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 

Abstract—Network slices combine resource virtualization with 
the isolation level required by future 5G applications. In 
addition, the use of monitoring and data analytics help to 
maintain the required network performance, while reducing total 
cost of ownership. In this paper, an architecture to enable 
autonomic slice networking is presented. Extended nodes make 
local decisions close to network devices, whereas centralized 
domain systems collate and export metered data transparently to 
customer controllers, all of them leveraging customizable and 
isolated data analytics processes. Discovered knowledge can be 
applied for both proactive and reactive network slice 
reconfiguration, triggered either by service providers or 
customers, thanks to the interaction with state-of-the-art 
software-defined networking controllers and planning tools. The 
architecture is experimentally demonstrated by means of a 
complex use case for a multi-domain multilayer MPLS-over-
optical network. In particular, the use case consists of the 
following Observe-Analyze-Act loops: i) proactive network slice 
rerouting after BER degradation detection in a lightpath 
supporting a virtual link (vlink); ii) reactive core network 
restoration after optical link failure; and iii) reactive network 
slice rerouting after the degraded lightpath is restored. The 
proposed architecture is experimentally validated on a 
distributed testbed connecting premises in UPC (Spain) and 
CNIT (Italy). 
 

Index Terms—Network slicing, Autonomic networking, 
Cognitive networking, Monitoring and data analytics. 

I. INTRODUCTION 

etwork slicing is one of the building blocks to support the 
digital transformation promised by 5G [2]. The 

convergence of new verticals such as Internet of Things (IoT), 
mobile broadband or media networks with traditional data 
networks is forcing operators to change architectures 
supporting current deployments to the Telecom cloud [3]. In 
fact, it is not a trivial task to accommodate the myriad of use 
cases and requirements demanded by such vertical, e.g., ultra-
low latency response or high service availability, over a 
common network infrastructure. 

The concept of network slicing is closely related to network 
virtualization [4] to create virtual (logical) networks decoupled 
from the underlying physical network. The specific feature 
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behind network slicing is the focus on an end-to-end and 
service-oriented view of the network, even considering service 
deployment over multiple network segments from different 
providers [5]. 

Specifically, the process of network abstraction presents the 
connectivity graph in a way that is independent of the 
underlying network domains, so it can be used to create a 
single virtualized network that is under the control of a 
customer. Currently, the IETF is working to specify the set of 
management and control functions to provide an abstraction of 
networking resources in the context of the Abstraction and 
Control of Traffic Engineered Networks (ACTN) framework 
[6]. ACTN framework extends the concept of software-
defined networking (SDN) to consider network and service 
abstraction and coordination of resources across multiple 
domains and layers. 

From an operational perspective, a network slice consists of 
a set of network resources and instance-specific policies and 
configurations that govern resources’ behavior creating a 
complete instantiated logical network to meet certain network 
requirements. Since network slices might require stringent 
requirements, e.g., ultra-low latency, they need to be isolated 
from other traffic or applications in the network to guarantee 
the committed performance [5]. In addition, trust in the 
integrity of devices and data privacy and secure 
communications are required. 

To minimize dependency on human administrators, the 
concept of autonomic networking entails closing control loops 
aiming at providing self-management capabilities [7]; we call 
this as the observe-analyze-act (OAA) loop [8] since it 
includes: i) monitoring resources in the network nodes, ii) 
bringing data analytics techniques to the network nodes, e.g., 
to detect traffic anomalies [9] and degradations [10], as well as 
deploying data analytics in centralized systems aiming at 
discovering knowledge from data (Knowledge Discovery from 
Data, KDD), and iii) using discovered knowledge for self-
management purposes, e.g., in-operation network planning 
[11] such as virtual network topology self-adaptation to traffic 
changes [12] and optical network re-optimization [13]. 

In this paper, we extend our work in [1] to present and 
experimentally validate an architecture to support autonomic 
slice networking. Both network operators and customers can 
implement its own business intelligence and efficiently 
manage their own resources based on data analytics 
techniques, isolated from other slices, through domain 
controllers and customer network controllers (CNCs), 
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respectively. Consequently, total costs of ownership (TCO) 
will be kept minimal and revenues will increase while 
provisioning higher QoS services. Particularly, the 
contribution of this paper is two-fold: 

1) The proposed architecture is first motivated in Section II, 
where management architecture and slicing concepts are 
presented. Section III is devoted to detail the data 
monitoring and data analytics architecture, as well as the 
different modules in the architecture, including: i) a set of 
extended nodes that receive monitoring data records from 
network nodes and apply data analytics algorithms to 
make local decisions; ii) a hierarchy of controllers making 
slide-wide decisions driven by centralized data analytics 
engines. The architecture supports network slices by 
enforcing a clear separation of resources, where 
monitoring data is generated and consumed by its owner. 

2) To demonstrate the proposed architecture, a complex use 
case entailing three OAA loops is defined in Section IV, 
as well as their workflows on the proposed architecture. 
The defined OAA loops are: i) proactive network slice 
rerouting after BER degradation detection in a lightpath 
supporting a virtual link (vlink); ii) reactive core network 
restoration after optical link failure; and iii) reactive 
network slice rerouting after normal BER conditions in a 
previously degraded vlink. The architecture and the use 
case are assessed in Section V on a distributed testbed. 

II. NETWORK SLICING 

Fig. 1a presents a scenario based on the ACTN framework, 
where two domains for metro and core support network 
slicing. Each domain control/management system includes: i) 
the provisioning and reconfiguration module based on SDN, 
ii) a data analytics module that collects data records from the 
nodes and runs KDD algorithms, and iii) a slice manager that 
exports virtualized network resources in the form of network 
slices through a northbound interface (NBI) to the CNCs. 

The NBI enables not only connection provisioning and 
network slice reconfiguration but also monitoring the network 
slice, so CNCs can apply KDD algorithms for autonomic slice 
networking. CNCs are able to manage an end-to-end network 
composed of multiple network slices from multiple domain 
network controllers, as well as customer-owned infrastructure. 
They consist of an SDN controller for connection provisioning 
enriched with a planning tool for network re-optimization, as 
well as a data analytics module running KDD algorithms. 

In the example in Fig. 1, the metro domain controller 
exports a metro network slice (Fig. 1b) that includes six MPLS 
switches (S1..S6) connected through vlinks, where vlinks S2-
S5 and S3-S4 in particular, are supported by lightpaths 
through the core network slice. An MPLS connection entering 
through S1 and leaving through S6 is established on the metro 
network slice. The core network slice (Fig. 1c) consists of four 
cross-connects (X6, X9, X10, and X13), where two lightpaths 
are established to support vlinks S2-S5 and S3-S4. Fig. 2 
shows the mapping of the core network slice on the physical 
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Fig. 1. Management architecture and network slice concept. 
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core network (an example of a realistic Spanish Telefonica 
network is used for illustrative purposes), where the actual 
route of the lightpaths is represented. The exported resources 
allow the CNC to operate a multi-layer, multi-domain end-to-
end network (Fig. 1d) that includes the two network slices and 
two customer nodes (C1 and C2). An end-to-end customer 
MPLS connection is established from C1 to C2. 

To monitor the physical networks and enable autonomic 
networking, observation points need to be configured in 
network nodes and metered data collated by the corresponding 
domain controller. In addition, to enable autonomic slice 
networking, observation points need to be configured in 
network nodes to monitor each network slice independently 
and metered data collated by the corresponding CNC 
transparently, where domain controllers play the role of IP 
Flow Information eXport (IPFIX) mediators [14].  

In the next section, we present an architecture to support 
autonomic networking at both, the domain and the slice levels. 

III. ARCHITECTURE TO SUPPORT AUTONOMIC DOMAIN AND 

SLICE NETWORKING 

Fig. 3 overviews the proposed architecture. Extended node 
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modules receive IPFIX messages from physical nodes 
containing data records with data from observation points 
belonging to an observation domain Id. We use a different Id 
for each network slice and reserve observation domain Id 0 for 
operator’s resources (named as Slice0), i.e., resources not 
associated with any slice, e.g., an operator’s connection or a 
topological element like an optical link. Extended nodes can 
be deployed as separate elements or run inside those physical 
nodes with enough computation capabilities. 

The extended node (see details in Fig. 4b) includes a local 
KDD module that contains KDD applications in charge of 
handling and processing data records; a different local KDD 
application is created for each network slice, i.e., there is a 
one-to-one correspondence between a KDD application and an 
observation domain, where both share the same Id. To isolate 
KDD application execution, each KDD application runs inside 
a container. A KDD manager is the entrance point for KDD 
applications; it receives IPFIX data records and delivers them 
to the corresponding KDD application. The KDD manager 
contains four main components: i) a container driver 
managing containers life-cycle; ii) a gRPC [15] speaker, in 
charge of the communication between the KDD manager and 
the KDD application manager; iii) an applications engine that 
routes messages (configuration, samples, and notifications) 
exchanged in the extended node; and iv) a network slices 
database containing data to properly forward messages 
between the KDD manager and the KDD applications. 

KDD applications include: i) an application manager that 
contains a gRPC speaker for KDD manager interconnection; 
ii) a repository where data records are temporarily stored; iii) 
sample handlers to deal with data aggregation and KDD 
processes for knowledge discovery; and iv) an 
encryption/decryption module to provide encryption to 
configuration messages, samples, and notifications between 
the controller and the KDD application. The architecture 
ensures that monitoring data records are only accessed and 
processed by software components (sample handlers and KDD 
processes) specifically developed for the network slice; such 
software components are deployed, configured, and managed 
directly from the controller in charge of the slice. A public 
API has been defined simplify development of custom 
processes and sample handlers. 

As previously stated, all messages between a KDD 
application and the controller in charge of the slice can be 
encrypted to guarantee data privacy. To this end, both parts 
generate a pair of public-private keys and exchange the public 
key to its counterpart. For the data records and notifications, a 
cryptography module in the KDD application uses the 
controller’s public key to encrypt them before being conveyed. 
For configuration, the cryptography module uses extended 
node’s private key to decrypt received messages. 

Regarding monitoring, the granularity of data records 
received from physical nodes is generally finer than that used 
to export data toward the domain system and therefore, data 
records are temporally stored and aggregated; this opens the  
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Fig. 3. Proposed architecture for Autonomic Domain and Slice Networking. 
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Fig. 4. Architecture details. a) Data Analytics module and b) Extended Node. 

opportunity to apply data analytics techniques directly in the 
network nodes. Hence, upon the reception of monitoring data 
records from an observation point, the KDD application 
manager looks at the message mapping database to find the 
sample handler in charge of aggregating data records of the 
given type, stores them in the observation point’s temporal 
repository, and calls the KDD process in charge of processing 
those data records. In case, the KDD process discovers a 
pattern in the data, a notification to the controller can be sent. 
Periodically, data records in temporal repositories are 
aggregated and sent toward the controller. 
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The domain control/management system includes the SDN 
controller, the domain data analytics, and the slice manager. 
Data records and notifications from the extended nodes are 
received by a data forwarding module that delivers them 
either to the domain analytics module in case the associated 
resource is locally managed (i.e., it belongs to Slice0), or to 
the slice manager in case the associated resource belongs to a 
network slice. Upon the reception of a data record or a 
notification from the data forwarder, the slice manager finds 
the CNC in charge of the network slice the associated resource 
belongs to and forwards the data record or notification to such 
CNC through the appropriate interface. 

Upon the reception of network slice data records and 
notifications in the analytics module; the details of the data 
analytics module are presented in Fig. 4a; a data manager 
decrypts their contents using the controller’s private key to 
obtain plain data. Data records can be aggregated using a 
specific observation group handler and stored into a scalable 
multi-master database (in our implementation we use Apache 
Cassandra [16]). A decision maker module is notified, and the 
corresponding KDD process is executed; KDD processes can 
run locally or in a cluster using big-data processing engines, 
such as Apache Spark [17]. Additionally, the controller 
manages the configuration of the KDD application deployed 
in the network nodes; whenever configuration parameters need 
to be tuned, a message encrypted using the KDD application’s 
public key can be sent through the RESTCONF interface. 
Similarly as for the extended node, a public API has been 
defined to simplify processes and observation group handlers 
development. 

In the case that a network slice reconfiguration is needed, 
the SDN controller can be triggered. An illustrative use case of 
three OAA loops entailing customer and operator network 
reconfiguration triggered by the changes in the status of the 
optical layer is presented in the next section. 

IV. DEMONSTRATIVE USE CASE  

In this section, we propose a complex use case to 
demonstrate how the proposed architecture works. Let us 
assume the scenario depicted in Fig. 1, where a customer 
controller with Id 328 is in charge of a network that includes 
two network slices, one in the core and another in the metro 
networks. Let us also assume that a latency-sensitive service is 
being supported on top of customer MPLS connection C1-C2 
and thus, the route of such connection has been selected to 
minimize the transmission delay; specifically, the route 
includes vlink S3-S4. 

The use case encompasses three different OAA loops that 
are represented as different workflows (WF) in Fig. 5: WF1) 
proactive network slice rerouting after BER degradation 
detection; WF2) reactive core network restoration after optical 
link failure; and WF3) proactive network slice rerouting after 
normal BER notification (because of lightpath restoration). 

Starting with WF1 in Fig. 5, imagine that because of some 
problem affecting optical link X13-X14, a degradation  
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Fig. 5. Workflows demonstrated in this paper. 

condition arises and an increasing BER is measured in the 
reception of every lightpath using such link. In particular, 
observation points configured in the transponders of lightpath 
S3-S4 measure the BER (message 1 in WF1) and a KDD 
process in KDD application 328, running in the extended 
nodes, detects BER degradation [10] and notifies CNC-328 
about such excessive BER (message 3), via the core domain 
controller. Upon receiving the notification, the CNC 
proactively decides to reroute MPLS connection C1-C2 
through vlink S2-S5, which increases transmission delay. 

In case of optical link X13-X14 continues degrading, it 
possibly will be totally disconnected; in WF2, this event is 
immediately sensed by photodetectors in the end nodes of the 
link. In such case, the node sends an IPFIX message with the 
power measure (message 1 in WF2) to its extended node, 
where the KDD application in charge of Slice0 resources 
generates a Loss of Light (LoL) notification to the core 
domain controller (message 2). Upon its reception, the domain 
controller triggers a reactive restoration procedure (message 
3), where new routing and spectrum allocation is found for the 
lightpaths using link X13-X14 [18]. Note that customer 
network slices are not aware neither of the link failure nor the 
restoration process. 

When the restoration process ends, lightpath S3-S4 BER 
gets back to normal values (message 1 in WF3), which is 
detected by the KDD application in the extended nodes that 
issues a normal BER notification to the CNC. In this case, the 
route for customer MPLS connection C1-C2 that includes 
vlink S3-S4 reduces transmission delay, so the CNC decides 
to reroute such connection (message 4). 

The next section presents the experimental results of the 
proposed architecture for this complex use case. 

V. EXPERIMENTAL ASSESSMENT 

Experiments have been carried out on a distributed field 
trial set-up connecting premises in UPC (Barcelona, Spain), 
and CNIT (Pisa, Italy) through IPSec tunnels.  

The data plane was realized through two metro OpenFlow 
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domains emulated in Mininet [19] at UPC’s premises, 
connected through a core network including commercial 
Juniper routers and Ericsson SPO-1400 ROADMs deployed in 
CNIT premises. In the control and management plane UPC’s 
extended node, network slice manager, and data analytics 
modules were implemented in Python and run in a computer 
cluster under Linux. UPC’s CNC control and management 
module was developed in Python. Both metro and CNC 
controller are connected to an instance of ONOS [20] for the 
role of SDN controller. Besides, SDN controllers are 
connected to an instance of Net2Plan [21] for network re-
optimization. To this end, custom extensions were developed 
for both frameworks extending their base services and 
north/south interfaces to support new inter-module 
interactions like notifications, path computation, and topology 
exportation. In brief, the developed extensions are: i) decision 
maker to ONOS east-west interface to trigger network 
reconfiguration (see Fig. 4a); ii) northbound and southbound 
interfaces for hierarchical ONOS communication; and iii) 
ONOS to Net2Plan east-west interface for path computation 
and re-optimization. Regarding the core controller, nodes are 
controlled by a C++-based SDN controller handling 
configuration by means of dedicated southbound NETCONF 
interfaces [22], [23]. 

Different IPFIX templates were used to encode monitoring 
data, depending on the type of observation point, and the 
IPFIX session and its data can be optionally encrypted. Fig. 6 
presents monitoring data collection, where observation points 
have been configured for: i) L0 averaged optical power for 
optical link X13-X14 that is encoded using IPFIX template Id 
300 (message 1 in Fig. 6); ii) L0 optical transponder 
monitoring data including optical power and pre-BER for 
vlink S3-S4 that is encoded using IPFIX template Id 310 
(message 3); and iii) L2 traffic data including packets and 
bytes since the last report for link S1-S2 that is encoded using 
IPFIX Open vSwitch’s template Id 264 (message 6). 

Nodes use the field Observation Domain Id to identify the 
network slice. We configured L2 and L0 nodes to send 
monitoring data records every 60s. Extended nodes use a 

different template Id (Ids 3x1) to aggregate data and were 
configured to send data records every 15 min.; those templates 
include the originator nodeId as original Observation Domain 
Id (messages 2, 4, and 7). Finally, the domain 
control/management system uses templates Ids 3x2 with the 
CNCs, where the field Observation Domain Id contains the 
originator nodeId and slicing information was removed 
(messages 5 and 8). Note that customer’s nodes send IPFIX 
monitoring data directly to the CNC using IPFIX Open 
vSwitch’s template Id 264 (message 9). Fig. 7 presents a 
capture with the described IPFIX messages and details of data 
records with different IPFIX templates issued by network 
nodes. Note that messages are numbered as in Fig. 6. 

Let us now concentrate in experimentally demonstrating the 
workflows proposed for the use case defined in Section IV. 
Fig. 8 presents the messages exchanged between the involved 
entities in WF1, where messages are numbered as in WF1 in 
Fig. 5. Upon reception of an IPFIX message with a pre-BER 
value in vlink S3-S4 above a predefined threshold (we 
configured a pre-BER threshold equal to 1e-6) (message 1 in 
Fig. 8), the extended node issues a “threshold exceeded” 
notification to the CNC via the metro controller (messages 2-
3). Fields tagged as “application-id” and “severity” include 
local KDD application identifier (328) and severity of the 
notification (“major”), whilst field “data” includes 
symbolicName and observationGroupId of the device 
triggering the event, kind of event, and the sample that 
originated the event. 
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{ "time-stamp": 1496188920, 
"severity": "major", 
"application-id": 328, 
"data": {
"symbolicName": "VLink-S3-S4",
"observationGroupId": 1,
"kind": "threshold-exceeded",
"samples": [{
"ber": 1.1700e-06,
"rxPowerDecibelMilliwatts": -8.77}]

}, 
"node-id": 167772174}

2
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Fig. 8. Exchanged messages for WF1 (message numbering follows that of WF1 in Fig. 5). 
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{ "time-stamp": 1496996712,
"severity": "critical",
"application-id": 0,
"data": {
"symbolicName": "Link-X13-X14",
"observationGroupId": 1,
"kind": "loss-of-light",
"samples": [{
"rxPowerDecibelMilliwatts": -90.0}]

}, 
"node-id": 167772176}
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Fig. 9. Exchanged messages for WF2 (message numbering follows that of WF2 in Fig. 5). 

The CNC decides to reroute customer MPLS connections 
currently using the degraded vlink. To that end, a number of 
messages are exchanged afterward between the CNC, its 
ONOS instance and the planning tool to compute optimal 
rerouting; the global concurrent optimization request uses an 
exclude-route object (XRO) to avoid vlink S3-S4. Once the 
rerouting has been computed, the CNC SDN controller 
requests the rerouting to the metro controller and includes the 
computed route (message 4). Finally, metro SDN controller 
issues FLOW_MOD messages to the packet nodes. 

Let us assume that at some point in time, the degraded 
optical link is disconnected, which triggers workflow WF2. 
Exchanged messages are presented in Fig. 9, where messages 
are numbered as in WF2 in Fig. 5. The optical power meter at 
the input of optical link X13-X14 detects LoL, so optical node 
X14 issues an IPFIX message to the extended node with such 
measure (message 1 in Fig. 9). Then, the extended node issues 
a “loss-of-light” notification with severity level “critical” to 
the metro controller (message 2); note that the notification 
specifies “application-id”=0, i.e., Slice0. Upon the reception of 

the notification, the core control and management notifies the 
core SDN controller, which triggers a restoration procedure 
for every lightpath using the failed optical link. 
Reconfiguration messages 3 are sent through an NETCONF 
proprietary API (decoded as TELNET for convenience). 

Once optical link X13-X14 is restored, lightpath supporting 
vlink S3-S4 returns to normal BER conditions, which triggers 
WF3. Note that since WF3 is similar to WF1, no specific 
captures are presented. 

VI. CONCLUSIONS 

Network slicing combines virtualization and isolation to 
support 5G applications with ultra-low latency and high 
availability. 

In this paper, an architecture to enable autonomic slice 
networking has been presented. The architecture consists of 
extended nodes connected to their physical counterparts for 
monitoring collection and data processing and analysis, thus 
enabling making local decisions. The domain data analytics 
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collects monitoring data and distributes them for either 
domain analysis or customer analysis, depending on whether 
the network resource is locally managed or it belongs to a 
network slice managed by a customer controller. 

A complex use case was defined to assess the proposed 
architecture. The use case encompasses three OAA loops 
defined in the form of workflows triggered by different events: 
i) proactive network slice rerouting after BER degradation 
detection in a lightpath supporting a vlink; ii) reactive core 
network restoration after optical link failure; and iii) reactive 
network slice rerouting after normal BER notification after 
lightpath restoration. 

The proposed architecture was experimentally validated in a 
distributed field trial set-up connecting premises in UPC and 
CNIT. 
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