
 1



Abstract—Network slices combine resource virtualization with
the isolation level required by future 5G applications. In
addition, the use of monitoring and data analytics help to
maintain the required network performance, while reducing total
cost of ownership. In this paper, an architecture to enable
autonomic slice networking is presented. Extended nodes make
local decisions close to network devices, whereas centralized
domain systems collate and export metered data transparently to
customer controllers, all of them leveraging customizable and
isolated data analytics processes. Discovered knowledge can be
applied for both proactive and reactive network slice
reconfiguration, triggered either by service providers or
customers, thanks to the interaction with state-of-the-art
software-defined networking controllers and planning tools. The
architecture is experimentally demonstrated by means of a
complex use case for a multi-domain multilayer MPLS-over-
optical network. In particular, the use case consists of the
following Observe-Analyze-Act loops: i) proactive network slice
rerouting after BER degradation detection in a lightpath
supporting a virtual link (vlink); ii) reactive core network
restoration after optical link failure; and iii) reactive network
slice rerouting after the degraded lightpath is restored. The
proposed architecture is experimentally validated on a
distributed testbed connecting premises in UPC (Spain) and
CNIT (Italy).

Index Terms—Network slicing, Autonomic networking,
Cognitive networking, Monitoring and data analytics.

I. INTRODUCTION

etwork slicing is one of the building blocks to support the
digital transformation promised by 5G [2]. The

convergence of new verticals such as Internet of Things (IoT),
mobile broadband or media networks with traditional data
networks is forcing operators to change architectures
supporting current deployments to the Telecom cloud [3]. In
fact, it is not a trivial task to accommodate the myriad of use
cases and requirements demanded by such vertical, e.g., ultra-
low latency response or high service availability, over a
common network infrastructure.

The concept of network slicing is closely related to network
virtualization [4] to create virtual (logical) networks decoupled
from the underlying physical network. The specific feature

Manuscript received July 1, 2017.
This work was presented in part at OFC 2017 [1].
Luis Velasco (lvelasco@ac.upc.edu), Jose Luis Izquierdo-Zaragoza, Alba

P. Vela and Marc Ruiz are with the optical communications group (GCO) at
Universitat Politecnica de Catalunya (UPC), Barcelona, Spain. Lluis Gifre is
with Universidad Autonoma de Madrid (UAM), Madrid, Spain. Francesco
Paolucci and Andrea Sgambelluri are with Scuola Superiore Sant’Anna, Pisa,
Italy. Filippo Cugini is with CNIT, Pisa, Italy.

behind network slicing is the focus on an end-to-end and
service-oriented view of the network, even considering service
deployment over multiple network segments from different
providers [5].

Specifically, the process of network abstraction presents the
connectivity graph in a way that is independent of the
underlying network domains, so it can be used to create a
single virtualized network that is under the control of a
customer. Currently, the IETF is working to specify the set of
management and control functions to provide an abstraction of
networking resources in the context of the Abstraction and
Control of Traffic Engineered Networks (ACTN) framework
[6]. ACTN framework extends the concept of software-
defined networking (SDN) to consider network and service
abstraction and coordination of resources across multiple
domains and layers.

From an operational perspective, a network slice consists of
a set of network resources and instance-specific policies and
configurations that govern resources’ behavior creating a
complete instantiated logical network to meet certain network
requirements. Since network slices might require stringent
requirements, e.g., ultra-low latency, they need to be isolated
from other traffic or applications in the network to guarantee
the committed performance [5]. In addition, trust in the
integrity of devices and data privacy and secure
communications are required.

To minimize dependency on human administrators, the
concept of autonomic networking entails closing control loops
aiming at providing self-management capabilities [7]; we call
this as the observe-analyze-act (OAA) loop [8] since it
includes: i) monitoring resources in the network nodes, ii)
bringing data analytics techniques to the network nodes, e.g.,
to detect traffic anomalies [9] and degradations [10], as well as
deploying data analytics in centralized systems aiming at
discovering knowledge from data (Knowledge Discovery from
Data, KDD), and iii) using discovered knowledge for self-
management purposes, e.g., in-operation network planning
[11] such as virtual network topology self-adaptation to traffic
changes [12] and optical network re-optimization [13].

In this paper, we extend our work in [1] to present and
experimentally validate an architecture to support autonomic
slice networking. Both network operators and customers can
implement its own business intelligence and efficiently
manage their own resources based on data analytics
techniques, isolated from other slices, through domain
controllers and customer network controllers (CNCs),

An Architecture to Support Autonomic Slice
Networking [Invited]

L. Velasco, Ll. Gifre, J.-L. Izquierdo-Zaragoza, F. Paolucci, A. P. Vela, A. Sgambelluri,
M. Ruiz and F. Cugini

N

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/JLT.2017.2748233

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

 2

respectively. Consequently, total costs of ownership (TCO)
will be kept minimal and revenues will increase while
provisioning higher QoS services. Particularly, the
contribution of this paper is two-fold:

1) The proposed architecture is first motivated in Section II,
where management architecture and slicing concepts are
presented. Section III is devoted to detail the data
monitoring and data analytics architecture, as well as the
different modules in the architecture, including: i) a set of
extended nodes that receive monitoring data records from
network nodes and apply data analytics algorithms to
make local decisions; ii) a hierarchy of controllers making
slide-wide decisions driven by centralized data analytics
engines. The architecture supports network slices by
enforcing a clear separation of resources, where
monitoring data is generated and consumed by its owner.

2) To demonstrate the proposed architecture, a complex use
case entailing three OAA loops is defined in Section IV,
as well as their workflows on the proposed architecture.
The defined OAA loops are: i) proactive network slice
rerouting after BER degradation detection in a lightpath
supporting a virtual link (vlink); ii) reactive core network
restoration after optical link failure; and iii) reactive
network slice rerouting after normal BER conditions in a
previously degraded vlink. The architecture and the use
case are assessed in Section V on a distributed testbed.

II. NETWORK SLICING

Fig. 1a presents a scenario based on the ACTN framework,
where two domains for metro and core support network
slicing. Each domain control/management system includes: i)
the provisioning and reconfiguration module based on SDN,
ii) a data analytics module that collects data records from the
nodes and runs KDD algorithms, and iii) a slice manager that
exports virtualized network resources in the form of network
slices through a northbound interface (NBI) to the CNCs.

The NBI enables not only connection provisioning and
network slice reconfiguration but also monitoring the network
slice, so CNCs can apply KDD algorithms for autonomic slice
networking. CNCs are able to manage an end-to-end network
composed of multiple network slices from multiple domain
network controllers, as well as customer-owned infrastructure.
They consist of an SDN controller for connection provisioning
enriched with a planning tool for network re-optimization, as
well as a data analytics module running KDD algorithms.

In the example in Fig. 1, the metro domain controller
exports a metro network slice (Fig. 1b) that includes six MPLS
switches (S1..S6) connected through vlinks, where vlinks S2-
S5 and S3-S4 in particular, are supported by lightpaths
through the core network slice. An MPLS connection entering
through S1 and leaving through S6 is established on the metro
network slice. The core network slice (Fig. 1c) consists of four
cross-connects (X6, X9, X10, and X13), where two lightpaths
are established to support vlinks S2-S5 and S3-S4. Fig. 2
shows the mapping of the core network slice on the physical

Metro Network

Metro Network
C1

C2

S1

S2

S3

X13

X10
X6

X9

S4

S5

S6

Slice Manager

Data Analytics Cntl & Mgmt

Core Control and Management

Customer Network Controller (CNC)

Data Analytics Control & Management

Slice Manager

Data Analytics Cntl & Mgmt

Metro Control and Management

S1

S2

S3 S4

S5

S6
S1

S2

S3 S4

S5

S6

C2C1

Core
Network

Slice X13

X10
X6

X9

Metro
Network

Slice

Customer
Network

Optical Core
Network

X13

X10
X6

X9

(a)

(b)

NBI

(c)

(d)

Fig. 1. Management architecture and network slice concept.

X11

Core Network Slice

X10

X13

X14

X6

X9X7

X12

X1 X2
X3

X4

X8

X5

X10

X13

X6

X9

Core Network
Fig. 2. Core network slice physical mapping.

core network (an example of a realistic Spanish Telefonica
network is used for illustrative purposes), where the actual
route of the lightpaths is represented. The exported resources
allow the CNC to operate a multi-layer, multi-domain end-to-
end network (Fig. 1d) that includes the two network slices and
two customer nodes (C1 and C2). An end-to-end customer
MPLS connection is established from C1 to C2.

To monitor the physical networks and enable autonomic
networking, observation points need to be configured in
network nodes and metered data collated by the corresponding
domain controller. In addition, to enable autonomic slice
networking, observation points need to be configured in
network nodes to monitor each network slice independently
and metered data collated by the corresponding CNC
transparently, where domain controllers play the role of IP
Flow Information eXport (IPFIX) mediators [14].

In the next section, we present an architecture to support
autonomic networking at both, the domain and the slice levels.

III. ARCHITECTURE TO SUPPORT AUTONOMIC DOMAIN AND

SLICE NETWORKING

Fig. 3 overviews the proposed architecture. Extended node

 3

modules receive IPFIX messages from physical nodes
containing data records with data from observation points
belonging to an observation domain Id. We use a different Id
for each network slice and reserve observation domain Id 0 for
operator’s resources (named as Slice0), i.e., resources not
associated with any slice, e.g., an operator’s connection or a
topological element like an optical link. Extended nodes can
be deployed as separate elements or run inside those physical
nodes with enough computation capabilities.

The extended node (see details in Fig. 4b) includes a local
KDD module that contains KDD applications in charge of
handling and processing data records; a different local KDD
application is created for each network slice, i.e., there is a
one-to-one correspondence between a KDD application and an
observation domain, where both share the same Id. To isolate
KDD application execution, each KDD application runs inside
a container. A KDD manager is the entrance point for KDD
applications; it receives IPFIX data records and delivers them
to the corresponding KDD application. The KDD manager
contains four main components: i) a container driver
managing containers life-cycle; ii) a gRPC [15] speaker, in
charge of the communication between the KDD manager and
the KDD application manager; iii) an applications engine that
routes messages (configuration, samples, and notifications)
exchanged in the extended node; and iv) a network slices
database containing data to properly forward messages
between the KDD manager and the KDD applications.

KDD applications include: i) an application manager that
contains a gRPC speaker for KDD manager interconnection;
ii) a repository where data records are temporarily stored; iii)
sample handlers to deal with data aggregation and KDD
processes for knowledge discovery; and iv) an
encryption/decryption module to provide encryption to
configuration messages, samples, and notifications between
the controller and the KDD application. The architecture
ensures that monitoring data records are only accessed and
processed by software components (sample handlers and KDD
processes) specifically developed for the network slice; such
software components are deployed, configured, and managed
directly from the controller in charge of the slice. A public
API has been defined simplify development of custom
processes and sample handlers.

As previously stated, all messages between a KDD
application and the controller in charge of the slice can be
encrypted to guarantee data privacy. To this end, both parts
generate a pair of public-private keys and exchange the public
key to its counterpart. For the data records and notifications, a
cryptography module in the KDD application uses the
controller’s public key to encrypt them before being conveyed.
For configuration, the cryptography module uses extended
node’s private key to decrypt received messages.

Regarding monitoring, the granularity of data records
received from physical nodes is generally finer than that used
to export data toward the domain system and therefore, data
records are temporally stored and aggregated; this opens the

Data
Forwarding

IPFIX
Speaker

Notifications

RESTCONF
Client

Data
Records

Slice Config
• Customer

• Service / SLA
• Resources Map

Network Slice
Monitoring
Manager

IPFIX
Speaker

RESTCONF
Server

Network Slice
Monitoring

Config Manager

SDN Controller
/ Orchestrator

Data Analytics

Slice Manager

Domain Control and Management

Notifications

Send
Config.

Data
Records

Network Slice
Optimizer

Network Slice
Config Manager

Network Slice
Life-cycle

NotificationsData
Records

Send
Config.

IPFIX
Speaker

RESTCONF
Client

Data
Records

SDN Controller
/ Orchestrator

Data Analytics

Notifications

Send
Config.

CNC

Notif

IPFIX
Speaker

Config

From Node

Extended
Node

RESTCONF
Server

Local KDD

Fig. 3. Proposed architecture for Autonomic Domain and Slice Networking.

KDD

Notif

Run

Data Analytics

Notifications

Send configuration

Config
Notify

SDN Controller
/ OrchestratorCommands

Save
configuration

Collected Repo

IPFIX
Speaker

Notifications

Store
Data records

RESTCONF
Client

Data
records

Encrypt
/ Decrypt

Obs Group
Handler

Data
Manager

ProcessProcess

KDD API

Get
samples

Decision
Maker

Web
Interface

Notif

IPFIX
Speaker

Config

From Node

Extended Node

RESTCONF
Server

Local KDD

App
Manager

Sample Handler

Process

App Repository

KDD Application (running in a container)

Process
Config

Message
Mapping

Repo Config
gRPC

Speaker

Deployable element

KDD
Slice
App
KDD
App

KDD Manager

Network
Slices

gRPC
Speaker

Container
Driver

App
Engine

(a)

(b)

Encrypt
/

Decrypt

Fig. 4. Architecture details. a) Data Analytics module and b) Extended Node.

opportunity to apply data analytics techniques directly in the
network nodes. Hence, upon the reception of monitoring data
records from an observation point, the KDD application
manager looks at the message mapping database to find the
sample handler in charge of aggregating data records of the
given type, stores them in the observation point’s temporal
repository, and calls the KDD process in charge of processing
those data records. In case, the KDD process discovers a
pattern in the data, a notification to the controller can be sent.
Periodically, data records in temporal repositories are
aggregated and sent toward the controller.

 4

The domain control/management system includes the SDN
controller, the domain data analytics, and the slice manager.
Data records and notifications from the extended nodes are
received by a data forwarding module that delivers them
either to the domain analytics module in case the associated
resource is locally managed (i.e., it belongs to Slice0), or to
the slice manager in case the associated resource belongs to a
network slice. Upon the reception of a data record or a
notification from the data forwarder, the slice manager finds
the CNC in charge of the network slice the associated resource
belongs to and forwards the data record or notification to such
CNC through the appropriate interface.

Upon the reception of network slice data records and
notifications in the analytics module; the details of the data
analytics module are presented in Fig. 4a; a data manager
decrypts their contents using the controller’s private key to
obtain plain data. Data records can be aggregated using a
specific observation group handler and stored into a scalable
multi-master database (in our implementation we use Apache
Cassandra [16]). A decision maker module is notified, and the
corresponding KDD process is executed; KDD processes can
run locally or in a cluster using big-data processing engines,
such as Apache Spark [17]. Additionally, the controller
manages the configuration of the KDD application deployed
in the network nodes; whenever configuration parameters need
to be tuned, a message encrypted using the KDD application’s
public key can be sent through the RESTCONF interface.
Similarly as for the extended node, a public API has been
defined to simplify processes and observation group handlers
development.

In the case that a network slice reconfiguration is needed,
the SDN controller can be triggered. An illustrative use case of
three OAA loops entailing customer and operator network
reconfiguration triggered by the changes in the status of the
optical layer is presented in the next section.

IV. DEMONSTRATIVE USE CASE

In this section, we propose a complex use case to
demonstrate how the proposed architecture works. Let us
assume the scenario depicted in Fig. 1, where a customer
controller with Id 328 is in charge of a network that includes
two network slices, one in the core and another in the metro
networks. Let us also assume that a latency-sensitive service is
being supported on top of customer MPLS connection C1-C2
and thus, the route of such connection has been selected to
minimize the transmission delay; specifically, the route
includes vlink S3-S4.

The use case encompasses three different OAA loops that
are represented as different workflows (WF) in Fig. 5: WF1)
proactive network slice rerouting after BER degradation
detection; WF2) reactive core network restoration after optical
link failure; and WF3) proactive network slice rerouting after
normal BER notification (because of lightpath restoration).

Starting with WF1 in Fig. 5, imagine that because of some
problem affecting optical link X13-X14, a degradation

Reroute

Connections
Reroute

Connections

Extended
Node

Metro
Node

Optical
Node

CNC-328

IPFIX

6

1 Notification
Excessive BER

2 Notification
Excessive BER 3

4

5

Re
ro

ut
e

Af
fe

ct
ed

Co
nn

ec
tio

ns

Extended
Node

Optical
Node

IPFIX

3

1 Notification
LoL

2

Restoration

Re
st

or
e

Af
fe

ct
ed

Li
gh

tp
at

hs

Metro
Node CNC-328

Extended
Node

Metro
Node

Optical
Node

CNC-328

Notification
Normal BER 3

Re
ro

ut
e

Ca
nd

id
at

e
Co

nn
ec

tio
ns

WF1

WF3

WF2

Reroute

Connections
Reroute

Connections

4

5

Core
Cntl & Mgmt

Metro
Cntl & Mgmt

Core
Cntl & Mgmt

Metro
Cntl & Mgmt

Core
Cntl & Mgmt

Metro
Cntl & Mgmt

6

Extended
Node

Extended
Node

Extended
Node

IPFIX 1 2 Notification
Normal BER

Fig. 5. Workflows demonstrated in this paper.

condition arises and an increasing BER is measured in the
reception of every lightpath using such link. In particular,
observation points configured in the transponders of lightpath
S3-S4 measure the BER (message 1 in WF1) and a KDD
process in KDD application 328, running in the extended
nodes, detects BER degradation [10] and notifies CNC-328
about such excessive BER (message 3), via the core domain
controller. Upon receiving the notification, the CNC
proactively decides to reroute MPLS connection C1-C2
through vlink S2-S5, which increases transmission delay.

In case of optical link X13-X14 continues degrading, it
possibly will be totally disconnected; in WF2, this event is
immediately sensed by photodetectors in the end nodes of the
link. In such case, the node sends an IPFIX message with the
power measure (message 1 in WF2) to its extended node,
where the KDD application in charge of Slice0 resources
generates a Loss of Light (LoL) notification to the core
domain controller (message 2). Upon its reception, the domain
controller triggers a reactive restoration procedure (message
3), where new routing and spectrum allocation is found for the
lightpaths using link X13-X14 [18]. Note that customer
network slices are not aware neither of the link failure nor the
restoration process.

When the restoration process ends, lightpath S3-S4 BER
gets back to normal values (message 1 in WF3), which is
detected by the KDD application in the extended nodes that
issues a normal BER notification to the CNC. In this case, the
route for customer MPLS connection C1-C2 that includes
vlink S3-S4 reduces transmission delay, so the CNC decides
to reroute such connection (message 4).

The next section presents the experimental results of the
proposed architecture for this complex use case.

V. EXPERIMENTAL ASSESSMENT

Experiments have been carried out on a distributed field
trial set-up connecting premises in UPC (Barcelona, Spain),
and CNIT (Pisa, Italy) through IPSec tunnels.

The data plane was realized through two metro OpenFlow

 5

domains emulated in Mininet [19] at UPC’s premises,
connected through a core network including commercial
Juniper routers and Ericsson SPO-1400 ROADMs deployed in
CNIT premises. In the control and management plane UPC’s
extended node, network slice manager, and data analytics
modules were implemented in Python and run in a computer
cluster under Linux. UPC’s CNC control and management
module was developed in Python. Both metro and CNC
controller are connected to an instance of ONOS [20] for the
role of SDN controller. Besides, SDN controllers are
connected to an instance of Net2Plan [21] for network re-
optimization. To this end, custom extensions were developed
for both frameworks extending their base services and
north/south interfaces to support new inter-module
interactions like notifications, path computation, and topology
exportation. In brief, the developed extensions are: i) decision
maker to ONOS east-west interface to trigger network
reconfiguration (see Fig. 4a); ii) northbound and southbound
interfaces for hierarchical ONOS communication; and iii)
ONOS to Net2Plan east-west interface for path computation
and re-optimization. Regarding the core controller, nodes are
controlled by a C++-based SDN controller handling
configuration by means of dedicated southbound NETCONF
interfaces [22], [23].

Different IPFIX templates were used to encode monitoring
data, depending on the type of observation point, and the
IPFIX session and its data can be optionally encrypted. Fig. 6
presents monitoring data collection, where observation points
have been configured for: i) L0 averaged optical power for
optical link X13-X14 that is encoded using IPFIX template Id
300 (message 1 in Fig. 6); ii) L0 optical transponder
monitoring data including optical power and pre-BER for
vlink S3-S4 that is encoded using IPFIX template Id 310
(message 3); and iii) L2 traffic data including packets and
bytes since the last report for link S1-S2 that is encoded using
IPFIX Open vSwitch’s template Id 264 (message 6).

Nodes use the field Observation Domain Id to identify the
network slice. We configured L2 and L0 nodes to send
monitoring data records every 60s. Extended nodes use a

different template Id (Ids 3x1) to aggregate data and were
configured to send data records every 15 min.; those templates
include the originator nodeId as original Observation Domain
Id (messages 2, 4, and 7). Finally, the domain
control/management system uses templates Ids 3x2 with the
CNCs, where the field Observation Domain Id contains the
originator nodeId and slicing information was removed
(messages 5 and 8). Note that customer’s nodes send IPFIX
monitoring data directly to the CNC using IPFIX Open
vSwitch’s template Id 264 (message 9). Fig. 7 presents a
capture with the described IPFIX messages and details of data
records with different IPFIX templates issued by network
nodes. Note that messages are numbered as in Fig. 6.

Let us now concentrate in experimentally demonstrating the
workflows proposed for the use case defined in Section IV.
Fig. 8 presents the messages exchanged between the involved
entities in WF1, where messages are numbered as in WF1 in
Fig. 5. Upon reception of an IPFIX message with a pre-BER
value in vlink S3-S4 above a predefined threshold (we
configured a pre-BER threshold equal to 1e-6) (message 1 in
Fig. 8), the extended node issues a “threshold exceeded”
notification to the CNC via the metro controller (messages 2-
3). Fields tagged as “application-id” and “severity” include
local KDD application identifier (328) and severity of the
notification (“major”), whilst field “data” includes
symbolicName and observationGroupId of the device
triggering the event, kind of event, and the sample that
originated the event.

Extended
Node

Metro
Node

Optical
Node

Extended
Node

Customer
Node

Core
Cntl & Mgmt

Metro
Cntl & Mgmt CNC-328

(templateId:322)

(templateId:264)
IPFIX

6

(templateId:321)
IPFIX

7 IPFIX

(templateId:264)
IPFIX

8

9

IPFIX
(templateId:311)

IPFIX

(templateId:312)

(templateId:310)

IPFIX 3

4 5

(templateId:300)

IPFIX 1

IPFIX
(templateId:301)

2

Fig. 6. Monitoring messages.

1

2

3

4

5

6

7

8

9

6

S3

S1

31

4

5

S3

S3

Fig. 7. Exchanged IPFIX messages, sample aggregation, and data translation (message numbering follows that of Fig. 6).

 6

1

2

3

4

5

6

{ "time-stamp": 1496188920,
"severity": "major",
"application-id": 328,
"data": {
"symbolicName": "VLink-S3-S4",
"observationGroupId": 1,
"kind": "threshold-exceeded",
"samples": [{
"ber": 1.1700e-06,
"rxPowerDecibelMilliwatts": -8.77}]

},
"node-id": 167772174}

2

4

New route

Fig. 8. Exchanged messages for WF1 (message numbering follows that of WF1 in Fig. 5).

1

2

{ "time-stamp": 1496996712,
"severity": "critical",
"application-id": 0,
"data": {
"symbolicName": "Link-X13-X14",
"observationGroupId": 1,
"kind": "loss-of-light",
"samples": [{
"rxPowerDecibelMilliwatts": -90.0}]

},
"node-id": 167772176}

2

3

1

Fig. 9. Exchanged messages for WF2 (message numbering follows that of WF2 in Fig. 5).

The CNC decides to reroute customer MPLS connections
currently using the degraded vlink. To that end, a number of
messages are exchanged afterward between the CNC, its
ONOS instance and the planning tool to compute optimal
rerouting; the global concurrent optimization request uses an
exclude-route object (XRO) to avoid vlink S3-S4. Once the
rerouting has been computed, the CNC SDN controller
requests the rerouting to the metro controller and includes the
computed route (message 4). Finally, metro SDN controller
issues FLOW_MOD messages to the packet nodes.

Let us assume that at some point in time, the degraded
optical link is disconnected, which triggers workflow WF2.
Exchanged messages are presented in Fig. 9, where messages
are numbered as in WF2 in Fig. 5. The optical power meter at
the input of optical link X13-X14 detects LoL, so optical node
X14 issues an IPFIX message to the extended node with such
measure (message 1 in Fig. 9). Then, the extended node issues
a “loss-of-light” notification with severity level “critical” to
the metro controller (message 2); note that the notification
specifies “application-id”=0, i.e., Slice0. Upon the reception of

the notification, the core control and management notifies the
core SDN controller, which triggers a restoration procedure
for every lightpath using the failed optical link.
Reconfiguration messages 3 are sent through an NETCONF
proprietary API (decoded as TELNET for convenience).

Once optical link X13-X14 is restored, lightpath supporting
vlink S3-S4 returns to normal BER conditions, which triggers
WF3. Note that since WF3 is similar to WF1, no specific
captures are presented.

VI. CONCLUSIONS

Network slicing combines virtualization and isolation to
support 5G applications with ultra-low latency and high
availability.

In this paper, an architecture to enable autonomic slice
networking has been presented. The architecture consists of
extended nodes connected to their physical counterparts for
monitoring collection and data processing and analysis, thus
enabling making local decisions. The domain data analytics

 7

collects monitoring data and distributes them for either
domain analysis or customer analysis, depending on whether
the network resource is locally managed or it belongs to a
network slice managed by a customer controller.

A complex use case was defined to assess the proposed
architecture. The use case encompasses three OAA loops
defined in the form of workflows triggered by different events:
i) proactive network slice rerouting after BER degradation
detection in a lightpath supporting a vlink; ii) reactive core
network restoration after optical link failure; and iii) reactive
network slice rerouting after normal BER notification after
lightpath restoration.

The proposed architecture was experimentally validated in a
distributed field trial set-up connecting premises in UPC and
CNIT.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the EC through the METRO-HAUL project (G.A. nº
761727), from the Spanish MINECO SYNERGY project
(TEC2014-59995-R), and from the Catalan Institution for
Research and Advanced Studies (ICREA).

REFERENCES
[1] L. Velasco, Ll. Gifre, F. Paolucci, and F. Cugini, “First Experimental

Demonstration of Autonomic Slice Networking,” Post-deadline paper in
OFC, 2017.

[2] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. Ramos-Munoz, J. Lorca,
and J. Folgueira, “Network Slicing for 5G with SDN/NFV: Concepts,
Architectures, and Challenges,” IEEE Communications Magazine, vol.
55, pp. 80-87, 2017.

[3] L. Velasco, L.M. Contreras, G. Ferraris, A. Stavdas, F. Cugini, M.
Wiegand, and J. P. Fernández-Palacios, “A Service-Oriented Hybrid
Access Network and Cloud Architecture,” IEEE Communications
Magazine, vol. 53, pp. 159-165, 2015.

[4] N. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Computer Networks, vol. 54, pp. 862-876, 2010.

[5] NGMN 5G P1 “Requirements & Architecture Work Stream End-to-End
Architecture: Description of Network Slicing Concept,” 2016.

[6] D. Ceccarelli and Y. Lee, “Framework for Abstraction and Control of
Traffic Engineered Networks,” IETF draft, work-in-progress, 2017.

[7] M. Behringer et al., IETF RFC 7575, 2015.

[8] Ll. Gifre, A. P. Vela, M. Ruiz, J. López de Vergara, and L. Velasco,
“Experimental Assessment of Node and Control Architectures to
Support the Observe-Analyze-Act Loop,” in Proc OFC 2017.

[9] A. P. Vela, M. Ruiz, L. Velasco, “Distributing Data Analytics for
Efficient Multiple Traffic Anomalies Detection,” Elsevier Computer
Communications, vol. 107, pp. 1-12, 2017.

[10] A. P. Vela, M. Ruiz, F. Fresi, N. Sambo, F. Cugini, G. Meloni, L. Potì, L.
Velasco, and P. Castoldi, “BER Degradation Detection and Failure
Identification in Elastic Optical Networks,” accepted in IEEE/OSA
Journal of Lightwave Technology (JLT), 2017.

[11] L. Velasco, D. King, O. Gerstel, R. Casellas, A. Castro, and V. López,
“In-Operation Network Planning,” IEEE Communications Magazine,
vol. 52, pp. 52-60, 2014.

[12] F. Morales, M. Ruiz, Ll. Gifre, L. M. Contreras, V. López, and L.
Velasco, “Virtual Network Topology Adaptability based on Data
Analytics for Traffic Prediction,” (Invited) IEEE/OSA Journal of Optical
Communications and Networking (JOCN), vol. 9, pp. A35-A45, 2017.

[13] L. Velasco, A. P. Vela, F. Morales, and M. Ruiz, “Designing, Operating
and Re-Optimizing Elastic Optical Networks,” (Invited Tutorial)

IEEE/OSA Journal of Lightwave Technology (JLT), vol. 35, pp. 513-
526, 2017.

[14] B. Claise, A. Kobayashi, and B. Trammell, “Operation of the IP Flow
Information Export (IPFIX) Protocol on IPFIX Mediators,” IETF RFC
7119, 2014.

[15] gRPC Remote Procedure Call: http://www.grpc.io/

[16] Apache Cassandra: http://cassandra.apache.org/

[17] Apache Spark: http://spark.apache.org/

[18] A. Castro, R. Martínez, R. Casellas, L. Velasco, R. Muñoz, R. Vilalta,
and J. Comellas, “Experimental Assessment of Bulk Path Restoration in
Multi-layer Networks using PCE-based Global Concurrent
Optimization,” IEEE J. of Lightwave Techn., vol. 32, pp. 81-90, 2014.

[19] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks,” in Proc ACM SIGCOMM
HOTNETS, 2010.

[20] ONOS (Open Network Operating System). [Online]
http://www.onosproject.org/ [Last accessed: Jun. 2017].

[21] P. Pavon-Marino and J.-L. Izquierdo-Zaragoza, “Net2Plan: An Open
Source Network Planning Tool for Bridging the Gap between Academia
and Industry,” IEEE Network, vol. 29, pp. 90–96, 2015.

[22] F. Paolucci, A. Giorgetti, F. Cugini, and P. Castoldi, “Service Chaining in
Multi-Layer Networks using Segment Routing and Extended BGP
FlowSpec”, in Proc. OFC 2017.

[23] M. Dallaglio, N. Sambo, F. Cugini, and P. Castoldi, “Control and
Management of Transponders with NETCONF and YANG,” IEEE/OSA
Journal of Optical Communications and Networking, vol. 9, pp. B43-
B52, 2017.

