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Abstract

The vision of the future 5G corresponds to a highly heterogeneous network at different
levels, including multiple Radio Access Technologies (RATs), multiple cell layers,
multiple spectrum bands, multiple types of devices and services, etc. Consequently,
the overall RAN planning and optimization processes that constitute a key point for
the success of the 5G concept will exhibit tremendous complexity.

In this direction, legacy systems such as 2G/3G/4G already started the path towards
a higher degree of automation in the planning and optimization processes through the
introduction of SON functionalities. SON refers to a set of features and capabilities
designed to reduce or remove the need for manual activities in the lifecycle of the
network. With the introduction of SON, classical manual planning, deployment,
optimization and maintenance activities of the network can be replaced and/or
supported by more autonomous and automated processes, operating costs can be
reduced and human errors minimized.

In this work, a self-organizing admission control algorithm for multi-tenant 5G
networks is proposed and developed with novel artificial intelligence techniques. A
simulation-based analysis is presented to assess the improvements of the proposed
approach with respect to a baseline scheme.
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Chapter 1

Introduction

1.1 Introduction and scope

The upcoming generation of mobile communication systems, formerly known as
5th Generation (5G), is expected to be available in 2020 with around 8 billion of
worldwide mobile subscriptions [1]. The irruption of the 1st Generation (1G) of
wireless cellular technology changed the world by connecting people to people, instead
of connecting places to places. Now, due to the overwhelming increase of smart
devices and the advent of the Internet of Things (IoT), 5G will aim to connect
everything to everything.

Unlike its predecessors, 5G will be conceived as a set of technologies that are both
efficient and economical in terms of Key Performance Indicators (KPIs). Specifi-
cally, from an operator’s perspective, the following capital KPIs will be considered:
capacity, quality of service (QoS), capital expenditure (CAPEX) and operational
expenditure (OPEX). On the other hand, from an end user’s point of view, the
associated KPIs mainly include: seamless connectivity, perception of almost infinite
capacity (i.e. negligible latency) and the cost of service.

In order to cope with the unavoidable demand increase of network capacity, three
solution approaches are envisaged. As illustrated in Figure 1.1, the projected capacity
growth in 5G, with respect its predecessor 4G, comes by either improving the spectral
efficiency of wireless technologies (3x-5x), by allowing more spectrum allocation (5x-
10x), by deploying more network nodes (40x-50x), or by harnessing together the
three aforementioned approaches (a total of 600x-2500x capacity increase). It is also
observed that the operational complexity of future 5G networks will scale linearly
only with the network densification, since the other two capacity growth dimensions
are expected to mostly affect the complexity of hardware design. Considering that
4G networks have typically 1500 parameters to be configured and optimized (later
on defined as degrees of freedom), and 5G networks are expected to have around
2000, simple calculations lead to a (2000/1500 x (40x-50x)) ≈ 53x-67x increase in
operational complexity [2].
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1. Introduction

Figure 1.1: Dimensions of projected capacity growth in 5G [2]

In the emerging wireless landscape, 5G networks will be required to be fully self-
organizing with end-to-end network behaviour intelligence to ensure a profitable
business model. In this context, the introduction of a self-organizing network (SON)
engine will enable the exploitation of artificial intelligence mechanisms for the effi-
cient management of network resources, that will allow users to perceive seamless
and limitless connectivity. Hence, SONs clearly aim to reduce OPEX, by replacing
the classic manual configuration, post-deployment optimization and maintenance
in cellular networks with self-configuration, self-optimization and self-healing features.

Current SONs for 4G, 3G and even 2G networks usually follow the methodology
illustrated in Figure 1.2, in which spatio-temporal knowledge (obtained through e.g.
OAM reports, drive tests, etc.) is fully or at least partially available. For example,
the location of potential coverage holes or handover ping-pong zones are assumed
to be known by the SON engine. Nevertheless, the current SON approach should
not be considered in future 5G networks, as it does not provide dynamic models to
predict system behaviour in a live-operation fashion in order to meet the stringent
latency requirements of the upcoming mobile generation [2].

Another important matter regarding 5G networks operation will be shifting from
reactive to proactive SON. Current SON functions usually have a reactive behaviour,
meaning that they are triggered when a problem has occurred. The actions of
observing the environment, diagnosing the problem and executing the compensating
action involve to spend a valuable operation time which is not compatible with the
5G targeted latency requirements. Therefore, the SON paradigm has to be shifted
from reactive to proactive. This transformation leads to the premise of predicting
the problems beforehand, by inferring network-level intelligence to take preemptive
actions to resolve the issue before it occurs.

2



1.1. Introduction and scope

Figure 1.2: SON in 2G, 3G and 4G networks [2]

A possible framework for 5G SON is depicted in Figure 1.3. It is observed that big
data, which can be briefly defined as the huge amount of information available from
the different sources of the mobile network, is the main feature that make future
SONs distinct from legacy cellular systems. The sources of big data for 5G SONs
can be split in three main network-level layers: subscriber-level data (e.g. call success
rate, call drop ratio, speech quality, IP traffic flow), cell-level data (e.g. received
interference power, thermal noise power, channel baseband power) and core-network-
level data (e.g. historical alarms logs, device configuration records, authentication).
Besides data collection, the introduction of machine learning and data analytics tools
allows the automatic transformation from big (raw) data to right (meaningful) data.
Once the right data is available, system and user behaviour models can be extracted
and be delivered to the SON engine to perform the appropriate SON functions.

Figure 1.3: Expected framework for future 5G SON [2]

3



1. Introduction

As aforementioned earlier, SON will enable the exploitation of artificial intelligence-
based techniques (e.g. machine learning, bio-inspired algorithms, fuzzy neural
networks) in order to efficiently handle the problems of large-scale complex systems.

In this work, an artificial intelligence technique is chosen to develop a self-organizing
admission control algorithm for multi-tenant 5G networks. It is important to remark
that the chosen approach could not be the optimal one amongst the all possible
candidate solutions, but has been selected according to its innate properties to fit
well in most of the self-optimization processes. In other words, the selected approach
is most likely to perform well under any self-optimization problem (i.e. generalist
approach).

This document is structured as follows: Chapter 2 introduces the main concepts
regarding SON. Chapter 3 presents a brief survey of the current Artificial Inteligence
(AI) techniques. Chapter 4 focuses on the theory of Admission Control (AC) for multi-
tenant Radio Access Networks (RANs) and introduces the proposed self-optimised
AC strategy for adjusting the share of resources used by each tenant. Chapter 5
presents the AI-based algorithms which have been chosen to self-optimize the AC
parameters. Finally, the conclusions of the overall work can be found in Chapter 6.

1.2 Contributions and goals

Once the scope of the project is clear, a set of objectives should be defined. As afore-
mentioned earlier, the scope is broad enough to undertake the present work in quite
different ways (e.g. by considering various artificial intelligence-based techniques).

The following goals were initially settled down and successfully acomplished by the
end of this project:

• Review the concept of SON and study the AI-based techniques for self-
optimization on Heterogeneous Networks (HetNets).

• Understand the theory behind the Admission Control for multi-tenant Radio
Access Networks.

• From the two previous goals, decide which is the most optimal self-optimization
algorithm for the proposed research topic and implement it.

• Analyse the results of the AI algorithm and study its feasibility in an hypo-
thetical SON deployment.

4



1.3. Work plan

1.3 Work plan
The work load of this thesis has been split in three work packages (WP), which are
represented in Figure 1.4 and briefly detailed below:

• State of the art: review of the current state of the technologies involved in
the scope of this project.

• Algorithm implementation: formulation and development of both super-
vised and unsupervised learning algorithms. The analysis of the results given
by these methods are also included in this WP.

• Project management: tasks which are related with the writing and defense
of this thesis.

Figure 1.4: Gantt chart

Each WP has its internal tasks, which are shown in Table 1.1, Table 1.2 and Table
1.3, respectively.

Internal task Start date End date Main objective
Scope reading 1/2/17 15/2/17 Set realistic project objectives

Literature review 8/2/17 7/3/17 Review recommended literature
Search relevant literature 8/3/17 31/3/17 Read other useful documents

Table 1.1: WP.1: State Of The Art

Internal task Start date End date Main objective
Formulation 15/3/17 15/4/17 Formulate the algorithm’s equations
Development 16/4/17 7/6/17 Implement and test the source code

Analysis 8/6/17 8/7/17 Extract conclusions of the results

Table 1.2: WP.2: Algorithm implementation

5



1. Introduction

Internal task Start date End date Main objective
Thesis Writing 15/7/17 15/8/17 Final document writing
Thesis Defense x/9/17 - Thesis presentation

Table 1.3: WP.3: Project Management

Besides the 30 ECTS work load, the autor of this thesis was enrolled in an elective
course and was working in a part-time engineer job. Hence, the duration of the
present project was extended by two additional months, with the authorization of
the thesis supervisor.
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Chapter 2

Self-Organizing Networks

2.1 Definition
Self-Organizing Networks are defined as a set of use cases covering all aspects of
network operation, from network planning to maintenance activities. SONs will
lead network intelligence and network management features in order to seamlessly
automate the configuration and optimization of wireless networks [3].

In order to justify the need of implementing SONs in the future 5G networks, the
term degrees of freedom (DoF) will be shortly introduced. System’s DoF are defined
as the amount of parameters which can be tweak in any wireless network. It’s
important to mention that some DoF could be highly dependent among themselves.

The implementation of newer radio access technologies (RATs) exponentially increases
the number of DoF as follows (logarithmic scale) [4]:

• New system DoF → x20-30 old system DoF

• New system density → x4 old system density

• New DoF/km2 → x100 old DoF/km2 (x2 orders of magnitude)

Some basic examples of DoF are: transmit power, carrier frequency, to which cell a
handover should be performed, time delay until a handover is executed, etc.

Nevertheless, it is not just an increase of DoF that can be optimized in a single RAT,
but also in all the available technologies that are operating at the same time (e.g.
GSM/UMTS/LTE/LTE-A). At this point, the concept of Heterogeneous Networks
(HetNets) arises.

HetNets are defined as a wireless networks holding a vast variety of RATs, formats of
cells and many other aspects, aiming to combine them to operate in a seamless way
(Figure 2.1). Hence, the DoF increase significantly with the emerging HetNets and
thus, the probability that things go wrong (e.g. coverage outages, handover failures).

7



2. Self-Organizing Networks

Figure 2.1: Illustration of a Heterogeneous Network (HetNet) [4]

The probability that any system fails is directly related to the DoF. For instance, LTE
has around 1500 DoF [2], meaning that its cumulative-time system failure probability
Pr would be close to 1 since the network deployment (Figure 2.2), considering that its
DoF are highly dependent among themselves (i.e. series system). In other words, the
system is likely to fail from the very beginning if nothing is done in order to prevent it.

SONs aim to mitigate the consequences of DoF within HetNets and improve the
scalability of the whole system, by reducing the lifecycle cost (O/CAPEX) and
by dynamically optimizing the radio network performance during operation (e.g.
improved user experience). Figure 2.3 illustrates the impact of employing SON
functionalities in the different stages of a typical wireless operator’s workflow.

Figure 2.2: Cumulative system failure probability as a function of time [5]

8



2.1. Definition

Figure 2.3: Impact of SON functions on a typical wireless operator’s workflow [6]

Besides the above described answers to the main questions "what are SONs?" and
"why are they needed?", it is worth to mention three important elements of SONs:

• Elements of autonomous. As the number of base stations (e.g. home-evolved
NodeBs or femtocells) will be at least quadruplicated by the time 5G is
implemented, there rises a need to configure and manage them with the least
possible human interaction, hence further reducing both capital and operational
expenditure costs, from a network operator point of view.

• Elements of intelligence/cognition. A system is intelligent, if it is able to
operate under conditions it was not originally designed for [4]. A threshold
based system is not well suited for the upcoming 5G networks since there is
no intelligence in that, it is just deterministic. Hence, SONs are required to
adapt, learn and build intelligence on prior observation.

• Elements of optimality. Despite large DoF, SON has to be (close to) optimal.
For instance, SON could have an outstanding RF physical layer technology
which underperform due to poor resource management, thus moving its perfor-
mance to an undesired (sub-optimal) region.

Although the concept of SON was formerly defined in 2008 (3GPP Release 8), SON
techniques had been previously discussed and even tried in 2G systems in the early
2000’s. Nowadays, many HSPA infrastructure vendors offer a set of automatic
optimization algorithms. However, SON has not been standardized in the legacy
systems and all available techniques are fully vendor dependent. Hence, 3GPP will
address the standardization of self-organizing features of the future 5G networks.

9



2. Self-Organizing Networks

2.2 Architectures
From the previous section (2.1 Definition), an additional question regarding SON
operation may arise: where is self-organization carried out? Or in other words: where
are the decisions taken?

There are four identified levels of SON execution (i.e. architectures), which are shown
in Figure 2.4 and briefly described next [4]:

1. Localised. Autonomous SON execution based on purely local information at
(Home)eNodeB1 and the User Equipments (UEs) associated with that (H)eNB.
An example of a SON feature running through a localised architecture could be
the following one: an UE reports to its eNB through the link quality indicator
that it has a very weak field strength. The associated eNB would take the local
decision of downgrading the modulation index, meaning that there is no need
in involving a central entity placed hundred of kilometres away.

2. Distributed. Autonomous SON execution based on information exchanged
with neighbouring (H)eNB (e.g. via X2 interface). A particular example
to justify the use of a distributed architecture would be the SON feature of
load balancing: if a distributed eNB is heavily loaded, it can request to its
neighbours their situation in terms of traffic load. If the request is favourable,
the affected eNB could handover some users to the requested cells.

3. Centralized. Decision taking based on fairly complete system information.
An optimal SON algorithms are required in order to manage large amounts of
collected information and extract meaningful conclusions about the state of
the network.

4. Hybrid. Any mixture of the above mentioned levels of SON execution. It is
usually the best fitted approach for many applications, as it handles well the
trade-off amongst the aforementioned architectures.

Figure 2.4: The four levels of SON execution [4]

13GPP’s term for an LTE femtocell or Small Cell
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2.3. Self-X Functions

Each architecture approach has its own advantages and drawbacks. Figure 2.5
summarizes the main characteristics of the aforementioned levels of SON execution
and the trade-off between them. It is observed that SON features running towards
localised architectures are much quicker in terms of execution, since there is no
need to feed the information to central entities. Furthermore, both distributed
and localised approaches are less prone to the single point of failure. On the other
hand, moving towards centralized architectures, Mobile Network Operators (MNOs)
are able to collect a vast amount of information about the state of their networks,
meaning that they are able to take better decisions.

Figure 2.5: Trade-off between the proposed SON architectures [4]

2.3 Self-X Functions

To end up this chapter, a small introduction about the current Self-X functions, also
known as 3GPP SON features, is shortly presented.

The already well known purpose of SONs is to seamlessly integrate network planning,
configuration and optimization into a single automated process, requiring minimal
manual intervention in the lifecycle of the network. Hence, the introduction of SON
features (Figure 2.6) will allow mobile operators to reduce their operating costs while
minimizing human errors. More specifically, there are three main Self-X functions
proposed by the 3GPP [7]:
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2. Self-Organizing Networks

• Self-Configuration. Automation of the processes involving newly deployed
cells, such as their configuration and authentication, besides the adjustment
of their parameters (e.g. transmission power, inter-cell interference), in a
plug and play fashion. Moreover, preceding the aforementioned procedure,
a Self-Planning stage (e.g. ascertaining cell locations) is usually considered
within the Self-Configuration feature as well.

• Self-Optimization. Ability of the network to keep improving its performance
in terms of coverage, capacity and service quality, by iteratively optimizing the
different network settings, taking into account the radio characteristics, traffic
dynamics and user demands, among other aspects. Many Self-Optimization
use cases are envisaged for future mobile networks, such as the ones proposed
by the 3GPP, which are mainly focused on aspects concerning load balancing,
power adaptation, neighbourhood maintenance and mobility management, or
the ones discussed in SOCRATES/NGMN projects, in which QoS optimization
(e.g. admission control, congestion control) is the principal research topic.

• Self-Healing. Set of processes designed to allow seamless maintenance and
enable network to recover from failures in an autonomous fashion. In fact, au-
tonomous re-configuration is considered as an important feature of Self-Healing
in HetNets. By studying the behaviour of users and observing the changes
of network conditions, HetNets will require from real-time re-configurations
without termination of mobile services.

Figure 2.6: Self-X Functions for HetNets [7]
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Chapter 3

Artificial Intelligence-Based
Techniques for HetNets

"Brains exist because the distribution of resources necessary for survival and the
hazards that threaten survival vary in space and time" (J. Allman, 2000, p.2). This
idea can be related with the addition of intelligence in the aforementioned large-scale
complex systems, whose environment progressively demands efficient strategies (e.g.
in terms of optimization) in order to meet the expected requirements.

As discussed earlier, HetNets are becoming quite challenging to deal with, since the
number of network resources keeps steadily increasing. AI techniques are aimed
to overcome the drawbacks of large-scale systems and, therefore, their implemen-
tation would add intelligence to the current and future HetNets to reduce human
involvement, which is one of the main goals of SON. Then, AI-based techniques can
substantially reduce the operational and capital expenditure (O/CAPEX) and opti-
mize network capacity, coverage and Quality of Service (QoS) in HetNets, according
to the Self-X features [7].

AI techniques share the main objective of turning emerging HetNets smarter, but
they can be quite different among themselves, by the means of operability. Some
are inspired from nature findings (e.g. Bio-inspired Algorithms), a few of them are
motivated by the ways of human reasoning (e.g. Fuzzy Systems) and some others
are based on local interactions and recursive feedback-based learning (e.g. Machine
Learning). A careful study of each technique and its feasibility in certain network
applications should be carried out in order to understand each one’s advantages and
drawbacks.

In the present chapter, the state of the art of the most relevant AI-based techniques
that are being studied for their deployment in emerging HetNets will be presented,
with special emphasis towards the methods that have been chosen to carry out
the self-organised AC for multi-tenant 5G networks algorithm (section 3.1 and
section 3.3).
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3.1 Machine Learning

The term Machine Learning (ML) is relatively new. It was defined back in 1959 by
A. Samuel, a pioneer of AI research, as "the ability to learn without being explicitly
programmed". Thus, ML is envisaged for specific range of applications where design-
ing explicit algorithms with the expected performance is not even feasible. Learning
methods are needed whenever knowledge (e.g. human expertise) does not exist, or
it is somewhat hard to acquire. Nevertheless, ML algorithms are able to exploit
training data or past experience in order to build useful models (e.g. patterns or
policies) for a wide range of applications.

Nowadays, there are many successful ML-based applications in various disciplines.
For instance, retail companies collect past sales data to analyze customers prefer-
ences, thus improving their service. Financial institutions consider past transactions
to predict customers credit risks. Most of email applications, regardless of their
popularity, use ML to decide whether an incoming message should be considered
as spam or not. In bioinformatics, the huge amount of data available can only be
analyzed and its knowledge extracted using what is known as data mining 1 [8].

Among many ML techniques, Reinforcement Learning (RL) is inspired by behaviorist
psychology [9], where an agent tries to learn from its environment the best set of
actions to maximize the desired system performance (i.e. cumulative rewards, see
Equation 3.1).

Rk = rk + γrk+1 + γ2rk+2 + γ3rk+3... =
∞∑
t=0

γtrt+k (3.1)

where Rk is the cumulative reward at the k-th time instant (i.e. iteration). rt+k
denotes the instantaneous reward obtained as a consequence of executing an action
at the t+ k iteration. γ is the discount factor, where values close to 0 mean that the
agent tries to optimize immediate rewards (i.e. the agent is myopic), whereas values
near 1 consider long-term high rewards.

Shortly, RL effectively learns the system impact I of a particular action A, with the
objective of maintaining a determined performance metric P, based on a particular
experience E, where the system aims to iteratively improve its performance P while
executing action A, again by exploiting its experience E. The model built may be
predictive to make future predictions, or descriptive to gain knowledge from data, or
both of them [10].

1Data mining is the computing process of discovering patterns in large data sets involving
methods at the intersection of machine learning, statistics, and database systems
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3.1. Machine Learning

In Figure 3.1, it is illustrated a possible RL-based optimization scheme whose agent
carries out the aforementioned paragraph learning procedure, where the instantaneous
reward could be any typical Key Performance Indicator (KPI), such as call blocking
ratio or cell-edge coverage, depending on the target application.

Figure 3.1: Learning-based optimization scheme in HetNets [7]

An RL technique which is increasingly receiving substantial attention both in the
academic as well as industrial communities is Q-Learning. Its aim is to find an
optimal Quality Value (Q-Value) for any given Markov Decision Process (MDP) by
experiencing the consequences of actions [11].

MDPs provide a mathematical framework for modeling decision making in specific
situations, where the outcomes are partly random and partly under the control of
a decision maker, as illustrated in Figure 3.2 (a). The probability that the process
moves into its new state s′ is influenced both by the specific action chosen, as well
as by the system inherent transitions, formally described by the state transition
probability P (s′|s, a). By contrast, Q-Learning lacks of system transition model
knowledge, as shown in Figure 3.2 (b). Nevertheless, the reason of using this RL
technique is that it is able to compare the expected utility of the available actions
without actually requiring a model of the environment.

Figure 3.2: (a) Markov Decision Process (MDP) and (b) Q-Learning [10]
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Q-Learning is based on the straightforward premise that the optimal policy is the
one which selects the set of actions with the highest long-term reward. This can be
mathematically expressed as follows:

π(s) = argmaxaQ(s, a) (3.2)

where the policy π, for a given state s, selects the action a that maximizes the
Q-value Q(s, a).

The core algorithm of Q-learning iteratively updates the Q-value for each state based
on the experience of the actions, namely rewards. The equation below describes the
algorithm for one-step Q-Learning [12]:

Q(st, at)← Q(st, at) + η[rt+1 + γmaxaQ(st+1, a)−Q(st, at)] (3.3)

where Q(st, at) is the Q-function to be updated, based on the state s and action a
in iteration t. The learning rate 0 ≤ η ≤ 1 determines the degree of membership of
newly acquired information (e.g. η ' 1 would only consider the most recent informa-
tion). rt+1 refers to the numerical reward received by the agent after transitioning
from the state st to st+1. As commented earlier in Equation 3.1, γ is the discount
factor (0 ≤ γ ≤ 1), thus the same concept applies. Finally, maxaQ(st+1, a) is the
value of the action a that is estimated to return the largest total future reward, based
on all possible actions for the next state st+1.

Briefly, Equation 3.3 simply updates the existing Q-value by adding the difference
between the old estimate of future reward and the new estimate, multiplied by η.

In some optimization applications, however, continuous states and action spaces may
lead to extremely complex scenarios. To mitigate this problem, the incorporation of
fuzzy logic (commented in Section 3.3) in RL techniques (e.g. Fuzzy Q-Learning)
has been widely used to discretize the state and action spaces. Therefore, instead of
having an undefined number of states and actions, fuzzy logic limits these numbers
accordingly from what it is required in each application without compromising neither
the convergence time nor the accuracy of the states.

One of the main drawbacks of Q-Learning is its innate time (usually long) needed
to achieve the best policy. The agent takes actions throughout each optimization
iteration with the goal of improving the accuracy of the Q-Values. Initially, a default
policy should be defined (e.g. choose random actions). Then, the agent follows this
policy until it converges towards the optimal action-value Q∗. Depending on the
complexity of the optimization scenario, higher convergence times could not reach
the Mobile Network Operator (MNO) expectations.

RL techniques have been already studied and its utility been proven in all the
discussed Self-X functionalities. A few examples found in the literature are shortly
described below:
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• Self-Configuration: Due to the increasingly amount of devices in HetNets,
interference management strategies can benefit from RL techniques, as discussed
in [13], where each cell optimizes its Almost Blank Subframe (ABS), instead of
relying on predefined configuration, to achieve time-domain adaptive enhanced
inter-cell interference coordination (eICIC). Similar distributed interference
optimization approach is studied in [14].

• Self-Healing: The study presented in [15] proposes an adaptive policy-based
framework. In this case, reinforcement learning helps to create and update
policies dynamically in response to changing reconfiguration requirements by
observing changes of users and network conditions.

• Self-Optimization: Many optimization tasks are envisaged for the imple-
mentation of smarter HetNets. For instance, the study in [16] proposes self-
optimization of antenna tilt and power through cooperative reinforcement
learning (e.g. to avoid local selfish rewards), whose objective is to jointly
optimize network coverage and capacity (CCO). An hybrid architecture is
adopted (Figure 3.3 (a)), where each entity runs in a distributed manner to
achieve fast adaptation while a central entity takes over the cooperation of
distributed optimization. The simulation results show that RL techniques
perform significantly better (Figure 3.3 (c)) than the best fixed configuration
available (Figure 3.3 (b)).

Figure 3.3: (a) Hybrid SON architecture for CCO, Simulated network SINR
distribution under abrupt changes (b) To be optimized and (c) Optimized [16]

3.2 Bio-inspired Algorithms

Inspiration from nature findings has lead to successful algorithmic approaches to
face optimization problems amongst different research disciplines, such as compu-
tational biology or telecommunications. The efficiency of bio-inspired algorithms
is strongly tied with the effectiveness of the best features in nature, especially the
selection of the fittest in biological systems that have evolved by natural selection [17].
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Metaheuristic 2 algorithms are frequently nature-inspired, and their applicability in
Self-X functions has been (and will be) studied. The most relevant metaheuristics
for the emerging HetNets include Evolutionary Algorithms (e.g. Genetic Algorithm),
Swarm Intelligence (e.g. Ant Colony Optimization) and Artificial Neural Networks
(ANN).

The description of the above mentioned AI-based techniques are described in subsec-
tion 3.2.1 (Genetic Algorithms), subsection 3.2.2 (Ant Colony Optimization) and
subsection 3.2.3 (Artificial Neural Networks), respectively.

3.2.1 Genetic Algorithms

Genetic Algorithms (GAs) are well suited for multi-objective optimization problems.
Hence, HetNets might benefit from GAs in cell planning or node placement optimiza-
tion problems, where a large set of parameters need to be evaluated. It has been
proven that GAs are quite efficient in solving problems whose complexity is high,
and the time needed to converge to optimal (or suboptimal) results is usually low,
compared with other bio-inspired algorithms [18].

Figure 3.4: Genetic Algorithm (GA) optimization flow for HetNets [7]

2A metaheuristic is a high-level problem-independent algorithmic framework that provides a set
of guidelines or strategies to develop heuristic optimization algorithms (Sörensen and Glover, 2013).
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Figure 3.4 briefly illustrates the main optimization procedure carried out by GAs in
HetNets scenarios [19]:

1. GA starts by creating an initial population of chromosomes (e.g. HetNet
resources), which are the basic building blocks of the algorithm.

2. Each chromosome encodes a solution of the problem, and its fitness value is
linked to the value of the multi-objective performance function (e.g. interfer-
ence, routing, planning, cost, ...).

A chromosome consists of genes that can be represented in the form of a bi-
nary or integer string. For example, as illustrated in Figure 3.5, the first three
bits represent the network ID (010) and last three bits are the channel ID (110).

The fitness measure (i.e. survival measure) evaluates each individual chromo-
some by determining how well they solve the given problem. The fitness is
normally represented by a real number, where higher values mean that the
chromosome is closer to the optimal solution.

Figure 3.5: GAs chromosome mapping for network and channel selection [19]

3. GA adopts two gene evolution tasks to potentially find better solutions:

a) Crossover, also known as reproduction, aims to combine two random
parent chromosomes, where their characteristics are exchanged with each
other to form a pair of child chromosomes. For example, as shown in
Figure 3.6, two parent chromosomes p1 and p2 crossover and produce two
child chromosomes c1 and c2.

Figure 3.6: 2-point crossover procedure for generating child chromosomes [19]
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b) Mutation reorganizes the structure of genes in a chromosome randomly
so that a new combination of genes may appear in the next generation. It
is applied to the child chromosomes, altering a binary bit of 0 to 1 or vice
versa. This action prevents falling to regional optimal solutions.

4. The offspring inherits the gene of superior chromosomes and eliminates poor
chromosomes through competition. Thus, the quality of the population may
be improved after each generation.

From the aforementioned optimization procedure, a more intuitive and simplified
GA pseudocode arises (Algorithm 1).

begin
t ← 0;
initialize population P (t);
evaluate P (t);
while not termination-condition do

begin
t ← t+1;
select P (t) from P (t− 1);
alter P (t);
evaluate P (t);

end
end

end
Algorithm 1: GA pseudocode [20]

Evolutionary algorithms can be found in the literature to solve mainly cell planning
and node placement optimization problems. For example, the study in [21] implements
a multi-objective GA to address a communication nodes placement problem in
HetNets. Its goal is to maximize the communication coverage as well as the total
capacity bandwidth, while minimizing the placement cost. Similarly, the studies in
[22] and [23] propose an evolutionary multi-objective algorithm for 4G base station
planning, where signal coverage, system capacity and cost are taken as objective
functions and interference is considered as a very relevant constraint. Finally, the
work in [24] uses a distributed GA to to dynamically optimize the coverage of a
femtocell group by adaptively adjusting the pilot power.

3.2.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is one of the most known algorithms of Swarm
Intelligence (SI). The term swarm is commonly used for the assembling of animals
(e.g. insect colonies) who perform collective activities. Each individual of a swarm act
without supervision, and they behave stochastically due to their perception within
the neighbourhood. Hence, self-organization is the key characteristic of a swarm
system [20].
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The main principles to be satisfied by a swarm algorithm to have an intelligent
behaviour are [25]:

• The proximity principle. The swarm should be able to do simple space and
time computations.

• The quality principle. The swarm should be able to respond to quality
factors in the environment, such as the quality of food or safety of location.

• The principle of diverse response. The swarm should not allocate all of its
resources along excessively narrow channels and it should distribute resources
into many nodes.

• The principle of stability. The swarm should not change its mode of
behaviour upon every fluctuation of the environment.

• The principle of adaptability. The swarm must be able to change behaviour
mode when it matters.

The ACO is inspired by the behaviour of ants and their ability to find the shortest
path towards an objective (e.g. food). In any ant colony, every ant collaborates in
discovering optimal routes based in an accumulative pheromone trail.

Figure 3.7 shows an illustrative example of the ant colony behaviour:

(a) Ants choose uniformly left/right-side paths in their search for food source.

(b) Ants that have chosen the shortest path (i.e. H-B-F) will return earlier back
to home, whereas the other half pack of ants will be still on their way to the
food source.

(c) Considering that all the ants move at a constant speed, those which have chosen
the aforementioned shortest path will deposit more pheromone and thus it will
be steadily accumulated along the optimal route.

(d) Ants notice that the shortest path is the one with more pheromone accumulated.
Therefore, the longest H-A-F route is progressively discarded.

Figure 3.7: Ant colony principle [20]
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The existing similarities between the ant colony and networking systems, such as
an ant corresponding to a data packet and an ant trail corresponding to a net-
working route, have lead ACO to be proposed as a novel methodology to achieve
optimal performance in interference management, routing and coverage problems [26].

Figure 3.8 illustrates a possible ACO procedure for HetNets:

1. The system is randomly initialized with a population of individuals, where each
individual represents a particular decision point (e.g. signaly quality, channel
assignment, routing metrics).

2. These individuals are then manipulated over many iterations using a predefined
target function in order to converge to optimality.

3. The guiding principle is a probability function pkxy based on the relative weight-
ing of pheromone intensity ταxy and heuristic information ηβxy which indicates
the desirability or attractiveness of the option at a decision point.

4. At the end of each iteration, each individual adds pheromone τxy to its path.
The amount of pheromone added is proportional to the quality of the solution
(e.g. lower values of route delay receive more pheromone).

Figure 3.8: Ant Colony Optimization (ACO) for HetNets [7]
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The pseudocode of a simple ACO method can be found below (Algorithm 2).

begin
initialize population;
evaluate fitness of population;
while not termination-condition do

position each ant in a starting node;
repeat

foreach ant do
choose next node by applying the state transition rule;
apply step by step pheromone update;

end
until every ant has built a solution;
evaluate fitness of population;
update best solution;
apply offline pheromone update;

end
end

Algorithm 2: ACO pseudocode [20]

Besides ACO, Particle Swarm Optimization (PSO) is a well-known SI algorithm whose
feasibility in Self-X functions has been recently studied. PSO is inspired by the social
behaviour of some animal collectives who jointly perform actions in order to achieve a
common goal (e.g. bird flocking). Each individual (i.e. particle) in a swarm behaves
in a distributed way, using both its own intelligence and the collective intelligence of
the swarm. Therefore, if one particle discovers an optimal path to reach a determined
objective, the rest of the swarm will also be able to follow the good path instantly [20].

Regarding the current literature, SI techniques are found to be useful in the three
self-X functionalities. A few examples are described next:

• Self-Organization: Network routing in HetNets can benefit from SI due to
their inherent path optimization strategies. From these guidelines, the study in
[27] presents an ACO algorithm to overcome the routing issues in HetNets by
addressing a multi-objective routing optimization problem that uses network
performance measures (e.g. delay, hop distance, cost).

• Self-Healing: As one representative work of cell outage compensation (COC),
the study in [28] proposes an automatic particle swarm compensation algorithm
for COC management scheme. The aim of COC is to mitigate the performance
degradation induced by the outage by automatically adjusting the related radio
parameters of the neighboring cells.

• Self-Optimization: The work presented in [29] proposes an ACO algorithm to
overcome the problem of coverage optimization for dense deployments of small
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cells by finding the optimal pilot transmit power through the minimization of
the cost function.

3.2.3 Artificial Neural Networks

ANNs are another computational method inspired from the biological neural networks
of human brains. In the ANN, as illustrated in Figure 3.9, various artificial nodes (i.e.
neurons) are interconnected to form a network of nodes, which processes information
using a connectionist approach to computation. Each connection between neurons
may have a numerical weight which can be tuned to make ANNs adaptive to inputs
[20].

The neural models are often used to model complex relationships between inputs
and outputs. Furthermore, ANNs do not require an exhaustive knowledge of the
neural driving processes [30]. Therefore, ANNs have the innate ability to perform
quite well in unsupervised environments, and thus their implementation in various
HetNets problems has been discussed for estimating or approximating functions that
depend on many unknown input conditions [26].

Figure 3.9: Artificial Neural Network (ANN) for HetNets [7]

Regarding ANNs and their relationship with Self-Optimization processes, the studies
presented in [31] and [32] are well worth to mention. These works propose an
ANN implementation to enhance the performance of the vertical handoff (Figure
3.10). With the upcoming 5G paradigm, there will be an urgent demand to develop
efficient vertical handoff approaches that enable mobile terminals to seamlessly roam
between the existent wireless networks. The proposed schemes enables the handoff
user to adapt the destination network environment quickly and the variation of the
throughput can be avoided efficiently.
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Figure 3.10: Illustration of vertical handoff [33]

3.3 Fuzzy Systems

"Vagueness is a pervasive part of the human experience. Human language is an
imprecise tool. Human perception is fraught with inaccuracy. Memories are fleeting
and malleable. The real world is not an abstraction; it is not clearly perceived, well
defined, and precisely calculated" (Mark J. Wierman, 2010, p.53).

Fuzzy theory was developed to handle imprecise information. It starts with the
concept of fuzzy set, whose function is to map (i.e. fuzzify) the set of input elements
to a membership function which indicates the degree of truth belonging to the set.

µA : X → [0, 1] (3.4)

The degree of truth µ of a fuzzy set A that takes an input variable x ranges from 0
(i.e. x does not belong to A) to 1 (i.e. the other way around). Nevertheless, asides
from that particular classic set where an element could belong or not, fuzzy logic
allows the input variable to be mapped in a given set in a more broader sense (e.g.
no-barely-average-quite-yes instead of no-yes degrees of truth). Humans do this kind
of reasoning all the time, but it is a rather new concept for computers.

Figure 3.11: Membership function shapes (Matlab Fuzzy Logic ToolboxTM)
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Additionally, fuzzy logic allows the implementation of human knowledge in the form
of if-then inference rules. A single fuzzy if-then rule has the following form:

If x is A, then y is B

where A and B are the linguistic values (e.g. low, medium and high) defined by the
fuzzy sets X and Y, respectively. The linguistic input and output crisp values (e.g.
signal quality and handoff decision) are x and y, respectively.

The if-part of the rule "x is A" is also known as the antecedent of the rule, while the
then-part of the rule "y is B" is also called the consequent. For an if-then rule, the
antecedent, p, implies the consequent, q. In binary logic, if p is true, then q is also
true (p → q). In fuzzy logic, however, if p is true to some degree of membership,
then q is also true to the same degree [34].

Furthermore, it may be noticed that the human based rules in fuzzy logic might not
be optimal and, therefore, optimization techniques should be performed in order to
build up an accurate knowledge base.

Finally, the last step of a fuzzy inference process is the defuzzication, which is the
method that determines a single crisp value from a fuzzy output set.

Fuzzy logic approach seems suitable to handle the imprecision of the practical wireless
cellular networks [35]. Actually, fuzzy system techniques have been recently proposed
to handle handoff decision algorithms. For instance, the study in [36] proposes a
handoff decision algorithm based on type-2 fuzzy logic 3, which takes into account
a variety of access network and user properties, and selects the network with the
maximum satisfaction value. An illustration of fuzzy logic handoff in HetNets is
shown in Figure 3.12.

Figure 3.12: Fuzzy logic for HetNets [7]

Besides handoff-based applications, eICIC in HetNets can be successfully addressed
by employing fuzzy logic, as studied in [37].

3For some applications, it is useful to define fuzzy sets in terms of more general forms of
membership grade functions. An important form is A : X → L, where L denotes a lattice. When L
is a class of fuzzy numbers defined on [0,1], we obtain fuzzy sets of type-2 (Mark J. Wierman, 2010).

26



Chapter 4

Admission Control for
Multi-tenant Radio Access
Networks

One of the target goals to be addressed by future 5G architectures is the reduction
of both capital and operational costs. The sharing of mobile network infrastructure
among service providers (i.e. tenants) would allow the achievement of the expected
requirements of the emerging HetNets, in terms of O/CAPEX, respectively. Addi-
tionally, the deployment of small cells under a multi-tenancy basis is another key
component to be introduced in the future 5G networks. Within this framework,
the implementation of neutral host models offering Small Cell as a Service (SCaaS)
is regarded as an interesting approach to stimulate multi-operator small cells [38].
SCaaS models will enable cost savings through multi-operator deployments, while
avoiding conflicts of interest within MNOs.

Figure 4.1: (a) Multi-Operator Core Network and (b) Gateway Core Network [39]
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In order to provide network sharing functionalities in the well known legacy net-
work infrastructures, two main architectures have been already proposed [39] by
the 3rd Generation Partnership Project (3GPP). As illustrated in Figure 4.1, the
Multi-Operator Core Network (MOCN) aims to directly connect a shared RAN to
each of the multiple operator core networks, whereas the Gateway Core Network
(GWCN) considers a shared core network instead. Note that the GWCN approach
has its costs reduced compared with MOCN, but it has less flexibility and, therefore,
it may reduce the level of differentiation amongst operators.

Admission Control, from now onwards denoted as AC, is in charge of either accepting
or blocking new service requests. The split of radio resources among tenants at AC
level seamlessly controls the acceptance of new bearers of each tenant, rather than
scheduling the physical radio resources to packet flows on a per-tenant basis, so it
does not require modifications at the lower layers of the protocol stack [40].

This chapter is basically based in the studies [40] [41], and it is structured as follows:
section 4.1 introduces the main concepts of the proposed multi-tenant admission
control, section 4.2 discusses the proposed algorithmic solution and section 4.3
presents the performance evaluation.

4.1 Multi-tenant Admission Control

Considering a multi-tenant RAN, where an infrastructure provider deploys its own
network which is shared by multiple tenants, the sharing model and its technical
and operational aspects will be detailed through Service Level Agreements (SLAs)
between the infrastructure provider and each tenant.

The aforementioned RAN provides data transfer services for the exchange of infor-
mation between the User Equipment (UE) and the mobile core network, namely
known as Radio Access Bearers (RABs) in UMTS or Evolved-RAB (E-RAB) in
LTE. Moreover, an End-to-End data service may have a certain QoS attributes (e.g.
transfer delay, maximum bit rate or guaranteed bit rate) [42].

The AC function for multi-tenant RAN, which is executed at each involved cell,
decides whether the establishment request of a new RAB is accepted or rejected.
This decision should be made by considering three main factors: the overall resource
utilisation in the cell, the QoS requirements of already active RABs and the require-
ments of a new RAB request.

The proposed multi-tenant AC algorithm, which will be detailed in the next section,
is formulated based on the following main statements:

• As specified in the SLA terms, the capacity assigned to the tenant that request
the RAB set-up has to be considered in the admission/rejection decision.
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• The admission/rejection decision has to take into account the actual Resource
Block (RB) utilisation as well. RBs determine the number of required radio
resources at the physical layer and, due to the stochastic behaviour of the radio
channel, they can only be statistically estimated. Therefore, in order to decide
whether the capacity at the physical layer is enough to support the bit rate
requirements of the new RAB, RB utilisation has to be considered.

4.2 Algorithmic Solution

The scenario assumed in this section consists in N cells labelled as n = 1, ..., N
shared by S tenants numbered as s = 1, ..., S. The AC must ensure that:

1. The amount of RBs required by the new RAB and by the already admitted
RABs does not exceed the number of available RBs in the cell ρ(n).

2. The available RBs are fairly shared amongst tenants.

Hence, the proposed multi-tenant AC will admit a new RAB if the next two conditions
(A & B) are met simultaneously.

A. Capacity check at cell-level

This capacity check condition assesses whether the evaluated cell has sufficient
physical resources which would allow the admission of a new RAB. This statement
can be mathematically expressed as the following condition:

S∑
s′=1

ρG(s′, n) + ∆ρ ≤ ρ(n)αth(n) (4.1)

where ρG(s′, n) is the average number of RBs of the n-th cell assigned to the RABs of
the s-th tenant. ∆ρ is the estimated number of RBs required by the newly admitted
RAB and is computed based on the required bit rate Rreq and the estimated bit rate
per RB r̂(n)1, respectively:

∆ρ = Rreq
r̂(n) (4.2)

The last term ρ(n)αth(n), which can be found in the right-side of the inequality,
defines the cell-level AC threshold. It considers a fraction αth(n) ∈ (0, 1] of the total
number of RBs allocated in the n-th cell, leaving a margin to cope with handovers,
for instance.

1It is left at the reader’s choice to deepen on how this particular term is computed ([40], p.3)
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B. Per-tenant capacity share check

This check sets an upper bound in the RBs used by the RABs of a tenant accordingly
with the capacity agreed in the SLA. In this case, the capacity is defined by the
Scenario Aggregated Guaranteed Bit Rate (SAGBR), which establishes the total bit
rate to be guaranteed for all the RABs of a tenant.

Then, the nominal capacity share of a tenant s, C(s), is defined as the ratio between
the SAGBR(s) across all the cells and the aggregated SAGBR of all the tenants:

C(s) = SAGBR(s)∑S
s′=1 SAGBR(s′)

(4.3)

From all the previous terms introduced, the per-tenant capacity share check condition
can be now formulated as:

ρG(s, n) + ∆ρ ≤ ρ(n)αth(n) · (C(s) + ∆C(s, n)) (4.4)

The above condition ensures that the s-th tenant will be allowed to use a fraction
of the RBs in the n-th cell given by C(s), plus an additional term ∆C(s, n) which
considers the possible unused capacity left by the other tenants.

The term ∆C(s, n), which will be the key component regarding the optimization
process carried out in Chapter 5, is defined as:

∆C(s, n) =
{

∆Ce(s, n) if ∆Ce(s, n) > 0
∆Cb(s, n) if ∆Ce(s, n) = 0

(4.5)

where ∆Ce(s, n)2 is the extra capacity which is potentially available for the s-th tenant
in the n-th cell whenever the other s′ 6= s tenants leave unused capacity. Hence, the
s-th tenant can get part of this extra capacity to serve a traffic load above the agreed
capacity contracted through the SLA. The second term ∆Cb(s, n)2 ensures capac-
ity share balance across all the cells and pursues fairness from a multi-cell perspective.

4.3 Performance Evaluation

The aforementioned AC approach has been evaluated in an outdoor urban micro
scenario, in which each cell has one LTE carrier of 10 MHz (i.e. 50 RBs). The most
significant downlink simulation parameters can be found in Table 4.1. Different
offered loads of each tenant, denoted as T1 and T2 respectively, are simulated by
varying the session arrival rate λ in each cell.

2 The reader is invited to review how these terms are explicitly computed ([40], p.3)
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Parameter Value
ISD (Inter-Site Distance) 200 m
Path loss model Urban micro-cell model with hexagonal layout
Shadowing standard deviation 3 dB in LOS and 4 dB in NLOS
Base station antenna gain 5 dB
Frequency 2.6 GHz
Transmitted power per RB 24 dBm
Number of RBs per cell ρ(n) 50 RBs (1 LTE carrier of 10 MHz)
UE Noise Figure 9 dB
Rreq 1024 kb/s
Session duration Exponential model, average 30 s
Session arrival rate Poisson model with different simulated λ
αth(n) 1

Table 4.1: Simulation parameters

The capacities stipulated in the SLAs are SAGBR(1) = 25 Mb/s for Tenant 1 and
SAGBR(2) = 37 Mb/s for Tenant 2, respectively. Specifically, the simulated scenario
considers a total of N = 2 cells, where the total capacity per cell is estimated to be
around 31 Mb/s. The nominal capacity shares of each tenant are C(1) = 40% for T1
and C(2) = 60% for T2.

Since the target objective of the proposed AC algorithm is to achieve an efficient
utilization of the available RBs of each tenant, the performance evaluation will take
into consideration different offered traffic load mixes in relation to tenant’s capacity
share. Since the efficiency in the resource usage is mainly provided by the term
∆C(s, n) (4.5), the performance assessment will consider, as a reference, the case in
which ∆C(s, n) is set to 0.

Figure 4.2: Increase in the aggregated bit rate obtained by (a) T1 and (b) T2, in
relation to the reference case ∆C(s, n) = 0
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The gain achieved by the AC algorithm in the aggregated bit rate obtained by T1
and T2, in relation to the reference case where ∆C(s, n) = 0, is illustrated in Figure
4.2. The proposed algorithm achieves an increase of the aggregated bit rate of T1
up to 106%, when the offered load of T2 is as low as 0 Mb/s. On the other hand,
an increase of the aggregated bit rate of T2 up to 43% is achieved when the offered
load of T1 is 0 Mb/s. It can be concluded that, whenever one tenant is not using all
its capacity, the other one benefits from a higher aggregated bit rate, thus achieving
a more efficient use of the radio resources.

Now, considering the following traffic mixes for T1 (Table 4.2) and T2 (Table 4.3),
the performance experienced by each tenant is studied, in terms of aggregated bit
rate and blocking probability.

Tenant 1
Load Cell 1 Load Cell 2 Total Load

Traffic Mix A 24.6 (H) 24.6 (H) 49.2 (H)
B 19 (H) 6 (L) 25 (P)

Table 4.2: Selected traffic mixes for Tenant 1

Tenant 2
Load Cell 1 Load Cell 2 Total Load

Traffic Mix A 12.3 (L) 12.3 (L) 24.6 (L)
B 12 (L) 25 (H) 37 (P)

Table 4.3: Selected traffic mixes for Tenant 2

The average offered load of a tenant in a given cell can be classified as: planned
(denoted as P), well below the planned value (denoted as L) or well above the planned
value (denoted as H). Note that the planned offered load refers to the one stipulated
in the tenant’s SLA. Similarly, the total offered load in both cells is denoted as P if
it is equal to the respective tenant’s SAGBR.

Traffic mix A describes a scenario in which the offered load of T1 is H in both cells,
while the offered load of T2 is kept L. In this case, simulation results are depicted in
Figure 4.3. It is observed that T1 can obtain a bit rate improvement of 33% with
respect to the reference case, by allowing T1 to make use of the spare capacity of T2,
while not considerably harming its bit rate. Moreover, there is a substantial reduction
in the blocking probability for T1. Nevertheless, a slight degradation (below 2%) is
noticed in the blocking probability for T2. Hence, in a neutral perspective, it can be
concluded that T1 benefits far beyond in performance from what T2 loses.
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Figure 4.3: Aggregated bit rate and blocking probability obtained by each tenant
with traffic mix A

On the other hand, in the traffic mix B, the total offered load of both tenants
correspond to the planned one, but this load is not equally distributed along the two
cells. In this case, simulations results are showcased in Figure 4.4 and Figure 4.5.
It is observed that the proposed capacity share shift given by ∆C(s, n) allows T1
to efficiently handle the resource share across both cells. In this sense, T1 benefits
from an increase of 18% in its aggregated bit rate and 8% for T2, with respect
the reference case. Furthermore, an important reduction in terms of total blocking
probability for both tenants is noticed. More specifically, T1 and T2 benefit from a
blocking probability reduction of 70% and 64%, respectively.

Figure 4.4: Bit rate obtained by each tenant in each cell and in the total scenario
with traffic mix B
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Figure 4.5: Blocking probability obtained by each tenant in each cell and in the
total scenario with traffic mix B

Finally, Figure 4.6 illustrates the aggregated bit rate obtained by each tenant with
the proposed algorithm and with the reference scheme, as a function of the total
offered load of T2. The total offered load of T1 is kept constant at 49.2 Mb/s
(corresponding to a H level of traffic mix A) and it is evenly distributed along the
two cells. It can be noticed that, when the offered load of T2 is below its planned
level of 24.6 Mb/s (considering the traffic mix A), T1 benefits substantially from
the unused capacity left by T2. However, when the offered load of T2 is well above
its planned level (i.e. 37 Mb/s), performance differences between both algorithms
remain almost unnoticeable. In this last case, each tenant achieves a bit rate in
accordance with is nominal capacity share C(s). Moreover, the bit rate obtained
by T2 is approximately the same with both schemes since T1 is not leaving unused
capacity.

Figure 4.6: Aggregated bit rate experienced by each tenant
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Chapter 5

Self-Organised Admission
Control for Multi-tenant 5G
Networks

In this chapter, a few AI techniques will be proposed in order to develop a self-
organised AC for multi-tenant 5G networks. More specifically, the main objective is
focused in self-learning the optimal value of the term ∆C(s, n), which was previously
defined. The proposed methods correspond to the well known AI discipline of ML,
in which two main learning algorithms arise:

• Supervised learning: primarily used when both input and output variables
of a system are known, so that a mapping function can be learned (Y = f(x)).
The main goal, however, is to approximate that mapping function in a way
that output variables can be accurately predicted whenever new input data
(i.e. unlearned data) is available.

• Unsupervised learning: unlike supervised learning, unsupervised learning
lacks of any mapping function, since output data is either unknown or hard
to obtain. Therefore, unsupervised algorithms are designed to discover the
optimal structure or relationships between different input/outputs.

The structure of this chapter is summarized as follows: section 5.1 presents a
supervised learning scheme which models the behaviour of ∆C(s, n) in the same
network scenario used in the previous chapter. The subsequent section 5.2 proposes
an unsupervised learning approach, whose aim is to self-optimize the value of ∆C(s, n)
based on previous experience gained by interacting with the environment.

5.1 Supervised learning
The implementation of a supervised learning method for exploiting the knowledge
of ∆C(s, n) has two main objectives. First of all, the knowledge itself allows the
identification of the limits of ∆C(s, n) and its overall behaviour amongst different
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traffic load situations. This leads to the second goal, which aims to facilitate the
implementation of the unsupervised learning AC method. Since there are 4 variables
to self-optimize (i.e. ∆C(1, 1), ∆C(1, 2), ∆C(2, 1) and ∆C(2, 2)), and the time to
converge to the optimal solution could be excessively high, supervised learning will
be applied in some ∆C(s, n) variables for simplicity’s sake, and the left ones will be
selected to be optimized.

For the scope of this work, an Adaptive Neuro-Fuzzy Inference System (ANFIS)
is proposed as a supervised learning technique. ANFIS is a kind of ANN that
incorporates a Takagi-Sugeno fuzzy inference engine, which only produces a single
output after the defuzzification stage (i.e. one of the ∆C(s, n)). On the other hand,
4 inputs are considered, corresponding to the offered loads of each tenant in each
cell, taken directly from the environment/network simulator. Moreover, the fuzzy
inference system (FIS) can incorporate two data clustering types: grid partition
and subtractive clustering. The latest is considered, in which each input has as
many membership functions as the number of clusters identified. As an example, 10
clusters are identified in Figure 5.1, although even more or less number of clusters
could be found, considering the trade-off between training error and training time.

Figure 5.1: Subtractive clustering technique (Cluster’s radius of influence = 0.65)

The overall proposed learning scheme is illustrated below (Figure 5.2).
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Figure 5.2: Supervised learning scheme aimed to exploit ∆C(s, n) knowledge

Finally, once the input/output dataset has been trained through the aforementioned
scheme, knowledge of ∆C(s, n) is available to precisely (>99%) exploit unlearned
input data. A few representations of ∆C(s, n) as a function of different offered loads
are shown in Figure 5.3.

The next step would be to retrieve the optimal value of ∆C(s, n) given a certain
traffic load conditions in each optimization iteration of the unsupervised learning
scheme presented in section 5.2, leaving a particular ∆C(s, n) to be self-optimized,
just for the sake of simplicity.

Figure 5.3: ∆C(s, n) as a function of T1 offered load (Mb/s) in both cells
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5.2 Unsupervised learning (Fuzzy Q-learning)

In this section, an unsupervised learning algorithm will be implemented and simulated
in the same LTE network seen throughout this work. Specifically, a fuzzy Q-learning
algorithm is selected, which combines fuzzy logic with reinforcement learning.

In order to achieve self-optimization, each distributed agent must know what parame-
ter tuning action should be performed in accordance to the current operation state. In
the following lines, a brief review regarding the basics of fuzzy Q-learning is presented.

Shortly, Q-learning is a RL technique whose objective is to maximize a cumulative
reward by taking actions in an environment. Q-learning builds up incrementally
a Q-function, denoted as Q(s, a), by estimating the discounted future rewards for
taking actions a from given states s. A fuzzy version of Q-learning is considered in
this work in order to inherit the benefits of fuzzy theory. Basically, fuzzy Q-learning
allows to discretize the state and action spaces in order to avoid dealing with contin-
uous and thus complex spaces.

The architecture of the self-optimization procedure is shown in Figure 5.4, which
is clearly distributed. Besides the optimiser Q-Learning block, which updates the
Q-function accordingly to the reward obtained, the fuzzy logic controller manages
the set of environment states as its inputs (i.e. offered traffic loads and ∆C(s, 1))
and the set of actions as its outputs (i.e. increment of ∆C(s, 1)). Initially, it was
planned to self-optimize both ∆C(s, 1), leaving ∆C(s, 2) to be optimized through
supervised learning. Nevertheless, as the optimization time was incredibly high, it
was decided to leave ∆C(1, 1) as the only variable to be self-optimized.

Figure 5.4: Architecture of the proposed self-optimization procedure

Next, the fuzzy Q-learning algorithm is presented with all its details.

38



5.2. Unsupervised learning (Fuzzy Q-learning)

First of all, let’s define the concept of q-value. For each rule of the FIS, a[i, j] is
defined as jth action of rule i and q[i, j] as its associated quality value (q-value).
Therefore, the higher value of q[i, j], the higher the trust for the corresponding tuning
action selected.

To initialize the q-values in the algorithm, the following straightforward criteria is
used:

q[i, j] = 0, 1 ≤ i ≤ N and 1 ≤ j ≤ A (5.1)

where q[i, j] is the associated q-value to the rule i and action j. N is the total number
of rules and A is the number of available actions per rule.

Now, for each activated rule (i.e. those with some non-zero degree of truth), an
action is selected following an exploration/exploitation policy (e.g. ε-greed method).
The agent should select the actions which produced highest rewards in the past.
Nevertheless, the agent learns such action’s performances by trying the actions that
have not been selected before. Then, besides exploitation phase, an exploration policy
should be considered in order to track the unexplored actions that yield maximum
long term reward. In particular, the ε-greed method is defined as follows:

ai =
{
random{ak, k = 1, 2, ..., A}, with probability ε.
argmaxk q[i, k], with probability 1 - ε.

(5.2)

where ai is the specific action for the rule i and ε is the learning rate of the explo-
ration/exploitation policy. Usually, ε is not fixed along the optimization process.
Instead, it progressively diminishes down to values close to zero, meaning that the
exploration of potential actions decreases as well.

Then, the global action to be executed is determined by:

a(t) =
N∑
i=1

αi(s(t)) · ai(t) (5.3)

where a is the parameter tuning action and αi(s(t)) is the activation function for the
rule i. In other words, αi(s(t)) represents the degree of truth of an input state s(t)
in the t-th iteration:

αi(s(t)) =
M∏
i=1

µij(xj(t)) (5.4)

where M is the number of FIS inputs and µij(xj(t)) is the membership function
value for the j-th input and the i-th rule. For instance, considering the first rule
where the four inputs are labelled as low (L), the activation function is given by:

α1(s(t)) = µ11(x1(t)) · µ12(x2(t)) · µ13(x3(t)) · µ14(x4(t)) (5.5)
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The shapes of the membership functions are illustrated in Figure 5.5. For the offered
traffic loads of both tenants, three gaussian membership functions are selected,
labelled as Low (L), Medium (M) and High (H), respectively. For the ∆C(s, 1), two
edged trapezoidal and one triangular membership functions are used. Note that there
are multiple options when choosing an appropriate shape of membership functions.

Figure 5.5: Fuzzy membership functions

The Q-function can be then calculated from the activation functions and the q-values
of the different rules:

Q(s(t), a(t)) =
N∑
i=1

αi(s(t)) · q[i, ai] (5.6)

where Q(s(t), a(t)) is the value of the Q-function for the state s and action a.

The next step involves leaving the system to evolve to the next state s(t+ 1).

At this point, the reinforcement signal r(t+1) is observed. In this work, the following
reinforcement signal is considered, similarly as proposed in [43]:

r(t) = r1(t) + r2(t) + k1; (5.7)

where r(t) is the overall reinforcement signal itself, r1(t) and r2(t) are the reinforce-
ment signal contributions of both tenants along the two cells, and k1 is a constant
parameter. Specifically, ri(t) signals are computed as follows:
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ri(t) = k2 · log( 1
(Pblock(Ti) + k3) · 1000 + 1) (5.8)

where k2 and k3 are constant parameters and Pblock(Ti) is the blocking probability
of the Ti tenant in the whole scenario. The parameters used to compute out the
reinforcement signal can be found in Table 5.1. Furthermore, an illustration of
the reinforcement signal is shown in Figure 5.6. It can be observed that when the
blocking probability of both tenants are zero, the reinforcement or reward obtained
is maximum (i.e. equal to 1).

Parameter Value
k1 0.1357
k2 100
k3 0.1

Table 5.1: Reinforcement signal parameters

Figure 5.6: Reinforcement signal

Once the reinforcement signal of the next state r(t+ 1) has been observed, the value
of the new state denoted by Vt(s(t+ 1)) can be computed as:

Vt(s(t+ 1)) =
N∑
i=1

αi(s(t+ 1)) ·maxkq[i, ak] (5.9)

The error signal between consecutive Q-functions will be useful to update the q-values.
It is given by:
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∆Q = r(t+ 1) + γVt(s(t+ 1))−Q(s(t), a(t)) (5.10)

where ∆Q is the error signal, r(t+ 1) is the reinforcement signal, γ is the discount
factor and Q(s(t), a(t)) is the Q-function of the previous state. γ is set to 0.7, thus
considering more importantly long term rewards.

Finally, the q-values can be updated by an ordinary gradient descent method:

q[i, ai] = q[i, ai] + η ·∆Q · αi(s(t)) (5.11)

where η is the learning rate, whose value is set to 0.5, meaning that older information
is considered as important as newly one.

The aforementioned process is repeated from the action selection until the conver-
gence is achieved.

A summary of the above described algorithm can be found below.

1. Initialize q-values:
q[i, j] = 0, 1 ≤ i ≤ N and 1 ≤ j ≤ A

2. Select an action for each activated rule (ε-greedy policy):

ai =
{
random{ak, k = 1, 2, ..., A}, with probability ε.
argmaxk q[i, k], with probability 1 - ε.

3. Calculate the global action:
a(t) =

∑N
i=1 αi(s(t)) · ai(t)

4. Approximate the Q-function from the current q-values and the degree of
truth of the rules:
Q(s(t), a(t)) =

∑N
i=1 αi(s(t)) · q[i, ai]

5. Leave the system to evolve to the next state, s(t+ 1).
6. Observe the reinforcement signal, r(t+ 1), and compute the value of the
new state denoted by Vt(s(t+ 1)):
Vt(s(t+ 1)) =

∑N
i=1 αi(s(t+ 1)) ·maxkq[i, ak]

7. Calculate the error signal:
∆Q = r(t+ 1) + γVt(s(t+ 1))−Q(s(t), a(t))

8. Update q-values by an ordinary gradient descent method:
q[i, ai]← q[i, ai] + η ·∆Q · αi(s(t))

9. Repeat the above described process starting from step 2. for the new
current state until the convergence is achieved.

Algorithm 3: Fuzzy Q-learning algorithm [43]
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The table below summarizes the main configuration and optimization parameters
used in the proposed simulation scenario. As a reminder, the number of states
corresponds to the total number of rules, and the actions (∆C(s, n) = a+ ∆C(s, n))
available for each rule are chosen to be as follows: one increment (+0.05), its homol-
ogous decrement (-0.05), and the no-change action (0).

Parameter Value
Network Parameters See Table 4.1
Number of states (i.e. rules) 34 (81)
Action space [-0.05 0 +0.05]
Initial greed factor ε 0.9
Reducing rate of ε 1/650 x epoch
Discount factor γ 0.7
Learning rate η 0.5

Table 5.2: Optimization parameters

As observed in Figure 5.7, the exploration actions can be noticed as some of the
reinforcement signals do not yield even near the maximum reward. Therefore, it is
ensured that the whole state-action space is completely (or almost) checked.

Figure 5.7: Simulated reinforcement signal after 500 epochs

The best consequent for each rule is determined by the highest action q-value. Table
5.3 shows three particular rules with three different actions.
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Figure 5.8 illustrates how the best consequent for the 14th rule is selected. It can be
observed that the highest q-value across the whole optimization process corresponds
to the no-change action (i.e. 0), meaning that, in the mid-long term, the mentioned
action will yield higher rewards. Regarding rules 32 (Figure 5.9) and 41 (Figure
5.10), the best actions to execute are the increase of ∆C(1, 1) by 0.05 and vice versa,
respectively.

Figure 5.8: q-values evolution for rule 14

Figure 5.9: q-values evolution for rule 32
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Figure 5.10: q-values evolution for rule 41

Rule Offered
Load T1

Offered
Load T2

∆C(1, 1) ∆C(2, 1) Candidate
actions

Best
action

14 L M M M [-0.05 0 +0.05] 0
32 M L M M [-0.05 0 +0.05] +0.05
41 M M M M [-0.05 0 +0.05] -0.05

Table 5.3: Fuzzy inference rule base acquired by Q-learning

Once the fuzzy inference rule base acquired by the proposed algorithm is built, the
network performance can be evaluated. In this particular case, the blocking probabil-
ity of each tenant and each cell is selected as a network performance measurement.
Additionally, the results given by the proposed fuzzy Q-learning algorithm are com-
pared with the reference case in which ∆(s, n) is fixed to 0 (denoted as ’NoDelta’ case).

Figure 5.11 shows the blocking probability per cell and tenant in the exploitation/ex-
ploration phase. It is observed that substantial improvements are achieved by Fuzzy
Q-learning approach with respect to the fixed configuration (’NoDelta’), especially
in the T1 domain. Furthermore, Figure 5.12 illustrates the differences between fully
exploiting the system (fixed ε = 0) and using a exploitation/exploration trade-off
(initial ε = 0.9, with a decreasing rate of 1/650 per epoch). As expected, the network
performance is slightly better when exploration is not taken into account. Neverthe-
less, this work considers any potential action which could yield higher rewards in the
future, hence the second approach applies.
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Figure 5.11: Blocking probability per cell and tenant in the exploitation/exploration
phase (initial greed factor ε = 0.9)

Figure 5.12: Blocking probability per cell in the exploitation (fixed greed factor
ε = 0) and exploitation/exploration phase (initial greed factor ε = 0.9)
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Finally, the exact values of the simulation, for the cell 1 and cell 2, are shown in
Table 5.4 and Table 5.5, respectively.

Blocking Probability
NoDelta =⇒ FQL (ε = 0.9) =⇒ FQL (ε = 0)

Cell 1 T1 0.157 +45.2% 0.0860 +39.4% 0.0521
T2 0.0483 +3.5% 0.0466 -1.5% 0.0473

Table 5.4: Blocking probability (Cell 1) in the reference case, exploitation/explo-
ration (greed factor ε = 0.9) and exploitation phase (fixed greed factor ε = 0)

Blocking Probability
NoDelta =⇒ FQL (ε = 0.9) =⇒ FQL (ε = 0)

Cell 2 T1 0.188 +51.5% 0.0911 +6.8% 0.0849
T2 0.0485 +7% 0.0451 +10.1% 0.0405

Table 5.5: Blocking probability (Cell 2) in the reference case, exploitation/explo-
ration (greed factor ε = 0.9) and exploitation phase (fixed greed factor ε = 0)
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Chapter 6

Conclusions and Future Work

The statu quo of mobile networks has been shifted from classical centralized network
architectures to distributed heterogeneous networks with a higher degree of automa-
tion, cooperation and intelligence. The tight requirements of future 5G networks, in
terms of reduced latency and increased capacity, has accelerated the introduction of
self-organizing networks, whose automated mechanisms will address the seamlessly
configuration, optimization and reposition of wireless networks. Moreover, AI-based
techniques are seen as an excellent opportunity, with still a large room of improve-
ment, to build up an intelligence system able to help the emerging HetNets to reach
the aforementioned stringent 5G requirements.

Besides AI-related SON techniques, the inclusion of softwarization technologies such
as Software-Defined Networks (SDNs) will substantially change the way how 5G
networks will be managed [44]. Software network technologies, as illustrated in
Figure 6.1, are aimed to be fundamental enablers to fulfill the requirements of pro-
grammability (e.g. service agility, service diversity and resource efficiency), flexibility
(e.g. re-configurability, reusability and infrastructure sharing), adaptability (e.g.
self-configuration, self-healing and self-optimization) and capabilities (e.g. mobile
edge computing, network slicing, autonomic network management) expected to be
inherent in 5G networks.

The potential benefits of softwarization in 5G include O/CAPEX reduction, shorter
times for service creation and service adaptation, efficient service lifecycle manage-
ment, energy consumption reduction towards a sustainable green networks, and
improved quality of experience for users, among others. Indeed, SDNs are envisaged
as one of the key features of 5G networks as they will drive the paradigm shift
of mobile network design and implementation. Expectations are that a number
of enablers would be required such as multi-tenancy management, multi-domain
orchestration, end-to-end network slicing, uniform virtualization and abstraction
facilities [45].
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Figure 6.1: Software network technologies in 5G overall architecture [45]

Throughout this work, the state of the art of the most promising artificial intelligence-
based techniques for the emerging HetNets has been carefully reviewed. Furthermore,
the applicability and feasibility of each of them in every Self-X function has been
assessed. One of the target objectives of the present work has been the study of
QoS optimization for the future HetNets. More specifically, the admission control
for multi-tenant RANs was the chosen topic to start exploring novel AI approaches
to self-optimize the appropriate AC parameters. Hence, an accurate study of the
self-optimised AC strategy for adjusting the share of resources used by each tenant
was required in order to introduce the proposed AI algorithm. Amongst the all
possible candidate AI solutions, a fuzzy Q-learning algorithm has been selected
for the self-optimization process, as its model-free approach allows to build up an
optimal action-selection policy, without actually requiring any network environment
knowledge. Other AI options such as bio-inspired algorithms or artificial neural
networks could have been considered as well. A simulation-based analysis of the
proposed reinforcement learning algorithm has been presented to assess the potential
improvements achieved by each tenant in each cell with respect to a baseline scheme.
As for the results, the reduction achieved in the blocking probability by the proposed
fuzzy Q-learning algorithm, in relation to the reference case where ∆C(s, n) = 0,
when considering an exploitation/exploration policy, has been 45.2% and 51.5% for
T1 in cell 1 and cell 2, respectively. Nevertheless, T2 slightly benefits from the
proposed approach (improvement of 3.5% and 7%, respectively), since its offered load
was below its SAGBR, thus allowing T1 to efficiently handle the resource share across
both cells and consequently benefit from substantial blocking probability reduction.
Finally, the performance when considering a fully exploiting system (i.e. ε = 0) has
been evaluated. Despite improving the performance (up to 39.4%) in relation to the
exploitation/exploration policy, it does not consider potential actions which could
yield higher rewards in the long term future, thus the latest approach (i.e. ε = 0.9)
prevails in this work.
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Appendix A

MatlabR© source code

Network Simulator (script sim_AC_vX.m) [40][41]

1 c l e a r ;
2
3 vec to r_var i a t i on = [ 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . 0 , 1 . 2 ] ;
4
5 f o r loop_var iab le=vec to r_var i a t i on
6 f p r i n t f ( ’ Sim f o r param : %f \n ’ , l oop_var iab le ) ;
7
8 rng (740) ; %random number gene ra t i on seed
9

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 %%%INPUT PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13
14 %CONSTANTS:
15 c o n f i g .NO_SLICING=0; %The AC only accounts f o r the 1 s t check ( g l o b a l check ) .
16 c o n f i g .SLICING_NO_DELTA=1; %The AC does not account f o r the d e l t a
17 c o n f i g .SLICING_DELTA=2; %The AC account f o r d e l t a parameters
18
19 %c o n f i g . AC_algorithm=c o n f i g .NO_SLICING;
20 %c o n f i g . AC_algorithm=c o n f i g .SLICING_NO_DELTA;
21 c o n f i g . AC_algorithm=c o n f i g .SLICING_DELTA;
22
23 %General s c e n a r i o parameters
24 c o n f i g . ISD=200; %m I n t e r s i t e D i s t a n c e
25 c o n f i g . cel l_R=( c o n f i g . ISD /2) ∗2/ s q r t (3 ) ; %C e l l Radius
26 c o n f i g . num_cells =2;
27 c o n f i g . num_tenants=2;
28 c o n f i g . time_step =0.1 ; %Duration o f the s imu la t i on time step in s .
29 c o n f i g . s imulat ion_durat ion =50000.0; %Simulat ion durat ion in s .
30
31 c o n f i g .num_RBs=50; %Number o f RBs ( d e f a u l t f o r a l l the c e l l s )
32 c o n f i g .B_RB=180; %Bandwidth o f one RB in kHz
33 c o n f i g . Ptot =41; %dBm. Total power per LTE c a r r i e r ( d e f a u l t f o r a l l the c e l l s )
34 c o n f i g .P_RB=c o n f i g . Ptot−10.0∗ l og10 ( c o n f i g .num_RBs) ; % dBm. Power per RB.
35 c o n f i g . antenna_gain =5.0 ;
36 %c o n f i g .PIRE_RB=c o n f i g .P_RB+c o n f i g . antenna_gain ; %dBm
37 c o n f i g . noise_figure_UE =9; %dB .
38 c o n f i g . Pnoise_RB=−174+c o n f i g . noise_figure_UE+10∗ l og10 ( c o n f i g .B_RB∗1E3) ; %

Noise power per RB.
39 c o n f i g . Pnoise_RB=power ( 1 0 , 0 . 1∗ c o n f i g . Pnoise_RB ) ; %mW. Noise power per RB.
40
41 %Propagation model parameters
42 c o n f i g . prop_model_params . height_BS =10; %meters
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43 c o n f i g . prop_model_params . height_UE =1.5;
44 c o n f i g . prop_model_params . f =2.6 ; %GHz
45 c o n f i g . prop_model_params .d_BP=4∗( c o n f i g . prop_model_params . height_BS−1)∗( c o n f i g

. prop_model_params . height_UE−1)∗ c o n f i g . prop_model_params . f ∗1E9/3E8 ;
46 c o n f i g . prop_model_params . dmin=10; %minimum d i s t a n c e between a UE and a

c e l l .
47 c o n f i g . prop_model_params . sigma_LOS=3; %dB
48 c o n f i g . prop_model_params . sigma_NLOS=4; %dB
49
50 %S p e c t r a l E f f i c i e n c y computation parameters
51 c o n f i g . spec_eff_params . SINRmin=−10.0; % dB
52 c o n f i g . spec_eff_params . SINRmin=power ( 1 0 , 0 . 1∗ c o n f i g . spec_eff_params . SINRmin) ; %

l i n e a r u n i t s
53 c o n f i g . spec_eff_params . a l f a =0.6 ;
54 c o n f i g . spec_eff_params . Smax=4.4; % b/ s /Hz
55 c o n f i g . spec_eff_params . SINRmax=power (2 , c o n f i g . spec_eff_params . Smax/ c o n f i g .

spec_eff_params . a l f a )−1; %l i n e a r u n i t s
56
57 %T r a f f i c parameters ( d e f a u l t va lue s )
58 c o n f i g . t ra f f i c_params . Rbreq =512∗2; %kb/ s Required b i t r a t e o f each s e s s i o n

( d e f a u l t va lue )
59 c o n f i g . t ra f f i c_params . durat ion =10; %seconds . Average durat ion o f each s e s s i o n

. ( d e f a u l t va lue )
60 c o n f i g . t ra f f i c_params . lambda =1.0; %S e s s i o n s / sec . S e s s i o n gene ra t i on r a t e (

d e f a u l t va lue )
61
62 %Admission parameters
63 c o n f i g . admission_params . a l fa_th =0.9; %Admission t h r e s h o l d ( d e f a u l t )
64 c o n f i g . admission_params . beta =1.0 ;
65 c o n f i g . admission_params . gamma=1.0;
66 c o n f i g . admission_params . Cextra_min =0.0;
67
68 %c o n f i g . t ime_window_uti l i sat ion_averaging =10.0; %s Time window f o r

averag ing the RB u t i l i s a t i o n
69 c o n f i g . t ime_window_uti l i sat ion_averaging =0; %s Time window f o r averag ing

the RB u t i l i s a t i o n
70 c o n f i g . t ime_window_uti l isat ion_averaging_samples=c o n f i g .

t ime_window_uti l i sat ion_averaging / c o n f i g . time_step ;
71
72 c o n f i g . time_window_delta_averaging =300.0; %s Time window f o r averag ing the

d e l t a parameters o f the AC.
73 c o n f i g . time_window_delta_averaging_samples=c o n f i g . time_window_delta_averaging /

c o n f i g . time_step ;
74
75 c o n f i g . time_window_bit_rate_averaging =30.0; %s Time window f o r e s t imat ing

the b i t r a t e per RB
76 c o n f i g . time_window_bit_rate_averaging_samples=c o n f i g .

time_window_bit_rate_averaging / c o n f i g . time_step ;
77
78 %Capacity share parameters per tenant :
79 c o n f i g .C(1) =0.4 ;
80 c o n f i g .C(2) =0.6 ;
81 c o n f i g . C_avg_multi_cell=z e r o s ( c o n f i g . num_tenants , 1 ) ;
82 c o n f i g . C_avg_multi_cell_samples=z e r o s (1+ c o n f i g . s imulat ion_durat ion / c o n f i g .

time_step , c o n f i g . num_tenants ) ;
83 c o n f i g . aggregate_avg_Rb_multi_cell=z e r o s ( c o n f i g . num_tenants , 1 ) ; %Measures the

aggregate avg Rb o f each tenant in the whole s c e n a r i o
84 s t a t s . num_adm_above_global_SAGBR=z e r o s (1 , c o n f i g . num_tenants ) ; %Measures the

number o f admiss ions above the g l o b a l SAGBR of the whole s c e n a r i o
85 s t a t s . num_rej_below_global_SAGBR=z e r o s (1 , c o n f i g . num_tenants ) ; %Measures the

number o f r e j e c t i o n s below the g l o b a l SAGBR of the whole s c e n a r i o
86
87 c o n f i g . Ce l l_Capac i ty_theore t i ca l=c o n f i g .num_RBs∗ c o n f i g .B_RB∗ c o n f i g .
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spec_eff_params . Smax ; %In kb/ s
88 c o n f i g . Ce l l_Capac i ty_e f f e c t ive=c o n f i g . Ce l l_Capac i ty_theore t i ca l ∗0 . 7 7 5 7 ; %

Empir ica l c o r r e c t i o n ( f o r account ing b lock ing 2%)
89
90 c o n f i g . c o r r e c t i o n _ f a c t o r =0.7757; %Parameter Theta o f the a lgor i thm ( Factor

equal to the r a t i o E f f e c t i v e Capacity / TotalCapacity , where E f f e c t i v e
capac i ty r e f l e c t s the maximum o f f e r e d load f o r a max . b lock ing p r o b a b i l i t y

whi l e TotalCapacity r e f l e c t s the max capac i ty o f a c e l l based on the
amount o f RBs) .

91
92 %SAGBR f o r the t o t a l s c e n a r i o
93 c o n f i g .SAGBR(1)=c o n f i g . num_cells∗ c o n f i g .C(1) ∗ c o n f i g . Ce l l_Capac i ty_e f f e c t ive ;
94 c o n f i g .SAGBR(2)=c o n f i g . num_cells∗ c o n f i g .C(2) ∗ c o n f i g . Ce l l_Capac i ty_e f f e c t ive ;
95
96 %SAGBR " per c e l l "
97 c o n f i g . cellSAGBR (1)=c o n f i g .C(1) ∗ c o n f i g . Ce l l_Capac i ty_e f f e c t ive ;
98 c o n f i g . cellSAGBR (2)=c o n f i g .C(2) ∗ c o n f i g . Ce l l_Capac i ty_e f f e c t ive ;
99

100 %D i s t r i b u t e and i n i t i a l i z e the c e l l s :
101 i f c o n f i g . num_cells >19
102 f p r i n t f ( ’ERROR ( num_cells exceeds 19 : not supported ) ! ! ! ! ! \ n ’ ) ;
103 end ;
104
105 f o r n=1: c o n f i g . num_cells
106 BS(n)=base ;
107 BS(n) . id=n ;
108 BS(n) . init_BS ( c o n f i g ) ;
109 end ;
110
111 %I f we want to have d i f f e r e n t t r a f f i c parameters per c e l l / tenant , s p e c i f y
112 %them here ( o the rw i se the t r a f f i c parameters are s e t to the d e f a u l t
113 %values ) .
114
115 %BS(1) . lambda (1) =1.0∗ l oop_var iab l e ;
116 %BS(1) . lambda (1) =0.6 ;
117 %BS(1) . lambda (2) =0.4 ;
118
119 BS(1) . lambda_ini (1 )=loop_var iab le ;
120 %BS(1) . delta_lambda (1) =0.2 ;
121 %BS(1) . delta_lambda (1) =0;
122 %BS(1) . f r e q _ t r a f f i c _ p e r i o d (1 ) =1/(1∗3600) ; %1h f o r t h i s example .
123 %BS(1) . t ime_sh i f t (1 ) =0;
124
125 BS(1) . lambda_ini (2 ) =0.2 ;
126 %BS(1) . delta_lambda (2) =0.2 ;
127 %BS(1) . delta_lambda (2) =0;
128 %BS(1) . f r e q _ t r a f f i c _ p e r i o d (2 ) =1/(1∗3600) ; %1h f o r t h i s example .
129 %BS(1) . t ime_sh i f t (2 ) =0.5∗3600; %0.5h f o r t h i s example .
130
131 BS(1) . lambda (1 )=max(BS(1) . lambda_ini (1 )+BS(1) . delta_lambda (1 ) ∗ cos (2∗ pi ∗BS(1) .

f r e q _ t r a f f i c _ p e r i o d (1 ) ∗(0−BS(1) . t ime_sh i f t (1 ) ) ) ,1E−8) ;
132 BS(1) . lambda (2 )=max(BS(1) . lambda_ini (2 )+BS(1) . delta_lambda (2 ) ∗ cos (2∗ pi ∗BS(1) .

f r e q _ t r a f f i c _ p e r i o d (2 ) ∗(0−BS(1) . t ime_sh i f t (2 ) ) ) ,1E−8) ;
133
134 BS(2) . lambda_ini (1 )=loop_var iab le ;
135 BS(2) . lambda_ini (2 ) =0.2 ;
136 BS(2) . lambda (1 )=max(BS(2) . lambda_ini (1 )+BS(2) . delta_lambda (1 ) ∗ cos (2∗ pi ∗BS(2) .

f r e q _ t r a f f i c _ p e r i o d (1 ) ∗(0−BS(2) . t ime_sh i f t (1 ) ) ) ,1E−8) ;
137 BS(2) . lambda (2 )=max(BS(2) . lambda_ini (2 )+BS(2) . delta_lambda (2 ) ∗ cos (2∗ pi ∗BS(2) .

f r e q _ t r a f f i c _ p e r i o d (2 ) ∗(0−BS(2) . t ime_sh i f t (2 ) ) ) ,1E−8) ;
138
139 BS(1) . durat ion (1 ) =30.0;
140 BS(1) . durat ion (2 ) =30.0;
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141 BS(2) . durat ion (1 ) =30.0;
142 BS(2) . durat ion (2 ) =30.0;
143
144 BS(1) . a l fa_th =1.0;
145 BS(2) . a l fa_th =1.0;
146
147 %I f we want to have d i f f e r e n t f r e q u e n c i e s per c e l l , s p e c i f y them here .
148 %Otherwise , by d e f a u l t a l l the c e l l s use the same frequency
149 BS(1) . f req_index =1;
150 BS(2) . f req_index =2;
151 %BS(3) . f req_index =3;
152
153 %After having modi f i ed c e l l−s p e c i f i c parameters , i n i t i a l i z e the rad io
154 %parameters o f each c e l l and the next s e s s i o n a r r i v a l r a t e s :
155
156 %Schedule the a r r i v a l o f the f i r s t s e s s i o n o f each tenant in each c e l l .
157 f o r n=1: c o n f i g . num_cells
158 BS(n) . in i t_radio_and_next_arr iva ls ( c o n f i g ) ;
159 end ;
160
161 %Main s imu la t i on
162 t_index =0;
163
164 %p r e a l l o c a t e matrix f o r the l o g s :
165 a r r i v a l _ l o g=z e r o s (5E5 , 2 0 0 ) ;
166
167 num_entries =0; %index to r e g i s t e r the s imulat ion_log
168
169 f o r time =0: c o n f i g . time_step : c o n f i g . s imulat ion_durat ion
170 i f mod( time , 1 0 )==0
171 f p r i n t f ( ’ S imulat ing time : %f \n ’ , time ) ;
172 end ;
173
174 changing_condit ions =0; %To i d e n t i f y i f the r e i s some change ( a r r i v a l /end )

in the time step .
175
176 t_index=t_index +1;
177
178 %Check s e s s i o n f i n a l i s a t i o n s :
179 f o r n=1: c o n f i g . num_cells
180 f o r s =1: c o n f i g . num_tenants
181 i f BS(n) . numUEs( s )>0
182 end_process =0;
183 i =1;
184 e l s e
185 end_process =1;
186 end ;
187 whi le ~ end_process
188 i f BS(n) . UEl i s t { s }( i ) . end_session_time<=time
189 %Remove UE i from the l i s t .
190 BS(n) . UEl i s t { s}=horzcat (BS(n) . UEl i s t { s } ( 1 : i −1) ,BS(n) .

UEl i s t { s }( i +1:BS(n) . numUEs( s ) ) ) ;
191 BS(n) . numUEs( s )=BS(n) . numUEs( s )−1;
192
193 changing_condit ions =1;
194
195 %Note : the next UE to check i s s t i l l the index i ! ! !
196 %( because we have s h i f t e d the UEs in the array )
197 %Then , we only i n c r e a s e i when we do not remove the UE.
198 e l s e
199 i=i +1;
200 end ;
201 i f i>BS(n) . numUEs( s )
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202 end_process =1;
203 end ;
204 end ;
205 end ;
206 end ;
207
208 %Check s e s s i o n s t a r t s :
209 f o r n=1: c o n f i g . num_cells
210 f o r s =1: c o n f i g . num_tenants
211 %Compute lambda
212 BS(n) . lambda ( s )=max(BS(n) . lambda_ini ( s )+BS(n) . delta_lambda ( s ) ∗ cos

(2∗ pi ∗BS(n) . f r e q _ t r a f f i c _ p e r i o d ( s ) ∗( time−BS(n) . t ime_sh i f t ( s ) ) )
,1E−8) ;

213
214 %i f BS(n) . t ime_next_sess ion_arr iva l ( s )<=time
215 whi le BS(n) . t ime_next_sess ion_arr iva l ( s )<=time %By putt ing the

while , we a l low mu l t i p l e a r r i v a l s in a time step .
216 %New s e s s i o n
217 %Fir s t , execute the admiss ion p r o c e s s ( assuming i t i s

independent o f the
218 %UE p o s i t i o n ) :
219 BS(n) . num_session_attempts ( s )=BS(n) . num_session_attempts ( s ) +1;
220
221 %Compute durat ion ( even i f i t i s not admitted l a t e r on )
222 durat ion_ses s i on=(−BS(n) . durat ion ( s ) ) ∗ l og (1−rand ( ) ) ;
223
224 BS(n) . o f f e r ed_load ( s )=BS(n) . o f f e r ed_load ( s )+durat ion_ses s i on ∗

BS(n) . Rbreq ( s ) ;
225
226 admit=BS(n) . admiss ion ( s , BS(n) . Rbreq ( s ) , c o n f i g ) ;
227
228 i f admit
229 %Generate the new UE of tenant s
230 BS(n) . numUEs( s )=BS(n) . numUEs( s ) +1;
231 BS(n) . UEl i s t { s }(BS(n) . numUEs( s ) )=UE;
232 BS(n) . UEl i s t { s }(BS(n) . numUEs( s ) ) . init_UE ( con f i g , BS , n , s ) ;
233
234 BS(n) . UEl i s t { s }(BS(n) . numUEs( s ) ) . Rbreq=BS(n) . Rbreq ( s ) ;
235
236 %Compute the end s e s s i o n time f o r t h i s UE:
237 BS(n) . UEl i s t { s }(BS(n) . numUEs( s ) ) . end_session_time=time+

durat ion_ses s i on ;
238
239 %Compute s t a t i s t i c s :
240 i f (BS(n) . avg_bit_rate_assigned_per_tenant ( s )+BS(n) . Rbreq (

s ) )>c o n f i g . cellSAGBR ( s )
241 %Measure o f SAGBR at c e l l l e v e l
242 BS(n) .num_adm_above_SAGBR( s )=BS(n) .num_adm_above_SAGBR

( s ) +1;
243 end ;
244
245 i f ( c o n f i g . aggregate_avg_Rb_multi_cell ( s )+BS(n) . Rbreq ( s ) )>

c o n f i g .SAGBR( s )
246 %Measure o f SAGBR at the whole s c e n a r i o
247 s t a t s . num_adm_above_global_SAGBR( s )=s t a t s .

num_adm_above_global_SAGBR( s ) +1;
248 end ;
249
250 changing_condit ions =1;
251
252 e l s e
253 %Count a b lock ing :
254 BS(n) . num_blocks ( s )=BS(n) . num_blocks ( s ) +1;
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255
256 %Compute s t a t i s t i c s :
257 i f (BS(n) . avg_bit_rate_assigned_per_tenant ( s )+BS(n) . Rbreq (

s ) )<c o n f i g . cellSAGBR ( s )
258 %Measure o f SAGBR at c e l l l e v e l
259 BS(n) . num_rej_below_SAGBR( s )=BS(n) . num_rej_below_SAGBR

( s ) +1;
260 end ;
261
262 i f ( c o n f i g . aggregate_avg_Rb_multi_cell ( s )+BS(n) . Rbreq ( s ) )<

c o n f i g .SAGBR( s )
263 %Measure o f SAGBR at the whole s c e n a r i o
264 s t a t s . num_rej_below_global_SAGBR ( s )=s t a t s .

num_rej_below_global_SAGBR ( s ) +1;
265 end ;
266
267 end ;
268 %Schedule the a r r i v a l o f next s e s s i o n f o r the tenant s :
269
270 BS(n) . t ime_next_sess ion_arr iva l ( s )=BS(n) .

t ime_next_sess ion_arr iva l ( s )+(−1/BS(n) . lambda ( s ) ) ∗ l og (1−
rand ( ) ) ;

271 %NOTE: We schedu le not a f t e r " time " but a f t e r
272 %" t ime_next_sess ion_arr iva l " a l l ow i ng m ul t ip l e c a l l s in a
273 %time step .
274
275 %R e g i s t e r the a r r i v a l and the system s t a t e
276
277 %LOG FORMAT
278 %[ Time , Tenant , Cel l , Duration , Rbreq , Admit , B i t r a t e per tenant
279 %( i n s t ) , B i t r a t e per tenant ( avg ) , NumRBper tenant ( i n s t ) ,
280 %NumRB per tenant ( avg ) , DeltaC , DeltaCext , DeltaCbal ,

Congest ionStatus ]
281 num_entries=num_entries +1;
282 a r r i v a l _ l o g ( num_entries , 1 : 6 ) =[ time , s , n , durat ion_sess ion , BS(n) .

Rbreq ( s ) , admit ] ;
283 index_log =7;
284 f o r naux=1: c o n f i g . num_cells
285 a r r i v a l _ l o g ( num_entries , index_log : ( index_log+c o n f i g .

num_tenants−1) )=BS(n) . bit_rate_assigned_per_tenant ;
286 a r r i v a l _ l o g ( num_entries , ( index_log+c o n f i g . num_tenants ) : (

index_log+2∗ c o n f i g . num_tenants−1) )=BS(n) .
avg_bit_rate_assigned_per_tenant ;

287 a r r i v a l _ l o g ( num_entries , ( index_log+2∗ c o n f i g . num_tenants ) : (
index_log+3∗ c o n f i g . num_tenants−1) )=BS(n) .
num_assigned_RB_per_tenant ;

288 a r r i v a l _ l o g ( num_entries , ( index_log+3∗ c o n f i g . num_tenants ) : (
index_log+4∗ c o n f i g . num_tenants−1) )=BS(n) .
avg_num_RB_per_tenant ;

289 a r r i v a l _ l o g ( num_entries , ( index_log+4∗ c o n f i g . num_tenants ) : (
index_log+5∗ c o n f i g . num_tenants−1) )=BS(n) . DeltaC ;

290 a r r i v a l _ l o g ( num_entries , ( index_log+5∗ c o n f i g . num_tenants ) : (
index_log+6∗ c o n f i g . num_tenants−1) )=BS(n) . DeltaCext ;

291 a r r i v a l _ l o g ( num_entries , ( index_log+6∗ c o n f i g . num_tenants ) : (
index_log+7∗ c o n f i g . num_tenants−1) )=BS(n) . DeltaCbal ;

292 a r r i v a l _ l o g ( num_entries , ( index_log+7∗ c o n f i g . num_tenants ) : (
index_log+7∗ c o n f i g . num_tenants ) )=BS(n) .
conges t ion_status ;

293 index_log=index_log+7∗ c o n f i g . num_tenants+1;
294 end ;
295 end ;
296 end ;
297 end ;
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298
299 %Assess performance f o r the cur rent time step .
300 %ONLY IF SOME CHANGE HAS OCCURRED (NEW UEs OR UES ending ) .
301 i f changing_condit ions
302 compute_occupation ( con f i g , BS) ;
303 end ;
304
305 %1) Update the averages o f
306 %BS(n) . avg_num_RB_per_tenant %Average number o f RBs used by each tenant .
307 %BS(n) . avg_RB_util isation_per_tenant %Average r e a l capac i ty share (

RB_ut i l i sat ion ) per tenant .
308 %BS(n) . Rb_estimate_per_RB %Estimate o f b i t r a t e per RB ( in kb/

s ) achieved in the c e l l
309 %BS(n) . avg_bit_rate_assigned_per_tenant
310
311 f o r n=1: c o n f i g . num_cells
312 BS(n) . total_assigned_RB_sample ( t_index )=sum(BS(n) .

num_assigned_RB_per_tenant ) ;
313
314 f o r s =1: c o n f i g . num_tenants
315 BS(n) . num_assigned_RB_per_tenant_sample ( t_index , s )=BS(n) .

num_assigned_RB_per_tenant ( s ) ;
316 BS(n) . bit_rate_assigned_per_tenant_sample ( t_index , s )=BS(n) .

bit_rate_assigned_per_tenant ( s ) ;
317
318 i f t_index<=c o n f i g . t ime_window_uti l isat ion_averaging_samples
319 BS(n) . avg_num_RB_per_tenant( s )=mean(BS(n) .

num_assigned_RB_per_tenant_sample ( 1 : t_index , s ) ) ;
320 BS(n) . avg_bit_rate_assigned_per_tenant ( s )=mean(BS(n) .

bit_rate_assigned_per_tenant_sample ( 1 : t_index , s ) ) ;
321 e l s e
322 BS(n) . avg_num_RB_per_tenant( s )=mean(BS(n) .

num_assigned_RB_per_tenant_sample ( ( t_index−c o n f i g .
t ime_window_uti l isat ion_averaging_samples ) : t_index , s ) ) ;

323 BS(n) . avg_bit_rate_assigned_per_tenant ( s )=mean(BS(n) .
bit_rate_assigned_per_tenant_sample ( ( t_index−c o n f i g .
t ime_window_uti l isat ion_averaging_samples ) : t_index , s ) ) ;

324 end ;
325
326 BS(n) . avg_num_RB_per_tenant_sample ( t_index , s )=BS(n) .

avg_num_RB_per_tenant( s ) ;
327 BS(n) . avg_RB_util isation_per_tenant ( s )=BS(n) . avg_num_RB_per_tenant(

s ) /BS(n) .num_RBs;
328 BS(n) . avg_RB_utilisation_per_tenant_sample ( t_index , s )=BS(n) .

avg_RB_util isation_per_tenant ( s ) ;
329
330 BS(n) . avg_bit_rate_assigned_per_tenant_sample ( t_index , s )=BS(n) .

avg_bit_rate_assigned_per_tenant ( s ) ;
331
332 %Compute data volume
333 f o r i =1:BS(n) . numUEs( s )
334 BS(n) . data_volume_per_tenant ( s )=BS(n) . data_volume_per_tenant ( s )

+BS(n) . UEl i s t { s }( i ) . S∗BS(n) . UEl i s t { s }( i ) . assigned_RBs∗
c o n f i g .B_RB∗ c o n f i g . time_step ;

335 end ;
336 end ;
337
338 %Estimate o f b i t r a t e per RB:
339 BS(n) . total_ass igned_bit_rate_sample ( t_index )=sum(BS(n) .

bit_rate_assigned_per_tenant ) ;
340 %BS(n) . bit_rate_assigned_per_tenant_sample ( t_index , : )=BS(n) .

bit_rate_assigned_per_tenant ( : ) ;
341
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342 i f t_index<=c o n f i g . time_window_bit_rate_averaging_samples
343 aggregated_Rb=sum(BS(n) . total_ass igned_bit_rate_sample ( 1 : t_index ) ) ;
344 aggregated_RBs=sum(BS(n) . total_assigned_RB_sample ( 1 : t_index ) ) ;
345 e l s e
346 aggregated_Rb=sum(BS(n) . total_ass igned_bit_rate_sample ( ( t_index−

c o n f i g . time_window_bit_rate_averaging_samples ) : t_index ) ) ;
347 aggregated_RBs=sum(BS(n) . total_assigned_RB_sample ( ( t_index−c o n f i g .

time_window_bit_rate_averaging_samples ) : t_index ) ) ;
348 end ;
349
350 i f aggregated_Rb>0
351 %Update the new average o f Bit r a t e
352 BS(n) . Rb_estimate_per_RB=aggregated_Rb/aggregated_RBs ;
353 end ;
354 %Note : i f aggregated_Rb=0, meaning that no b i t r a t e has been
355 %obtained in the l a s t per iod , the value o f Rb_estimate_per_RB i s
356 %kept to the i n i t i a l va lue .
357 BS(n) . Rb_estimate_per_RB_sample ( t_index )=BS(n) . Rb_estimate_per_RB ;
358
359 %Check conges t i on s t a t u s :
360 i f BS(n) . conges t ion_status
361 BS(n) . num_congested_samples=BS(n) . num_congested_samples+1;
362 end ;
363 end ;
364
365 %2) Compute the average RB u t i l i s a t i o n o f each tenant at multi−c e l l l e v e l
366 %and the aggregate b i t r a t e o f each tenant at multi−c e l l l e v e l
367 f o r s =1: c o n f i g . num_tenants
368 c o n f i g . C_avg_multi_cell ( s ) =0;
369 c o n f i g . aggregate_avg_Rb_multi_cell ( s ) =0;
370 f o r n=1: c o n f i g . num_cells
371 c o n f i g . C_avg_multi_cell ( s )=c o n f i g . C_avg_multi_cell ( s )+BS(n) .

avg_RB_util isation_per_tenant ( s ) ;
372 c o n f i g . aggregate_avg_Rb_multi_cell ( s )=c o n f i g .

aggregate_avg_Rb_multi_cell ( s )+BS(n) .
avg_bit_rate_assigned_per_tenant ( s ) ;

373 end ;
374 c o n f i g . C_avg_multi_cell ( s )=c o n f i g . C_avg_multi_cell ( s ) / c o n f i g . num_cells

;
375 c o n f i g . C_avg_multi_cell_samples ( t_index , s )=c o n f i g . C_avg_multi_cell ( s ) ;
376 end ;
377
378 %3) Compute and update the delta_C parameters
379 %Computation o f de l taCext :
380 f o r n=1: c o n f i g . num_cells
381 f o r s =1: c o n f i g . num_tenants
382 BS(n) . DeltaCext_sample ( t_index , s ) =0;
383 f o r saux =1: c o n f i g . num_tenants
384 i f saux~=s
385 %BS(n) . DeltaCext_sample ( t_index , s )=BS(n) . DeltaCext_sample (

t_index , s )+c o n f i g .C( saux )−BS(n) .
avg_RB_util isation_per_tenant ( saux ) ;

386 BS(n) . DeltaCext_sample ( t_index , s )=BS(n) . DeltaCext_sample (
t_index , s )+c o n f i g .C( saux ) ∗ c o n f i g . c o r r e c t i o n _ f a c t o r−BS(
n) . avg_RB_util isation_per_tenant ( saux ) ;

387 end ;
388 end ;
389 BS(n) . DeltaCext_sample ( t_index , s )=max(BS(n) . DeltaCext_sample (

t_index , s ) , 0 ) ;
390
391 %Average :
392 i f t_index<=c o n f i g . time_window_delta_averaging_samples
393 BS(n) . DeltaCext ( s )=mean(BS(n) . DeltaCext_sample ( 1 : t_index , s ) ) ;
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394 e l s e
395 BS(n) . DeltaCext ( s )=mean(BS(n) . DeltaCext_sample ( ( t_index−c o n f i g .

time_window_delta_averaging_samples ) : t_index , s ) ) ;
396 end ;
397
398 BS(n) . DeltaCext_avg_sample ( t_index , s )=BS(n) . DeltaCext ( s ) ;
399 end ;
400 end ;
401
402 %Computation o f de l taCbal and DeltaC t o t a l :
403 f o r s =1: c o n f i g . num_tenants
404 f o r n=1: c o n f i g . num_cells
405 BS(n) . DeltaCbal_sample ( t_index , s )=( c o n f i g . num_cells−1)∗ c o n f i g .C( s )

;
406 f o r naux=1: c o n f i g . num_cells
407 i f naux~=n
408 BS(n) . DeltaCbal_sample ( t_index , s )=BS(n) . DeltaCbal_sample (

t_index , s )−BS( naux ) . avg_RB_util isation_per_tenant ( s ) ;
409 end ;
410 end ;
411
412 %Average :
413 i f t_index<=c o n f i g . time_window_delta_averaging_samples
414 BS(n) . DeltaCbal ( s )=mean(BS(n) . DeltaCbal_sample ( 1 : t_index , s ) ) ;
415 e l s e
416 BS(n) . DeltaCbal ( s )=mean(BS(n) . DeltaCbal_sample ( ( t_index−c o n f i g .

time_window_delta_averaging_samples ) : t_index , s ) ) ;
417 end ;
418 BS(n) . DeltaCbal_avg_sample ( t_index , s )=BS(n) . DeltaCbal ( s ) ;
419
420 %Computation o f DeltaC t o t a l :
421
422 i f BS(n) . DeltaCext_sample ( t_index , s )>BS(n) . Cextra_min
423 BS(n) . DeltaC_sample ( t_index , s )=BS(n) . beta ∗BS(n) .

DeltaCext_sample ( t_index , s ) ;
424 e l s e
425 BS(n) . DeltaC_sample ( t_index , s )=BS(n) . gamma∗BS(n) .

DeltaCbal_sample ( t_index , s ) ;
426 end ;
427
428 %Average :
429 i f t_index<=c o n f i g . time_window_delta_averaging_samples
430 BS(n) . DeltaC ( s )=mean(BS(n) . DeltaC_sample ( 1 : t_index , s ) ) ;
431 e l s e
432 BS(n) . DeltaC ( s )=mean(BS(n) . DeltaC_sample ( ( t_index−c o n f i g .

time_window_delta_averaging_samples ) : t_index , s ) ) ;
433 end ;
434 BS(n) . DeltaC_avg_sample ( t_index , s )=BS(n) . DeltaC ( s ) ;
435
436 end ;
437 end ;
438 end ;
439
440 % Measure f i n a l s t a t i s t i c s and p l o t s .
441
442 %Average along the whole s imu la t i on :
443 s t a t s . avg_Cshare_multicel l=mean( c o n f i g . C_avg_multi_cell_samples ) ;
444
445 s t a t s . num_blocks_total=z e r o s (1 , c o n f i g . num_tenants ) ;
446 s t a t s . num_session_attempts_total=z e r o s (1 , c o n f i g . num_tenants ) ;
447 s t a t s . o f f e r ed_load_tota l=z e r o s (1 , c o n f i g . num_tenants ) ;
448 s t a t s . congest ion_prob_per_cel l=z e r o s ( c o n f i g . num_cells , 1 ) ;
449
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450 s t a t s . num_adm_above_SAGBR_total=z e r o s (1 , c o n f i g . num_tenants ) ; %For the
cellSAGBR

451 s t a t s . num_rej_below_SAGBR_total=z e r o s (1 , c o n f i g . num_tenants ) ; %For the
cellSAGBR

452
453 f o r n=1: c o n f i g . num_cells
454 s t a t s . avg_Cshare_per_cell (n , : )=mean(BS(n) .

avg_RB_utilisation_per_tenant_sample ) ;
455 s t a t s . avg_Cbal (n , : )=mean(BS(n) . DeltaCbal_avg_sample ) ;
456 s t a t s . avg_Cext (n , : )=mean(BS(n) . DeltaCext_avg_sample ) ;
457 s t a t s . avg_Ctot (n , : )=mean(BS(n) . DeltaC_avg_sample ) ;
458 s t a t s . avg_bit_rate_per_tenant_per_cell (n , : )=mean(BS(n) .

bit_rate_assigned_per_tenant_sample ) ;
459 f o r s =1: c o n f i g . num_tenants
460 s t a t s . blocking_prob_per_cel l (n , s )=BS(n) . num_blocks ( s ) /BS(n) .

num_session_attempts ( s ) ;
461 s t a t s . num_blocks_total ( s )=s t a t s . num_blocks_total ( s )+BS(n) . num_blocks ( s

) ;
462 s t a t s . num_session_attempts_total ( s )=s t a t s . num_session_attempts_total ( s

)+BS(n) . num_session_attempts ( s ) ;
463 s t a t s . o f f e r ed_load_tota l ( s )=s t a t s . o f f e r ed_load_tota l ( s )+BS(n) .

o f f e r ed_load ( s ) ;
464
465 s t a t s . adm_prob_above_SAGBR_per_cell (n , s )=BS(n) .num_adm_above_SAGBR( s ) /

BS(n) . num_session_attempts ( s ) ;
466 s t a t s . rej_prob_below_SAGBR_per_cell (n , s )=BS(n) . num_rej_below_SAGBR( s ) /

BS(n) . num_session_attempts ( s ) ;
467
468 s t a t s . num_adm_above_SAGBR_total( s )=s t a t s . num_adm_above_SAGBR_total( s )+

BS(n) .num_adm_above_SAGBR( s ) ;
469 s t a t s . num_rej_below_SAGBR_total ( s )=s t a t s . num_rej_below_SAGBR_total ( s )+

BS(n) . num_rej_below_SAGBR( s ) ;
470
471 s t a t s . data_volume_per_cell (n , s )=BS(n) . data_volume_per_tenant ( s ) /(8∗1E6

) ; %Measured in GByte
472 end ;
473 s t a t s . avg_sess ion_rate_per_cel l (n , : )=BS(n) . num_session_attempts/ c o n f i g .

s imulat ion_durat ion ;
474 s t a t s . o f f e r ed_load_per_ce l l (n , : )=BS(n) . o f f e r ed_load / c o n f i g .

s imulat ion_durat ion ; %Measured in kb/ s
475 s t a t s . congest ion_prob_per_cel l (n )=BS(n) . num_congested_samples/ t_index ;
476 s t a t s . avg_RB_ocupation (n)=mean(BS(n) . total_assigned_RB_sample ) ;
477 end ;
478 s t a t s . b locking_prob_total=s t a t s . num_blocks_total . / s t a t s .

num_session_attempts_total ;
479 s t a t s . avg_sess ion_rate_tota l=s t a t s . num_session_attempts_total / c o n f i g .

s imulat ion_durat ion ;
480 s t a t s . o f f e r ed_load_tota l=s t a t s . o f f e r ed_load_tota l / c o n f i g . s imulat ion_durat ion ;
481 s t a t s . avg_bit_rate_per_tenant_total=sum( s t a t s . avg_bit_rate_per_tenant_per_cell

, 1 ) ;
482 s t a t s . data_volume_per_tenant=sum( s t a t s . data_volume_per_cell , 1 ) ;
483
484 s t a t s . adm_prob_above_SAGBR_total=s t a t s . num_adm_above_SAGBR_total . / s t a t s .

num_session_attempts_total ; %For the cellSAGBR
485 s t a t s . rej_prob_below_SAGBR_total=s t a t s . num_rej_below_SAGBR_total . / s t a t s .

num_session_attempts_total ; %For the cellSAGBR
486
487 s t a t s .adm_prob_above_GLOBAL_SAGBR=s t a t s . num_adm_above_global_SAGBR . / s t a t s .

num_session_attempts_total ; %For the g l o b a l SAGBR
488 s t a t s . rej_prob_below_GLOBAL_SAGBR=s t a t s . num_rej_below_global_SAGBR . / s t a t s .

num_session_attempts_total ; %For the g l o b a l SAGBR
489
490 %generate_plot s ( con f i g , BS) ;
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491
492 a r r i v a l _ l o g=a r r i v a l _ l o g ( 1 : num_entries , 1 : index_log−1) ; %To reduce the s i z e o f

the a r r i v a l _ l o g
493
494 name_output_file =[ ’ sim2CellsEqual_T1_ ’ , num2str ( loop_var iab le ) , ’_T2_0. 2

_DeltaCorrVAR . mat ’ ] ;
495 save ( name_output_file ) ;
496
497 end ;

Q-Learning algorithm

1 c l o s e a l l
2 c l e a r a l l
3
4 %% Fuzzy Q−Learning %%
5
6 gamma = 0 . 7 ; % di scount f a c t o r
7 eta = 0 . 5 ; % parameter l e a r n i n g f a c t o r
8 e p s i l o n = 0 . 9 ; % e x p l o r a t i o n p r o b a b i l i t y (1− e p s i l o n = e x p l o i t / e p s i l o n =

e x p lo r e )
9

10 % s t a t e s
11 f o r i =1:81
12 s t a t e ( i ) = i ;
13 end
14 % a c t i o n s
15 a c t i o n = [ 0 . 0 5 , 0 , −0 . 0 5 ] ;
16 % i n i t i a l Q matrix
17 q1 = z e r o s ( l ength ( s t a t e ) , l ength ( a c t i o n ) ) ;
18 epoch = 500 ; % maximum number o f i t e r a t i o n s
19 s tate_idx = z e r o s ( epoch , 1 ) ;
20 act ion_idx = z e r o s ( epoch , 1 ) ;
21 s tate_idx (1 ) = 15 ; % the i n i t i a l s t a t e to begin from
22 ST = [ ] ;
23 FUZZY = [ ] ;
24 alpha_i = [ ] ;
25 Q1 = z e r o s ( l ength ( s t a t e ) , l ength ( a c t i o n ) ) ;
26 matrix = z e r o s ( epoch , 3 ) ;
27 V_t = z e r o s ( l ength ( s t a t e ) ,1 ) ;
28 act = z e r o s ( epoch , 1 ) ;
29 reward = z e r o s ( epoch +1 ,1) ;
30 r1 = z e r o s ( epoch , 1 ) ;
31 r2 = z e r o s ( epoch , 1 ) ;
32 Pblock1 = z e r o s ( epoch +1 ,1) ;
33 Pblock2 = z e r o s ( epoch +1 ,1) ;
34 Pblock1_nd = z e r o s ( epoch +1 ,1) ;
35 Pblock2_nd = z e r o s ( epoch +1 ,1) ;
36 Pblock11 = z e r o s ( epoch +1 ,1) ;
37 Pblock12 = z e r o s ( epoch +1 ,1) ;
38 Pblock21 = z e r o s ( epoch +1 ,1) ;
39 Pblock22 = z e r o s ( epoch +1 ,1) ;
40 Pblock11_nd = z e r o s ( epoch +1 ,1) ;
41 Pblock12_nd = z e r o s ( epoch +1 ,1) ;
42 Pblock21_nd = z e r o s ( epoch +1 ,1) ;
43 Pblock22_nd = z e r o s ( epoch +1 ,1) ;
44 BitRate1 = z e r o s ( epoch , 1 ) ;
45 BitRate2 = z e r o s ( epoch , 1 ) ;
46 Q_error1 = z e r o s ( epoch , 1 ) ;
47 constant1 = −247;
48 constant2 = 50 ;
49 constant3 = 3 ;
50 d e l t a = z e r o s ( epoch , 1 ) ;
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51 delta_T1_C1=0;
52 delta_T1_C2=0;
53 delta_T2_C1=0;
54 delta_T2_C2=0;
55
56 fismat_T1_C2 = r e a d f i s ( ’ Fuzzy2−Train ’ ) ;
57 fismat_T2_C1 = r e a d f i s ( ’ Fuzzy3−Train ’ ) ;
58 fismat_T2_C2 = r e a d f i s ( ’ Fuzzy4−Train ’ ) ;
59
60 a = 0 . 0 5 ;
61 b = 0 . 3 ;
62 c = 0 . 7 5 ;
63 d = 1 . 1 5 ;
64 lambda_t1_c1 = (b−a ) .∗ rand ( epoch , 1 ) + a ;
65 lambda_t1_c2 = (b−a ) .∗ rand ( epoch , 1 ) + a ;
66 lambda_t2_c1 = (d−c ) .∗ rand ( epoch , 1 ) + c ;
67 lambda_t2_c2 = (d−c ) .∗ rand ( epoch , 1 ) + c ;
68
69 trimf_1 = [−0.2 0 .2 0 . 6 ] ;
70 trapmf_1 = [−1.2 −0.4 −0.2 0 . 2 ] ;
71 trapmf_2 = [ 0 . 2 0 .6 0 .8 1 . 6 ] ;
72
73 mean11 = 10 ;
74 mean12 = 30 ;
75 mean13 = 50 ;
76 mean21 = 10 ;
77 mean22 = 30 ;
78 mean23 = 50 ;
79 mean31 = 10 ;
80 mean32 = 30 ;
81 mean33 = 50 ;
82 mean41 = 10 ;
83 mean42 = 30 ;
84 mean43 = 50 ;
85 sigma11 = 6 ;
86 sigma12 = 11 ;
87 sigma13 = 6 ;
88 sigma21 = 6 ;
89 sigma22 = 11 ;
90 sigma23 = 6 ;
91 sigma31 = 6 ;
92 sigma32 = 11 ;
93 sigma33 = 6 ;
94 sigma41 = 6 ;
95 sigma42 = 11 ;
96 sigma43 = 6 ;
97
98 %% the main loop o f the a lgor i thm
99

100 f o r k = 1 : epoch
101
102 di sp ( [ ’ i t e r a t i o n : ’ num2str ( k ) ] ) ;
103
104 [OL_T1_C1,OL_T1_C2,OL_T2_C1,OL_T2_C2, Pblock_1 , Pblock_2]=

sim_AC_v3( lambda_t1_c1 ( k ) , lambda_t1_c2 ( k ) , lambda_t2_c1 ( k ) ,
lambda_t2_c2 ( k ) ) ;

105 OL = [OL_T1_C1,OL_T1_C2,OL_T2_C1,OL_T2_C2 ] ;
106 OL_Cell_1 = [OL(1) ,OL(3) ] ;
107 OL_Cell_2 = [OL(2) ,OL(4) ] ;
108 Pblock = [ Pblock_1 , Pblock_2 ] ;
109
110 ST ( : , 1 ) = exp(−(OL_Cell_1 (1 )−mean11 ) ^2/(2∗ sigma11 ^2) ) ; % Low

OL1
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111 ST ( : , 2 ) = exp(−(OL_Cell_1 (1 )−mean12 ) ^2/(2∗ sigma12 ^2) ) ; %
Medium OL1

112 ST ( : , 3 ) = exp(−(OL_Cell_1 (1 )−mean13 ) ^2/(2∗ sigma13 ^2) ) ; % High
OL1

113
114 ST ( : , 4 ) = exp(−(OL_Cell_1 (2 )−mean21 ) ^2/(2∗ sigma21 ^2) ) ; % Low

OL2
115 ST ( : , 5 ) = exp(−(OL_Cell_1 (2 )−mean22 ) ^2/(2∗ sigma22 ^2) ) ; %

Medium OL2
116 ST ( : , 6 ) = exp(−(OL_Cell_1 (2 )−mean23 ) ^2/(2∗ sigma23 ^2) ) ; % High

OL2
117
118 ST ( : , 7 ) = trapmf ( delta_T1_C1 , trapmf_1 ) ; % Low Delta_T1_C1
119 ST ( : , 8 ) = t r i m f ( delta_T1_C1 , trimf_1 ) ; % Medium Delta_T1_C1
120 ST ( : , 9 ) = trapmf ( delta_T1_C1 , trapmf_2 ) ; % High Delta_T1_C1
121
122 ST ( : , 1 0 ) = trapmf ( delta_T2_C1 , trapmf_1 ) ; % Low Delta_T2_C1
123 ST ( : , 1 1 ) = t r i m f ( delta_T2_C1 , trimf_1 ) ; % Medium Delta_T2_C1
124 ST ( : , 1 2 ) = trapmf ( delta_T2_C1 , trapmf_2 ) ; % High Delta_T2_C1
125
126 %% Star t Fuzzy v a r i a b l e s %%
127 FUZZY( : , 1 ) = [ ST ( : , 1 ) ST ( : , 4 ) ST ( : , 7 ) ST ( : , 1 0 ) ] ; % LLLL
128 FUZZY( : , 2 ) = [ ST ( : , 1 ) ST ( : , 4 ) ST ( : , 7 ) ST ( : , 1 1 ) ] ; % LLLM
129 FUZZY( : , 3 ) = [ ST ( : , 1 ) ST ( : , 4 ) ST ( : , 7 ) ST ( : , 1 2 ) ] ; % LLLH
130
131 FUZZY( : , 4 ) = [ ST ( : , 1 ) ST ( : , 4 ) ST ( : , 8 ) ST ( : , 1 0 ) ] ; % LLML
132 FUZZY( : , 5 ) = [ ST ( : , 1 ) ST ( : , 4 ) ST ( : , 8 ) ST ( : , 1 1 ) ] ; % LLMM
133 FUZZY( : , 6 ) = [ ST ( : , 1 ) ST ( : , 4 ) ST ( : , 8 ) ST ( : , 1 2 ) ] ; % LLMH
134
135 FUZZY( : , 7 ) = [ ST ( : , 1 ) ST ( : , 4 ) ST ( : , 9 ) ST ( : , 1 0 ) ] ; % LLHL
136 FUZZY( : , 8 ) = [ ST ( : , 1 ) ST ( : , 4 ) ST ( : , 9 ) ST ( : , 1 1 ) ] ; % LLHM
137 FUZZY( : , 9 ) = [ ST ( : , 1 ) ST ( : , 4 ) ST ( : , 9 ) ST ( : , 1 2 ) ] ; % LLH
138
139 FUZZY( : , 1 0 ) = [ ST ( : , 1 ) ST ( : , 5 ) ST ( : , 7 ) ST( : , 1 0 ) ] ; % LMLL
140 FUZZY( : , 1 1 ) = [ ST ( : , 1 ) ST ( : , 5 ) ST ( : , 7 ) ST( : , 1 1 ) ] ; % LMLM
141 FUZZY( : , 1 2 ) = [ ST ( : , 1 ) ST ( : , 5 ) ST ( : , 7 ) ST( : , 1 2 ) ] ; % LMLH
142
143 FUZZY( : , 1 3 ) = [ ST ( : , 1 ) ST ( : , 5 ) ST ( : , 8 ) ST( : , 1 0 ) ] ; % LMML
144 FUZZY( : , 1 4 ) = [ ST ( : , 1 ) ST ( : , 5 ) ST ( : , 8 ) ST( : , 1 1 ) ] ; % LMMM
145 FUZZY( : , 1 5 ) = [ ST ( : , 1 ) ST ( : , 5 ) ST ( : , 8 ) ST( : , 1 2 ) ] ; % LMMH
146
147 FUZZY( : , 1 6 ) = [ ST ( : , 1 ) ST ( : , 5 ) ST ( : , 9 ) ST( : , 1 0 ) ] ; % LMHL
148 FUZZY( : , 1 7 ) = [ ST ( : , 1 ) ST ( : , 5 ) ST ( : , 9 ) ST( : , 1 1 ) ] ; % LMHM
149 FUZZY( : , 1 8 ) = [ ST ( : , 1 ) ST ( : , 5 ) ST ( : , 9 ) ST( : , 1 2 ) ] ; % LMHH
150
151 FUZZY( : , 1 9 ) = [ ST ( : , 1 ) ST ( : , 6 ) ST ( : , 7 ) ST( : , 1 0 ) ] ; % LHLL
152 FUZZY( : , 2 0 ) = [ ST ( : , 1 ) ST ( : , 6 ) ST ( : , 7 ) ST( : , 1 1 ) ] ; % LHLM
153 FUZZY( : , 2 1 ) = [ ST ( : , 1 ) ST ( : , 6 ) ST ( : , 7 ) ST( : , 1 2 ) ] ; % LHLH
154
155 FUZZY( : , 2 2 ) = [ ST ( : , 1 ) ST ( : , 6 ) ST ( : , 8 ) ST( : , 1 0 ) ] ; % LHML
156 FUZZY( : , 2 3 ) = [ ST ( : , 1 ) ST ( : , 6 ) ST ( : , 8 ) ST( : , 1 1 ) ] ; % LHMM
157 FUZZY( : , 2 4 ) = [ ST ( : , 1 ) ST ( : , 6 ) ST ( : , 8 ) ST( : , 1 2 ) ] ; % LHMH
158
159 FUZZY( : , 2 5 ) = [ ST ( : , 1 ) ST ( : , 6 ) ST ( : , 9 ) ST( : , 1 0 ) ] ; % LHHL
160 FUZZY( : , 2 6 ) = [ ST ( : , 1 ) ST ( : , 6 ) ST ( : , 9 ) ST( : , 1 1 ) ] ; % LHHM
161 FUZZY( : , 2 7 ) = [ ST ( : , 1 ) ST ( : , 6 ) ST ( : , 9 ) ST( : , 1 2 ) ] ; % LHHH
162
163 FUZZY( : , 2 8 ) = [ ST ( : , 2 ) ST ( : , 4 ) ST ( : , 7 ) ST( : , 1 0 ) ] ; % MLLL
164 FUZZY( : , 2 9 ) = [ ST ( : , 2 ) ST ( : , 4 ) ST ( : , 7 ) ST( : , 1 1 ) ] ; % MLLM
165 FUZZY( : , 3 0 ) = [ ST ( : , 2 ) ST ( : , 4 ) ST ( : , 7 ) ST( : , 1 2 ) ] ; % MLLH
166
167 FUZZY( : , 3 1 ) = [ ST ( : , 2 ) ST ( : , 4 ) ST ( : , 8 ) ST( : , 1 0 ) ] ; % MLML
168 FUZZY( : , 3 2 ) = [ ST ( : , 2 ) ST ( : , 4 ) ST ( : , 8 ) ST( : , 1 1 ) ] ; % MLMM
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169 FUZZY( : , 3 3 ) = [ ST ( : , 2 ) ST ( : , 4 ) ST ( : , 8 ) ST( : , 1 2 ) ] ; % MLMH
170
171 FUZZY( : , 3 4 ) = [ ST ( : , 2 ) ST ( : , 4 ) ST ( : , 9 ) ST( : , 1 0 ) ] ; % MLHL
172 FUZZY( : , 3 5 ) = [ ST ( : , 2 ) ST ( : , 4 ) ST ( : , 9 ) ST( : , 1 1 ) ] ; % MLHM
173 FUZZY( : , 3 6 ) = [ ST ( : , 2 ) ST ( : , 4 ) ST ( : , 9 ) ST( : , 1 2 ) ] ; % MLHH
174
175 FUZZY( : , 3 7 ) = [ ST ( : , 2 ) ST ( : , 5 ) ST ( : , 7 ) ST( : , 1 0 ) ] ; % MMLL
176 FUZZY( : , 3 8 ) = [ ST ( : , 2 ) ST ( : , 5 ) ST ( : , 7 ) ST( : , 1 1 ) ] ; % MMLM
177 FUZZY( : , 3 9 ) = [ ST ( : , 2 ) ST ( : , 5 ) ST ( : , 7 ) ST( : , 1 2 ) ] ; % MMLH
178
179 FUZZY( : , 4 0 ) = [ ST ( : , 2 ) ST ( : , 5 ) ST ( : , 8 ) ST( : , 1 0 ) ] ; % MMML
180 FUZZY( : , 4 1 ) = [ ST ( : , 2 ) ST ( : , 5 ) ST ( : , 8 ) ST( : , 1 1 ) ] ; % MMMM
181 FUZZY( : , 4 2 ) = [ ST ( : , 2 ) ST ( : , 5 ) ST ( : , 8 ) ST( : , 1 2 ) ] ; % MMMH
182
183 FUZZY( : , 4 3 ) = [ ST ( : , 2 ) ST ( : , 5 ) ST ( : , 9 ) ST( : , 1 0 ) ] ; % MMHL
184 FUZZY( : , 4 4 ) = [ ST ( : , 2 ) ST ( : , 5 ) ST ( : , 9 ) ST( : , 1 1 ) ] ; % MMHM
185 FUZZY( : , 4 5 ) = [ ST ( : , 2 ) ST ( : , 5 ) ST ( : , 9 ) ST( : , 1 2 ) ] ; % MMHH
186
187 FUZZY( : , 4 6 ) = [ ST ( : , 2 ) ST ( : , 6 ) ST ( : , 7 ) ST( : , 1 0 ) ] ; % MHLL
188 FUZZY( : , 4 7 ) = [ ST ( : , 2 ) ST ( : , 6 ) ST ( : , 7 ) ST( : , 1 1 ) ] ; % MHLM
189 FUZZY( : , 4 8 ) = [ ST ( : , 2 ) ST ( : , 6 ) ST ( : , 7 ) ST( : , 1 2 ) ] ; % MHLH
190
191 FUZZY( : , 4 9 ) = [ ST ( : , 2 ) ST ( : , 6 ) ST ( : , 8 ) ST( : , 1 0 ) ] ; % MHML
192 FUZZY( : , 5 0 ) = [ ST ( : , 2 ) ST ( : , 6 ) ST ( : , 8 ) ST( : , 1 1 ) ] ; % MHMM
193 FUZZY( : , 5 1 ) = [ ST ( : , 2 ) ST ( : , 6 ) ST ( : , 8 ) ST( : , 1 2 ) ] ; % MHMH
194
195 FUZZY( : , 5 2 ) = [ ST ( : , 2 ) ST ( : , 6 ) ST ( : , 9 ) ST( : , 1 0 ) ] ; % MHHL
196 FUZZY( : , 5 3 ) = [ ST ( : , 2 ) ST ( : , 6 ) ST ( : , 9 ) ST( : , 1 1 ) ] ; % MHHM
197 FUZZY( : , 5 4 ) = [ ST ( : , 2 ) ST ( : , 6 ) ST ( : , 9 ) ST( : , 1 2 ) ] ; % MHHH
198
199 FUZZY( : , 5 5 ) = [ ST ( : , 3 ) ST ( : , 4 ) ST ( : , 7 ) ST( : , 1 0 ) ] ; % HLLL
200 FUZZY( : , 5 6 ) = [ ST ( : , 3 ) ST ( : , 4 ) ST ( : , 7 ) ST( : , 1 1 ) ] ; % HLLM
201 FUZZY( : , 5 7 ) = [ ST ( : , 3 ) ST ( : , 4 ) ST ( : , 7 ) ST( : , 1 2 ) ] ; % HLLH
202
203 FUZZY( : , 5 8 ) = [ ST ( : , 3 ) ST ( : , 4 ) ST ( : , 8 ) ST( : , 1 0 ) ] ; % HLML
204 FUZZY( : , 5 9 ) = [ ST ( : , 3 ) ST ( : , 4 ) ST ( : , 8 ) ST( : , 1 1 ) ] ; % HLMM
205 FUZZY( : , 6 0 ) = [ ST ( : , 3 ) ST ( : , 4 ) ST ( : , 8 ) ST( : , 1 2 ) ] ; % HLMH
206
207 FUZZY( : , 6 1 ) = [ ST ( : , 3 ) ST ( : , 4 ) ST ( : , 9 ) ST( : , 1 0 ) ] ; % HLHL
208 FUZZY( : , 6 2 ) = [ ST ( : , 3 ) ST ( : , 4 ) ST ( : , 9 ) ST( : , 1 1 ) ] ; % HLHM
209 FUZZY( : , 6 3 ) = [ ST ( : , 3 ) ST ( : , 4 ) ST ( : , 9 ) ST( : , 1 2 ) ] ; % HLHH
210
211 FUZZY( : , 6 4 ) = [ ST ( : , 3 ) ST ( : , 5 ) ST ( : , 7 ) ST( : , 1 0 ) ] ; % HMLL
212 FUZZY( : , 6 5 ) = [ ST ( : , 3 ) ST ( : , 5 ) ST ( : , 7 ) ST( : , 1 1 ) ] ; % HMLM
213 FUZZY( : , 6 6 ) = [ ST ( : , 3 ) ST ( : , 5 ) ST ( : , 7 ) ST( : , 1 2 ) ] ; % HMLH
214
215 FUZZY( : , 6 7 ) = [ ST ( : , 3 ) ST ( : , 5 ) ST ( : , 8 ) ST( : , 1 0 ) ] ; % HMML
216 FUZZY( : , 6 8 ) = [ ST ( : , 3 ) ST ( : , 5 ) ST ( : , 8 ) ST( : , 1 1 ) ] ; % HMMM
217 FUZZY( : , 6 9 ) = [ ST ( : , 3 ) ST ( : , 5 ) ST ( : , 8 ) ST( : , 1 2 ) ] ; % HMMH
218
219 FUZZY( : , 7 0 ) = [ ST ( : , 3 ) ST ( : , 5 ) ST ( : , 9 ) ST( : , 1 0 ) ] ; % HMHL
220 FUZZY( : , 7 1 ) = [ ST ( : , 3 ) ST ( : , 5 ) ST ( : , 9 ) ST( : , 1 1 ) ] ; % HMHM
221 FUZZY( : , 7 2 ) = [ ST ( : , 3 ) ST ( : , 5 ) ST ( : , 9 ) ST( : , 1 2 ) ] ; % HMHH
222
223 FUZZY( : , 7 3 ) = [ ST ( : , 3 ) ST ( : , 6 ) ST ( : , 7 ) ST( : , 1 0 ) ] ; % HHLL
224 FUZZY( : , 7 4 ) = [ ST ( : , 3 ) ST ( : , 6 ) ST ( : , 7 ) ST( : , 1 1 ) ] ; % HHLM
225 FUZZY( : , 7 5 ) = [ ST ( : , 3 ) ST ( : , 6 ) ST ( : , 7 ) ST( : , 1 2 ) ] ; % HHLH
226
227 FUZZY( : , 7 6 ) = [ ST ( : , 3 ) ST ( : , 6 ) ST ( : , 8 ) ST( : , 1 0 ) ] ; % HHML
228 FUZZY( : , 7 7 ) = [ ST ( : , 3 ) ST ( : , 6 ) ST ( : , 8 ) ST( : , 1 1 ) ] ; % HHMM
229 FUZZY( : , 7 8 ) = [ ST ( : , 3 ) ST ( : , 6 ) ST ( : , 8 ) ST( : , 1 2 ) ] ; % HHMH
230
231 FUZZY( : , 7 9 ) = [ ST ( : , 3 ) ST ( : , 6 ) ST ( : , 9 ) ST( : , 1 0 ) ] ; % HHHL
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232 FUZZY( : , 8 0 ) = [ ST ( : , 3 ) ST ( : , 6 ) ST ( : , 9 ) ST( : , 1 1 ) ] ; % HHHM
233 FUZZY( : , 8 1 ) = [ ST ( : , 3 ) ST ( : , 6 ) ST ( : , 9 ) ST( : , 1 2 ) ] ; % HHHH
234
235 %% End Fuzzy v a r i a b l e s %%
236
237 f o r i =1:81
238 alpha_i (k , i ) = FUZZY(1 , i ) ∗FUZZY(2 , i ) ∗FUZZY(3 , i ) ∗FUZZY(4 , i ) ;
239 end
240
241 [ strength_max , state_idx_max ] = max( alpha_i (k , : ) ) ;
242
243 i f k~=1
244 s tate_idx ( k ) = state_idx_max ;
245 % Compute the value o f the new s t a t e %
246 f o r i =1: l ength ( s t a t e )
247 V_t( state_idx ( k ) ) = alpha_i (k , i ) ∗max( q1 ( i , act ion_idx (k

−1) ) ) + V_t( state_idx ( k ) ) ;
248 end
249 % Calcu la te the e r r o r s i g n a l %
250 Q_error1 ( k ) = reward ( k ) + gamma∗V_t( state_idx ( k ) )−Q1( state_idx

(k−1) , act ion_idx (k−1) ) ;
251
252 % Update q−va lues by an ord inary g rad i en t descent method %
253 q1 ( state_idx ( k ) ,umax( i ) ) = q1 ( state_idx ( k ) ,umax( i ) ) + eta ∗

Q_error1 ( k ) ∗alpha_i (k−1, state_idx ( k ) ) ;
254 end
255
256 r=rand ; % get 1 uniform random number
257 prob_area=sum( r>=cumsum ( [ 0 , 1−e p s i l o n , e p s i l o n ] ) ) ; % check i t to

be in which p r o b a b i l i t y area
258
259 f o r i =1: l ength ( s t a t e )
260 % choose e i t h e r e x p l o r e or e x p l o i t
261 i f prob_area == 1 % e x p l o i t
262 [ ~ , umax( i ) ]=max( q1 ( i , : ) ) ;
263 a_i ( i ) = a c t i o n (umax( i ) ) ;
264 e l s e % e xp l o r e
265 [ a_i ( i ) ,umax( i ) ] = datasample ( act ion , 1 ) ; % choose 1 a c t i o n

randomly ( uniform random d i s t r i b u t i o n )
266 end
267 end
268
269 % Calcu la te the g l o b a l a c t i o n %
270
271 f o r i =1: l ength ( s t a t e )
272 act ( k ) = act ( k ) + alpha_i (k , i ) ∗a_i ( i ) ;
273 end
274
275 [ c index ] = min ( abs ( act ion−act ( k ) ) ) ;
276 act ion_idx ( k ) = f i n d ( a c t i o n==a c t i o n ( index ) ) ; % id o f the chosen

a c t i o n
277
278 % Approximate the Q−f u n c t i o n from the cur rent q−va lue s and the

degree
279 % of truth o f the r u l e s
280
281 f o r i =1: l ength ( s t a t e )
282 Q1( state_idx ( k ) , act ion_idx ( k ) ) = alpha_i (k , i ) ∗q1 ( i ,

umax( i ) )+Q1( state_idx_max , act ion_idx ( k ) ) ;
283 end
284
285 f o r ( i =1:81)
286 q_values1 ( i , k ) = Q1( i , 1 ) ;
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287 q_values2 ( i , k ) = Q1( i , 2 ) ;
288 q_values3 ( i , k ) = Q1( i , 3 ) ;
289 q_values4 ( i , k ) = Q1( i , 4 ) ;
290 q_values5 ( i , k ) = Q1( i , 5 ) ;
291 end
292
293 %% Evolve to the next s t a t e %%
294
295 % Observe the re in fo r cement s i g n a l %
296
297 delta_T1_C1 = delta_T1_C1 + a c t i o n ( act ion_idx ( k ) ) ;
298
299 delta_T1_C2 = e v a l f i s (OL, fismat_T1_C2 ) ;
300 delta_T2_C1 = e v a l f i s (OL, fismat_T2_C1 ) ;
301 delta_T2_C2 = e v a l f i s (OL, fismat_T2_C2 ) ;
302
303 [ Pblock1 ( k+1) , Pblock2 ( k+1) , Pblock11 ( k+1) , Pblock12 ( k+1) , Pblock21 ( k

+1) , Pblock22 ( k+1)]=sim_AC_v4( lambda_t1_c1 ( k ) , lambda_t1_c2 ( k ) ,
lambda_t2_c1 ( k ) , lambda_t2_c2 ( k ) , delta_T1_C1 , delta_T1_C2 ,
delta_T2_C1 , delta_T2_C2 ) ;

304 [ Pblock1_nd ( k+1) , Pblock2_nd ( k+1) , Pblock11_nd ( k+1) , Pblock12_nd ( k+1)
, Pblock21_nd ( k+1) , Pblock22_nd ( k+1)]=sim_AC_v6( lambda_t1_c1 ( k ) ,
lambda_t1_c2 ( k ) , lambda_t2_c1 ( k ) , lambda_t2_c2 ( k ) , delta_T1_C1 ,
delta_T1_C2 , delta_T2_C1 , delta_T2_C2 ) ;

305
306 r1 ( k ) = log10 ((1+1/(( Pblock1 ( k+1)+0.1) ∗1000) ) ) ;
307 r2 ( k ) = log10 ((1+1/(( Pblock2 ( k+1)+0.1) ∗1000) ) ) ;
308
309 reward ( k+1) = 100∗( r1 ( k )+r2 ( k ) ) +0.1357;
310
311 % c o n d i t i o n s
312 i f ( delta_T1_C1 <= −0.3 | | delta_T1_C1 >= 0 . 6 5 )
313 delta_T1_C1 = 0 . 2 ;
314 end
315
316 % Update e p s i l o n
317 e p s i l o n = e p s i l o n − (1/650) ;
318 end
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