specific situations such as merging queue requests of processes working on the same drive area,

idling on a queue if it becomes empty before the budget expires, specially give more priorities to realtime

processes and much others.

The Kyber I/O Scheduler is a quite simple scheduler specialized for SSD devices. The main idea

implemented in Kyber is to keep the queues that feed requests directly to the device short. Hence, the

time requests spent in the queue is small and high priority requests can overtake common requests. Kyber

adjusts the size of the queues to try to achieve the completion latency specified by the user in the Kyber

configuration sysfs files.

2.2.3.5 The Storage Devices

Hard Disk Drives (HDD) store their data in magnetic disks that rotate at speeds between 4000rpm and

15000rpm. Data is stored in parallel circular tracks, arranged in blocks called sectors as shown in figure

2.5. A magnetic head mounted on a mechanical actuator arm moves radially over the disk to read and

write blocks. Sequential data is read/written much faster than random data because the head does not

needs to move (it is stored in the same circular track). Multiple platters might be used to read or write

data stored in the different disks in parallel. The mechanical nature of HDDs causes I/O operations to be

highly variable (depending on where the head is and where the data is). For this reason, manufacturers

report I/O speed metrics based on benchmarks’ average values.

Figure 2.5: Hard Disk Drive and Solid State Drive scheme comparison.

Solid State Devices (SSD) rely on flash technology and do not require mechanical parts. They do not

suffer a seek penalty and moreover, are able of servicing multiple requests in parallel. The main drawback

is that data cannot be overwritten, it must be first erased. Internally, SSD organize data in cells that are

grouped in pages of 4KiB to 16Kib which are again grouped in blocks of 128 or 512 pages as shown

in figure 2.5. Data can be written at the page level, but it can only be erased at the block level. For this

reason, when data needs to be updated, the SSD controller searches and writes the new data in an empty

location then, marks the old data as invalid and defers to a garbage collector its deletion. If a write is to be

done when no erased blocks left, the SSD must erase then, delaying the write operation. To alleviate this

problem, the OS filesystem communicates the SSD the pages that are no longer used using a "TRIM"

operation to clear blocks.
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2.2.4 Kernel/User Space Communication Channels

The Linux Kernel provides several mechanism to communicate with user space processes. This section

reviews the most used options such as syscalls, pseudo file systems, Netlink sockets and relatively new

eventfd interface.

2.2.4.1 System Calls

System Calls or syscalls are the most known communication method for developers. System calls are used

for user processes to requests kernel services. Issuing a system call involves a special hardware instructions

that perform a mode switch (change from kernel to user space or vice versa) such as "syscall/sysret" in the

x86 architecture. The system’s call arguments are passed through hardware registers and hence, they are

limited depending on the architecture. If more parameters than registers are needed, pointers to user space

structures are passed instead.

When a user process invokes the kernel through a system call, a Linux kernel thread executes kernel

code on behalf of the user space application at a specific code entry. Using the syscall number, the syscall

entry point is redirected to the appropriate system call handler. The Kernel then copies the required data

to/from the user-space processes if required and services the user request.

The Linux Kernel has kept the number of system calls small (367 for the 4.10.5 kernel), although

some special syscalls offer a multiplexer like behaviour such as ioctl(), fcntl() and prctl(). fcntl() is used to

get/set values for a particular file descriptor and prctl() is used to get/set values for processes. The ioctl()

system call is used for filesystem-like objects that require more functionalities than read()/write() like

system calls.

When a new system call is added, it needs to be maintained indefinitely. Removing a system call

would break backwards compatibility with user space applications that rely on it and hence, special care

must be taken before choosing this option.

2.2.4.2 Pseudo Filesystem

Pseudo file system are used to expose kernel runtime information to user space through a file system like

infrastructure. The most known pseudo file systems are sysfs and proc which are mounted by default in

/sys and /proc respectively. When the filesytem is mounted, the kernel populates the directory and creates

in-memory files than can be read or written as usual (if the user has enough privileges to). When read() or

write() operation is done against this files, the appropriate kernel file handler function is called to perform

the desired operations. Generally, reading is done to get kernel runtime parameters while writing has the

effect of configuring kernel parameters at runtime to modify its behaviour.

Because of the file layout, all communications through these files need to be adapted to the generic

filesystem family of syscalls such as open(), write() and read(). Also, support for select(),

poll() and epoll() syscalls can be implemented for the pseudo filesystem to enable kernel to user

space notifications. The behaviour for this three system calls is similar: A user space process opens a

file, then informs the kernel using a system call that wants to be notified whenever data to the file is ready
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to be read and/or it is possible to write data, next select()/poll()/epoll()11 is called and the

processes is blocked until any of the previously configured events occur, when this happens the kernel

wakes up the process and the application continues. Other functionalities that do not map to these syscalls

might be implemented by using ioctl() as explained before.

Support for pseudo filesystem can be added or removed dynamically by loading or unloading kernel

modules as needed. However, because the filesystem needs to be mounted, it might not be available in all

environments such as namespaced, sandboxed or chrooted environment.

Depending on the needs, instead of creating a new pseudo filesystem it is possible to simply add an

entry to an existing one, such as /sys or /proc.

2.2.4.3 Netlink Sockets

The Netlink interface[28] was designed to communicate user space processes with the Linux Kernel

to transfer miscellaneous network packets, although any data can be sent through it. A Netlink socket

is a full duplex communication channel, meaning that both ends can initiate a connection (the other

methods always required a user space application to start the communication). Its usage is preferred

instead of system calls or pseudo filesystems to avoid polluting the Linux Kernel interface with features

that are likely to change in the future, such as specific kernel module driver to user space communications.

With Netlink sockets, a standard socket communication channel is opened so both ends -kernel and user

space- can interchange messages as needed. Netlink sockets, unlike system calls, can be loaded and

unloaded, allow to multicast a packet to several processes and are asynchronous. However, for a simple

communication channel it might add too much complexity and communication overhead.

2.2.4.4 Eventfd

An eventfd is a simplified pipe that was designed as a lightweight inter-process synchronization mechanism.

Internally, an eventfd holds a 64 bit counter. A write() system call can be used to increment the internal

counter with a given value. A read() to an eventfd file descriptor (EFD hereafter) blocks if its internal

counter is zero. It also blocks if an overflow was to happen after a write(). A read() operation

returns the counter value and sets its internal value to zero. It is also possible to configure an EFD as a

semaphore (see man eventfd for more details). In this case, each read() decrements the internal

counter by one instead of setting it to zero.

The main advantage of eventfd is its simplicity. It provides a clean interface to communicate events

between processes or between a user space processes and the Linux Kernel that do not require to exchange

complex data structures. Because it is integrated with the select()/poll()/epoll() family of system calls, it

is possible for processes to block on multiple eventfd objects. However this interface is currently only

available in Linux.

11The difference between select(), poll() and epoll() calls are mostly related with how portability, limits on file
subscriptions and how file event subscriptions are managed. select() is the most limited but also the most portable solution,
poll() solves most of the select problems but is less portable and epoll() works with any number of subscriptions but is
only available on Linux.
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Chapter 3

Design and Implementation

In this chapter, it is detailed the design and prototype implementation. First, three different design

alternatives for the kernel part of the prototype are analyzed keeping in mind the runtime needs. Then, the

final implementation details of both the Linux Kernel and the user-space OmpSs runtime are presented

with the most relevant code examples.

3.1 Proposal Overview

This work main idea consist in detecting at kernel level blocking and unblocking events of threads to wake

up replacement threads with the objective of avoid wasting system resources.

This feature is of special interest for user-space runtimes that need to monitor the status of threads

(called workers) to execute in parallel an application with high performance requirements. Indeed, when a

worker blocks, it can spend an undefined amount of time waiting for some requested data or service while

the CPU where it was running sits idle.

The need for such extension comes form the fact that the current Linux Kernel does not provide any

mechanism to notify user-space threads of when a thread blocks or unblocks, it is only possible to poll for

the thread internal status, which requires to perform a system call in a busy loop. For the runtime to be

able to react on a blocking event, it is likely to need a too fine grained resolution as to implement a busy

loop.

Instead, the runtime could ask the kernel to monitor a number of his workers to receive notifications

whenever one of them either blocks or unblocks, or it could just ask the kernel to automatically wake up

an idle worker when it detects a blocking event on a monitored thread. In any case, a new worker would

run on the idle CPU to either advance computational work or queue another data request or kernel service.

Also, having multiple requests in flight might even lead to a better kernel scheduling which improves

general throughput.

Because this idea might be applied in a number of ways, the following sections enumerate the different

options considered and enters in details with an actual implementation and testing.
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3.2 Design Alternatives

This section describes in detail the different approaches considered to implement this thesis main idea by

exposing the problems, enumerating the options for each problem and concluding why each solutions is

selected.

Three different Linux kernel extension have been considered to monitor threads keeping in mind a basic

user-space runtime needs. Following this work main idea, the options studied are: "Kernel Standalone

Management" (KSM), "Kernel Active Management" (KAM) and "Kernel Passive Management" (KPM).

• In KSM, the kernel automatically wakes up workers from a pool when a monitored worker blocks

and retains workers when they unblock. Note that there is no communication with user space, all

thread management is done at kernel level.

• In KAM, the Kernel actively retains threads immediately after being unblocked until the user-space

application instructs it to release them (such as in the Scheduler Activations approach).

• In KPM, instead, the kernel has a pure passive role in which it only informs the user-space

application of threads being voluntarily blocked (i.e. not preempted) or unblocked.

All approaches use eventfd’s objects (see section 2.2.4.4) as the main communication channel between

processes, although each approach uses it in a completely different manner. The EFD has been chosen

among the other options presented because of its simplicity and flexibility.

For all cases, two fundamental properties have been defined to ensure that the models proposed respect

a basic runtime needs:

• Selective wake up: Workers holding a task ready to run after being blocked should have a chance to

run before other workers without a task. It is a good practice to finish already started tasks before

starting new tasks because at some point, it is possible that the runtime decided that the already

started task should run first. Also, an started task is likely to end sooner than a new one, which

might unlock other tasks after its dependencies are satisfied.

• Worker fairness: Workers must not starve other workers. Workers should be able to stop running

after finishing a task to allow other workers to run. Otherwise, a worker already holding a task might

take too long to execute. To do so, it needs to be possible for workers to implement a mechanism to

stop in behalf of others.

3.2.1 Kernel Standalone Management (KSM)

In KSM the user-space application is not aware of when a process gets blocked, but the kernel automatically

chooses one worker (if available) to execute.

KSM is based on the abstraction of tokens. Only workers owning a token can run on a CPU. Initially

there are as many tokens as CPUs. When a running worker blocks, it passes its token to another worker so

it can substitute it while the first worker resolves its blocking state. When a worker tries to wake up, the

kernel forces it to ask for a token and if there are not available tokens, it blocks again. In fact, a pool of

tokens is shared among workers. When a worker blocks, the token is passed to the pool. When a worker

tries to wake up, it checks the pool for a token. Workers being preempted do not release their token.

Figure 3.1 depicts the KSM workflow.
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Figure 3.1: Kernel Standalone Management (KSM) example workflow. Each vertical line shows the state
of a worker as time advances. Bold lines represent blocked workers that are ready to be run at any time
when some other processes unblocks them explicitly. Dotted lines are workers blocked that are waiting
for some event such as data from a storage device. Big colored arrows show workers running on a CPU.
Small black arrows depicts an EFD being written at the tail of the arrow and being read at the arrowhead.
White circles denote a worker being scheduled on a CPU, reading an EFD and blocking on the EFD. The
workflow is as follows: The left-most worker voluntarily blocks and writes its token. Next, the second
worker is waken up because of the EFD being written and starts running. While the second worker is
running, the first worker resolves its blocking state, is scheduled on the CPU (which means that the second
worker is momentarily preempted although it is not shown for simplicity) and blocks on the EFD because
there is no token available. When the second worker voluntarily blocks, it returns the token to the pool
and the first worker is woken up as a consequence. Then, the first worker continues to run normally.

Tokens and its transactions are implemented using an EFD configured to work as a semaphore.

Workers share a single EFD object. Initially, the EFD contains the number of available tokens. When a

worker tries to acquire a token, essentially it reads the EFD object. If there is at least one token in the EFD,

the read call returns successfully and the EFD counter of tokens is decremented by one. If no more tokens

left, the read call blocks until new tokens are available. When a worker no longer needs its token, it writes

the EFD increasing its token counter by one and waking up blocked workers pending for a token if any.

The EFDs instrumentation is placed around the Linux Kernel schedule function. The schedule function

performs a context switch on the calling processes by the next process to be run which is chosen inside

the same schedule function by calling the Linux processes scheduler routines. More precisely, a worker

lends its token (writes the EFD) just before calling the schedule function due to the process being blocked.

A workers asks for a token (reads the EFD) just after returning from the schedule function.

As noticed before, when a worker is waken up after being blocked, it will have to be scheduled to

check if there is a token available. If not, the worker will block again. This means that this approach leads

to unnecessary context switches.

Ideally workers should be waken up only when there is a token available for them. To do so, when the
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worker is about to be woken because its blocked state has been resolved (for example, requested data is

available) the generic kernel wake up function should check if there is a ready token for it before waking

it up. If not, the worker should be added to a special queue of unblocked workers that are ready to be run

and should remain blocked. Then, when a worker holding a token is about to be blocked, the token should

be transferred to one of the workers in the queue and woken up.

Regardless of the proposed simplification, the potential of this approach can be analyzed without

affecting the principal workflow. It is left has a future work task to improve this detail.

The number of EFD objects used depends on the number of worker pools. To implement the pool of

workers, two options have been considered: floating workers and pinned workers:

Floating workers is the simplest option. A global pool of workers is maintained for all CPUs than can

be used to run a worker in any core. This means that there is a unique EFD with as many tokens as CPUs.

Then, workers read and write it from the kernel space.

In the pinned workers option a set of pools per CPU or per socket is maintained, where all threads

belonging to a pool are pinned to the same CPU or socket and share the same EFD. The reason for this

option is to avoid polluting the cache of the core and minimize unnecessary migrations. However this

might lead to an unbalance problem if a core’s pool contains idle workers while another core’s pool is

empty. Additional management would be needed.

An important problem is that there is no intuitive way to satisfy the selective wake up property to

wake up workers holding a task prior to idle workers. The kernel needs somehow to know which currently

blocked processes holds a task and which not. However, when a process blocks, the kernel does not have

any way to know if the process was blocked while executing a task or because the worker does not have

more work to do.

In the later case, the problem is still worse. If a worker who was running on a CPU finishes its task

and there are no more tasks to execute, it could intentionally block until there is more work to do. Because

this worker would write the EFD before blocking, this means than another worker will wake up although

it’s known that there is no more work to do. This process would repeat for all workers indefinitely.

Hence, in some situations it is required to avoid reading/writing the associated EFD. There are various

possible ways to implement this special blocking mechanism to differentiate idle workers from workers

holding a task.

An option is to implement a new system call (or another communication method) to modify an internal

flag of the worker thread to tag himself as an idle worker. After setting up the flag, the worker would

block using a conventional user-space mutex while waiting for new tasks but internally the kernel would

know that it won’t need to read/write from its associated EFD. When the worker wakes up again and

after fetching a new task to execute, it can use the system call to disable that flag. The problem with this

approach is that the kernel should have to wake up the thread from the mutex in kernel-space, which it is

not conventional given that the thread would have not been awaken from a user-space syscall.

Another option, similar to the preceding one, is to implement a different blocking mechanism for idle

workers such as a new system call that blocks the process in a special kernel queue. The kernel would

easily manage idle workers form a single queue. Also the syscall could block a worker while holding

the EFD token with him to prevent waking up other workers. Then, when more tasks are generated, the

runtime can wake up these idle workers to continue running. The only drawback is that it breaks the EFD

"token" consistency, i.e. the worker that has the token is always running.
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In any case, the main problem of the KSM approach is also its main advantage. Because the thread

management is done at kernel level to get optimal performance, special scheduling needs to determine

which worker holding a task should run next have to be implemented at kernel level (this is a case of

the worker fairness property). Essentially this means either moving part of the runtime into the Kernel

or keep a naive approach. For this reason and the kernel complexity involved to implement KSM, the

development of this work was moved to the KAM approach.

3.2.2 Kernel Active Management (KAM)

In KAM, the kernel retains workers in kernel-space immediately after being unblocked. Tokens are used

in conjunction with EFDs to regulate which workers can run. The difference now is that in-kernel retained

workers are not unblocked until it is explicitly requested by a user-space processes named "Leader Thread"

which keeps track of the state of workers.

In this approach, two EFD per worker are needed1 as shown in figure 3.2. One EFD named EFD_CTL

is used to block the worker in kernel-space. The EFD_INF is used to send block and unblock notifications

from kernel-space to user-space. The EFD is a simple counter, multiple writes are added to the internal

counter. To distinguish the block from the unblock event, the EFD is used as a bit mask. Both the block

(WORKER_BLOCK flag) and unblock (WORKER_UNBLOCK flag) are different power of two numbers,

hence, it is possible to write both of them before they are read and still be able to distinguish which events

have occurred. Writing the same event two times without the EFD_INF being read would corrupt the

counter, however, the nature of the mechanism does not allows it. A more detailed explanation follows:

The leader thread monitors all workers’ EFD_INF using epoll() syscall. Hence, the leader threads

sleeps on the epoll() call until any of the workers associated to the monitored EFD generates an event.

When a running worker is about to get blocked, it first writes the flag WORKER_BLOCK to the EFD_INF

at kernel level to notify the user-space leader thread that is going to block. When a worker is ready to run

after being created or unblocked, it writes the flag WORKER_UNBLOCK in the EFD_INF at kernel level

to notify the leader thread that it is ready again. Immediately after, it reads the EFD_CTL at kernel level

and gets blocked waiting for permission from the leader thread to run. After each write in the EFD_INF

the leader thread wakes up from the epoll() sleep and keeps track of the worker status associated with

the EFD. Then, when it considers it, it chooses a worker from a user-space pool of EFD_CTL blocked

workers and writes to its EFD_CTL. The selected worker wakes up and starts executing its task.

The selective wake up property is maintained in KAM because the leader thread can prioritize workers

holding a task to be run as a consequence of keeping track of processes when they get blocked while

executing. Also the worker fairness property can be satisfied by the runtime for the same reason.

Similarly to the KSM approach, idle worker management requires to make an extra effort. Idle worker

thread could be blocked in-kernel or on a user space mutex.

1In fact, a single EFD could be used. For this approach, it is needed that both the kernel and the user side of a processes get
blocked when writing and reading the EFD respectively. Reads block when the internal EFD counter is zero and writes block
when the written value plus the contents of the counter overflows the counter. Hence, it could be possible for the processes in
the kernel side to write a big enough number to get blocked in the kernel. However it is not a good practice to use such feature
because of two reasons: A blocking write on an EFD is not possible with a single call, it has to be done at least in two calls
because it is not allowed to write such a big number at once (also it is not a valid operation to write a negative value to produce
an underflow as well). Second, when a blocking write wakes up, it finishes the write (it writes the remaining of the number that
could not be written), which means that the counter will not be zero. Therefore, it needs to be read again.
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Figure 3.2: Kernel Active Management (KAM) example workflow. Each vertical line shows the state of a
worker as time advances. Bold lines represent blocked workers that are ready to be run at any time when
some other processes unblocks them explicitly. Dotted lines are workers blocked that are waiting for some
event such as data from a storage device. Big colored arrows show workers running on a CPU. Small black
arrows depicts an EFD (either INF or CTL as shown in the legend) being written at the tail of the arrow
and being read at the arrowhead. White circles denote a worker being scheduled on a CPU, reading an
EFD and blocking on the EFD. The workflow is as follows: The left-most worker blocks waiting for data
and writes the WORKER_BLOCK flag to its EFD_INF. Next, the Leader Thread is waken up because
of EFD_INF being monitored by an epoll syscall. The Leader thread writes a "1" to the EFD_CTL of
the second worker and wakes it up to run on the idle CPU. While the second worker is running, the
first worker resolves its blocking state, is scheduled on the CPU (which means that the second worker is
momentarily preempted although it is not shown for simplicity), it writes WORKER_UNBLOCK on its
EFD_INF and blocks on reading its EFD_CTL because its internal counter is zero. The Leader Threads
wakes up to read the event but it does nothing because all CPUs are still busy. When the second worker
voluntarily blocks it writes its EFD_INF and the Leader thread is woken up again. Then it immediately
wakes the first worker by writing a "1" to its EFD_CTL. Then, the first worker continues to run normally.

To block the worker in-kernel it could be possible to use the sched_yield() syscall. This

syscall forces a call to the Linux kernel scheduler. However, from the scheduler point of view, the

sched_yield() is seen as a preemption, and preemptions do not write nor read the EFD’s so it will

not block on the EFD. A simple option would be to modify the sched_yield() syscall to add an

internal flag to avoid bypassing the EFD mechanisms.

If a worker blocks in a user-space mutex on the idle loop because there are not any more tasks left, the

Leader thread will receive a block notification and will not really know that it comes from an idle worker.

Nevertheless, this is not a problem. Once the block notification is received, the Leader thread will try to

unblock another worker in the idle CPU. However, it can check first if there is work to execute. If there is

not, then, no worker is woken. Otherwise it means that new work has been created in the period between

the idle worker going to sleep and the Leader thread waking up, meaning that a worker can be scheduled

on the CPU.
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When the idle worker is unblocked, first it needs to unlock the EFD_CTL and then the mutex. When

it starts running, it will generate an unblock event and the Leader thread might try to add it to the list

of unblocked workers pending to be woken up, which is an error because the worker is already running.

Hence, the Leader thread needs to keep track of the idle worker identifier that has just woken up to ignore

the incoming unblock event.

Another option, such as in KSM, is to add a new syscall to set a flag to enable or disable the EFD

monitoring of the current thread. Hence, from user-space, an idle thread pretending to block on the idle

loop would first disable the management and then signal somehow the leader thread to inform it that it is

now idle. When the idle thread is woken up again, it would enable the management before starting to

process new tasks.

From the three options studied, blocking on a user-space mutex without further modifications seems

the most interesting option because of its simplicity compared to the other ones. The only minor drawback

are the small spurious events that the Leader thread needs to ignore.

The main problem with KAM, just as in Scheduler Activations is that the leader thread and a worker

cannot share resources. It could happen that the worker gets a lock to a shared resource and blocks because

of a blocking syscall or a page fault (preemption is not considered here because preempted processes

ignore the EFD mechanism) before releasing it. Then, if the leader thread tries to acquire the same lock,

it will deadlock. The worker thread will never release the lock because the leader thread is not able to

schedule it by writing its EFD. Some possible solutions follow:

• A naive option is to disable and enable the EFD management before and after entering a critical

region of resources shared with the leader thread. The problem is the effort of modifying the critical

user code regions run by workers and the overhead due to performing two system calls for every

critical region.
• Another solution is to restrict the usage of resources to either the leader or the worker but not both.

This, however, limits performance. For instance, it’s interesting that a worker can wake up another

worker when a new task is created. To do so, the worker needs to use the lists of idle and unblocked

workers which contain workers that are ready to be executed. The leader also needs this list to

wake up workers, and hence this lists should be shared. Instead, workers could signal the leader to

perform the wake up operation but this introduces scheduling lags.
• Another solution is to avoid all possible blocking operations inside a critical region. This includes

page faults and any blocking function calls such as malloc().

A page fault can occur inside a critical region if a line of code of that region resides in a page

not loaded to memory because it has not been loaded yet or because it was swapped out. Also a

page fault can occur if more memory is needed for the stack or the heap. For instance, pushing a

value into a list which was full, might imply a malloc() to increase the array size which might need

another page.

To avoid any page fault, the memory of the process can be locked in ram by calling mlock() or

mlockall(). The process stack can be pre-faulted by creating a huge array and writing to it to force

the kernel to map the pages in main memory.

However, even if all memory is locked into ram it might happen that still more memory is needed.

mlockall() is able to lock future pages but first, they suffer a page fault. To avoid blocking in critical

areas due to lacking memory, there are two options:
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– Avoid using any operation that might allocate memory inside a critical region.

– Use a pool allocator. This consist in pre-allocation objects on a pool of memory. Hence, when

an object is needed, it is retrieved from the list instead of explicitly allocating memory for

it. When the object is destroyed, is simply freed from the pool, but the memory is still kept

by the process. This means, however, that the amount of of memory must be fixed at startup

time. If more memory is needed, it might be possible to define a safe-point where it is safe to

allocate more memory by temporary stopping all workers.

Any of the solutions proposed above might solve the problem in userland. However, it does not solve

the problem in kernelland. A process that has multiple threads share its memory with all of them. Inside

the kernel, this is achieved by sharing the object mm inside the struct task_struct2 of all threads.

This object represents the virtual memory of the process and is protected with a read-write semaphore.

This object allows multiple readers to be in the critical region to perform read to this object but it only

allows one writer in the region at a time and without readers. This leads to the following situation: A

worker performs a malloc(). If there is not enough memory on main memory, a page fault occurs and

the worker is blocked while it is served while holding the mm lock. When the worker returns from the

schedule call, it blocks on the EFD while still holding the kernel lock. Then, if the leader or another

worker does calls malloc() or has a page fault, it will try to acquire the mm lock and it will deadlock.

To solve the kernelland problem, two options have been studied:

• The first option is to lock all memory and use a pool allocator approach, just like the solution for

the userland problem. But this do not prevent from blocking while holding other locks from other

shared structures of the kernel that we are not aware.

• The second option is to modify the EFD blocking mechanism inside the kernel to avoid blocking

tasks holding a kernel lock. To do so, there are two options:

– The first option is to block a user managed thread not just after it returns from a context switch

but just before returning to user space. This way, any held lock will be freed. The problem of

this approach is that are multiple return points to user space that should be instrumented. The

final kernel extension would then be invasive.

– The second one is to rely on the CONFIG_LOCKDEP3 option which adds to the struct

task_struct the field lockdep_depth that keeps the count of held locks by each

process. However, this is not the only information kept. This config option keeps specific

information of each lock, and hence, each time a lock is acquired or released (which is

something that happens quite often), some data structure manipulation happens, decreasing

performance. This option is intended for debugging, and not for production environments. In

the long term, the CONFIG_LOCKDEP option could be split into two configurations, one

to just keep the number of held locks per processes, and the other to enable the rest of the

CONFIG_LOCKDEP features.

2The struct task_struct object contains all the data structures required for each process or thread in the system. It is the
Linux Kernel implementation of the classic Process Control Block (PCB) in OS theory.

3CONFIG_LOCKDEP is a Linux kernel debugging mechanism to detect deadlocks at runtime and provide useful information to
the kernel developer
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The KAM approach was implemented and tested in conjunction with a small task-based runtime

developed for this project. The CONFIG_LOCKDEP option was used to prevent Linux Kernel locks

successfully. However, the user space locking part lead the development continue to the next approach:

KPM.

3.2.3 Kernel Passive Management (KPM)

In KPM, the kernel does not retain monitored threads just after being unblocked. Instead, it only adopts a

passive role in which it sends notifications to user-space. Because of this relaxed approach nature, there

are no more fundamental complex locking problems, although the runtime does not have so much control

of the execution flow. This idea has been studied in two scenarios: assign an EFD per monitored worker

or per CPU.

In the first case, each monitored worker has two EFD that the kernel uses to send events. When a

worker blocks, it writes a "1" to the EFD_BLOCK, when it unblocks it writes a "1" to the EFD_UNBLOCK.

If the worker blocks and unblocks several times before the leader thread reads its EFDs, the value in the

EFDs increases, effectively counting the number of times each event occurred. When the leader thread

reads the values, the EFD internal counters are reset to zero.

The leader thread monitors all EFDs of all workers with epoll() and keeps track of its states.

This global view of the execution status allows the leader thread to identify which CPUs are idling by

comparing the amount of blocked workers against the total amount of workers assigned to the CPU. To

calculate the number of ready workers per CPU, the leader thread keeps a user-space counter of ready

workers per CPU that updates with the readings of the EFD. After returning from each epoll() call, the two

EFD of a worker are read and subtracted (unblocked4- blocked) and then added to the user-space counter.

Once an Idle CPU has been identified, the runtime decides if it is worth waking up another worker there.

However the runtime does not really needs to keep track of the status of individual workers but of

CPUs. In the second option, instead of assigning two EFD per workers, the kernel maintains a single EFD

per CPU as seen in figure 3.3. Whenever the kernel scheduler identifies a monitored thread blocking or

unblocking, it writes the EFDs of the CPU where the worker is executing. The leader thread then operates

as in the last approach and keeps a user-space counter of ready workers per CPU.

If the EFD counters for blocking and unblocking events are kept in separate EFDs, there is the risk

of not getting the real number of blocked workers. It is possible for the leader thread to be preempted

between reading the two EFD of a CPU. If a worker gets blocked or unblocked while the leader thread is

preempted, the EFD internal values will change and when the leader thread is able to run again, it will

not have the real picture of the CPU. In fact, even if the leader thread is not preempted, the EFDs might

change in the time lapse between the reading of the two5.

To prevent this situation, KPM uses a single EFD per CPU. Because EFD are implemented as single

64 bits unsigned integers, the blocked and unblocked counters are stored in the first 32 bits and the next 32

bits respectively. In this proof-of-concept eventfd overflow problems are not being considered. Namely,

232 thread blocks without reading the EFD will unnoticeably overflow the blocked counter and corrupt

the unblocked counter. Also, 264 total writes or 232 unblocks will overflow the EFD maximum storage.

Ideally, instead of an EFD a more complex structure should be used that could keep track of the number

4The first time a thread is run after being created, it increases its unblocked counter.
5This issue was observed to occur quite often while testing the feature with a simple example.
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Figure 3.3: Kernel Passive Management (KPM) example workflow. Each vertical line shows the state of a
worker as time advances. Bold lines represent blocked workers that are ready to be run at any time when
some other processes unblocks them explicitly. Dotted lines are workers blocked that are waiting for some
event such as data from a storage device. Big colored arrows show workers running on a CPU. Small
black arrows depicts an EFD being written at the tail of the arrow and being read at the arrowhead. Small
white arrows illustrate a worker performing an unblock action at the tail of the arrow against the worker at
the arrowhead that was blocked on a user-space mutex. The workflow is as follows: The left-most worker
blocks waiting for data and writes the WORKER_BLOCK flag to its CPU’s EFD. Next, the Leader Thread
is waken up because of the EFD being monitored by an epoll syscall. The Leader thread updates the state
of the CPU corresponding to the EFD that originated the event and unblocks an idle worker blocked on
a user-mutex to run on the idle CPU. The second worker wakes and writes the WORKER_UNBLOCK
event on its CPU’s EFD and continues running normally. The Leader thread wakes on the event and
updates the CPU state. While the second worker is running, the first worker resolves its blocking state,
writes the WORKER_UNBLOCK on its CPU’s EFD, it is scheduled on the CPU preempting the second
worker and the oversubscription period beings. The Leader threads wakes to process the event and sleeps
again because there is nothing that it can do. Now both the first and the second workers are in the ready
state and bound to the same CPU. The Linux process scheduler chooses one of the two processes and
allows it to run for a period of time until it decides that the other worker needs to run and a preemption
occurs. Note that as workers are preempted, their CPU’s EFDs are not being written. The oversubscription
period ends when, in this case, the second worker finishes executing a task and decides to stop running
after detecting the oversubscription problem by inspecting the CPU state that the Leader thread has kept
updated. When leaving the CPU, the worker generates a WORKER_BLOCK event which wakes up the
Leader thread again to update the CPU sate. In the meantime, the first worker continues to run normally.
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of ready threads instead of both the number of blocked and unblocked threads. However, the design is

simplified using the already in-kernel-tree eventfd structure. In any case, a counter overflow is unlikely to

occur given that the leader thread should be scheduled much before than 4, 294, 967, 296 (232) worker

thread block.

It is interesting to note that the EFDs must be created as non blocking file descriptors (the epoll syscall

still blocks on the EFDs until an event occurs). It could happen that multiple runtime threads monitor

the EFDs from user-space. If multiple threads try to read the same EFD at the same time, only one will

actually read its internal counter, while the others will block until new data arrives. This is a problem,

because the thread would bock in the read syscall of a single EFD instead of the epoll syscall that monitors

all EFDs. Preventing blocking reads, the second syscall would return immediately with a return value of

zero.

In KPM, both the selective wake up and worker fairness properties are satisfied given that the entire

scheduling of workers is done by the user-space runtime, which is assumed to be fair.

The main KPM drawback is oversubscription. Because unblocked threads are not retained in-kernel,

multiple threads bound to the same CPU might try to run at the same time, causing cache pollution and

unnecessary preemptions. This situation can happen if a blocked thread is unblocked on a CPU where

the runtime had waken up a thread. Is left to the runtime the task of periodically check the state of

per CPU ready workers counters to determine if a worker should voluntarily leave the CPU to reduce

oversubscription. A more detailed example is given in the 3.3 and the overhead of it is analyzed in the 4

chapter.

3.3 User-Monitored Thread (UMT)

The flagship of this thesis design is the User-Monitored Thread (UMT) model. UMT is based on the KPM

kernel extension presented before (see section 3.2.3) plus the user-space runtime layer that makes use of

KPM.

This sections presents a UMT overview and then exposes the implementation details of both kernel

and user-space runtime code. The proposed design and implementation are based on several relaxed

assumptions that simplify the design and do not particularly compromise performance. See the 5.1 section

for more details on the planned work to fix this details.

In UMT, the Linux kernel uses a communication channel to notify a user-space application of blocking

and unblocking events among their threads. Hence, UMT includes a mechanism for registering threads

in kernel space to be monitored, a kernel mechanism to actually monitor the threads and a channel to

communicate kernel and user-space.

3.3.1 Overview

The details of the UMT functionality are given in the following Sections, but it is sketched in figure 3.4.

In this figure, the Wi are worker threads and L denotes the application’s Leader Thread whose role is to

monitor the communication channel. Basically:

• At time T1, four workers W1, W2, W3 and W4 are bound to CPU’s C0, C1, C2 and C3 respectively.

The Leader Thread is not bound to any CPU and is waiting for UMT events. A pool of idle workers

remain blocked until they are needed.
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• At time T2, the worker W1 blocks because of an I/O operation and the Leader Thread is notified of

the event.

• At time T3, the Leader Thread wakes an idle worker from the pool and waits again for more events.

(When W5 wakes, it would also generate an unblock event which is omitted for simplicity). Worker

W5 is now running on a CPU; without the proposed mechanism, it would have been idle.

• At time T4, W1 is unblocked after the I/O operation finishes. An unblocking event is generated and

the Leader Thread wakes up. Because there is not any free CPU at the moment, the Leader Thread

waits until it momentously preempts another worker. Once it does so, it reads the UMT events and

registers that multiple workers (W1 and W5) are running on the same CPU (C0).

• At time T5, after the W5 worker finishes executing tasks, it checks the Leader Thread registers and

realizes that there is an oversubscription problem affecting its current CPU. To fix the problem, the

worker self surrenders and returns to the pool of idle workers. This generates another event that

wakes up the Leader Thread and updates the register of events.

• At time T6, the oversubscription problem has ended and the four workers are running normally.

Figure 3.4: UMT model overview example
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3.3.2 Linux Kernel Side

This section exposes the implementation details of the KPM extension into the Linux Kernel. However, is

worth noting that the infrastructure described here is provisional, and only provides the minimum set of

features to operate with KPM and test it. It is part of the future work to clean and improve this interface.

Two new syscalls have been added to manage monitored threads from user-space as can be seen below.

The processes to add a new syscall is documented in the official kernel website [29] and hence, it is not

explained here.

1 i n t kpm_mode_enable ( i n t ∗ c p u f d s )
2 vo id c t l s c h e d k p m ( u n s i g n e d c h a r func , u n s i g n e d c h a r a c t i v a t e , u n s i g n e d c h a r ∗ g e t )

3.3.2.1 Syscall: kpm_mode_enable()

A processes that wants to monitor its threads must use the kpm_mode_enable() syscall to enable

KPM mode. Inside the syscall, the kernel initializes the necessary data structures to manage the threads

and returns the number of CPUs being monitored. For each monitored CPU, an entry in the cpufds

argument corresponding to the CPU ID is filled with the EFD file descriptor for the CPU. The syscall

returns the number of monitored CPUs.

The complete code for the syscall is shown on the listing 3.1. The SYSCALL_DEFINE macro is used

to define a new system call. The last number at the end of the macro is the number of allowed arguments,

the first argument must be the system call name and the rest of the parameters must be passed afterwards,

first the type and then the argument name. The special macro _user declares the corresponding argument

as a user space pointer which is used by a preprocessing kernel compilation step to detect whether the

pointer is used correctly as is explained later in this section.

The first action taken by the syscall is to get a reference to the processes (not thread) task_struct

of the calling thread in line 8. To do so, all threads contain the pointer group_leader into its

task_struct that directly points to its parent (in the case of the parent, the pointer points to itself).

The task_struct of the current processes/thread is always accessible through the current variable.

Then, a vector is allocated in the parent’s task_struct to keep the EFD file descriptors for each

CPU at line 10. The memory is allocated using the kmalloc() Linux Kernel function to allocate

kernel memory. The GFP_KERNEL flag indicates that the memory allocated does not need any special

consideration6. The actual number of CPUs is kept in the global kernel variable nr_cpu_ids. If there

is not enough memory, the syscall returns the standard error code ENOMEM.

Next, the EFDs are created by calling the eventfd2 syscall from inside the kernel. A syscall can be

called from inside the kernel by prepending the "sys_" keyword on the syscall name as seen in line 16. The

resulting function name is the actual syscall function that gets called from user-space after the transition

to kernel mode and the general syscall handler code. The EFDs are created with the EFD_NONBLOCK

which prevents reads to the file descriptor to block as explained in the section 3.2.3. The syscall is called

once per CPU unless an error occur.

In case of error, a goto statement jumps to the end of the syscall where the previous actions are

undone (in this case, allocate memory and close opened EFD if any). This is a common kernel pattern

6An example of "special consideration" is the flag GFP_DMA that can be used instead to allocate memory suitable for DMA
transefers, or GFP_NOWAIT that avoid blocking in kmalloc (by default kmalloc can sleep)
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for managing errors in an elegant fashion. Inside the kernel, special care must be taken to avoid memory

leakages, in this case, returning the syscall before freeing the memory or not closing the EFD would cause

a permanent memory leak in kernel memory because the objects’ allocated memory references would

have been lost. To notify errors, the generic Linux Kernel printk() function is used to add a log in

the kernel ring buffer available from user-space when running the dmesg command or when examining

/var/log/messages if the syslogd or klogd deamons are running.

The kernel does not need to work with file descriptors, instead the function eventfd_ctx_fdget()

is used at line 24 to get the struct eventfd_ctx which is the relevant data structure really used to

actually write and read from an specific EFD.

Finally, the EFDs file descriptors are copied from kernel memory to user memory using the common

kernel utility copy_to_user() in line 32. This function is used to perform some common checks

regarding the correctness of the user-space pointer. The calling user-space processes might have passed to

the system call an erroneous or malicious pointer that could originate a memory error or corruption if the

kernel tried to write to it. The same applies when copying data from user-space, although in this case is

not needed.

3.3.2.2 Syscall: ctlschedkpm()

Once kpm_mode_enable() returns, the calling process now has the necessary EFDs to monitor the

CPUs. However, threads will not write to the CPUs EFD until they have explicitly requested that want to

be monitored. To do so, each thread pretending to be monitored must call the new ctlschedkpm()

syscall. This syscall is used for both set and get the monitored thread status (enabled or disabled). The

listing in 3.2 shows the syscall code.

The new syscall ctlschedkpm() requires three arguments. The first one, func, expects either the

macro "SCHED_UM_ACT_SET" to enable or disable monitorization or "SCHED_UM_ACT_GET" to

retrieve the monitoring status of the calling thread. The second argument, activate, is the actual value that

will be set if "SCHED_UM_ACT_SET" is chosen for func. Valid values for activate are 0 or 1. The last

argument is a pointer that the kernel will fill with the current thread status if "SCHED_UM_ACT_GET"

was chosen for func.

The new syscall first action is to check whether the parent process of the calling thread has called

the kpm_mode_enable() syscall at line 5, otherwise, it returns an error. If the user has specified the

SCHED_UM_ACT_GET flag, the internal status of the thread is copied to user-space in line 7. If the

user has specified SCHED_UM_ACT_SET, it is checked if the activate parameter value is correct

and then it proceeds to enable monitorization.

To do so, it is first necessary to disable kernel preemption for the current CPU using the function

preempt_disable() which can then be enabled again with preempt_enable(). Disabling

preemption is necessary because the activation of monitorization consists of several steps that must be

done atomically before the kernel scheduler is called. Because the Linux kernel allows preemption on

both user and kernel space as explained in the background section 2.2.2, the syscall code can be preempted

at any point (by the return point of a timer interrupt, for example) unless preemption is explicitly disabled.

Disabling preemption guarantees that the code will not be preempted by any other process.

The initialized variables are um_activate to enable EFD operations and um_oldcpu to keep

track of the last CPU the thread was running on. To get the current cpu, the smp_processor_id()
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1 SYSCALL_DEFINE2 ( kpm_mode_enable , i n t _ _ u s e r ∗ , c p u f d s ) {
2 u n s i g n e d i n t k c p u s f d [ n r _ c p u _ i d s ] ;
3 s t r u c t e v e n t f d _ c t x ∗ c t x ;
4 i n t r e t ;
5 i n t i ;
6 s t r u c t t a s k _ s t r u c t ∗ g l d r ;
7 r e t = n r _ c p u _ i d s ;
8 g l d r = c u r r e n t −>g r o u p _ l e a d e r ;
9 / / A l l o c a t e memory f o r e v e n t f d s t r u c t u r e s p e r CPU;

10 g l d r −>se . um_cpufds= kmal loc ( s i z e o f ( s t r u c t e v e n t f d _ c t x ∗ ) ∗ n r _ c p u _ i d s , GFP_KERNEL) ;
11 i f ( ! g l d r −>se . um_cpufds ) {
12 r e t = −ENOMEM;
13 go to e x i t ;
14 }
15 f o r ( i = 0 ; i < n r _ c p u _ i d s ; i ++) { / / c r e a t e a an EFD f o r each CPU
16 k c p u s f d [ i ] = s y s _ e v e n t f d 2 ( 0 , EFD_NONBLOCK) ;
17 i f ( k c p u s f d [ i ] < 0 ) {
18 p r i n t k (KERN_WARNING " kpm_mode_enable : co u ld n ’ t c r e a t e EFD \ n " ) ;
19 r e t = k c p u s f d [ i ] ;
20 go to e f d _ f r e e _ p a r t i a l ;
21 }
22 }
23 f o r ( i = 0 ; i < n r _ c p u _ i d s ; i ++) { / / a c q u i r e fd c o n t e x t f o r each g i v e n u s e r fd
24 c t x = e v e n t f d _ c t x _ f d g e t ( k c p u s f d [ i ] ) ;
25 i f ( IS_ERR ( c t x ) ) {
26 r e t = PTR_ERR( c t x ) ;
27 go to e f d _ f r e e ;
28 }
29 g l d r −>se . um_cpufds [ i ] = c t x ;
30 }
31 / / copy t h e cpu f d s t o u s e r s p a c e
32 i f ( c o p y _ t o _ u s e r ( cpufds , kcpusfd , s i z e o f ( i n t ) ∗ n r _ c p u _ i d s ) != 0 ) {
33 p r i n t k (KERN_WARNING " kpm_mode_enable : co u ld n ’ t copy from u s e r s p a c e \ n " ) ;
34 r e t = −EINVAL ;
35 go to e f d _ f r e e ;
36 }
37 r e t u r n r e t ;
38

39 e f d _ f r e e :
40 i = n r _ c p u _ i d s ;
41 e f d _ f r e e _ p a r t i a l :
42 i −−;
43 f o r ( ; i >= 0 ; i −−) {
44 s y s _ c l o s e ( k c p u s f d [ i ] ) ;
45 }
46 k f r e e ( g l d r −>se . um_cpufds ) ; / / f r e e c p u f d s a r r a y
47 g l d r −>se . um_cpufds = NULL;
48 e x i t :
49 r e t u r n r e t ;
50 }

Listing 3.1: Source code for the Linux kernel kpm_mode_enable system call
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1 SYSCALL_DEFINE3 ( c t l schedkpm , u n s i g n e d char , func , u n s i g n e d char , a c t i v a t e ,
2 u n s i g n e d c h a r _ _ u s e r ∗ , g e t ) {
3 i n t i ;
4 i n t e r r = 0 ;
5 i f ( c u r r e n t −>g r o u p _ l e a d e r −>se . um_cpufds != NULL) {
6 i f ( f unc & SCHED_UM_ACT_GET) {
7 i f ( c o p y _ t o _ u s e r ( ge t , ( c h a r ∗ ) &c u r r e n t −>se . um_act ive , s i z e o f ( c h a r ) ) != 0 ) {
8 p r i n t k (KERN_WARNING " c t l s c h e d k p m : co u ld n ’ t copy t o u s e r s p a c e \ n " ) ;
9 e r r = −1;

10 }
11 } e l s e i f ( func & SCHED_UM_ACT_SET) {
12 i f ( ( a c t i v a t e == 0) | | ( a c t i v a t e == 1) ) {
13 p r e e m p t _ d i s a b l e ( ) ;
14

15 i n t cpu = s m p _ p r o c e s s o r _ i d ( ) ;
16 c u r r e n t −>se . um_oldcpu = cpu ;
17 c u r r e n t −>se . um_enabled = 1 ;
18 c u r r e n t −>se . um_ac t ive = a c t i v a t e ;
19

20 p r e e m p t _ e n a b l e _ n o _ r e s c h e d ( ) ;
21

22 t r a c e _ k p m _ a c t i v e ( c u r r e n t −>se . um_act ive , a c t i v a t e ) ;
23 } e l s e {
24 p r i n t k (KERN_WARNING " c t l s c h e d u m f d : %hhd n o t v a l i d a c t i v a t e a rgument \ n " ,
25 a c t i v a t e ) ;
26 e r r = −1;
27 }
28 } e l s e {
29 p r i n t k (KERN_WARNING " c t l s c h e d k p m : %hhd o p t i o n n o t s u p p o r t e d \ n " , func ) ;
30 e r r = −1;
31 }
32 } e l s e {
33 p r i n t k (KERN_WARNING " c t l s c h e d k p m : c a l l e d f o r a non u s e r managed t h r e a d \ n " ) ;
34 e r r = −1;
35 }
36

37 r e t u r n e r r ;
38 }

Listing 3.2: Source code for the Linux kernel ctlschedkpm system call

kernel function is used.

After all data structures are initialized, preempt_enable_no_resched() function at line 20

enables preemption again. This function, in contrast with preempt_enable() does not has the side

effect of checking whether the current processes should be preempted. The _no_resched variant is used

because at this point the syscall has almost finished and preemption will be checked again at the user

space return point.

A generic Linux Kernel TRACE_EVENT tracepoint [30] has been included line to ease the debugging

processes. When the Linux Kernel TRACE_EVENT feature is disabled system wide, the system perfor-

mance is almost not affected. This is because the tracepoint CALL instruction within the kernel code is

overwritten by NOPS instructions. When the user enables the tracepoints at runtime, Linux rewrites its

own code to add back the CALL instructions. To do so, the kernel simply keeps a list of the memory

locations of all tracepoints. For this reason, TRACE_EVENTS is compiled but disabled by default in

most Linux distributions.
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1 s t a t i c vo id __sched _ _ s c h e d u l e ( boo l preempt ) {
2 kpm_pre ( c u r r e n t ) ;
3 m a i n _ s c h e d u l e ( preempt ) ;
4 kpm_post ( c u r r e n t ) ;
5 }

Listing 3.3: Source code for the Linux Kernel scheduler wrapper

3.3.2.3 Scheduler Wrapper

The actual EFD writing points instrumentation has been placed into a wrapper around the main Linux

Kernel __schedule() function. This function is the common entry point for all possible paths that

lead to a context switch as explained in section 2.2.2. The genuine __schedule() function is now

substituted by a wrapper shown at listing 3.3 that writes the EFD blocked counter into kpm_pre() before

calling the original __schedule() (now named main_schedule()) and writes the unblocked EFD

counter inside kpm_post()when __schedule() returns. The argument passed to both kpm_pre()

and kpm_post() is the current processes task_struct.

Writing a block event is done by the kpm_pre() function shown in listing 3.4. At this point, the

current thread is about to call the main scheduler function which might cause its execution to cease either

because it is being preempted, blocked or destroyed. Preemption is disabled all function long to avoid data

races as explained before. This function first checks whether the calling thread has to be monitored by

checking the um_active flag at line 3. Next, it is checked whether the current thread is being preempted

or blocked by inspecting the current thread state. Preempted threads are not considered in the EFD count.

Whenever a thread is preempted, its CPU does not become idle, but another thread starts running on it.

Because one of the main objectives is to minimize the amount of wasted CPU time, it is not necessary to

inform user-space of when a thread is preempted but only when it is blocked.

In the Linux Kernel, each thread has a state variable stored in its task_struct which represents

the current execution status. Table 3.1 shows some of the possible values and figure 3.5 shows the

flow chart of states. The most relevant ones are TASK_RUNNING, TASK_INTERRUPTIBLE and

TASK_UNINTERRUPTIBLE. As long as a thread is in the scheduler’s run queue (the ready list) regardless

of it is actually running or not on a CPU, its status is TASK_RUNNING. If the thread pretends to block it

changes its state to either TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE to indicate that it

might be woken up prematurely to process signals or not respectively. When the scheduler sees any of

this two states, it removes the current thread from the run queue. When a thread is preempted by another,

its state is not changed and remains as TASK_RUNNING. Hence, to identify a preemption at the schedule

level function, the state is checked to be zero (the value of TASK_RUNNING macro) as can be seen at

line 9. Also, the current state is saved for future use in the um_prev_state variable as it is explained

later.

The EFD struct corresponding to the current CPU is retrieved from the process of the current thread

at line 14. Then, the eventfd_signal() from the eventfd asynchronous API is used at line 16 to

write without blocking in case of overflow. If the returned value is not the same as the value written, a

non-blocking overflow occurred and the kernel is stalled with the kernel BUG_ON macro7.

7This macro should not be used here because overflowing this counter will not compromise the entire system, only the user-space
runtime. In any case, it is used for debugging purposes

41



Figure 3.5: Linux Kernel Process State [31]

FLAG Description Value
TASK_RUNNING In the runnable queue. It might be running or not. 0

TASK_INTERRUPTIBLE Blocked but interruptible. 1
TASK_UNINTERRUPTIBLE Blocked, no interruptible. 2

__TASK_STOPPED Task has been stopped 4
__TASK_TRACED Task is being traced 8

Table 3.1: Linux Kernel process states

Finally, preemption is enabled again skipping the schedule check. Otherwise, it could happen that

after enabling preemption, the schedule function is called a second time at this point, forcing an undesired

call to kpm_pre().

When the process is scheduled again, it exits the schedule function and proceeds to write the unblock

event in the kpm_post() function shown in listing 3.5. The process is similar to kpm_pre(), although

some special care must be taken for migrated threads. Runtime workers are pinned threads, meaning that

will not be migrated because of the OS will. However the runtime can instruct the kernel to pin a worker

to another CPU anytime.

A worker can be migrated while it is running, blocked, ready or stopped because of the syscall

sched_setaffinity(). However, for a processes to change its CPU it must cease running first by

calling the schedule function. Then, its data structures are simply moved from the source CPU run queue

to the target CPU run queue. To preempt the running process, the kernel wakes up a high priority real time

kernel thread named "migration" that forces a preemption through the common scheduler mechanisms

(real time threads preempt immediately all the other schedulers threads but deadline threads).

If a migration is requested on a blocked, stopped or a ready thread that has just awaken after being
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1 s t a t i c vo id kpm_pre ( s t r u c t t a s k _ s t r u c t ∗ p rev ) {
2 p r e e m p t _ d i s a b l e ( ) ;
3 i f ( prev−>se . um_ac t ive ) {
4 i n t cpu = s m p _ p r o c e s s o r _ i d ( ) ;
5 i n t s t a t e = prev−> s t a t e ;
6

7 t r a c e _ k p m _ p r e ( s t a t e , prev−>se . um_oldcpu ) ;
8 prev−>se . u m _ p r e v _ s t a t e = s t a t e ;
9 i f ( s t a t e ) {

10 c o n s t __u64 t o w r i t e = 1 ;
11 __u64 w r i t t e n ;
12 s t r u c t e v e n t f d _ c t x ∗ c t x ;
13

14 c t x = prev−>g r o u p _ l e a d e r −>se . um_cpufds [ cpu ] ;
15 /∗ non−b l o c k i n g w r i t e , no need t o e n a b l e p r e e m p t i o n ∗ /
16 w r i t t e n = e v e n t f d _ s i g n a l ( c tx , t o w r i t e ) ;
17 BUG_ON( w r i t t e n != t o w r i t e ) ;
18 }
19 }
20 p r e e m p t _ e n a b l e _ n o _ r e s c h e d ( ) ;
21 }

Listing 3.4: Source code for the Linux kernel block EFD event

blocked or stopped, it means that the thread wrote the block event prior to leaving its last CPU and that it

will write the unblocked event on the new CPU. As a consequence, for the old CPU the number of block

and unblock events match and for the new CPU there is an extra unblock event. This is important because

the user-space application will see that the number of ready threads is 0 for the old CPU and 1 for the new

CPU (supposing that there is a single monitored thread).

If a migration is requested on a running thread, the "migration" kernel thread will preempt it, which

means that when it calls the schedule function it will not write neither the block event on the old CPU nor

the unblock event on the new CPU (because in both cases its state is TASK_RUNNING). However, this

thread had, for sure, previously written an unblocked event on the old CPU, which means that the old

CPU will lack a block event and the new CPU will lack an unblock event. Therefore, the EFD counters

would be spoiled.

To fix the unmatching events problem in the case of a preemption, several options have been studied.

Ideally, the kpm_pre() function should detect that a preemption caused by a migration is happening

and force a write to the EFD (the same applies for kpm_post()). However, at the scheduler level,

it is not possible to check that a migration is the cause. It could be checked if the next process to

run is the migration thread but there is no guarantee that another user thread will preempt the process

to be migrated before than the migration thread. Also, it is not cost free to simply set a flag at the

sched_setaffinity() syscall because it would have to be done atomically in conjunction with the

process’ allowed CPU bitmask, which would require to protect a new code region with locks (the CPU

bitmask indicates the allowed set of CPUs where a processes can run). The CPU bitmask could be checked

in kpm_pre() to anticipate the scheduler decision, however if a call to sched_setaffinity()

modifies the CPU bitmask in parallel just after the CPU bitmask check in kpm_pre(), the EFD would

not be written and the scheduler would perform a migration.

A more conservative approach has been chosen. The kpm_post() code first checks if the current

CPU is different from the last time kpm_post() was run by this process. If it is the case, then a
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1 s t a t i c vo id kpm_post ( s t r u c t t a s k _ s t r u c t ∗ p rev ) {
2 p r e e m p t _ d i s a b l e ( ) ;
3

4 i f ( prev−>se . um_ac t ive ) {
5 i n t f o r c e = 0 ;
6 i n t o ld cp u = prev−>se . um_oldcpu ;
7 i n t cpu = s m p _ p r o c e s s o r _ i d ( ) ;
8

9 t r a c e _ k p m _ p o s t ( prev−> s t a t e , prev−>se . u m _ p r e v _ s t a t e ,
10 oldcpu , cpu ) ;
11

12 / / i f we a r e on a new cpu f o r t h e f i r s t t ime
13 i f ( cpu != o ldc pu ) {
14 / / and t h e p r o c e s s was preempted l a s t t ime was r u n n i n g
15 / / i n t h e o l d cpu , t h e n do t h e e x t r a w r i t e
16 i f ( prev−>se . u m _ p r e v _ s t a t e == 0) {
17 c o n s t __u64 t o w r i t e = 1 ;
18 __u64 w r i t t e n ;
19 s t r u c t e v e n t f d _ c t x ∗ c t x ;
20

21 f o r c e = 1 ;
22 c t x = prev−>g r o u p _ l e a d e r −>se . um_cpufds [ o l dcp u ] ;
23 /∗ non−b l o c k i n g w r i t e , no need t o e n a b l e p r e e m p t i o n ∗ /
24 w r i t t e n = e v e n t f d _ s i g n a l ( c tx , t o w r i t e ) ;
25 BUG_ON( w r i t t e n != t o w r i t e ) ;
26 }
27 prev−>se . um_oldcpu = cpu ; / / u p d a t e cpu
28 }
29

30 i f ( prev−>se . u m _ p r e v _ s t a t e | | f o r c e ) {
31 c o n s t __u64 t o w r i t e = ( ( ( __u64 ) 1 ) << 32) ;
32 __u64 w r i t t e n ;
33 s t r u c t e v e n t f d _ c t x ∗ c t x ;
34

35 c t x = prev−>g r o u p _ l e a d e r −>se . um_cpufds [ cpu ] ;
36 /∗ non−b l o c k i n g w r i t e , no need t o e n a b l e p r e e m p t i o n ∗ /
37 w r i t t e n = e v e n t f d _ s i g n a l ( c tx , t o w r i t e ) ;
38 BUG_ON( w r i t t e n != t o w r i t e ) ;
39 }
40 }
41

42 p r e e m p t _ e n a b l e _ n o _ r e s c h e d ( ) ;
43 }

Listing 3.5: Source code for the Linux kernel unblock EFD event

migration has just happened. Then it is checked if a preemption occurred by inspecting if the last status of

the processes when kpm_pre() was called is TASK_RUNNING. If so, the missed block event is done

at line 24. Effectively, because the block event is done too late, this means that the EFDs will not reflect

the correct status of the processes while it is migrating, however, because migrations should not be done

often, this can be considered a corner case.

After the extra block event write, the analogous normal unblock write is done either if the process

state before calling schedule (stored in um_prev_state) reveals that was not preempted or the force

flag is set. This flag is set at line 21 if a migration with preemption has been detected.

It has been explained that both kpm_pre() and kpm_post() enable and disable preemption before

operating. Ideally, this should be done inside the original scheduler function given that this function also

disables preemption. The problem is that inside the original scheduler function, preemption is enabled at
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assembler level just after doing the context switch, meaning that kpm_post() should also run at that

level. For simplicity, pre and post function have been placed outside, although a redundant preemption

enable and disable is done. In fact, it is possible for a timer interrupt to trigger between the exit of

kpm_pre() and the call to the main scheduler which could lead to another call to scheduler. This is a

problem because kpm_pre() would be called twice, however, this is unlikely to happen and easy to

detect from user-space. For this reason it remains as future work.

3.3.3 User-Space Runtime Side

In order to validate the proposal, the Nanos6 task-based runtime of the OmpSs [1] programming model has

been adapted to exploit the new KPM feature of the Linux Kernel. Originally, the Nanos6 threading model

is based on an explicit management of thread binding: as long as there are ready tasks to execute, the

runtime keeps a single worker binded to each CPU. Workers continuously ask for more tasks to execute

and only leave the CPU voluntarily when: no more tasks are left, an explicit taskwait prevents the task

to continue until all their childs complete, or the next ready task to execute is already bound to another

worker (in which case there is a swap of workers). The new Nanos6 threading model adds the possibility

to have multiple workers bound to the same CPU although it is desired that only one of them is in the

ready execution state and the others are blocked. A per CPU counter of workers in the ready state is used

to detect when a CPU is idling. When one is found, an idle worker is awaken to be run there. Workers use

the CPU ready counters to detect oversubscription and fix it by voluntarily stopping.

3.3.3.1 Leader Thread

Nanos6 initialization phase creates a single not bound Leader Thread and a per CPU bound worker thread.

As part of the early Leader Thread initialization phase shown at listing 3.6, KPM mode is enabled. To

do so, it calls the new kpm_mode_enable() syscall at line 7 using the syscall() system call to

invoke a syscall using its numeric identifier8. Then, it registers the EFDs in an epoll object (created before

and not shown here) at line 15. The Nanos6 CPU object is bound to the EFD in the epoll_ctl() call,

hence, when an event is triggered, epoll_wait() returns the CPU object pointer. When workers start

running and before starting to execute any task, they call the ctlschedkpm() syscall to instruct the

kernel to monitor their actions.

A simplified version of the Leader Thread main loop is shown at listing 3.7. While the global

variable mustExit is not set, the leader thread performs a blocking read over all EFDs using the

epollfd epoll file descriptor at line 12. When one of the monitored threads produces an event, the

Leader Thread gets unblocked and reads the EFDs by calling the process_events() function

described later. Then, it proceeds to wake up additional workers on the idle CPUs by calling the

wakeUpIdleWorkersOnIdleCPUs() function.

If mustExit is set, another final non-blocking call to epoll_wait() (last parameter is zero) is

done to processes the remaining events before exiting. As a measure to detect errors in the debugging

phase (which requires the DEBUG macro to be set), all CPU ready counters are checked to be zero

when Nanos exits (i.e. there are 0 ready threads in all CPUs). If at some point Nanos or the kernel

8The standard way to call a syscall by its name is to add a libc wrapper for the syscall. Because it has not been done here, the
generic syscall() system call is used
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1 vo id Leade rThread : : enableKPM ( ) {
2 s t d : : v e c t o r <CPU ∗> c o n s t &c p u r e f s = CPUManager : : g e t C P U L i s t R e f e r e n c e ( ) ;
3 i n t i , rc , ncpus , c p u i d ;
4 i n t c p u f d s [ CPU_SETSIZE ] ;
5 s t r u c t e p o l l _ e v e n t ev ;
6

7 ncpus = s y s c a l l (KPMMODEENABLE, c p u f d s ) ; / / e n a b l e KPM
8 /∗ p r o c e s s e r r o r on ncpus < 0 ∗ /
9

10 f o r (CPU ∗cpu : c p u r e f s ) {
11 c p u i d = cpu−>_systemCPUId ;
12 cpu−> s e t e f d ( c p u f d s [ c p u i d ] ) ;
13 ev . e v e n t s = EPOLLIN ;
14 ev . d a t a . p t r = cpu ;
15 r c = e p o l l _ c t l ( e p o l l f d , EPOLL_CTL_ADD , c p u f d s [ c p u i d ] , &ev ) ;
16 /∗ p r o c e s s e r r o r on r c == −1 ∗ /
17 }
18 }

Listing 3.6: Source code for the Nanos6 KPM initialization

1 vo id Leade rThread : : body ( ) {
2 w h i l e ( t r u e ) {
3 i f ( n o t m u s t E x i t ) {
4 # i f d e f DEBUG
5 nev = e p o l l _ w a i t ( e p o l l f d , e v e n t s , numCPUs , 0 ) ;
6 /∗ p r o c e s s e s e r r o r s on nev == −1 ∗ /
7 i f ( nev == 0) b r e a k ;
8 # e l s e
9 b r e a k ;

10 # e n d i f
11 } e l s e {
12 nev = e p o l l _ w a i t ( e p o l l f d , e v e n t s , numCPUs , delay_ms ) ;
13 }
14 p r o c e s s _ e v e n t s ( nev , e v e n t s ) ;
15 wakeUpIdleWorkersOnIdleCPUs ( ) ;
16 }
17 }

Listing 3.7: Source code for the Nanos6 Leader Thread Body

implementation have misbehaved, Nanos is likely to exit with a CPU counter with a non zero value. The

last check is done to ensure that all events have been processed.

The code at listing 3.8 shows how events are processed. The EFD counters are consumed through

the standard read() system call, which resets the EFD counters to zero. The number of blocked and

unblocked events are separated from the reading using masks. By subtracting the number of unblocked

tasks to the number of blocked tasks, the number of ready workers of the associated CPU EFD is known.

However, because each read operation erases the count, it is necessary to keep a user-space per CPU count

of the ready threads by simply adding the result of the subtraction. Each Nanos6 CPU object maintains an

atomic counter which is updated at line 13. The operation is repeated until there are no more events, this

is done because a preemption while updating the counters could result in an outdated picture of ready

workers.

Listing 3.9 shows the code that uses the CPU counters to determine whether a worker should be woken

up on an idle CPU. In the code, for each CPU it is checked whether the CPU meets the conditions to wake
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1 vo id Leade rThread : : p r o c e s s _ e v e n t s ( i n t nev , s t r u c t e p o l l _ e v e n t ∗ e v e n t s ) {
2 CPU ∗cpu ;
3 u i n t 6 4 _ t s t a t u s ;
4 u n s i g n e d i n t nb locks , nunb locks , n t o t a l ;
5

6 w h i l e ( nev ) {
7 f o r ( i n t i = 0 ; i < nev ; i ++) {
8 cpu = (CPU ∗ ) e v e n t s [ i ] . d a t a . p t r ;
9 s t a t u s = cpu−> r e a d _ s t a t u s ( ) ; / / non−b l o c k i n g r e a d

10 i f ( s t a t u s ) {
11 n b l o c k s = 0xFFFFFFFF & s t a t u s ;
12 n u n b l o c k s = s t a t u s >> 3 2 ;
13 cpu−>updateReadyWorkers ( n u n b l o c k s − n b l o c k s ) ;
14 }
15 }
16 nev = e p o l l _ w a i t ( e p o l l f d , e v e n t s , numCPUs , 0 ) ; / / non b l o c k i n g
17 /∗ p r o c c e s s e r r o r s on nev == −1 ∗ /
18 }
19 }

Listing 3.8: Source code for the Nanos6 Leader Thread process EFD events function

up a worker as seen in line 8: The CPU must be enabled, idle, and a worker must have not been awaken

by the Leader thread in this CPU since the last unblock event on the CPU.

The first condition is necessary for the runtime to detect CPUs that should not be used for computation

as part of the a CPU plug and play mechanism. The second condition actually checks the counter of ready

workers. If 0, the cpu−>isIdle() returns true. The last condition is checked to avoid the Leader thread to

wake up multiple workers in the same CPU before the awakened worker had time to be scheduled. This is

implemented with an atomic variable that is set at line 24 and unset when an unblock event on the CPU is

found. The worker awakened by the leader thread might not be the one that unsets the atomic variable but,

in any case, if an unblock event is generated it means that the CPU is no longer idle and the flag can be

cleaned.

If all conditions are met, the Leader thread asks the Nanos6 task scheduler for a ready task at

line 9. If the task does not have a worker assigned, the function getIdleThread() at line 15 is

called to either get an idle thread from a pool or create a new one (second parameter needs to be false,

otherwise a new thread would not be created if the idle pool is empty) if the maximum number of threads

CPU::maxWorkersPerCPU is not exceeded. If no more threads can be created, the task is returned

to the scheduler and the leader thread stops. At this point workers are not started yet, but added to the

workersToBeWoken list at line 25. Waking up a worker requires to acquire a global lock, hence, to

minimize the time the lock is held, workers to be woken are first collected and then awakened afterwards

in the wakeUpWorkers() function at line 32.

The function wakeUpWorkers() shown at listing 3.10 does two actions: it updates the list of

current idle CPUs and wakes up workers. In one hand, Nanos6 uses the KPM kernel feature to keep the

count of ready workers, used to detect CPUs not running any worker, either because workers are blocked

or because there are no workers. In the other hand, it keeps a list of idle CPUs that do not currently

have any worker assigned. The idle CPU list is the original mechanism used by Nanos6 without UMT to

distribute work among CPUs. When a new task is created, the list of idle CPUs is checked to quickly get

a place to execute it. When a worker becomes idle it checks if it is the last running worker to place the

current CPU into the list of idle CPUs. To perform this checks, an atomic per CPU counter of not idle
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1 vo id Leade rThread : : wakeUpIdleWorkersOnIdleCPUs ( ) {
2 WorkerThread ∗ r e p l a c e m e n t T h r e a d , ∗ n e x t T h r e a d ;
3 s t d : : v e c t o r <CPU ∗> c o n s t &c p u r e f s = CPUManager : : g e t C P U L i s t R e f e r e n c e ( ) ;
4 Task ∗ t a s k ;
5

6 f o r (CPU ∗cpu : c p u r e f s ) {
7 i f ( CPUAct iva t ion : : i s E n a b l e d ( cpu ) && cpu−> i s I d l e ( )
8 && ! cpu−>checkScheduledWork ( ) ) {
9 t a s k = S c h e d u l e r : : ge tReadyTask ( cpu ) ;

10 i f ( t a s k != n u l l p t r ) {
11 n e x t T h r e a d = t a s k −>g e t T h r e a d ( ) ;
12 i f ( n e x t T h r e a d == n u l l p t r ) {
13 i n t t o t a l W o r k e r s = cpu−>g e t T o t a l W o r k e r s ( ) ;
14 boo l doNo tCrea t e = ( t o t a l W o r k e r s >= CPU : : maxWorkersPerCPU ) ;
15 n e x t T h r e a d = ThreadManager : : g e t I d l e T h r e a d ( cpu , doNo tCrea t e ) ;
16 i f ( n e x t T h r e a d != n u l l p t r ) {
17 nex tThread −>s e t T a s k ( t a s k ) ;
18 } e l s e {
19 / / r e t u r n t a s k t o s c h e d u l e r
20 S c h e d u l e r : : r e t u r n T a s k ( t a s k , cpu ) ;
21 b r e a k ;
22 }
23 }
24 cpu−>checkAndSetScheduledWork ( ) ;
25 workersToBeWoken . push_back ( s t d : : make_pa i r ( cpu , n e x t T h r e a d ) ) ;
26 } e l s e {
27 b r e a k ;
28 }
29 }
30 }
31 i f ( workersToBeWoken . s i z e ( ) > 0 ) {
32 CPUManager : : wakeUpWorkers ( workersToBeWoken ) ;
33 workersToBeWoken . c l e a r ( ) ;
34 }
35 }

Listing 3.9: Source code for the Nanos6 Leader Thread wake up workers on Idle CPUs function

workers is used. When a worker is to be woken on a CPU, the corresponding entry on the idle CPU list is

set to false as seen in line 10. It is possible to completely replace the idle CPU list and exclusively rely on

the ready workers counter, however this would require to force a counters update every time the Idle CPU

list would be checked, which might slow too much the process of adding tasks, for instance. In any case,

this option has not been deeply and remains has future work.

Workers are woken up at line 18 by unblocking a mutex variable in the resume() method of the

worker object. This is the precise point in which the original Nanos6 threading model is broken, meaning

that there can now be multiple ready thread per CPU at a time. In other words, if there was a binded

thread at the CPU where the Leader thread has just moved another thread, it might happen that when this

blocked thread resumes, it has to compete with the extra thread. However, this oversubscription problem

only prevails for a limited amount of time.

Because the Leader thread runs for a small computational burst every time it is awaken, it is unlikely

that another thread preempts it while using the Completely Fair Scheduler (the default). This is because

most of the time the Leader thread is sleeping and hence it should be placed at the leftmost of the kernel

rbtree (similar to an interactive processes) see the CFQ 2.2.2 section for more details. There are extreme

cases in which the Leader thread could be overwhelmed of events to process and require a single CPU for
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1 vo id CPUManager : : wakeUpWorkers ( s t d : : v e c t o r < s t d : : p a i r <CPU ∗ , WorkerThread ∗> >
workersToBeWoken ) {

2 CPU ∗ cpu ;
3 WorkerThread ∗wk ;
4 s t d : : l ock_gua rd <SpinLock > guard ( _idleCPUsLock ) ;
5 {
6 f o r ( s t d : : p a i r <CPU ∗ , WorkerThread ∗> pr : workersToBeWoken ) {
7 cpu = pr . f i r s t ;
8 wk = pr . second ;
9 i f ( _ id leCPUs [ cpu−>Id ] ) {

10 _idleCPUs [ cpu−>Id ] = f a l s e ;
11 }
12 }
13 }
14

15 f o r ( s t d : : p a i r <CPU ∗ , WorkerThread ∗> pr : workersToBeWoken ) {
16 cpu = pr . f i r s t ;
17 wk = pr . second ;
18 wk−>resume ( cpu ) ;
19 }
20 }

Listing 3.10: Source code for the Nanos6 Leader Thread wake up workers on Idle CPUs function

itself. However, the problem in this case might not be the Leader thread performance but an inappropriate

use of the programming model such as using a too small task granularity and/or too many taskwait clauses.

3.3.3.2 Workers

Listing 3.11 shows a simplified version of the worker’s idle loop. Workers ask the scheduler for

tasks to execute. If there are no tasks, or the task received already has a worker assigned, the cur-

rent worker adds itself to the idle list at lines 9 and 22 and blocks on a mutex. Otherwise, it executes

the task at line 12. Nanos6 workers check for oversubscription just after finishing executing a task

and before getting a new one. To do so, workers update the counters of ready workers at function

LeaderThread::updateCPUcounters() as seen at line 13. This function essentially does a

non-blocking read on the EFDs and then calls the same process_events() as seen at listing 3.8.

Then, the counters are used to check whether the number of ready threads for the current CPU is greater

than 1. If so, the current worker returns to the pool of idle threads to palliate oversubscription.

It could happen that just after a worker pretends to block itself to reduce oversubscription, it is

preempted by another worker. This second worker could also do the oversubscription check and decide to

block. This implies that both workers would sleep leading behind an idle CPU. However, if this happened,

either the Leader Thread would schedule another worker in the idle CPU after detecting the situation, or

a worker would use the idle CPU list to run there a new task. In any case, this issue is not a problems

because in one hand it is unlikely to happen and in the other hand, if it happens the problem would be

fixed naturally.

Having multiple workers competing for the same core resources might pollute its cache and drop

performance. However, assuming that the application defines multiple fine-grained tasks, the noise

should not last much. In the experimentation section, the oversubscription noise is carefully studied and

commented on the results.
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1 vo id WorkerThread : : body ( ) {
2 w h i l e ( n o t m u s t E x i t ) {
3 t a s k = S c h e d u l e r : : ge tReadyTask ( ) ;
4 i f ( t a s k != n u l l p t r ) {
5 WorkerThread ∗ a s s i g n e d T h r e a d = t a s k −>g e t T h r e a d ( ) ;
6 / / A t a s k a l r e a d y a s s i g n e d t o a n o t h e r t h r e a d
7 i f ( a s s i g n e d T h r e a d != n u l l p t r ) {
8 t a s k = n u l l p t r ;
9 ThreadManager : : a d d I d l e r ( t h i s ) ;

10 swi t chTo ( a s s i g n e d T h r e a d ) ;
11 } e l s e {
12 t a s k −>h a n d l e ( ) ;
13 Leade rThread : : upda teCPUcoun te r s ( _ e v e n t s ) ;
14 i n t n r ea dy = _cpu−>getReadyWorkers ( ) ;
15 i f ( n r e a dy > 1) {
16 t r a c e p o i n t ( umfd , u s t _ i d l e , 1 , n r e ad y ) ;
17 ThreadManager : : a d d I d l e r ( t h i s ) ;
18 swi t chTo ( n u l l p t r ) ;
19 }
20 }
21 } e l s e {
22 ThreadManager : : a d d I d l e r ( t h i s ) ;
23 swi t chTo ( n u l l p t r ) ;
24 }
25 }
26 }

Listing 3.11: Source code for the Nanos6 Worker idle loop
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Chapter 4

Experimental Validation

The UMT implementation described before is now evaluated by executing two benchmarks: A synthetic

benchmark that heavily uses the mmap() system call and the mock-up of an industry used application

based on the Full-Waveform Inversion (FWI) algorithm.

In both cases the performance is evaluated when each benchmark is executed on top of the original

Nanos6 runtime, and on top of the UMT Nanos6 (modified version of Nanos6 running on top of the Linux

kernel with the KPM extension). Several tools have been used to analyze the results, which include the

Linux kernel perf tool, the Linux Trace Toolkit next generation (LTTng) [32], the visualization tool Trace

Compass, as well as the babeltrace parser to debug, visually inspect, and automatically report metrics of

the benchmark traces.

4.1 Environment, Tools and Metrics

All tests have been run on a single node of the BSC’s "Cobi" Intel Scalable System Framework (SSF)

cluster. The node features two Intel Xeon E5-2690v4 processors with a total of 28 real cores and 56

hardware threads at 2.60GHz, 125GiB of DRAM4 memory at 2400 MHZ and an Intel DC S3520 solid

state drive with 222GiB (of which only 160 are available). The Linux kernel version used is the stable

4.10.5, configured with default options. The Linux distribution used over it is a minimal install of a Suse

Linux Enterprise Server (SLES) 12.2-0.

The perf tool is a complete open source performance tool distributed with the Linux Kernel source

code. It is capable of getting performance counters metrics, call graph of both user and kernel space, trace

Linux Kernel tracepoints and monitor scheduling latencies among others.

The LTTng tool is an open source Linux Kernel offline tracer which uses the standard Linux kernel

TRACE_EVENT [30] interface to define a set of static tracepoints. The Linux kernel features a set of

default TRACE_EVENT tracepoints placed into relevant code locations that have been used to understand

the execution flow of the benchmarks. The legend for all LTTng views is shown in Figure 4.1.

Trace Compass is an open source visualization tool based on Eclipse. It has been used to analyze

individual LTTng traces and validate the correct behavior of the execution. Along this Section, several

Trace Compass control flow and resources views are used to support the explanations.

Finally, the babeltrace Python API has been used to develop a custom LTTng trace parsing script to

extract relevant metrics. Specifically, the script reports the total benchmark execution time, the average
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Figure 4.1: LTTng views legend

CPU usage and the following custom metrics:

• Ready Jam: Percentage of time in which multiple threads state bound to the same CPU is either

running or ready. In other words, this metric is the average of the per CPU time percentage in which

there is oversubscription.

• Number of in-benchmark context switch: Context switch in which the previous running thread is a

preempted (not blocked) benchmark thread and the next thread to run is also a benchmark thread.

Hence, this measures number of preemptions among the benchmark threads.

• Number of benchmark created threads: Number of Nanos6 worker threads, including all worker

threads and the Leader Thread.

4.2 Synthetic Benchmark

In this Section, a synthetic benchmark based on the mmap() syscall is used to compare the performance

obtained with an unmodified Nanos6 version and the modified Nanos6 with UMT, both running over the

same modified kernel.

The custom mmap benchmark maps a randomly generated 100MiB file into memory and performs

a set of read/update/write operations on the file. More specifically, the benchmark main task creates a

specified number of independent Nanos6 tasks in which each one reads a random block of a certain size

from the file, performs a certain number of floating point operations on the data and writes back the

changes to disk through the msync() system call. The exact block size, number of blocks/tasks and

number of computations are specified for each described test.

Next, it is analyzed a mmap execution in which 500 blocks of 2000 elements are read, updated and

written without doing almost no computation on the update part.

Figure 4.2 shows the Trace Compass control flow view of the mmap without UMT benchmark LTTng

trace. A total of 59 threads are created, of which 56 are worker threads. The view only shows 10 of

them for clarity. For each Nanos6 thread, the view shows the process status (blocked, ready, running) and

whether it is running in user-space or executing a system call in kernel space. It can be distinguished a

pattern enforced by the disk data responses. When workers call the msync() system call, they block

until the disk has finished writing the data. The disk serves multiple workers data requests at the same

time, and when it finishes, unblocks all pending workers just as a barrier would do. Because the time
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Figure 4.2: Trace Compass control flow view of a complete mmap benchmark without UMT (Only 10
threads of 59 are shown). The total trace length is 14.1s.

Figure 4.3: Trace Compass control flow view of a complete mmap benchmark with UMT (Only 10 threads
of 507 are shown). The total trace length is 1.77s.

required by the disk to flush the changes is large, workers remain blocked most of the time and the CPU

remains idle.

Figure 4.3 shows the trace of the same benchmark but compiled against Nanos6 with UMT support.

A total of 507 threads are created in response to the blocking events, of which only ten are displayed.

Whenever a blocking or unblocking event occurs, the Leader Thread is put in the ready queue of some

CPU and wakes up or creates another worker thread on the idle CPU. Now more I/O operations are queued

in parallel. However, the CPU usage still remains low.

The total execution time of the original and the UMT version are, respectively, 14.08 and 1.76 seconds

(8x speedup). Although in both executions much of the CPU time is spent idling, the execution of the

UMT version is faster because more I/O requests have been served in parallel. In the original version, only

56 workers could perform I/O operations at the same time because there are 56 logic CPU’s and Nanos6

is not aware of when any of them blocks. Instead, the UMT version is able to schedule more workers and

queue more I/O requests. However it is worth noting that the obtained speedup is highly dependent on the

underlying hardware. In general, the slower the storage medium the higher is the speedup.

Because the amount of computation in the update part is small, the CPU usage is not improved much.

The metrics scripts reports that the CPUs have spent a 95% of time idling on the master version and 88%

on the UMT version. However, it means that threads do not suffer of oversubscription. The metrics scripts

report a 0.002% of ready jam for the master version and 1.58% for the UMT version.

Follows another mmap example but this time, a more important workload is done on the update part

for each task. The non UMT is shown at figure 4.4 and the UMT is shown at figure 4.5

Now, the CPU usage rate is improved from the non UMT version with a 77% of CPU idle time against

a 37% on the UMT version. However, the oversubscription problem arises and limits the benefits of

UMT. The metric extraction scripts report a 0.003% of ready jam and approximately 50 in-benchmark

context switches for the non UMT version compared with 29% of ready jam and approximately 3000

in-benchmark context switches per CPU. Here, the speedup obtained is 3.35X and it gets worse as the

amount of computation is increased.

Focusing again on I/O operations, figure 4.6 shows the speedup evolution of a modified version of
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Figure 4.4: Trace Compass resource usage view of a complete mmap benchmark without UMT and
with an incremented workload on the update part. Only 10 CPUs of 56 are shown for clarity. It can be
appreciated the same pattern as in figure 4.2 with the difference that now CPUs spent less time idling. The
total trace length is 12.4s.

Figure 4.5: Trace Compass resource usage view of a complete mmap benchmark with UMT and with an
incremented workload on the update part. Only 10 CPUs of 56 are shown for clarity. It is interesting to note
that at the end of the execution CPUs are mostly idle while waiting for the storage device synchronization.
After the synchronization is done, the application ends because all the computational work has already
been done in parallel. The total trace length is 3.7s.

the mmap benchmark in which only writes are done (instead of read/update/write) against an increasing

number of blocks. For each number of blocks tested, the figure shows the average speedup for three

repetitions. It can be seen that for a size of 2000, a peak speedup of 10x is achieved. However, for bigger

sizes the speedup drops.

In general, the more I/O petitions in flight, the higher is the probability of multiple petitions to coincide

in the same page. When doing a sync operation, the threads stall until all data is written to disk. On mmap

without UMT this implies that the maximum number of on-going sync operations is limited by the number

of CPUs. On the UMT version there can be much more operations in-flight, which leads to more blocks

overlapping and then, less writes that made into the storage device (several writes are merged into the

page cache). For example, if the benchmark issues 10 writes to the page cache and 8 fall in the same page,

then, only 3 pages need to be written at some point. This is why high speedup is achieved. In this case,

the block size is 2048 (which means that 2048 bytes are written per block), the system page size is 4KiB

and the number of pages of the 100MiB mapped file is 100 ∗ 1024/4 = 20480 pages. Subsequently, for

each processed byte in a block, there is a 2048/20480 = 1/10 chance of being written in the same page

as another byte.

However, when the block size is big enough, it is likely that all pages of the 100MiB file are touched.

Hence, increasing the size of the block from this point will not add extra work for the storage device but

for the fast Linux page cache. This is combined with the fact that increasing the size of blocks without

increasing the number of blocks does not adds more synchronization points. The synchronization points

are like barriers for the non UMT version that delay its pace. As a consequence, if no more barriers are

added and the workload of the writing stage is not bigger because the page cache is withstanding it, the

difference between the two mmap versions is reduced and the speedup decreases.
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Figure 4.6: mmap with UMT vs mmap without UMT for an incremental number of blocks/tasks in which
only write operations are performed.

4.3 Full Waveform Inversion Mock-up (FWI)

4.3.1 Introduction

The acoustic Full Waveform Inversion (FWI) [33] method aims to generate high resolution subsoil

velocity models from acquired seismic data through an iterative process. The time-dependent seismic

wave equation is solved forward and backward in time in order to estimate the velocity model. From the

differences between acquired data and the computed velocity model, a gradient volume is calculated and

used to update the velocity model on the next iteration.

The inverse problem is nonlinear and ill-conditioned. This makes it difficult solving the problem at

high frequencies. Instead, the initial stimulus is decomposed into a spectrum of frequencies. Then, low

frequencies are solved first on a coarse grid providing a good guess for higher frequencies.

Conceptually, FWI can be divided into three main steps. A pre-processing step estimates the com-

putational resources needed to solve the problem according to the number of shots, wavelet frequency

and domain dimensions. Then, the wave propagator solves the time domain formulation of the wave

equation forward and backward in time. Finally, a post-processing step gathers the information from the

computation of all different frequencies into a single final velocity model. The workflow is shown in

Figure 4.7.

All three stages of the FWI require intensive I/O operations. While pre and post-processing steps

perform sequential read and write operations on large shared velocity model files, the wave propagator

mostly performs local I/O. From the computational point of view, the pre and post-processing stages do

not represent a major issue on the performance of the FWI.

The wave propagator is used twice to propagate the wave forward and backwards in time. These two
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Figure 4.7: Full Waveform Inversion method (FWI) overview.

steps are commonly referred to as “Forward step” and “Backward step”. An 8th order stencil is needed

in order to ensure the stability of the numerical method. Given the length of the stencil, a good balance

between high bandwidth memory access and computing power is needed in order to get good performance

from the code. However, the wave propagator requires writing relatively large files at almost each time

step. This results in inefficient computation of the propagator on most accelerators.

4.3.2 FWI Analysis

This section analyzes the implementation of the FWI application, details how it was ported to the OmpSs

programming model and studies its expected behaviour when run under the UMT feature.

4.3.2.1 FWI OmpSs Porting

FWI works over a model for a sequence of time steps. As explained before, there are two phases: the

forward propagation and the backward propagation. During the forward propagation phase, the model is

updated at each time step and an snapshot is saved to disk every certain timesteps. Next, in the backward

propagation phase all timesteps are processed again but in inverse order. During the backward propagation,

both the velocity and stress models are updated in the same way as in the forward propagation phase,

however, snapshots are read from disk instead of being written.

The FWI major data structures are two three-dimensional volumes of velocities and stresses. At each

time step the velocity volume is first written/read to/from disk, then it is updated with the stress model,

next the stress model is updated with the new velocity volume and finally, the source is inserted into the

two middle slices of the stress volume.

The velocity and stress data structures are implemented as an array (in this case a three-dimensional

matrix) of structs. Each element of the array is named cell and it contains 13 components for the velocity

volume and 45 for the stress volume. By default, the components are implemented as 4 byte floats. Only

9 of the 13 velocity components of each cell is written to disk. Because the 13 components are stored

sequentially in memory, the 9 components of each cell that is to be stored to disk, are first copied to an

auxiliary buffer which is later sent to the OS.

Listing 4.1 shows the simplified timestep loop that implements both forward and backward propa-

gations. v is the velocity volume and s is the stress volume. The y0 and yf variables hold the indexes

of the Y planes that are to be processed in each function call, in particular, y0 contains the first plane

index and yf contains the last plane index to compute. The constant stacki variable is used to configure
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1 f o r ( i n t t =0 ; t < t i m e s t e p s ; t ++) {
2 i f ( t%s t a c k i == 0 && d i r e c t i o n == FORWARD) w r i t e _ s n a p s h o t ( t , v ) ;
3 i f ( t%s t a c k i == 0 && d i r e c t i o n == BACKWARD) r e a d _ s n a p s h o t ( ntbwd−t , v ) ;
4

5 / / V e l o c i t y volume u p d a t e
6 v e l o c i t y _ p r o p a g a t o r ( v , s , d t , dy , dx , dy , y0 , y f ) ;
7

8 / / S t r e s s volume u p d a t e
9 s t r e s s _ p r o p a g a t o r ( v , s , d t , dy , dx , dz , y0 , y f ) ;

10

11 / / Source i n s e r t i o n i n t o s t r e s s volume
12 s o u r c e _ i n s e r t i o n ( s , d t , wlv [ t ] , dy , dx , dz ) ;
13 }

Listing 4.1: Source code for the FWI timestep loop

every how many number of timesteps the velocity model is written or read to disk. As the name suggest,

write_snapshot and read_snapshot() functions perform the velocity volume disk write/read

operation as indicated by the direction of the propagation (FORWARD or BACKWARD). The rest of

variables and parameters are of no interest for this section.

The propagate function has been taskified for parallelization at the volume slice level, as seen in listing

4.2. The volumes are now processed in terms of Y-planes (slice), the constant BS variable is used to

determine the number of slices processed per each task. The slices execution flow is fixed by the OmpSs

dependencies expressed in each task clause as can be seen in lines 10,18 and 23.

Assuming BS = 1, the velocity_propagator() function updates a single velocity volume

slice of index y0 given the actual velocity slice y0 and 8 slices of stress surrounding y0 as required

by the algorithm. This is expressed as follows: the updated velocity slice is placed into the pragma

inout(v[y0]), indicating that is both read and written. The index range for the 8 stress tasks is

placed into the in clause in(s[y0-4:yf+3-1]) (the last element in the range is included) indicating

that it is only read (the difference between y0 and yf is BS). Similarly, the same applies for the

stress_propagator() function although here a a stress slice is updated given 8 input velocity slices.

Next, a single task is created for the source insertion function source_insertion() at line 23. This

tasks requires the two stress slices y and y-1 which are updated to propagate the wave.

It is important to notice that I/O is still being done sequentially as in the classic parallelization

approaches. This means that at the end of the timestep, it is necessary to wait for all tasks to complete

before starting the next iteration. Otherwise, the I/O operations at the beginning of the next timestep might

not have all the necessary data to proceed correctly. As a consequence, the task wait enforces a barrier

that does not allow tasks of different iterations to be interleaved, effectively breaking the dataflow. This

code is used later in the experimentation section to compare it with the fully parallelized FWI version.

The full code for the next FWI implementation iteration is shown at listing 4.3. The I/O function is

now taskified and the taskwait at the end of each timestep removed. Instead of waiting, the execution flow

of tasks is now fully determined by their dependencies. In other words, when the FWI execution starts, a

single thread loops on the entire loop of timesteps and creates all defined tasks, without executing them.

Once the loop is finished, it waits for all created tasks to be completed at the taskwait placed afterwards.

Meanwhile, as tasks are created, Nanos workers wake up and execute them.

The I/O functions to read and write snapshots are now substituted by multiple calls to the

pwrite_snapshot() and pread_snapshot(). Each call writes the specified number of slices
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1 c o n s t i n t e g e r BS = 1 ;
2 f o r ( i n t t =0 ; t < t i m e s t e p s ; t ++) {
3 i f ( t%s t a c k i == 0 && d i r e c t i o n == FORWARD) w r i t e _ s n a p s h o t ( t , v ) ;
4 i f ( t%s t a c k i == 0 && d i r e c t i o n == BACKWARD) r e a d _ s n a p s h o t ( ntbwd−t , v ) ;
5

6 / / V e l o c i t y volume u p d a t e
7 f o r ( i n t e g e r y0=HALO; y0 < (NYF − HALO) ; y0+=BS ) {
8 i n t e g e r y f = min ( y0 + BS , NYF − HALO) ;
9

10 # pragma o s s t a s k i n o u t ( v [ y0 ] ) i n ( s [ y0−4: y f +3−1]) l a b e l ( v e l _ t a s k )
11 v e l o c i t y _ p r o p a g a t o r ( v , s , d t , dy , dx , dy , y0 , y f ) ;
12 }
13

14 / / S t r e s s volume u p d a t e
15 f o r ( i n t e g e r y0=HALO; y0 < (NYF − HALO) ; y0+=BS ) {
16 i n t e g e r y f = min ( y0 + BS , NYF − HALO) ;
17

18 # pragma o s s t a s k i n o u t ( s [ y0 ] ) i n ( v [ y0−4: y f +3−1]) l a b e l ( s t r e s s _ t a s k )
19 s t r e s s _ p r o p a g a t o r ( v , s , d t , dy , dx , dz , y0 , y f ) ;
20 }
21

22 / / Source i n s e r t i o n i n t o s t r e s s volume
23 # pragma o s s t a s k i n o u t ( s [ y−1:y ] ) l a b e l ( s o u r c e _ t a s k )
24 s o u r c e _ i n s e r t i o n ( s , d t , wlv [ t ] , dy , dx , dz , y ) ;
25

26 # pragma o s s t a s k w a i t
27 }

Listing 4.2: Source code for the partially parallelized FWI timestep loop

in the range specified between its third (y0) and forth argument (y0+BS). Hence, a write or read task

only depends on the affected input velocity slices as specified with the clause in(v[y0;BS]) (which

defines a range starting at index y0 of length BS).

Each task writes or reads a non-overlapping part of a file in parallel with other threads. To deal with

parallelism at the OS level, the system calls pwrite() and pread() are used instead of the traditional

write() and read() to explicitly state an starting offset position per syscall instead of having to set

the global file position with lseek() (which would lead to data races in a parallel enviroment).

Figure 4.8 shows a timestep task decomposition for a forward propagation. The backward propagation

task decomposition is analogous to the forward propagation and it is not shown. Notice that the figure

shows the source insertion task, which is unique per timestep. It can be seen that stress tasks can be

computed in parallel with write tasks. However, velocity tasks depend on the write tasks because the

velocity model data must be written to disk before it is updated with the next timestep iteration.

4.3.2.2 FWI and UMT Analysis

During the forward propagation step, several timesteps are computed and saved to disk. As data is

generated, it is not reused until it is read from disk in the backward propagation step.

With a frequency of 60Hz, 712 timesteps are computed (356 for write and 356 for read). The complete

velocity volume of components that is to be written to disk per iteration is 90MiB large. There are a total

of 160 slices of 576KiB or 144 pages each (assuming 4KiB/page). Hence, for each iteration 160 I/O

requests to write or read 144 pages are issued to the OS. At the end of the execution, 32040MiB ( 32GiB)

are written and read to/from disk.
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1 c o n s t i n t e g e r BS = 1 ;
2 f o r ( i n t t =0 ; t < t i m e s t e p s ; t ++) {
3 i f ( t % 10 == 0 ) p r i n t _ i n f o ( " Computing %d−t h t i m e s t e p " , t ) ;
4

5 i f ( t%s t a c k i == 0 && d i r e c t i o n == FORWARD) {
6 f o r ( i n t e g e r y0 =0; y0 < NYF; y0+=BS ) {
7 # pragma o s s t a s k i n ( v [ y0 ; BS ] ) l a b e l ( w r i t e _ t a s k )
8 p w r i t e _ s n a p s h o t ( t , v , y0 , y0+BS ) ;
9 }

10 }
11

12 i f ( t%s t a c k i == 0 && d i r e c t i o n == BACKWARD) {
13 f o r ( i n t e g e r y0 =0; y0 < NYF; y0+=BS ) {
14 # pragma o s s t a s k o u t ( v [ y0 ; BS ] ) l a b e l ( r e a d _ t a s k )
15 p r e a d _ s n a p s h o t ( t , v , y0 , y0+BS) ;
16 }
17 }
18

19 / / V e l o c i t y volume u p d a t e
20 f o r ( i n t e g e r y0=HALO; y0 < (NYF − HALO) ; y0+=BS ) {
21 i n t e g e r y f = m i n _ i n t ( y0 + BS , NYF − HALO) ;
22

23 # pragma o s s t a s k i n o u t ( v [ y0 ] ) i n ( s [ y0−4: y f +3−1]) l a b e l ( v e l _ t a s k )
24 v e l o c i t y _ p r o p a g a t o r ( v , s , d t , dy , dx , dy , y0 , y f ) ;
25 }
26

27 / / S t r e s s volume u p d a t e
28 f o r ( i n t e g e r y0=HALO; y0 < (NYF − HALO) ; y0+=BS ) {
29 i n t e g e r y f = m i n _ i n t ( y0 + BS , NYF − HALO) ;
30

31 # pragma o s s t a s k i n o u t ( s [ y0 ] ) i n ( v [ y0−4: y f +3−1]) l a b e l ( s t r e s s _ t a s k )
32 s t r e s s _ p r o p a g a t o r ( v , s , d t , dy , dx , dz , y0 , y f ) ;
33 }
34

35 / / Source i n s e r t i o n i n t o s t r e s s volume
36 # pragma o s s t a s k i n o u t ( s [ y−1:y ] ) l a b e l ( s o u r c e _ t a s k )
37 s o u r c e _ i n s e r t i o n ( s , d t , wlv [ t ] , dy , dx , dz , y ) ;
38 }
39 # pragma o s s t a s k w a i t

Listing 4.3: Source code for the fully parallelized FWI timestep loop

When each slice is sent to the OS to be written, it is first cached in the Linux page cache. The OS

defers the disk write to a later point in time as explained in section 2.2.3. If the problem input size is

not big enough, the entire problem (all volumes of all iterations) might fit into the Linux page cache and

writes might be done completely asynchronous i.e. they are non-blocking. If threads do not block, the

UMT feature does not has a chance to act. When the page cache cannot hold all data, writes became

blocking operations because the page cache must free some space (which might require to flush pages to

disk) before writes can continue.

When the input problem is greater than 85Hz, the entire problem size is approximately 122GiB which

almost reaches the node’s 125GiB of main memory. However, when the entire problem size exceeds the

main memory capacity, it quickly reaches the 160GiB SSD storage limit, meaning that the execution

cannot continue. This is not the most common situation. Usually, clusters have much more disk capacity

than the main memory and consequently, UMT has more chances to work.

This issue has been solved by virtualizing a common environment by limiting the amount of main
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Figure 4.8: FWI task decomposition. This figure shows the complete stencil used in the Full-Waveform
Inversion algorithm. Each circle is a task. V stands for velocity_propagator task, "S" for
stress_propagator task, "I" for source_insertion task and W for write task. Dependen-
cies are shown as arrows. The dependencies for a single stencil step are colored in black for clarity, grey
dependencies belong to other stencil steps. Purple arrows describe I/O dependencies.

memory (including page cache memory) that an application can use. This has been achieved by using the

cgroupsv21 Linux Kernel feature. All FWI instances have been run in a cgroup environment in which

the main memory was limited to 2GiB. Because FWI requires approximately 850MiB of main memory

to hold essential data structures (mostly the initial model, the complete velocity volume and the stress

volume) the page cache is left approximately 1GiB to buffer I/O operations.

However, UMT might not perform well in case of memory demand pressure. When limiting the size of

the page cache with cgroups, FWI fills the page cache fast. Hence, most of the time the memory is flushed

because no free space left. This implies that flusher threads work at almost maximum capacity because

they have a lot of dirty pages to write. UMT start operating when the kernel’s /proc/sys/vm/dirty_ratio

is exceeded (when worker thread’s writes start blocking). At this point, new threads are spawned (or

woken up) with possibly the objective of writing new pages. Because at this point the memory threshold

of free memory has been exceeded, these workers might get blocked as well until the flusher gang ends

and before they can write anything. Even if the workers can write, they will just add another set of new

pages to the page cache, not to disk. Moreover, because flusher threads are already working at almost full

capacity, having more threads queuing work might not affect the result. Also, because this written pages

will be the newest ones, they will be flushed to disk the last.

The only solutions that lasts is to explicitly force a flush of the page cache or not use a page cache at

all. In the first case, it is possible to use an explicit sync after each slice is written. The worker doing the

1cgroups is a Linux Kernel feature that allows to limiting system resources to processes. This is mostly used but not limited to
virtualization. The kernel provides a pseudo filesystem to configure groups of processes in a hierarchical basis whose accesses
to system resources have been limited. cgroupsv2 is a reimplementation of cgroups which tries to fix several inconsistencies in
the original model that limited the scalability of it. Currently the original cgroups version is far more extended than the second
version, but eventually the second should became the new standard.
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sync operation will block and UMT will wake another thread to continue issuing writes. Because the page

cache should not yet be full, this new workers should not block and succeed writing new pages into the

page cache. This leads to the multiple possible FWI adaptations defined in the next section.

4.3.2.3 FWI Versions

With the objective of exploiting the UMT feature as much as possible, four FWI adaptations are presented

based on the idea of explicitly flushing the Linux Kernel page cache or not use it at all.

The first version considered is the fsync/fdatasync approach. The easiest option to explicitly flush the

cache is to add a fsync() or fdatasync() (to do not flush modified metadata) system call just after

writing a slice (thereby, one fsync() per write task). The problem of this approach is the fsync()

granularity. It is not possible to flush just part of the file with this system call. When a fsync() is issued,

all files’ pages are synced. Moreover, if there are multiple ongoing fsync() operations on the same file,

in-kernel locking contention might be a problem.

More precisely, when the fsync() system call is invoked, the kernel creates a list of the files’ dirty

pages that must be flushed and it does not returns until all of them are safe to disk. This list can contain

pages of any slice because fsync() works file wide. Before flushing a page, it first checks whether the

page has an I/O operation in flight. If so, the process blocks until the page is flushed. Then it flushes it

again if it is still dirty. Also, manipulating a page requires to acquire a per-page lock. Hence, multiple

fsync() calls on the same file might constantly stall each other.

Next is the multifile approach. Because fsync() only applies to a specific file, the easiest fix is

to keep each slice in a separate file. Hence, after each slice is written, fsync() is called on the slice’s

file. This means that now there is no kernel lock contention and the writing process is smother. The

main drawback is that the output of the application is modified, which might affect external applications

that depend on this application output format. An auxiliary tool (that has been written to validate the

implementation) would be needed to merge the individual files again. In the case of FWI, this affects

how the timesteps are later visualized on a graphical application display. Another small drawback is that

too many files might be created and the OS limit of open files might be exceeded. Using the ulimit

command, the soft and/or hard limits can be increased. However, increasing the hard limit of open files

requires root privileges and depends on the distribution used.

The third option is the mmap approach. To avoid changing the output format and creating too many

files but still explicitly synchronize a single file partially, the mmap() and the msync() system calls

can be used. With mmap(), all files to be written (all velocity volumes of all timesteps) can be memory

mapped into main memory. With msync(), pages can be flushed individually. Memory mapping a file

allocates a portion of the calling process address space to directly access the file as if it were loaded into

main memory. However, the file is not read from disk yet, this is done when the file is accessed for the

first time (unless the default behaviour is changed with madvice() syscall). Because mapping a file

only consumes addresses, all files can be memory mapped. Memory mapped file pages are stored in the

Linux page cache and are flushed to disk following the same policy as other pages in the page cache.

Using msync() only entire pages can be flushed to disk. Because mmap() only allows to memory

map file chunks aligned to the page boundary and in a page size granularity, this implies that slices not

multiple of the page size have to be flushed in bigger chunks than needed. In consequence, flushing a slice

might also flush part of the preceding and/or following slice. Another option could be to store the slices
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aligned to a page boundary in the file, adding padding when needed. However, this would again modify

the output format which is what it is tried to be avoided. In any case, this is not really a concern with big

problem sizes. For example, for 90Hz a slice is 310.64 pages large, meaning that every 310 pages two

pages might be flushed twice. For 60Hz, slices are exactly 144 pages large and this issue is not present.

It is not possible to memory map a file that does not exists to create it. Hence, the snapshot files are

first created with the fallocate() system call which creates files of the specified size without actually

writing to disk. The created files are mapped to the zero page (a page that only contains zeros) until it is

explicitly written.

And finally the last option studied is the no cache approach. In the case when the entire iteration

space does not fit into main memory (which is the usual case), the Linux page cache is not really exploited.

This is because data written is neither rewritten nor accessed before being flushed to disk. Hence, the

page cache is not buffering useful I/O data but for the period between the last forward steps and the first

backward steps (snapshots are read in the opposite order that are created).

The Linux Kernel page cache is skipped by opening all files with the O_DIRECT and O_SYNC

flags. O_DIRECT is used to do not buffer I/O data and O_SYNC is used to perform synchronous I/O

operations (writes become an always blocking operation and only return when data is stored into disk).

For this approach, it is not needed any kind of explicit synchronization because all writes are by itself

synchronous. However, the I/O requests need to be both memory and disk aligned to the disk block size,

which is usually 512 bytes. If slices are not block aligned in the file, then is necessary to add padding,

altering the output format. From the I/O point of view, it means that useless data is read and written,

however, if the problem size is big enough, the padding is not relevant. For instance, for 90Hz, the slice

size is 1272384 bytes large which means that 512− 1272384 mod 512 = 448 padding bytes are added

per slice. For the total of 236 slices and 533 timesteps, 236 · 533 · 448 = 56353024 bytes ( 53MiB) of

useless data is added to the 149GiB of useful data.

4.3.2.4 FWI and the Block Layer

The default Linux kernel single queue block layer implementation might present problems on the tested

platform. A single queue is shared among all CPUs of the system and the lock that protects the queue

needs to be moved between the CPUs’ caches, including moving between the two sockets of the node

(more details are shown in section 2.2.3.2).

The test system, Cobi, has 56 CPUs split in two sockets connected by an Intel QPI interface. Because

the FWI write and read operations are parallelized, this means that 56 threads will be issuing I/O requests

to the block layer when running on an unmodified Nanos6 version and up to 160 (the number of slices

for 60Hz) when running Nanos6 with UMT. In consequence, is worth considering that the single queue

contention might be a problem when using the UMT feature. For this reason, FWI is tested in both the

single and multi-queue Linux Kernel block layer.

4.3.3 Results

In this section all presented FWI versions and system configurations are analyzed. First it is shown the

performance obtained when running FWI using the classic sequential IO approach. Then, the experiments

are repeated with the parallel I/O versions for both Linux Kernel block layers. Next, the results are

discussed and individual FWI versions are carefully analyzed to understand the observed behaviour.
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Figure 4.9: FWI sequential I/O results for all presented versions but multifile.

All experiments have been run on a single Cobi node, using the modified Linux Kernel with KPM,

although not all tests enable the feature. All results are reported as the mean of 10 identical repetitions

(unless otherwise stated). For all series of repetitions, the standard deviation has been calculated and

manually inspected to ensure that no outlier has biased the results. Before each repetition, the data

generated by the previous repetition is erased, the Linux page cache is cleared by issuing the command

echo 3 > /proc/sys/vm/drop_caches and the SSD is trimmed to avoid consecutive executions

suffer from the SSD garbage collector.

Figure 4.9 shows the results obtained after running the sequential I/O FWI versions as presented in

listing 4.2 to evaluate the performance of the classic approach. The multifile version is not present because

this solution only applies for parallel I/O (it uses one file per task). The none FWI version does not

perform any kind of explicit synchronization, is simply writes and reads slices per task using pwrite/pread

just as presented in the 4.3 code.

It can be seen that the none version is fastest. It could be thought that because no explicit synchro-

nization is done, the complete time for writing the modified pages is not accounted in the total execution

time of the application. Meaning that when the application exits, there are still pages to be written. This

would be the general case, however this does not apply to FWI. During the forward propagation, pages

are written to the page cache and are backed to disk when no more free memory is left in the page cache.

At the end of the forward propagation, at most the maximum number of pages that the page cache can

hold might not be written to disk yet ( 1GiB of pages). However, at the backward propagation step, all

data has to be read again ( 32GiB), which means that the page replacement algorithm will eventually

flush the remaining dirty pages to disk to allocate the more recent pages (see figure 4.10). Even if more

main memory would be used, dirty pages would be saved to disk because of pages expiration time limit

(/proc/sys/vm/dirty_expire_centisecs), which for the current system is 30s by default.

The reason for such outstanding timing is the excellent performance of the page cache to hide write

and read latencies. All other FWI versions enforce an explicit synchronization of the data, which means

that worker threads block until the data is saved. Because the runtime is not aware of when workers block,

other threads cannot be scheduled on the idle CPUs and CPU time is lost until workers are waken up

again.
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Figure 4.10: Complete Trace Compass view of a sequential I/O FWI execution without explicit data
synchronization (none case). The vertical line separates the forward propagation (left) step from the
backward propagation step (right). It can be seen that during the forward propagation data is written and
in the backwards propagation step data is mostly read. However, a small peak of data being written is
shown at the backward propagation step. This data is the remaining forward propagation dirty pages not
written during the forward step that are now being replaced for the incoming new data of the backward
phase.

Figure 4.11: FWI Parallel I/O results for all FWI versions. Each FWI version has been run against an
unmodified Nanos library (master) and a Nanos with UMT support (umt). Also, each of this versions has
been run under the single queue (sq) and the multi queue block layer (mq).

Figure 4.11 shows the execution results for all Parallel FWI versions run under the single queue block

layer (sq_ prefix) and the multi queue block layer (mq_ prefix). At first glance, it can be seen that any of

the parallel I/O versions is faster than the sequential between a minimum of 1.16X and a maximum of 2X.

The figure shows that, in general, all tests run on the multi queue block layer are slower than their

counterpart run on the single layer. From this it can be deduced that the block layer request queue is

not a problem regardless of the 56 CPUs of the Cobi node and the number of I/O requests. The slower

performance obtained on mq might be a consequence of I/O petitions not being reordered nor merged in

the request queue because the absence of an I/O scheduler (not available in the Linux Kernel 4.10.5).

This theory is supported by the perf call graph of an FWI execution shown in figure 4.12. The

lock that protects the request queue is defined inside the struct request_queue in the Linux

kernel source file include/linux/blkdev.h as the member spinlock_t queue_lock and it is held

every time the queue needs to be modified. The innermost kernel function to spin on a lock is named
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Figure 4.12: Perf call graph with a sampling frequency of 99Hz for an FWI nocache trace running on top
of the single queue Linux Kernel block layer. The highlighted line shows the Linux Kernel innermost
spinlock function. The entry is unfolded revealing the bottom to top call graph that leads to the function.
It can be seen that there is no lock contention due to the kernel request queue lock.

native_queued_spin_lock_slowpath. On the perf trace it can be seen that most of the samples

are collected on non-lock contention kernel functions. If there were lock contention, the spinlock functions

protecting the request queue should have a big share of samples on the perf trace. However, it can be seen

that native_queue_spin_lock_slowpath only has 2,40% of samples which a bottom to top call

analysis shows that all of them came from the KPM eventfds. In conclusion, this FWI analysis now focus

on the single queue block layer for the remaining of this section.

For the mmap, fdatasync, multifile and none FWI versions it can be seen that the UMT feature

improves performance over the corresponding non UMT (master) version. The obtained speedup ranges

between 10% for mmap and 6% for multifile.

However, the fastest FWI implementation is the nocache version, which performs quite stable

regardless of KPM being enabled or the block layer used. The multifile-umt and none-umt versions

also achieve similar results, however, it is no possible to conclude that the UMT feature presented in

this thesis improves performance on the FWI application if an FWI version not using KPM such as

sq-nocache-master achieves close results. Hereinafter, the goal of this section is to understand why

performance is not obtained when using the UMT feature for the nocache version by comparing it with

the versions that do perform better.

Figure 4.13 shows the Paraver view of an Extrae trace obtained from executing the nocache FWI

master version to visually verify that the parallelization is done correctly. It can be seen that write, velocity

and stress tasks are interlaced as they are run by multiple workers in parallel on the 56 CPUs. Nevertheless,

it is worth pointing out that Extrae is not aware of OS preemptions.
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Figure 4.13: Paraver zoomed view of an FWI nocache Extrae trace. Each color segment displays the
execution of a type of task as seen in the bottom legend. Four seconds of the forward propagation step are
shown to illustrate the parallelization achieved after distributing tasks among workers. The rest of the
trace follows a similar pattern and it is omitted.

Table 4.1 shows the custom metrics for all FWI executions. The fdatasync-umt version is not shown

because the contention created by the parallel fdatasync system calls caused some events to be lost (too

many events are generated). All UMT versions reduce the total time the CPUs remain idle because more

work is done in parallel. However, the reduction of idle time is quite small compared to the synthetic

mmap benchmark studied before. The Ready jam is also incremented in all of them, although the small

task granularity keeps it small. As it is expected, the UMT versions create much more threads which leads

to a higher number of context switches per CPU. The elevated number of context switches on the master

versions is due to the migrations of workers performed by Nanos, not because of workers competing for

the same CPU as the small ready jam and the Trace Compass count of system calls (not shown here)

reveals. The most relevant information in this table is it that the nocache variants do not show a different

behaviour as the other versions.

The UMT overhead might explain the lack of improvement in the nocache version. The perf call

graph explained before in figure 4.12 also showed that most of the computational time is spent in the

FWI inner functions compute_component_vcell_ which performs the velocity update and the

compute_component_scell_ that performs the stress update. Table 4.2 shows the average of the

perf samples grouped by their dynamic shared object (with perf report -s dso) of three nocache

traces with sampling frequency 99, 999 and 10000 Hz. The table shows that the Nanos UMT overhead

increase is notable compared to the Nanos without UMT version, approximately a 3% increment.

Not having enough parallelism could also explain why the improvements are limited. The tasks of the
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FWI Version Idle (%) Ready Jam Number of Threads Context Switches/CPU
nocache-master 52.4 0.018 60 799

nocache-umt 43.4 2.3 2955 3507
mmap-master 57 0.007 60 1057

mmap-umt 45.9 6.2 3002 7553
fdatasync-master 56.8 0.0006 60 971.8

fdatasync-umt - - - -
multifile-master 54 0.008 60 419.9

multifile-umt 45.1 3.3 2952 5252
none-master 48.7 0.014 61 279

none-umt 35.9 2.4 2621 2350

Table 4.1: FWI versions metrics.

DSO Component 99Hz(%) 999Hz(%) 10000Hz(%) Average
fwi (master) 89.47 89.49 89.08 89.35

fwi (umt) 88.03 87.46 88.42 87.97
nanos (master) 0.13 0.12 0.12 0.12

nanos (umt) 3.36 3.79 3.03 3.39
kernel (master) 10.05 10.05 10.39 10.16

kernel (umt) 8.34 8.47 8.25 8.35

Table 4.2: Perf samples distributions over fwi, nanos and kernel for three samples at three different
sampling frequencies.

FWI version Opportunity (%) task (%) thread (%)
nocache-umt 2.01 18.12 99.99
multifile-umt 1.80 15.91 100

Table 4.3: Leader Thread statistics for three repetitions of the nocache and multifile FWI versions.

FWI timesteps can be interleaved thanks to the task decomposition. However, the I/O buffer (purple arrow

in figure 4.8) limits the parallelism between timesteps to avoid allocating extra memory for auxiliary I/O

buffers. The UMT Nanos6 Leader thread has been modified to report usage statistics of tasks. Table 4.3

shows the average results reported after the repetitions of FWI nocache and multifile. The opportunity

ratio is the percentage of CPUs that satisfied the conditions for the Leader thread to wake up a worker

there. The task ratio shows, for all occasions in which the CPUs accepted a worker the the percentage of

times that there was an available ready task. In the same way, the thread ratio shows, for all times that a

ready task was available, the number of times that it was possible to create a worker (or get one form the

pool of idle workers). Essentially, the statistics report that the actual number of available tasks is small in

both versions.

It has been seen that UMT effectively decreases the amount of time CPUs are idle. Although some

of this increase is due to the analyzed UMT overhead (3%), the rest of work being done on the CPUs of

blocked workers increases the application performance on most scenarios up to a 10%. Because of the

FWI I/O patter, the Linux Kernel cache is of no use and the best timings are archived when it is bypassed

(this is just the opposite to the synthetic mmap benchmark in which an intensive use of the page cache

is done). However, the same time marks are also achieved with the UMT version of multifile and none.

Possibly, UMT is not the best application to be used with UMT but in any case, its study has been of great
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interest to understand all the OS and user-space mechanism involved.

4.4 KPM Overhead

The Linux kernel KPM extension overhead when the extension is not being used has been tested. To do

so, a small application has been developed which simply launches two threads per CPU that perform

each of them 500M integer additions. Because all CPUs are stressed and there are more threads than

cores, the kernel is being forced to schedule the threads and execute the scheduler wrapper. Because the

kpm_mode_enable() function has not been called, the wrapper does nothing else than calling the

genuine schedule function. The results of several executions in both the modified and the unmodified

kernel show that there is not a clear difference at the nanosecond scale. This is because the overhead of

executing two extra if branches and enable and disable kernel preemption (which requires to write an

atomic variable) before and after the genuine schedule is negligible.
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Chapter 5

Conclusions and Future Work

5.1 Future Work

Regarding the UMT user-space Nanos implementation:

• Because the CPU counters can be updated from multiple threads concurrently, there can be temporal

inconsistencies. For instance, if worker A reads an EFD of CPU 0, but gets preempted before it can

actually update the shared Nanos6 atomic CPU counter, another worker B could try to update again

the same EFD and use its value to determine whether to become idle or not. As a consequence,

worker B will take a decision based on incorrect data. This could be solved by protecting this

critical region with a lock, but this option has been declined because the situation is unlikely to

happen, and in the worst case either the period of oversubscription will last longer or the CPU will

remain idle until the leader thread wakes up some worker. However, further solutions could be

studied.
• It could be interesting to create a Leader thread per CPU EFD instead of having a single Leader

thread that monitors all EFD; this would reduce cache pollution. However, this would require much

more Leader threads context switches. For instance, if four CPUs have generated events, a single

context switch on the first idle CPU of the model with a single Leader thread will serve all of them.

Instead, in the model with multiple Leader threads, we would need four context switches that might

preempt four busy workers on these CPU’s. Hence, it is not clear whether this would improve

performances or not.
• In any case, the problem of excessive context switches would be fixed by implementing a leader-

follower approach [34]: when a Leader thread is notified and there is an idle CPU, it would create

or designate another thread to become the Leader thread of the current CPU. The current Leader

thread would become a worker thread and start executing tasks. The recently nominated Leader

thread would then try to read that CPU EFD and repeat the cycle again 1.
• It is interesting to further study how Nanos6 behaves when removing its CPU idle list. Without the

list, Nanos would have to completely rely on the CPU counters of ready workers to find idle CPUs,

which might slow down the processes of adding new tasks. However, without the list, it will suffer

less locking contention and the code will be simplified.

Regarding the KPM kernel implementation:
1This is quite similar to how SA proposes to respond to kernel events
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• The proposed design notifies the user-space whenever a worker blocks or unblocks. However,

Nanos6 workers only respond to the event when the counter reaches the zero value. Subsequently,

it would be interesting to adapt the Linux kernel to notify user-space only when there are no idle

worker. This would require to change how the EFD is used because it is no longer interesting

to keep both the number of blocked and unblocked workers. Instead, the EFD could simply be

used to notify when the CPU becomes idle by writing a 1 when the last monitored worker blocks.

This would require to keep a counter of read monitored workers in-kernel. Also, an alternative

mechanism is needed to invalidate a "CPU becomes idle" event when the CPU stops being idle

before the runtime had time to read the event. A non-invasive option could be to read the EFD from

kernel space to erase the counter.

• It might be interesting to continue studying the KSM approach, particularly, the version which

minimizes context switches. The implementation of it was stopped partially because new ideas

appeared for KAM and partially because of the technical difficulties to code it. However, moving

the minimum parts of the runtime into the kernel just to satisfy the worker fairness and the selective

wake up property still seems an option to avoid the spurious wake ups of the KAM and KPM.

Regarding the experimentation with real applications:

• Evaluate UMT with other real applications such as a web server or a database.

• Elaborate a more in-depth study on the nocache FWI version to demonstrate the reason behind the

lack of improvement.

5.2 Conclusion

In this work, it has been presented the proof-of-concept of a new mechanism called User Monitored

Threads (UMT) to monitor the blocked and unblocked state of the system threads based on a simplified

pipeline called eventfd. The proposal requires to extend the Linux kernel scheduler with a small and

simple set of changes that add a minimum overhead over the usual system operation. This extensions

has been implemented in the Linux kernel 4.10.5, and the Nanos6 runtime developed by the Barcelona

Supercomputing Center team has been adapted to make use of this kernel feature. The Nanos6 runtime

uses the presented mechanism to keep track of the number of ready workers bound to each system’s

CPU. When a CPU becomes idle because all workers are blocked while performing, for example, I/O

operations, the runtime schedules more workers on them. Multiple workers bound to the same CPU lead

to an oversubscription problem, but the runtime minimizes the effect by stopping workers when it detects

that there are multiple ready threads one the same core.

Both a synthetic mmap based benchmark and the FWI mock-up application have been used to test both

the Linux Kernel and Nanos6 coupling. The LTTng, Trace Compass and Babeltrace python API are used

to compare benchmark executions with both the modified and unmodified versions of Nanos6. Finally, it

has been concluded that UMT has two main effects: on the one hand, it provides a mechanism to queue

more I/O operations which approaches the real I/O rate to the one specified by the manufacturer of the

storage device. On the other hand, blocked processes no longer obstruct the core and useful computations

can be done while I/O petitions are being served.
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Although the oversubscription problem limits the performance, a 10X speedup has been reported on

a synthetic benchmark when enough I/O requests are done in parallel to the page cache and the storage

device.

The sequential I/O FWI version has been greatly improved by parallelizing the I/O part with OmpSs

tasks. Then, it has been seen that UMT improved performance in most of the scenarios presented.

However, it has not been able to improve the fastest FWI version in which the Linux page cache is

bypassed with the O_DIRECT feature. The different FWI versions have been evaluated and the overall

UMT overhead and oversubscription jam analyzed. The study suggest that increasing the parallelism by

decreasing the task granularity might give the Leader thread more chances to wake up more worker in idle

CPUs to achieve still better resource usage. Because of the FWI I/O pattern in which the Linux cache is

almost not used (unlike the mmap synthetic benchmark), this might not be the best application to be used

with UMT.

As the next steps, it is planned to implement a leader-follower approach in the next iteration of Nanos6

to minimize the number of unnecessary context switches. Also, the KPM implementation will be adapted

to notify user-space only when the counter of ready workers is zero instead of notifying each individual

event. Then, other production software such as a web or database server will be adapted to test the UMT

mechanism.
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