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Abstract

High-order methods have the potential to deliver high accuracy with less degrees of
freedom when compared with lower order methods. However high-order methods
are still not being utilized in industrially relevant computational fluid dynamics
(CFD) problems because of their claimed higher computational cost. The hybridiz-
able discontinuous Galerkin (HDG) method is a novel discontinuous Galerkin (DG)
method with very attractive properties. While retaining the advantages of other
DG methods like the inherent stabilization and the local conservation properties,
the HDG method reduces the total number of degrees of freedom compared to
other DG methods such as the local DG or the compact DG. The HDG method
achieves this by performing a hybridization similar to the static condensation tra-
ditionally used in high-order continuous finite element methods. Another salient
feature of the HDG is that an element-by-element postprocessing technique result-
ing in a superconvergent solution. The superconvergent postprocess solution can
be used to define a reliable and computationally cheap error estimator. The main
advantages of HDG, and other DG methods, which are found when a high-order
functional approximation is considered can, however, be limited by the accuracy
of the geometric approximation of curved boundaries when isoparamteric elements
are used.

This work proposes the combination of HDG and NURBS-enhanced finite el-
ement method (NEFEM) for the solution of Stokes flow problems using degree
adaptivity. The ability of NEFEM to exactly represent the boundary of the do-
main by means of its NURBS boundary representation is used to ensure that the
geometric description is independent on the degree of the polynomials used in
the functional approximation. As a result, the degree adaptivity process is only
driven by the error of the functional approximation and not by the error of both
the functional and the geometric approximation.
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Chapter 1

Introduction

1.1 Motivation

The last few years has witnessed an increase in enthusiasm in the development
of high-order methods within the finite element (FE) community. This has been
a hot topic of research all over the world, especially for Euler and Navier-Stokes
equations [1]. High-order approximations have proved to be of special importance
while solving high Reynolds number and transient fluid problems [1]. The ability
and efficiency of high-order approximations have been discussed and proven in re-
cent papers [2]. Developments of high-order numerical methods for unstructured
meshes could offer significant advantages for the simulation of complex high-speed
flows and compressible turbulence [3]. The discontinuous Galerkin (DG), the spec-
tral volume (SV) and the spectral difference (SD) methods have shown promise for
high-resolution computations of complex flows because they have a compact sten-
cil, and retain the design order of accuracy even for meshes of moderate quality
that would often result from grid generation over complex three-dimensional con-
figurations [4–7]. Specifically, the interest in DG methods has increased over the
past years. This is because of their proven suitability to construct robust stabilized
high-order numerical schemes on arbitrary unstructured and non-conforming grids
for a variety of physical phenomena, such as, for the solution of incompressible
flows [8].

DG are finite element methods that are locally conservative and stable, and
allow to achieve high-order accuracy. The DG formulation uses discontinuous
approximation element by element, with the information that passes through the
elements by means of numerical fluxes. Since their introduction, DG methods
have been used to solve a large variety of partial differential equations, gaining an
increasing interest in the scientific computing community. The main drawback of
DG methods, compared to continuous Galerkin (CG), is the increased number of

1



2 Introduction

degrees of freedom (DOF) due to the duplication of the nodes belonging to faces
of the elements. It has been often claimed that this disadvantage becomes less
important for high-order elements, due to the increasing number of interior nodes.
However, until very recently, DG methods coupled the nodes in the interior of the
elements, for high-order approximations, with neighboring element nodes, even
for reduced stencil approaches such as interior penalty methods, see for [9], and
Compact Discontinuous Galerkin method (CDG), see [10]. This coupling precluded
any technique, such as static condensation of the interior nodes for CG, to reduce
the number of DOF. Under these circumstances, DG are penalized respect to CG.

This is where the Hybridizable Discontinuous Galerkin (HDG) method, with
its stability features, its reduced number of degrees of freedom, and its supercon-
vergence properties has attracted attention among all DG methods for implicit
schemes [11–16]. Similar to static condensation, hybridization of DG methods
allows to reduce the globally coupled degrees of freedom to those of an approxima-
tion of the solution defined only on the boundaries of the elements (trace solution).
The HDG method, was formally introduced for second order elliptic problems [12],
and then extended to the solution of a great variety of physical fenomena, see for
example [11, 17–20]. The similarity between hybridization in DG and static con-
densation in CG is highlighted in [21], both techniques leading to an important
reduction in the number of DOF for high-order computations. Nevertheless, it
can be seen in [22] that hybridization is not only an implementation expedient to
reduce the linear system size, but the trace unknown contains extra informations
on the exact solution. In fact, unlike other DG methods and standard CG, HDG
exhibits optimal convergence in L2 norm not only for the primal unknown of the
problem but also for its derivative, opening the path to an element-by-element
postprocess which provides a superconvergent solution.

However, in order to be competitive, these methods have to be designed in
such a way that the increased associated computational complexity is more than
balanced. Despite the advantages and capabilities, some authors have maintained
that the high-order methods are not yet mature and current implementations are
strong limitations for their applications to large scale industrial problems [1]. The
efficiency, both in terms of memory and computing time, and robustness of these
high-order methods, in particular for turbulent high Reynolds number flows will be
decisive in making these methods attractive for industries such as the aerodynamic
aircraft design industry [1]. Adaptive mesh refinement is a well known strategy for
reducing the cost of a computational simulation while achieving a given level of
accuracy [1, 23]. The superconvergence properties of the HDG method can come
in handy while building in an automatic a posteriori error estimate based adaptive
mesh refinement. However, this induces fresh problems. A local p-adaptive mesh
refinement carried out by utilising the superconvergence property of the HDG
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method does not necessarily guarantee a reduction in the global error. This might
be as a result of higher geometric errors emerging from the change in the boundary
representation due to a local p-adaptive mesh refinement. Hence in addition to
efficiency and robustness, higher-order boundary representation also continues to
be a major obstacle in the path of introducing high-order methods into industrial
design processes [1].

It is in the domain of high-order FE methodologies for the treatment of curved
boundaries where NURBS-Enhanced Finite Element Method (NEFEM) has carved
a niche for itself. For high-order methods to be viable in comparison with conven-
tional FE techniques, it becomes quite essential to use considerably large elements
while the variables of interest must have fewer degrees of freedom [24]. Also an
interpolation polynomial of high degree must be adopted. However, the use of
isoparametric elements will not be suitable in the adoption of the afore mentioned
parameters, as it will lead to unsustainable geometric errors that will do away with
the benefits of using high-order methods [25]. NEFEM, originally designed as a
technique that allows a seamless integration of the CAD boundary representation
of the domain and the finite element method (FEM) [24], can easily be extended
to high-order methods such as to the HDG method. The work presented in this re-
port has been carried forward to establish a seamless integration between NEFEM
and the HDG method. While the HDG method comes with all the advantages of
a high-order method, NEFEM helps tackle the issues of geometric error engender-
ing out of the use of isoparametric elements. Combined, a method encompassing
both NEFEM and the HDG method, seamlessly integrated with one another offers
hope to overcome all of the previously mentioned obstacles lingering in the path
of introducing high-order methods into industrial design processes.

1.2 Objective of the research

The main objective of this research is to study the HDG formulation for Stokes
problems and to develop and validate an arbitrary order HDG solver in two and
three dimensions that can be extended in the future to the full system of the
Navier-Stokes equations. In addition NEFEM has to be studied to develop and
validate an arbitrary order NEFEM-HDG code in two dimensions. Finally, the
a degree adaptive technique is developed for HDG providing high-order accuracy
and high computational efficiency.

In order to achieve this goals, the following objectives are considered:

� The development of HDG formulation for the numerical solution of the Stokes
equations in two and three dimensions. The derivation of the Stokes equa-
tions are presented in Chapter 2. The formulation is presented in detail,
from the strong form of the problem to the HDG formulation alongside with
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the discretized version of the systems of equations that are obtained. Two
different formulations of the HDG method are developed for Stokes equa-
tions, the so called classical (Dirichlet) and the Neumann formulations. This
is presented in chapter 3.

� The discretization of the weak form of the HDG formulation for Stokes equa-
tiosn using the isoparametric and NEFEM formulations. Discretization using
NEFEM formulation is presented explaining the details of high-order approx-
imation and numerical integration in curved elements. This is presented in
the first section of chapter 4.

� The development of degree adaptive technique based on the concept of
Richardson extrapolation using the postprocessed solution obtained using
the HDG method for error estimation. The Richardson extrapolation for
h-adaptivity is studied and then concept is extended to degree adaptivity.
Also come caveats concerning the implementation, such as compatibility of
numerical integration and geometrical compatibility of the mesh upon adap-
tive refinement are detailed.

� Validate the implementation of the HDG codes. Numerical examples with
analytical solution are considered in two and three dimensions for validating
the codes developed to solve the Stokes equations. In all cases the objective
is to test the optimal convergence of the solution and the implementation of
the postprocess that offers superconvergence properties in the HDG frame-
work. The workability of the code using both the formulations of HDG are
presented. Further the ability of the code to handle meshes with different
types of elements in both two and three dimensions are shown. Also the
code is validated to work with meshes that have varying degrees of approx-
imations in their elements. Code developed for NEFEM-HDG formulation
applied to Stokes’ equations is validated. Finally cases to show the perfor-
mance of degree adaptive method providing high-order accuracy and high
computational efficiency are presented. All these examples are collectively
shown in Chapter 5.



Chapter 2

Derivation of Stokes’ equations

In certain fluids viscosity may be so large that it only flows with difficulty. Heavy
oils, honey, even tight crowds of people, show insignificant effects of inertia, and are
instead dominated by internal friction. Such fluids do not make spinning vortices
or become turbulent, but rather ooze or creep around obstacles. Fluid flow which
is dominated by viscosity is quite appropriately called creeping flow.

Stokes flow, another name for creeping flow which is sometimes called creeping
motion, is a type of fluid flow where advective inertial forces are small compared
with viscous forces [26]. This is a typical situation in flows where the fluid velocities
are very slow, the viscosities are very large, or the length-scales of the flow are very
small. Though creeping flow was first studied to understand lubrication, in nature
this type of flow occurs in the swimming of microorganisms and sperm [27] and
the flow of lava. Blood flowing through a microscopic capillary can be as sluggish
as heavy oil. Tiny organisms like bacteria live in air and water like ourselves, but
theirs is a world of creeping and oozing rather than whirls and turbulence, and
movement requires special devices, for example oar-like cilia or whip-like flagella
[28]. Some bacteria have even mounted a rotating helical tail in a journal bearing
(the only one known to biology), which like a corkscrew allows them to advance
through the thick fluid that they experience water to be. A spermatozoan pushes
forward like a slithering snake in the grass by undulating its tail. In technology,
creeping flow occurs in paint, MEMS devices, and in the flow of viscous polymers
generally.

2.1 The basic conservation equations

To serve as an introduction to the discussion on incompressible Stokes flow, in this
section the differential forms of the conservation equations for mass, momentum
and energy are presented.

5
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2.1.1 Mass equation

A fundamental law of Newtonian mechanics is the conservation of the mass con-
tained in a material volume. The law of mass conservation for a time varying
material volume Vt occupied by fluid is given by [29]

0 =
dM

dt
=

d

dt

∫
Vt

ρ dV, (2.1)

where ρ is the fluid density. The material time derivative of the integral of a scalar
function f(x, t) (where f is defined in the spatial domain) over Vt is given by
the following well-known expression, often referred to as the Reynolds transport
theorem:

d

dt

∫
Vt

f(x, t) dV =

∫
Vc≡Vt

∂f(x, t)

∂t
dV +

∫
Sc≡St

f(x, t)u · n dS, (2.2)

which holds for smooth functions f(x, t). Here u is the velocity of the fluid. The
volume integral on the r.h.s. is defined over a control volume Vc (fixed in space)
which coincides with the moving material volume Vt at the considered instant, t,
in time. Similarly, the fixed control surface Sc coincides at time t with the closed
surface St bounding the material volume Vt.

Applying to integral expression in (2.1), the formula in (2.2) for the rate of
change of integrals over a moving volume and the divergence theorem, one obtains

0 =
dM

dt
=

∫
Vt

∂ρ

∂t
dV +

∫
St

ρu · n dS =

∫
Vt

(
∂ρ

∂t
+ ∇ · (ρu)

)
dV.

Since this relation is valid for all choices of the volume Vt, the integrand must be
identically zero. Hence

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.3)

at all points in the fluid. Equation (2.3) is the mass-conservation equation, or
continuity equation.

2.1.2 Momentum equation

The momentum equation, also termed the equation of motion, is a relation equat-
ing the rate of change of momentum of a selected portion of fluid and the sum
of all forces acting on that portion of fluid. For the portion of fluid of volume Vt
enclosed by the material surface St , the momentum is

∫
Vt
ρu dV and making use



7 Derivation of Stokes’ equations

of the Reynolds transport theorem in vector form, that is (2.2), its rate of change
is found to be

d

dt

∫
Vt

ρu dV =

∫
Vc≡Vt

∂ρu

∂t
dV +

∫
Sc≡St

(ρu⊗ u) · n dS

=

∫
Vt

(
∂ρu

∂t
+ ∇ · (ρu⊗ u)

)
dV.

(2.4)

where the notation u⊗u denotes the tensor [uiuj], i, j = 1, ..., nsd. Here nsd is the
number of spatial dimensions.

The the well-known equation that relates the material and the spatial time
derivatives is given by

df

dt
=
∂f

∂t
+ u ·∇f. (2.5)

Making use of the continuity equation (2.3) and expression for the material time
derivative given in formula (2.5), Equation (2.4) can be transformed to

d

dt

∫
Vt

ρu dV =

∫
Vt

ρ
du

dt
dV, (2.6)

which is simply the sum of the product of mass and acceleration for all the elements
dV of the material volume Vt.

In general, a portion of fluid is acted upon by both volume and surface forces.
The volume force per unit mass of fluid is denoted by s, so that the total volume
force on the selected portion of fluid is

∫
Vt
ρs dV . On the other hand, the i-

component of the surface force exerted across a surface element of area dS and
normal n is given by σijnijdS, so that the total force exerted on the selected portion
of fluid by the surrounding matter can be expressed in terms of the Cauchy stress
σ as ∫

St

σ · n dS =

∫
Vt

∇ · σ dV,

The momentum balance for the selected material volume of fluid, which accounts
for both previous actions, is expressed by∫

Vt

ρ
du

dt
dV =

∫
Vt

ρs dV +

∫
Vt

∇ · σ dV,

This integral relation holds for all choices of the material volume Vt . Thus,

ρ
du

dt
= ρs+ ∇ · σ. (2.7)
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at all points of the fluid. This equation is the equation of motion; making use of
(2.5) it becomes

∂ρu

∂t
+ ∇ · (ρu⊗ u)−∇ · σ = ρs. (2.8)

This is the conservation form of the momentum equation.

2.1.3 Total energy equation

The total energy per unit mass of the fluid is the sum

E = e+
1

2
||u||2

of the internal energy, e, and the kinetic energy. The rate of change of the total
energy per unit mass of a material element is thus

dE

dt
=
de

dt
+ u · du

dt
. (2.9)

It can be shown that in the absence of heat transfer effects, the rate of change
of internal energy per unit mass of a material element of fluid is thus given by [29]

de

dt
=
σ

ρ
: ∇u (2.10)

Making use of the momentum equation (2.8) and of the internal energy equation
(2.10), it becomes

ρ
dE

dt
= σ : ∇u+ u · (ρs+ ∇ · σ)

In terms of the partial time derivative, the total energy equation can be written
as

∂

∂t
(ρE) + ∇ · (ρEu)−∇ · (σ · v) = u · ρs. (2.11)
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2.2 Simplifying compressible Navier-Stokes equa-

tions to Stokes equations

From the previous section the conservation equations in Eulerian form for mass,
momentum and energy can be written as

Mass:
∂ρ

∂t
+ ∇ · (ρu) = 0,

Momentum:
∂ρu

∂t
+ ∇ · (ρu⊗ u)−∇ · σ = ρs,

Total energy:
∂

∂t
(ρE) + ∇ · (ρEu)−∇ · (σ · v) = u · ρs.

(2.12a)

Typically, Newtonian fluids are considered, that is

σ = (−p+ λ∇ · u)Insd + 2µ∇su = −pInsd + σ′, (2.13)

where subindexes are introduced to clarify the dimensions of matrices, ∇su is
the rate of deformation (or strain rate) tensor, i.e. ∇su = 1

2
(∇ + ∇T ), p is the

thermodynamical pressure, µ is the coefficient of dynamic viscosity of the fluid,
and λ is the 2nd coefficient of viscosity. Under Stokes’ Hypothesis, 3λ+2µ = 0, the
bulk viscosity of the fluid is null, i.e. λ + 2µ/3 = 0, and that the thermodynamic
pressure coincides with the mechanical one, i.e. p = tr(σ). σ′ is the deviatoric
stress.

The conservation and constitutive equations (2.12) form a total of nsd + 2
equations. The material parameters µ, λ are characteristic of a given fluid, and
thus, a priori, known. However, these nsd + 2 equations contain nsd + 3 unknowns,
ρ, ρu, ρE, and p . One further equation comes from the equation of state for
pressure, namely p = p(ρ, T ), which introduces a new unknown T , thus making a
total of nsd + 4 unknowns. The final equation comes from the equation of state
for internal energy, e = e(ρ, T ). For a calorically perfect gas, such as air, these
state equations read p = ρRT and e = cvT , where R is the gas constant per unit
mass and cv is the specific heat at constant volume. Thus, the usual form for these
equations of state are

T =
1

cv

(
E − 1

2
u · u

)
,

p = (γ − 1)ρ
(
E − 1

2
u · u

)
,

(2.14)

where, see [29], the constant γ = cp/cv is the ratio of the specific heat at constant
pressure, cp, and the specific heat at constant volume, cv, and relates the specific
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heat constants and the gas constant per unit mass, namely

cp =
γ

γ − 1
R and cv =

R

γ − 1
.

Thus, equations (2.14) can be rewritten as

T = (γ − 1)
(
E − 1

2
u · u

)
/R,

p = (γ − 1)ρ
(
E − 1

2
u · u

)
,

(2.15)

for a calorically perfect gas.

Remark 1 [Mach and Reynolds numbers] Other pertinent parameters
are the Mach and Reynolds numbers. They are used to characterize the flow
problem and are defined as

Characteristic Mach: Ma = uref/cref,

Characteristic Reynolds: Re = ρref uref `ref/µref,

where reference values are used for every variable. `ref is a characteristic
length scale, which depends on the problem whereas all the others: velocity
uref, speed of sound cref, density ρref, pressure pref, and viscosity µref are, in
general, the inflow/far-field values, viz. uref = ‖u∞‖. The speed of sound is
defined as c =

√
γp/ρ =

√
γRT .

2.2.1 Compact form of the conservation equations

Replacing the equations of state (2.15) and the constitute equations (2.13) in the
conservation equations (2.12a) the final equations for unsteady viscous compress-
ible flow are obtained as

∂U

∂t
+
∂Fk
∂xk
− ∂Gk

∂xk
= S, (2.16)

where U is the vector of conservative variables, Fk are the associated advection
flux vectors for each spatial dimension (k = 1, . . . , nsd), Gk are the corresponding
diffusion ones, and S is a source term. As usual, repeated indexes indicate sum.
These vectors, which are all in Rnsd+2, are defined as follows:

U =

 ρ
ρU
ρE

, S =

 0
ρs
U ·ρs

,
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and for k = 1, . . . , nsd, then

Fk =

 ρ uk
ρU uk + p ek
ρE uk + p uk

 =

 ρ uk
ρU uk + (γ − 1)(ρE − 1

2
ρU ·U)ek

γρE uk − (γ − 1)1
2
(ρU ·U)uk

,
Gk =

 0
σ′·ek
U ·σ′·ek

=

 0
λ(∇·U)ek + 2µ∇sU ·ek

λ(∇·U )uk + 2µU ·∇sU ·ek

,
Where ek is the unit vector in the xk direction (i.e. the standard canonical basis
in Rnsd).

Moreover, the previous equations are usually written and programmed in di-
mensionless form, namely:

∂

∂t

 ρ
ρU
ρE

+ ∇·

 ρUT

ρU ⊗U + (γ − 1)(ρE − 1
2
ρU ·U )Insd[

γρE − (γ − 1)1
2
ρU ·U

]
UT


−Re

−1∇·

 0Tnsd
λ(∇·U)Insd + 2µ∇sU[

λ(∇·U)U + 2µU ·∇sU
]T
 = F r

−2

 0
ρb
U ·ρb

 , (2.17)

where, in spite of the notation, which is not changed to simplify the presentation,
density, ρ, velocity, U , and total energy per unit mass, E are in dimensionless
form. The characteristic length `ref and velocity vref introduced in Remark 1 scale
the spatial coordinates and velocities. Typically one can chose to define either a
characteristic density ρref or a characteristic pressure pref and they verify pref =
ρrefv

2
ref. The characteristic time is `ref/vref, the one for the total energy is v2

ref and
the one for the body forces, b, which are also in dimensionless form in (2.17), are
scaled with gref. The Froude number, F r, which is a dimensionless number defined
as the ratio of the flow inertia to the external field (typically due to gravity), affects
the independent term and is defined as

F r = vref/
√
lrefgref.

Remark 2 Some authors prefer to scale the total energy with a character-
istic speed of sound, that is using c2

ref instead of v2
ref. This modifies the last

equation in (2.17) into

∂ρE

∂t
+ ∇·(γρE − (γ − 1)

Ma
2

2
ρu·u)u

− Ma
2

Re
∇·
[
λ(∇·u)u+ 2µu·∇su

]
=
Ma

2

F r2
u·ρb.
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With this scaling it is easy to analyze the incompressibility limit, i.e. Ma→
0, and see uncoupling of the conservation of energy with respect to the other
conservation equations.

2.2.2 Simplifications leading to steady Stokes equations

In the case of highly viscous flow such as Stokes flow where convective forces
are small compared with viscous forces, the convective terms in the Navier-Stokes
equations can often be neglected if compared with the dominant viscous terms. The
resulting equations are called equations of Stokes flow [29]. The Reynolds number
for such flows is low, i.e. Re� 1. The choice of Re� 1 is very interesting and an
important assumption, for it is relevant to many practical problems, especially in
a world where many products of technology, including those manipulating fluids,
are shrinking in size.

In this work the steady Stokes problem is considered. That is, in addition to
the convective term, the time-dependent terms of the full Navier-Stokes equations
are also neglected. Two distinct formulations of Stokes problem are possible. First,
the momentum equation is written in terms of the Cauchy stress (also known as
stress-divergence form). The Stokes’ constitutive law is only invoked after setting
the weak form. The advantage of this approach is that it can readily treat problems
with fluid constitutive equations more general than the linear Stokes’ law. Second,
the problem is directly formulated in terms of velocity and pressure. Use is made
of Stokes’ law and of the incompressibility condition to express the viscous term
as the Laplacian of velocity. This is the standard form of the Stokes equations.

Once the governing equations are defined boundary must be adequately pre-
scribed in order to close the problem. Two types of boundary conditions are used
in this report: Dirichlet and Neumann. Dirichlet boundary conditions prescribe
the value of the unknown function. Neumann conditions impose the normal gra-
dient of the unknown function along the boundary. Robin boundary conditions
can also be prescribed, though such boundary conditions are not considered in this
work.

2.2.2.1 Formulation in terms of Cauchy stress

In differential form, a steady Stokes problem is stated as follows in terms of Cauchy
stress: given the body force σ, prescribed velocities uD on the Dirichlet portion
ΓD of the boundary and imposed boundary tractions t on the Neumann portion
ΓN , determine the velocity field u and the pressure field p such that
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
−∇ · σ = s in Ω,
∇ · u = 0 in Ω,

u = uD on ΓD,
n · (σ = t on ΓN ,

(2.18)

A constitutive equation is needed to close the problem. That is, the Cauchy stress,
σ, must be related to velocity, u, and pressure, p, that is σ = σ(p,u). The linear
Stokes’ law can be used as the constitutive equation [29]

σ = −pInsd + 2µ∇su (2.19)

2.2.2.2 Formulation in terms of velocity and pressure

The formulation of the Stokes problem in terms of Cauchy stress has the advantage
that it is applicable to arbitrary fluid constitutive relations. When the linear
Stokes’ law can be invoked, it is preferable to start from a strong form of written
in terms of velocity and pressure because in this form the velocity components are
uncoupled. The steady Stokes problem can then be restated as follows:

−∇ · (ν∇u) + ∇p = s in Ω,
∇ · u = 0 in Ω,

u = uD on ΓD,
−pn+ n · (ν∇u) = t on ΓN ,

(2.20)

where ν = µ/ρ is the kinematic viscosity and p denotes the dynamic pressure.
Cauchy stress tensor (normalized by density) can be obtained by Stokes’ law (2.19).
In the rest of this report, the velocity-pressure formulation of the Stokes equation
is considered.



Chapter 3

HDG formulation for Stokes’
equations

3.1 Problem statement

Let Ω ∈ Rnsd be an open bounded domain with boundary ∂Ω and nsd the number
of spatial dimensions. The strong from for Stokes system along with boundary
conditions in its velocity-pressure formulation can be written as

−∇ · (ν∇u) + ∇p = s in Ω,
∇ · u = 0 in Ω,

u = uD on ΓD,
−pn+ n · (ν∇u) = t on ΓN ,

(3.1)

where ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅, and s ∈ L2(Ω) is a source term while n is the
outward unit normal vector to ∂Ω. Here standard Dirichlet and Neumann bound-
ary conditions are considered. Other mixed (i.e. Robin) boundary conditions can
also be imposed.

It is also assumed that Ω is partitioned in nel disjoint subdomains Ωi

Ω =
nel⋃
i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j,

with boundaries Ωi, which define an internal interface Γ

Γ :=

[
nel⋃
i=1

∂Ωi

]
\∂Ω. (3.2)

The corresponding strong form of the Stokes system given in Equation (3.1)

14
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can be written in the broken computational domain as

−∇ · (ν∇u) + ∇p = s in Ωi, for i = 1, ..., nel
∇ · u = 0 in Ωi, for i = 1, ..., nel

u = uD on ∂Ωi ∩ ΓD,
−pn+ n · (ν∇u) = t on ∂Ωi ∩ ΓN ,

Ju⊗ nK = 0 on Γ,
J−pn+ n · (ν∇u)K = 0 on Γ,

(3.3)

Since this is the standard velocity-pressure formulation, the Neumann boundary
conditions defined here do not correspond to regular stresses but to pseudo-stresses.
The jump J·K operator has been introduced following the definition in [8], such that,
along each portion of the interface Γ it sums the values from the element on the
left and right of say, Ωi and Ωj , namely

J�K = �i +�j

The strong from is written in mixed form as a system of first order equations
over the broken computational domain as

∇ · (νL+ pI) = s in Ωi, for i = 1, ..., nel
L+ ∇u = 0 in Ωi, for i = 1, ..., nel

∇ · u = 0 in Ωi, for i = 1, ..., nel
u = uD on ∂Ωi ∩ ΓD,

n · (νL+ pI) = −t on ∂Ωi ∩ ΓN ,
Ju⊗ nK = 0 on Γ,

Jn · (νL+ pI)K = 0 on Γ,

(3.4)

where I is the identity tensor of dimension nsd and L = −∇u is a new variable
(the second order velocity gradient tensor), which is introduced after splitting
the second order momentum conservation equation in two first order equations.
The last two equations in Equation (3.4) impose the continuity of velocity and
continuity of the normal component of the pseudo-stress across the interior faces
respectively.

3.2 Functional and interpolation setting

Before describing the weak forms the usual basic notation for the functional prod-
ucts and discrete spaces is recalled. as usual, (·, ·)D denotes the L2 scalar product
in a generic subdomain D, that is

(u, v)D =

∫
D

uv dΩ; (u,v)D =

∫
D

u · v dΩ; and (G,H)D =

∫
D

G : H dΩ,
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for scalars, vectors and second order tensors respectively.
Analogously, < ·, · >S denotes the L2 scalar product in any domain S ⊂ Γ∪∂Ω,

that is

< u, v >S=

∫
S

uv dΓ; < u,v >S=

∫
S

u·v dΓ; and < G,H >S=

∫
S

G : H dΓ

again, for scalars, vectors and second order tensors respectively.
The following discrete finite element spaces are also introduced

Qh(Ω) = {q ∈ L2(Ω); q|Ωi ∈ Pk(Ωi) ∀Ωi} ⊂ Q(Ω),

Vh(Ω) = {v ∈ [L2(Ω)]nsd ;v|Ωi ∈ [Pk(Ωi)]
nsd ∀Ωi} ⊂ V(Ω),

Gh(Ω) = {G ∈ [L2(Ω)]nsd×nsd ;G|Ωi ∈ [Pk(Ωi)]
nsd×nsd ∀Ωi} ⊂ G(Ω),

Mh(S) = {µ ∈ [L2(S)]nsd ;µ|Γi ∈ [Pk(Γi)]nsd ∀Γi ⊂ S ⊂ Γ ∪ ∂Ω} ⊂ M(S),

where Pk(Ωi) and Pk(Γi) are the spaces of polynomial functions of degree at most
k ≥ 1 in Ωi and Γi respectively. Mh can be defined over all the mesh skeleton
interior and exterior faces (or edges in two dimensions).

The element-by-element nodal interpolation of the variables, namely, p, u, L
and û, develops from these spaces as

p ≈ ph =
nen∑
j=1

Njpj ∈ Qh, (3.5a)

u ≈ uh =
nen∑
j=1

Njuj ∈ Vh, (3.5b)

L ≈ Lh =
nen∑
j=1

NjLj ∈ Gh, (3.5c)

û ≈ ûh =
nfn∑
j=1

N̂jûj ∈Mh(Γ ∪ ΓN) orMh(Γ), (3.5d)

where pj,uj,Lj and ûj are nodal values, Nj are polynomial shape functions of order

k in each element, nen is the number of nodes per element, N̂j are polynomial shape
functions of order k in each element face/edge, and nfn is the corresponding number
of nodes per face/edge. Note that for Lh the nodal values are matrices, whereas
for uh and ûh the nodal values are vectors. The vector ûj is defined globally over
the mesh skeleton (faces/edges). Its dimension depends on the formulation and
corresponds to the number of nodes on Γ ∪ ΓN or on Γ. More precisely

dim(û) = nsd

nef∑
k=1

nkfn
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where nef is the number of element faces/edges in the mesh skeleton and nkfn is
the number of nodes in the k-th face. The number of element faces/edges in the
mesh skeleton always includes those on the interior, i.e. those belonging to Γ.
But, depending on the formulation used, nef also includes the faces/edges on the
Neumann boundary, ΓN .

The HDG formulation solves the problem in Equation (3.4) in two phases,
see [12–16, 19, 30]. First, an element-by-element problem is defined with (L, u,
p) as unknowns, and then a global problem is set up to determine the traces
of u, denoted by û, on the element boundaries. The local problem determines
Li := L|Ωi , ui := u|Ωi and pi := p|Ωi for i = 1, ..., nel with a new variable û
along the interface Γ acting as a Dirichlet boundary condition. There are however
several options for the detailed implementation. They are presented and discussed
in the following sections.

3.3 HDG formulation

HDG formulation is applied to the strong form given in Equations (3.4), which
is a first order system of partial differential equations over each element. This is
the classical formulation and can be found in series of papers, see [14–16, 19, 30].
As seen in section 3.2, in the HDG scheme, the global unknowns are restricted to
the mesh skeleton, more specifically,on Γ∪ ∂Ω. Velocity and pressure on the mesh
skeleton characterizes the complete problem, as a result of which, once velocity
and pressure are know on the mesh skeleton, they can be obtained everywhere
else.

The velocity field on the mesh skeleton is denoted by û(x) and it is unknown
everywhere except for the Dirichlet boundary. To determine velocity gradients,
velocity and pressure (i.e. L, u and p) inside every element Ωi the velocity û on
∂Ωi is imposed (assumed known). In the HDG method, first, the local element-by-
element problem with Dirichlet boundary conditions is defined. Second, a global
problem is defined to determine û. The following two sections give a detailed
description of the strong and week forms of the local and global problems, respec-
tively.

3.3.1 The HDG local problem

For the strong form of the problem defined in Equation (3.4) and the definitions
on the mesh skeleton (û, ρi), a local element-by-element Stokes problem can be
defined for each element. It comprises of the first three equations in Equation
(3.4), which are already described element-by-element, along with the velocity
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conditions along the mesh skeleton, û. Thus the local problem equations are,
L+ ∇u = 0 in Ωi, for i = 1, ..., nel

∇ · (νL+ pI) = s in Ωi, for i = 1, ..., nel
∇ · u = 0 in Ωi, for i = 1, ..., nel

u = uD on ∂Ωi ∩ ΓD,
u = û on ∂Ωi\ΓD.

(3.6)

Note that the local problem is a Dirichlet problem. Therefore, pressure is
known up to a constant. There are several choices to remove this indeterminacy
but here the mean pressure, ρi on the element boundary is imposed, namely∫

∂Ωi

p dΓ = ρi for i = 1, ..., nel. (3.7)

It is worth noting that û is imposed in the local problem assumed as known.
This allows this problem to produce an element-by-element solution Li, ui and
pi as a function of the unknown û ∈ L2(Γ ∪ ΓN) in each face. Note that these
problems can be solved independently element by element. However, since û is
actually an unknown, in order to ensure the well-posedness of the local problem,
it is essential to establish that the net flux of û is zero in each element. This is
the so-called compatibility condition and it is defined as∫

∂Ωi∩ΓD

uD · n dΓ +

∫
∂Ωi\ΓD

û · n dΓ = 0. (3.8)

for i = 1, ..., nel. This condition, which is incorporated in the global problem, also
ensures the solvability of the global problem. This will be clear in the next section.

The weak problem associated to Equation (3.6) and (3.7) becomes: find (L,u, p)
in the appropriate functional spaces for i = 1, ..., nel such that

(G,L)Ωi − (∇ ·G,u)Ωi = − <∇ ·G, û >∂Ωi\ΓD − <∇ ·G,uD >∂Ωi∩ΓD , ∀G
−(∇v, νL)Ωi − (∇ · v, p)Ωi+ < v,n · (νL+ pI) >∂Ωi= (v, s)Ωi , ∀v
−(∇q,u)Ωi = − < q, û · n >∂Ωi\ΓD − < q,uD · n >∂Ωi∩ΓD , ∀q
< p, 1 >∂Ωi= ρi

(3.9)

where the test functions (G,v, q) belong to the corresponding functional test
spaces, and the unknown velocity u along ∂Ωi\ΓD has been replaced by the the
velocity along the mesh skeleton û as indicated by the fourth equation in Equation
(3.6).
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It can be seen that the second equation in Equation (3.9) requires integration
of (νL+pI) along the element boundary. For this, it is standard in HDG to define

the trace of the fluxes, denoted by ̂(νL+ pI), as follows:

n · ̂(νL) + pI :=

{
n · (νL+ pI) + τ(u− uD) on ∂Ωi ∩ ΓD

n · (νL+ pI) + τ(u− û) elsewhere
(3.10)

where τ is stabilization parameter. The selection of this parameter has an impor-
tant effect on the stability, accuracy and convergence properties of the resulting
HDG method. This has been discussed and analyzed for a large number of prob-
lems by Cockburn and coworkers, see, for instance, [12–16, 19]. Also, it has been
proved in past papers that τ ensures the superconvergence of the post-processed
solution, see [31,32].

The weak problem presented in Equation (3.9) is rewritten for the discrete
spaces and each term is identified with the corresponding part in the final system
of equations. The equation thus obtained characterizes the so-called local problem
for the strong form given in Equation (3.6), after substitution of the numerical
fluxes defined in Equation (3.10) into the weak form presented in Equation (3.9).
This is presented in Equations (3.11). This local problem is solved for each element,
that is, for i = 1, ..., nel

ALLLi︷ ︸︸ ︷
(G,Lh)Ωi

ALuui︷ ︸︸ ︷
−(∇ ·G,uh)Ωi =

ALûûi︷ ︸︸ ︷
− < n ·G, ûh >∂Ωi\ΓD

fL︷ ︸︸ ︷
− < n ·G,uD >∂Ωi∩ΓD ,

(3.11a)

AuLLi︷ ︸︸ ︷
(∇v, νLh)Ωi− < v, νn ·Lh >∂Ωi

Auuui︷ ︸︸ ︷
− < v, τuh >∂Ωi

+

Auppi︷ ︸︸ ︷
(∇ · v, ph)Ωi− < v, phn >∂Ωi =

Auûûi︷ ︸︸ ︷
− < v, τ ûh >∂Ωi\ΓD

fu︷ ︸︸ ︷
− < v, τuD >∂Ωi∩ΓD −(v, s)Ωi

(3.11b)

Apuui︷ ︸︸ ︷
(∇q,uh)Ωi =

Apûûi︷ ︸︸ ︷
< q,n · ûh >∂Ωi\ΓD +

fp︷ ︸︸ ︷
< q,n · uD >∂Ωi∩ΓD ,

(3.11c)

aρppi︷ ︸︸ ︷
< ph, 1 >∂Ωi = ρi,

(3.11d)

These equations allow to determine the coefficients characterizing (Li,ui,pi)
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as functions of (ûi, ρi), and the system shown in Equations (3.11) becomes:

Ai


Li

ui
pi

 =


fL
fu
fp
0


i

+


ALû

Auû

Apû

01,nsdnfn


i

ûi +


0n2sdnen,1

0nsdnen,1

0nen,1

1

 ρi, (3.12)

for i = 1, ..., nel, where

Ai =


ALL ALu 0n2sdnen,nen

AuL Auu Aup

0nen,n2sdnen
Apu 0nen

01,n2sdnen
01,nsdnen aρp


i

For implementation purposes, some auxiliary vectors are defined. Equations
(3.12) can be written as

Li

ui
pi

 = zf
i + Zf

i ûi + zρi ρi, for i = 1, ..., nel, (3.13)

where

zf
i = A+

i


fL
fu
fp
0


i

; Zf
i = A+

i


ALû

Auû

Apû

01,nsdnfn


i

and zρi = A+
i


0n2sdnen,1

0nsdnen,1

0nen,1

1


i

.

Here A+
i are generalized inverse of the rectangular matrix Ai satisfying the fol-

lowing properties:

(1) Matrices A+
i of dimensions

(
(n2sdnen+nsdnen+nen), (n

2
sdnen+nsdnen+nen+1)

)
are generalized inverse of Ai as x = A+

i y is a solution to the equation
Aix = y for any y such that the equation Aix = y is consistent,

(2) Matrices Ai and A+
i satisfy the condition AiA

+
i Ai = Ai,

(3) AiA
+
i is idempotent and R(AiA

+
i ) = R(Ai) or R(A+

i Ai) = R(Ai) where
R(·) denotes the rank of the matrix,

for i = 1, ..., nel.



21 HDG formulation for Stokes’ equations

3.3.2 The HDG global problem

The local problem described in the previous section for each element allows to
represent the approximations (Li,ui,pi) in terms of the velocities on the mesh
skeleton, ûi, and a vector of boundary mean pressures ρi. The global problems,
which will be dealt with in this subsection, are used to determine the aforemen-
tioned variables, ûi and ρi. The global problem is constructed imposing continuity
of velocities and fluxes along the mesh skeleton, which are the so called trans-
mission conditions, the Neumann boundary condition and the element-by-element
compatibility condition. The transmission conditions were already introduced in
(3.4) to ensure inter-element continuity when the broken computational domain
formulation was presented,{

Ju⊗ nK = 0 on Γ,
Jn · (−pI + νL)K = 0 on Γ

Note that the first equation in the transmission conditions imposes continuity of
u along Γ. But u = û on Γ as imposed by the local problems in Equation (3.6).
Hence, continuity of the primal variable, Ju ⊗ nK = 0, is imposed automatically
because û is unique for adjacent elements. In summary, the global problem is
simply {

Jn · (−pI + νL)K = 0 on Γ,
n · (νL+ pI) = −t on ΓN ,

(3.14)

with the compatibility condition∫
∂Ωi∩ΓD

uD · n dΓ +

∫
∂Ωi\ΓD

û · n dΓ = 0.

The discrete weak form equivalent to this global problem becomes: find ûh ∈
Mh and ρ ∈ Rnel such that

nel∑
i=1

{
< µ,n · (νLh + phI) >∂Ωi\ΓD + < µ, τuh >∂Ωi\ΓD

− < µ, τ ûh >∂Ωi\ΓD

}
= −

nel∑
i=1

< µ, t >∂Ωi∩ΓN ∀µ ∈Mh

< n · ûh, 1 >∂Ωi\ΓD= − < n · uD, 1 >∂Ωi∩ΓD for i = 1, ..., nel.

These equations allow to identify the different terms, that will contribute to
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the final global system of equations.

nel∑
i=1

{ (AûL)iLi︷ ︸︸ ︷
< µ, νn ·Lh >∂Ωi\ΓD +

(Aûu)iui︷ ︸︸ ︷
< µ, τuh >∂Ωi\ΓD +

(Aûp)ipi︷ ︸︸ ︷
< µ, phn >∂Ωi\ΓD

(Aûû)iûi︷ ︸︸ ︷
− < µ, τ ûh >∂Ωi\ΓD

}
= −

nel∑
i=1

(f û)i︷ ︸︸ ︷
< µ, t >∂Ωi∩ΓN ,

(3.16a)

(aρû)iûi︷ ︸︸ ︷
< n · ûh, 1 >∂Ωi\ΓD =

(fρ)i︷ ︸︸ ︷
− < n · uD, 1 >∂Ωi∩ΓD for i = 1, ..., nel.

(3.16b)

which can be written in matrix as

nel∑
i=1

Bi


Li

ui
pi

+ [Aûû]i ûi

 =
nel∑
i=1

{f û}i (3.17a)

(aρû)iûi = (fρ)i for i = 1, ..., nel, (3.17b)

where

Bi =
[

AûL Aûu Aûp

]
i

for i = 1, ..., nel.

This equation clearly identifies the element-by-element contributions of dif-
ferent matrices and vectors. Upon introducing the local solution (see Equations
(3.13)) into Equations (3.17a), we get

nel∑
i=1

{
Bi

{
zf
i + Zf

i ûi + zρi ρi

}
+ [Aûû]i ûi

}
=

nel∑
i=1

{f û}i ,

which can be written as

nel∑
i=1

{ [
BZf + Aûû

]
i
ûi + Biz

ρ
i ρi

}
=

nel∑
i=1

{
{f û}i −Biz

f
i

}
.

Therefore, the elemental contributions to the global system

K̂Û = f̂ (3.18)
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are

K̂ =
nen

A
i=1

[
BZf + Aûû Bzρ

aρû 0

]
i

, f̂ =
nen

A
i=1

[
f û −Bzf

fρ

]
i

.

It is very clear that the global system is a non-symmetric matrix. Nevertheless,
this system has only velocity as unknowns on the mesh skeleton, ∂Ωi\ΓD, and
one unknown mean pressure per element. It is worth noting that the number of
nodes on the mesh skeleton depends on the degree of the polynomials used for
approximation, and this number is significantly lower than the number of nodes
per element for higher values of the degree of the interpolation polynomial. Since
the HDG method is a high order method, this feature is a huge advantage for
the method. Also independent of the degree of the approximation polynomial
for pressure, there is only one unknown pressure that has to be computed in each
element in the global problem. Thus using a high degree approximation polynomial
will be advantageous for the HDG method.

3.3.3 Local postprocessing for velocity

The solution of HDG problem defined in Equations 3.18 and 3.12 computes the
numerical solution for both u and L with optimal rate of convergence k+ 1 in L2

norm. This is because the polynomial used to approximate both these variables
are of the same degree. It is known that L, which is the gradient of velocity, will
in reality be one degree lower than u, if u was to be a polynomial function. This
cognizance is used to develop the concept of superconvergence using local postpro-
cessing, which was proposed in [13, 36, 37]. Local postprocessing can be used to
obtain a superconvergent solution for velocity, namely u?. This is achieved by solv-
ing the following equations element-by-element, thus proving be computationally
inexpensive. {

∇ ·∇u? = −∇ ·L in Ωi,

n ·∇u? = −n ·L on ∂Ωi,
(3.19)

with additional constraint ∫
Ωi

u? dΩ =

∫
Ωi

u dΩ, (3.20)

where u? ∈ Pk+1(Ωi) and k is polynomial degree of approximation for both u and
L. The weak form of the problem can be written as,

(∇v,∇u?)Ωi = −(∇v,L)Ωi ∀v ∈ Pk+1(Ωi), (3.21)

(∇u?, 1)Ωi = (∇u, 1)Ωi . (3.22)

u? converges asymptotically at a faster rate of k + 2 in L2 norm for uniform
degree of the approximation polynomial k.
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3.3.4 Neumann local problems

It is possible to further reduce the number of variables that need to be computed by
solving the global system. This can be done by a minor modification of the previous
formulation which will induce a smaller global problem. It involves prescribing the
Neumann boundary conditions already in the corresponding local problem. This
modifies the original strong forms in Equations (3.6) and (3.14) into the HDG local
and global problems as

L+ ∇u = 0 in Ωi, for i = 1, ..., nel
∇ · (νL+ pI) = s in Ωi, for i = 1, ..., nel

∇ · u = 0 in Ωi, for i = 1, ..., nel
u = uD on ∂Ωi ∩ ΓD,

n · (νL+ pI) = −t on ∂Ωi ∩ ΓN ,
u = û on ∂Ωi ∩ Γ,

(3.23)

with the mean pressure, ρi on the element boundary imposed in those elements
where the local problem is of Dirichlet type,∫

∂Ωj

p dΓ = ρj ∀Ωj | ∂Ωj ∩ ΓN 6= ∅. (3.24)

and

Jn · (νL+ pI)K = 0 on Γ. (3.25)

with the compatibility condition∫
∂Ωi∩ΓD

uD · n dΓ +

∫
∂Ωi\ΓD

û · n dΓ = 0 ∀Ωj | ∂Ωj ∩ ΓN 6= ∅.

It also implies a new definition for the numerical traces of the fluxes, thus Equation
(3.10) becomes

n · ̂(νL+ pI) :=


−t on ∂Ωi ∩ ΓN

n · (νL+ pI) + τ(u− uD) on ∂Ωi ∩ ΓD

n · (νL+ pI) + τ(u− û) elsewhere

(3.26)

Upon performing all the steps shown in subsections 3.3.1 and 3.3.2, the local
and global problems in the discrete space for the Stokes problem for the Neumann
formulation are as follow
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ALLLi︷ ︸︸ ︷
(G,Lh)Ωi

ALuui︷ ︸︸ ︷
−(∇ ·G,uh)Ωi+ < n ·G,uh >∂Ωi∩ΓN

=

ALûûi︷ ︸︸ ︷
− < n ·G, ûh >∂Ωi\∂Ω

fL︷ ︸︸ ︷
− < n ·G,uD >∂Ωi∩ΓD , (3.27a)

AuLLi︷ ︸︸ ︷
(∇v, νLh)Ωi− < v, νn ·Lh >∂Ωi\ΓN

Auuui︷ ︸︸ ︷
− < v, τuh >∂Ωi\ΓN

+

Auppi︷ ︸︸ ︷
(∇ · v, ph)Ωi− < v, phn >∂Ωi\ΓN =

Auûûi︷ ︸︸ ︷
− < v, τ ûh >∂Ωi\∂Ω

fu︷ ︸︸ ︷
− < v, τuD >∂Ωi∩ΓD − < v, t >∂Ωi∩ΓN −(v, s)Ωi (3.27b)

Apuui︷ ︸︸ ︷
(∇q,uh)Ωi− < q,n · uh >∂Ωi∩ΓN

=

Apûûi︷ ︸︸ ︷
< q,n · ûh >∂Ωi\∂Ω +

fp︷ ︸︸ ︷
< q,n · uD >∂Ωi∩ΓD , (3.27c)

aρppi︷ ︸︸ ︷
< ph, 1 >∂Ωi = ρi, (3.27d)

and

nel∑
i=1

{ (AûL)iLi︷ ︸︸ ︷
< µ, νn ·Lh) >∂Ωi\∂Ω +

(Aûu)iui︷ ︸︸ ︷
< µ, τuh >∂Ωi\∂Ω

(Aûp)ipi︷ ︸︸ ︷
< µ, phn >∂Ωi\∂Ω

(Aûû)iûi︷ ︸︸ ︷
− < µ, τ ûh >∂Ωi\∂Ω

}
= 0 (3.28a)

(aρû)iûi︷ ︸︸ ︷
< n · ûh, 1 >∂Ωi\ΓD =

(fρ)i︷ ︸︸ ︷
− < n · uD, 1 >∂Ωi∩ΓD for i = 1, ..., nel. (3.28b)

Equation (3.27) is the weak form of the local problem in Neumann formulation
while Equation (3.28a) is the first equation of the global system. Note that, in
this case, the dimension of û corresponds only to the degrees of freedom along
the interior skeleton Γ, which is slightly smaller than in the previous case where
unknowns had also to be determined along the Neumann boundary. In terms of
computation time this formulation is slightly more advantageous.



Chapter 4

Spatial discretization and degree
adaptivity

4.1 Spatial Discretization

This section is dedicated to the presentation of details of techniques employed
during the discretization of the spatial solution domain. Two different formula-
tions are used for the spatial discretization namely, the standard isoparametric
formulation [38] and the NURBS-enhanced finite element method (NEFEM) [24].

4.1.1 Isoparametric formulation

In this formulation, the interpolation functions and their derivatives are defined
in a reference element with local coordinates ξ = (ξ1, ξ2, ξ3) and the isoparametric
transformation is used to relate local and Cartesian coordinates, namely,

x(ξ) =
nen∑
j=1

xjNj(ξ), (4.1)

where xj denote the elemental nodal coordinates at node j, while Nj is the shape
function associated with node j. When using an isoparametric formulation for
spatial discretization, the primal variable u, the dual variable L, pressure p, and
the hybrid variable û appearing in the HDG formulation of Stokes equations are
all interpolated in this manner as,

u(x) ' uh(x(ξ)) =
nen∑
j=1

ujNj(ξ),

L(x) ' Lh(x(ξ)) =
nen∑
j=1

LjNj(ξ),

26
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Table 4.1: The reference elements of order k, their approximation spaces and the
dimension of these spaces [39].

Element Approximation space Dimension

Triangle Pk(ξ1, ξ2) = ξa1ξ
b
2, a+ b 6 k 1

2
(k + 1)(k + 2)

Quadrilateral Qk(ξ1, ξ2) = ξa1ξ
b
2, a, b 6 k (k + 1)2

Tetrahedron Pk(ξ1, ξ2, ξ3) = ξa1ξ
b
2ξ
c
3, a+ b+ c 6 k 1

6
(k + 1)(k + 2)(k + 3)

Hexahedron Qk(ξ1, ξ2, ξ3) = ξa1ξ
b
2ξ
c
3, a, b, c 6 k (k + 1)3

Prism Pk(ξ1, ξ2)⊗ Pk(ξ3) 1
2
(k + 1)2(k + 2)

Pyramid Pk(ξ1, ξ2, ξ3)⊕
∑r−1

c=0

(
ξ1ξ2
1−ξ3

)r−k
Pk(ξ1, ξ2) 1

6
(k + 1)(k + 2)(2k + 3)

p(x) ' ph(x(ξ)) =
nen∑
j=1

pjNj(ξ),

û(x) ' ûh(x(ξ)) =
nfn∑
j=1

ûjN̂j(ξ),

where uj, Lj, pj and ûj are nodal values of the respective variables.
Triangles and quadrilaterals are employed to provide a consistent discretization

of the spatial solution domain, Ω, for two dimensional problems. In three dimen-
sions, consistent meshes consisting of tetrahedra, hexahedra, prisms and pyramids
are used. Apart from the pyramid, which requires special attention, optimal nodal
finite elements of arbitrary order are readily defined for all these shapes [39]. For
the pyramid, a recently proposed approximation space [40] is adopted. This space
is well suited for discontinuous approximations and is optimal, i.e. the a priori
error estimate is O(hk+1) in the L2 norm. The approximation spaces that are
employed are summarised in Table 4.1.

In two dimensions, a Fekete nodal distribution is adopted for the triangle [41]
and a tensor product of one dimensional Fekete nodal distributions for the quadri-
lateral. In three dimensions, the nodal distributions proposed in [42] for the tetra-
hedron and in [40] for the pyramid are used. A tensor product of one dimensional
Fekete nodal distributions is used for the hexahedron and a tensor product of
triangular and one dimensional Fekete nodal distributions is used for the prism.

4.1.2 NEFEM formulation

This formulation considers nodal polynomial interpolation in each element, see [24]
for more details. To ensure reproducibility of polynomials in the physical space,
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NEFEM approach defines the approximation directly with Cartesian coordinates,
x.

The solution domain is considered as an open bounded domain Ω, whose bound-
ary ∂Ω, or a portion of it, is parametrized by NURBS curves in 2D, is considered.
For more information on curves, see Appendix A. In 2D every NURBS is assumed
to be parametrized by

C : [0, 1]→ C([0, 1]) ⊆ ∂Ω ⊂ R2.

A regular partition of the domain Ω̄ =
⋃
e Ω̄e in simplices is assumed, such that

Ωi

⋂
Ωj = ∅, for i 6= j. As customary in FE mesh generation codes, it is considered

that every curved boundary face belongs to a unique NURBS. As a result of this
assumption, one element face can not be defined by portions of two, or more,
different NURBS. It is, however, worthwhile to note that the piecewise definition
of each NURBS is independent on the mesh discretization. Thus, within one face,
the definition of NURBS parametrization can change, that is, there is no necessity
for the edges of elements to coincide with knot lines. Note that special attention
must to be paid to the numerical integration over elements affected by the NURBS
boundary representation upon allowing changes of NURBS parametrization to be
independent on the spatial discretization.

When an element does not have any edge or face in contact with NURBS bound-
aries, it is interpreted and considered as a standard FE in NEFEM. In this work
which involves the integration of the HDG method and NEFEM, these elements
not in contact with exterior curved boundaries are treated as standard isoparamet-
ric elements. Therefore, in the bulk of the domain, interpolation and numerical
integration are typical of isoparametric HDG, preserving the computational ef-
ficiency of the HDG method. Specific numerical schemes for interpolation and
numerical integration are required only in those elements influenced by NURBS
boundaries.

4.1.2.1 Curved elements

In NEFEM, curved elements are characterised in terms of the NURBS boundary
representation of the domain. The formal definition of curved faces and elements
in a NEFEM mesh is given in this section.

Let Γe be an edge on the NURBS boundary parametrized by C, and x1,x2 ∈
∂Ω the two vertices on the NURBS boundary, see Figure 4.1. The edge is defined
by

Γe := C([λe1, λ
e
2, ]),

where λe1 and λe2 are the parametric coordinates (in the parametric space of the
NURBS) of the end points of Γe.
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Figure 4.1: Parametrization of a curved triangular element with a edge on the
NURBS boundary [24].

A curved triangular element with an edge on the NURBS boundary is defined
as a convex linear combination of the curved NURBS edge and the interior vertex.
For instance, element represented in Figure 4.1 is parametrized by

ψ : R→ Ωe,

(λ, ϑ) 7→ ψ(λ, ϑ) := (1− ϑ)C(λ) + ϑx3,
(4.2)

where R = [λe1, λ
e
2]× [0, 1] and x3 is the internal vertex of Γe, see Figure 4.1.

4.1.2.2 High-order approximation in curved elements

In this work we propose to use a Cartesian approximation for the variables u, L
and p, namely,

u(x) ' uh(x) =
nen∑
j=1

ujNj(x),

L(x) ' Lh(x) =
nen∑
j=1

LjNj(x),

p(x) ' ph(x) =
nen∑
j=1

pjNj(x),

where uj, Lj and pj are nodal values of the respective variables and Nj are polyno-
mial shape functions (Lagrange polynomials) of order k in x. This is in contrast to
isoparametric FEM or p-FEM, where the approximation is defined in a reference
element. However, in their cases, as opposed to NEFEM, the definition of the
polynomial basis for high-order curved elements does not ensure reproducibility of
polynomials in the physical space.
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The computation of Lagrange polynomial basis is made more systematic, for
any degree and for any distribution of nodes, by expressing the Lagrange polyno-
mial basis {Nj(x)}nenj=1 for a given nodal set with coordinates {xj}nenj=1 in terms of
the polynomial basis {Pj(x)}nenj=1 as

Nj(x) =
nen∑
l=1

[V −1]ljPl(x), (4.3)

where the multidimensional Vandermonde matrix is defined as Vjl := Pl(xj),
for j, l = 1, ..., nen [24].

A number of options can be considered in order to define a nodal distribution
in Ωe. One can make use of an equally-spaced nodal distribution, or a distribution
adapted to curved boundaries. Nodal distributions adapted to curved boundaries
do not represent any implementation advantage in the case of HDG method as
boundary conditions are imposed in weak form, as usual in DG formulations.
However, from [24] it is clear that adapted distributions of nodes induce an im-
portant reduction on condition number, even though a specific nodal distribution
has to be defined for each curved element.

The approximation for û is defined on a reference space, namely,

û(x) ' ûh(x(λ(ξ))) =
nfn∑
j=1

ûjN̂j(ξ),

where ûj are the nodal values of û. The interpolation function N̂ defined on
a reference edge is mapped to the physical space using the NURBS boundary
parametrization C. Let Γe be an edge on the NURBS boundary parametrized by
C, and x1,x2 ∈ ∂Ω, the two vertices of the NURBS boundary. The edge is given
by

Γe := C([λe1, λ
e
2]),

where λe1 and λe2 are the parametric coordinates (in the parametric space of the
NURBS) of the end points of Γe. Furthermore a second mapping, which is a linear
transformation, is used to relate the parametric space [λe1, λ

e
2] to the reference face

[−1, 1]. Thus the face Γe is parametrized as

φ : [−1, 1] −→ [λe1, λ
e
2] and C : [λe1, λ

e
2] −→ Γe

with

x(λ(ξ)) = C

((
1 + ξ

2

)
λe1 +

(
1− ξ

2

)
λe2

)
.
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The reason for choosing to define û is as follows. In an isoparametric formu-
lation, any variable can be fully described along an edge using the values of that
variable on the nodes lying on the edge. In other words, at a quadrature point
for integrating along the edge, û can be described fully as a function of û’s on
the nodes on the edge. This is not true in the case of quantities with Cartesian
approximation in the NEFEM formulation. In this case, a variable at a point on
the curved edge will be a function of the values of the quantity at all the nodes
of the element. As a result of this, upon using a Cartesian approximation for û,
the number of degrees of freedom of û along any curved edge will be equal to nen
instead of nfn, which will result in an increase in the size of the global system. In
order to overcome this problem û is defined in the reference space, thus ensur-
ing that the number of degrees of freedom of û along any edge, both planar and
curved, will be equal to nfn.

4.1.2.3 Numerical integration in curved elements

From the weak form of the problem it can be seen that integration has to be per-
formed over element faces/edges and in element interiors. In elements that do not
have an edge or face in contact with NURBS boundaries, integrals are computed
using standard procedures. For an element Ωe affected by the NURBS boundary
representation, it is necessary to design specific quadratures. In addition, while
defining suitable quadratures accounting for changes of NURBS parametrization
within an element face/edge, it is necessary to pay special attention.

Numerical integration on curved faces/edges (line/surface integrals, usually re-
lated to the implementation of natural boundary conditions or to flux evaluation
over the face in a DG context) and in curved elements (volume integrals) is pre-
sented in [24]. This section gives a brief summary of the same.

A line integral to be computed along a curved boundary edge given by a
trimmed NURBS, Γe = C([λe1, λ

e
2]), is written as∫

Γe

f dl =

∫ λe2

λe1

f(C(λ)) ‖JC(λ)‖ dλ,

where f is a generic function (usually polynomial), and ‖JC‖ denotes the norm
of the differential of the NURBS parametrization C (which, in general, is not
a polynomial). In order to numerically compute the integral, a 1D numerical
quadrature is used, namely∫

Γe

f dl ≈
nip∑
i=1

f(C(λi)) ‖JC(λi)‖ωi, (4.4)
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where λi and ωi are the coordinates and weights of the nip integration points
in [λe1, λ

e
2].

Since a NURBS parametrization, C, is a piecewise rational function whose def-
inition changes at the breakpoints, it is important that an independent numerical
quadrature be considered for each one of the intervals between breakpoints. This
is to take into account the discontinuous nature of the parametrization.

A very detailed explanation contrasting simple Gauss-Legendre quadratures
and composite quadratures is provided in [24]. The number of integration points
needed to integrate all the polynomials of degree less or equal to 2p, when a
polynomial interpolation of degree p is considered in the NEFEM context, increase
slightly for simple quadratures, when the desired accuracy is increased from 10−6

to 10−10. On the other hand, a similar increase in accuracy leads to a higher
increase in computation cost in case of composite quadratures. However in [24],
the authors also mention that the use of composite rules is very attractive as it
allows the error to be controlled in a straightforward manner.

In NEFEM, there is also a necessity to compute integrals in an element Ωe with
one edge Γe on the NURBS boundary, see Figure 4.1. Using the transformation in
Equation (4.2), element integrals are computed as∫

Ωe

f dΩ =

∫
R

f(ψ(λ, ϑ)) |Jψ(λ, ϑ)| dλ dϑ,

where |Jψ| is the determinant of the Jacobian of the transformation ψ. The
integral can be evaluated using 1D Gauss-Legendre quadratures in each direction
as ∫

Ωe

f dΩ ≈
nip∑
i=1

mip∑
j=1

f(ξij) |Jψ(λi, ϑj)|ωiωj. (4.5)

where nip and mip are the number of integration points in λ and ϑ directions,
respectively, ξij := ψ(λi, ϑj), and {λi, ωi}

nip
i=1 and {ϑj, ωj}

mip
j=1 are the 1D quadrature

points and weights for [λe1, λ
e
2] and [0, 1] respectively.

4.2 Degree adaptivity

Previous papers have highlighted the effectiveness of high-order HDG computa-
tions for fluid problems compared to low-order approximations [31,32]. High-order
elements provide better accuracy for the same computational cost, or require less
computational cost for a desired accuracy level. However, the discontinuous char-
acter of the solution in the HDG method opens the path to a further optimization:
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p-variable computations, that is, increasing the polynomial degree only where more
accuracy is needed.

Typically, adaptive procedures start from a discretization designed to exploit
the a priori knowledge of the solution (for example, the presence of boundary
layers) and to accurately represent the geometry of the domain. Then, adaptivity
automatically adjusts the elements locally, relying on error indicators or error
estimators computed from the solution itself, in order to provide the necessary
spatial resolution and to accurately capture the solution as it evolves.

In this section, a p-adaptive HDG method for Stokes flow problems is proposed.
A simple and reliable error estimator is derived exploiting the superconvergent
post-process of HDG. Since this involves only element-by-element computations
the computational cost of the error estimator is significantly smaller than the cost
of computing the solution. The error estimator drives the automatic update of
the approximation degree in each element, which is aimed at obtaining a uniform
error distribution below a user defined tolerance. The adaptive process is also very
fast compared with the computation of the solution as no mesh topology changes
are introduced. Despite the simplicity of the proposed error estimator and the
adaptive technique, high accuracy computations are obtained.

4.2.1 Error estimation and adaptive strategy based on Richard-
son extrapolation

The use of a posteriori computable error estimates to drive an automatic adaptive
process is nowadays a common practice to control the accuracy of the computation
and to ensure the quality of the FE solution [46]. Error indicators and error
estimators are the two different approaches can be used for assessing the error [47].
Error indicators are cheap to evaluate but are designed for specific problems and do
not provide error bounds while error estimators are more accurate and can be used
in linear and nonlinear problems [48] and can even produce bounds of the exact
solution [49–52]. However, a posteriori error estimators have a computational
overhead [53] when recovery techniques are used [54] or when equilibrated fluxes
must be computed ,and also in flux-free implementations [50]. Therefore, the
superconvergent postprocess inherent in HDG is a important asset, which can be
readily employed to estimate the error.

4.2.1.1 Richardson extrapolation based size update for h-adaptivity

Based on a priori error estimate, the element error estimate is [55]

||u− uh||Ωi ≤ Ch
ki+nsd/2
i for i = 1, ..., nel, (4.6)
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where u is the exact solution, uh is the FE approximation, hi is the characteristic
element size of Ωi, ki is the degree of approximation, C is a constant that depends
on the element distortion and a measure of the derivatives of the solution u. In
fact, Equation (4.6), is written assuming that k + 1 derivatives of u in Ω are
regular enough, thus stating that the local seminorm in Hm+1(Ωi) is bounded by
the global one, Hm+1(Ω), see [55] for more details. The one order higher accurate
postprocessed solution obtained in the HDG method can be used to get a measure
of the error even in the absence of an analytical solution, which is

Suppose we are able to estimate the error, that is, we know,

Ei ≈ ||u− uh||Ωi for i = 1, ..., nel. (4.7)

From Equations (4.6) and (4.7)

Ei ≤ Ch
ki+nsd/2
i for i = 1, ..., nel. (4.8)

The desired error is εi at element Ωi. If the order of the approximation poly-
nomial is not modified, in order to get the desired order of convergence of ki + 1,
the size of the element should be ĥi to get

εi ≤ Cĥi
ki+nsd/2

for i = 1, ..., nel. (4.9)

Equations (4.8) and (4.9) are inequalities as the constant C cannot be deter-
mined accurately. It is only possible to determine the upper bound of C as a
measure of k+ 1 derivatives of u. Accounting for the worst case, where C is equal
to its upper bound, Equations (4.8) and (4.9) can be considered as equalities.
Dividing (4.9) by (4.8), we get

εi
Ei

=

(
ĥi
hi

)ki+nsd/2

for i = 1, ..., nel, (4.10)

from which the expression for ĥi can be written as

ĥi = hi

(
εi
Ei

)1/(ki + nsd/2)

for i = 1, ..., nel. (4.11)

Equation (4.10) can be further simplified. In case an element is subdivided into

smaller elements with subelements of equal characteristic size, ĥi can be written
in terms of hi as

ĥi = hifi for i = 1, ..., nel, (4.12)
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where, fi is the factor by which size of hi is changed (Note that fi < 1 when an
element is divided into smaller subelements). fi can be computed independent of
the size of the element as

fi =

(
εi
Ei

)1/(ki + nsd/2)

for i = 1, ..., nel. (4.13)

4.2.1.2 Extending Richardon extrapolation to obtain order update for
degree adaptivity

The path followed in 4.2.1.1 involved modifying the size of the element in order to
obtain results with error smaller than the desired error. An alternate approach to
this would be to modify the approximation polynomial, maintaining the size of the
element in order to achieve the objective of obtaining solutions with errors smaller
than the desired error in each element. Equation (4.9) will then be modified as

εi ≤ Chi
ki+∆ki+nsd/2 for i = 1, ..., nel. (4.14)

where ∆ki is the change in the approximation polynomial for each element in order
to maintain the error within the desired value.

Following the same sequence of operations as followed in section 4.2.1.1, the
expression for ∆ki can be obtained as

∆ki =
log (εi/Ei)

log (hi)
for i = 1, ..., nel.

Since polynomials are used to approximate the solution it is necessary to ensure
that the change in the order of approximation of the polynomial in every element
is an integer. Taking this into account, the expression for ∆ki is modified as

∆ki =

⌈
log (εi/Ei)

log (hi)

⌉
for i = 1, ..., nel. (4.15)

where d·e denotes the ceiling function, that is, a function that maps a real number
to the smallest following integer.

4.3 Caveats concerning implementation

4.3.1 Ensuring compatibility of numerical integration along
faces/edges

In the case when varying orders of approximation are used in elements of the solu-
tion domain, approximating the trace of velocity, û, on the shared faces (edges in
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2-D) with the correct order is important to ensure optimal convergence. Thus, on
a face shared by two elements with differing orders of approximation polynomials
in them, û is interpolated using the polynomial whose order is greatest of the two.
As a result of this care must be taken while integrating terms involving any of the
local variables, L, u or p, and the global variable û.

For clarity, consider two neighbouring elements, Ω1 and Ω2, sharing a face Γ12.
The orders of approximation used in Ω1 and Ω2, respectively, are k1 and k2, with
k1 > k2. On face Γ12, û is approximated using polynomial of order k1. While inte-
grating functional composed of local variables and û on Γ12 to compute elemental
contributions of Ω2, care must be taken to ensure that the quadrature points chosen
are the ones that are capable of exactly integrating functional involving product of
polynomials of degree k1. It is a general practice during implementation to evalu-
ate the interpolation functions and their derivatives only at the quadrature points
required to exactly integrate polynomials of the order of the interpolation function.
However, from the above discussion, it is clear that interpolation functions of order
k2 must be evaluated at the quadrature points required for integrating polynomi-
als of order k1. In general, in the case when varying order of approximation are
used in elements of the solution domain, there is a necessity to evaluate lower or-
der interpolation functions at higher order quadrature points to ensure compatible
numerical integration. This is quite important in the context of p-adaptive mesh
refinement as this process results in a mesh with varying order of approximation
within its elements.

4.3.2 Ensuring geometrical compatibility in meshes with
curved elements

When p-adaptive high order isoparametric formulation is used for meshes with
curved edges, in addition to ensuring compatibility during numerical integration,
establishing geometrical compatibility of shared faces and edges (only edges in
2-D) is also crucial. In isoparametric transformation, the nature of a curved face
is decided by the order of the basis functions used for defining the isoparametric
transformation used to relate the local and Cartesian coordinates. For instance
in 2-D, basis functions of k = 3, results in an curved edge which at most a cubic
curve. Further, upon increasing the order of the approximation polynomial in the
element containing this curved edge during p-adaptivity, new nodes are placed
along the cubic curve without changing the nature of the curve. However, upon
reducing the order of the approximation, the nature of the curved edge changes.
The curved edge becomes a parabola or a straight line upon reducing the order to
k = 2 or k = 1, respectively. Thus, the situation of geometrical incompatibility
arises only when the order of approximation in a neighbouring element goes lower
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than the initial order of approximation used.
Geometrical incompatibility of the mesh, arising as a result of lowering the

order of approximation in one of the elements below the initial order, is fixed by
changing the nodal coordinates of the faces and edges shared by all the neigh-
bouring elements with this element. The changed nodal coordinates will ensure
the position of nodes on faces and edges shared by elements are same when seen
from any element. This, in fact, results in a modified definition of the isopara-
metric transformation relating the reference space of the face/edge to its physical
coordinates. Even though the order of basis functions used in the transformation
to relate elemental reference coordinates to physical coordinates is higher in the
neighbouring elements, the modified nodal coordinates of the shared face/edge will
ensure that the Jacobian of the transformation of this face/edge is the same when
seen from any element containing it.

Once the geometrical compatibility of the mesh has been ensured, it becomes
imperative to ensure perfect placement of the interior nodes in elements with
k > 3 so as to obtain optimal rates of convergence of the variables. Previous
studies [24,25] have proved that the position of the interior nodes greatly influences
the rate of convergence in high order methods. Incorrect placing of these nodes will
result in a loss of high order accuracy of the methods and the rate of convergence
obtained will always be 2 [24, 25], irrespective of the order of the approximation
function. This is fixed by considering a linear elastic model to deform the modified
mesh, hence an a posteriori approach [43].

The equation governing the static deformation of a linear elastic medium, Ω,
with closed boundary Γ, is considered in the form

∇ · σ = 0 in Ωe, (4.16)

where the sub index e represents the elements whose faces/edges have been mod-
ified for geometrical compatibility of the mesh. The stress tensor is given by

σ = λtr(ε) + 2µε, (4.17)

where ε is the deformation tensor and λ and µ denote the Lamé coefficients for
the medium. This constitutive relation is often expressed, alternatively, in terms
of Young’s modulus E and Poisson’s ratio ν for the medium [44,45]. The solution
to Equation (4.16) is sought subject to appropriate boundary conditions. In the
current context, these conditions will be zero displacement uD on the face nodes.
The elastic parameter values E = 10 and ν = 0.49 are used as it has been found
that this combination allows the minimum scaled Jacobian to be maximised and, at
the same time, allows the condition number of the linear system to be minimised
[43]. Thus by elastically deforming the elements whose faces/edges have been
modified will ensure accurate placement of the interior nodes.



Chapter 5

Numerical examples

5.1 Validation of HDG for Stokes equations

The first set of examples are performed in order to validate the code written to
solve Stokes’ equations using the HDG method. Validation of the code is done
using convergence plots for both the 2-D and 3-D cases. In both these cases, the
workability of the code is shown for both the classical and Neumann formulations
of HDG, and also for meshes with different types of elements, namely, triangles
and quadrilaterals in case of 2-D, while tetrahedrals and hexahedrals in case of
3-D. Finally results obtained using hybrid meshes comprising of multiple element
types are also shown.

5.1.1 The 2-D case

In order to illustrate the results of HDG for Stokes equations for a 2-D case, the
model problem in (3.1) is solved in Ω :=]0, 1[×]0, 1[ with ΓN = {(x, y) ∈ ∂Ω|y = 0}
and ΓD = ∂Ω\ΓN . The source and boundary conditions are taken such that the
analytical solution is given by

u =

(
2ay − bλ exp(−λy) cos(λx)

bλ exp(−λy) sin(λx)

)
and

p = 0.

This test case, proposed by [56], is used to test the performance of the HDG
for a two dimensional flow that presents a boundary layer type behaviour. The
coefficients appearing in the analytical expression of the velocity are set to a = 1,
b = 1 and λ = 10, leading to large variations of the velocity at the bottom of the

38
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computational domain. The problem is solved in meshes with triangular elements,
quadrilateral elements and those containing a mixture of both kinds of elements.

5.1.1.1 Meshes with triangular elements

(a) Mesh 1, k = 4 (b) Mesh 2, k = 3

(c) Mesh 3, k = 2 (d) Mesh 4, k = 1

Figure 5.1: Two dimensional triangular meshes.

Five computational meshes are considered with characteristic element size, h, equal
to 1/2

√
2, 1/4

√
2, 1/8

√
2, 1/16

√
2 and 1/32

√
2 respectively and the order of the

approximation, k, in each mesh, is increased from k = 1 to k = 4. Figure 5.1
shows the first four meshes with the nodal distribution corresponding to a degree
of approximation k = 4, k = 3, k = 2 and k = 1. The total number of elements and
global degrees of freedom in each mesh and for different degree of approximation
is summarized in Table 5.1.

Figure 5.2 shows the numerical solution for velocity and pressure computed
with quadratic and cubic approximation, k = 2 and k = 3, in the first and second
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of the meshes shown in Figure 5.1. The postprocessed solution, see Section 3.3.3,
is also represented in each case. It can be clearly observed that postprocessing
offers a significant improvement in the solution.

Table 5.1: Total number of elements and global degrees of freedom in each mesh
with triangular and for different degree of approximation

h nel

ndof
k

1 2 3 4

1/2
√

2 16 113 153 193 233

1/4
√

2 64 481 657 833 1009

1/8
√

2 256 1985 2721 3457 4193

1/16
√

2 1024 8065 11073 14081 17089

1/32
√

2 4096 32513 44673 56833 68993

An h-convergence study is performed to validate the implementation. The
five meshes described above are considered and the relative error of the numerical
solution uh and the postprocessed solution u?h in the L2(Ω) norm, defined as

||eu||L2(Ω) =


∫

Ω

(uh − u) · (uh − u) dΩ∫
Ω

u · u dΩ


(1/2)

(5.1)

and in the H1(Ω) norm, defined as

||eu||H1(Ω) = ||eu||L2(Ω) +


∫

Ω

(∇uh −∇u) : (∇uh −∇u) dΩ∫
Ω

∇u : ∇u dΩ


(1/2)

(5.2)

are evaluated in each case.
Figure 5.3 shows the error of the numerical solution and the postprocessed

solution as a function of the element size in logarithmic scale for a degree of
approximation from k = 1 up to k = 4, for velocity, postprocessed velocity (5.3c
and 5.3d) and pressure (5.3a and 5.3b) in both the L2(Ω) and H1(Ω) norms. The
convergence rates are reported in Table 5.2 showing that, in all cases, the optimal
rate of convergence for the numerical solution uh and pressure ph is obtained,
namely k + 1 in the L2(Ω) norm and k in the H1(Ω) norm. The table also shows
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that optimal rate of convergence is obtained for the postprocessed solution u?h,
namely k + 2 in the L2(Ω) norm and k + 1 in the H1(Ω) norm.

Finally Figure 5.4 shows the error of the numerical solution and the postpro-
cessed solution obtaned using the Neumann formulation of the HDG method as
a function of the element size in logarithmic scale for a degree of approximation
from k = 1 up to k = 4, for velocity, postprocessed velocity (5.4c and 5.4d) and
pressure (5.4a and 5.4b) in both the L2(Ω) and H1(Ω) norms. In this case too the
convergence rates are reported in Table 5.3 showing that, in all cases, the opti-
mal rate of convergence for the numerical solution uh and pressure ph is obtained,
namely k + 1 and k in the L2(Ω) and H1(Ω) norms, respectively and the optimal
rate of convergence of k+ 2 and k+ 1 respectively in the L2(Ω) and H1(Ω) norms
is obtained for the postprocessed solution u?h.

Table 5.2: Rates of convergence for the numerical solution of velocity and pres-
sure and postprocessed solution for 2D Stokes problem for meshes with triangular
elements using classical formulation of HDG.

k
||e ||L2 ||e ||H1

u u? p u u? p

1 2.0 3.0 2.0 1.1 2.0 1.0
2 3.0 4.0 3.0 2.1 3.0 2.0
3 4.0 5.0 4.0 3.1 4.0 3.0
4 5.0 6.0 5.0 4.1 5.0 4.0

Table 5.3: Rates of convergence for the numerical solution of velocity and pres-
sure and postprocessed solution for 2D Stokes problem for meshes with triangular
elements using Neumann formulation of HDG.

k
||e ||L2 ||e ||H1

u u? p u u? p

1 2.0 3.0 2.0 1.1 2.0 1.0
2 3.0 4.0 3.0 2.1 3.0 2.0
3 4.0 5.0 4.0 3.1 4.0 3.0
4 5.0 6.0 5.0 4.1 5.0 4.0
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(a) Pressure, Mesh 1, k = 3 (b) Pressure, Mesh 2, k = 2

(c) Velocity, Mesh 1, k = 3 (d) Velocity, Mesh 2, k = 2

(e) Velocity postprocessed,
Mesh 1, k = 3

(f) Velocity postprocessed,
Mesh 2, k = 2

Figure 5.2: Numerical solution for Stokes problem in 2D obtained with two
different meshes with triangular elements.
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Figure 5.3: h-convergence for different degrees of approximation k for 2D Stokes
problem for meshes with triangular elements using classical formulation of HDG.
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Figure 5.4: h-convergence for different degrees of approximation k for 2D Stokes
problem for meshes with triangular elements using Neumann formulation of HDG.
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5.1.1.2 Meshes with quadrilateral elements

(a) Mesh 1, k = 4 (b) Mesh 2, k = 3

(c) Mesh 3, k = 2 (d) Mesh 4, k = 1

Figure 5.5: Two dimensional quadrilateral meshes.

Seven computational meshes are considered with characteristic element size, h,
equal to 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 and 1/128 respectively and the order of
the approximation, k, in each mesh, is increased from k = 1 to k = 4. Figure 5.5
shows the first four meshes with the nodal distribution corresponding to a degree
of approximation k = 4, k = 3, k = 2 and k = 1. The total number of elements and
global degrees of freedom in each mesh and for different degree of approximation
is summarized in Table 5.4.

Figure 5.6 shows the numerical solution for velocity and pressure computed
with quadratic and cubic approximation, k = 2 and k = 3, in the first and second
of the meshes shown in Figure 5.5. The postprocessed solution is also represented
in each case. In this case as well it can be clearly observed that postprocessing
offers a significant improvement in the solution.
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Table 5.4: Total number of elements and global degrees of freedom in each mesh
with quadrilateral and for different degree of approximation

h nel

ndof
k

1 2 3 4

1/2 4 25 33 41 49
1/4 16 129 177 225 273
1/8 64 577 801 1025 1249
1/16 256 2433 3393 4353 5313
1/32 1024 9985 13953 17921 21889
1/64 4096 40449 56577 72705 88833
1/128 16384 162817 227841 292865 357889

An h-convergence study is performed to validate the implementation. The
five meshes described above are considered and the relative error of the numerical
solution uh and the postprocessed solution u?h in the L2(Ω) norm and H1(Ω) norm
are evaluated in each case.

Figure 5.7 shows the error of the numerical solution and the postprocessed
solution as a function of the element size in logarithmic scale for a degree of
approximation from k = 1 up to k = 4, for velocity, postprocessed velocity (5.7c
and 5.7d) and pressure (5.7a and 5.7b) in both the L2(Ω) and H1(Ω) norms. The
convergence rates are reported in Table 5.5. From the figure and the table it can
be seen that, in all cases, the error in computation is asymptotically approaching
the optimal rates of convergence for the numerical solution uh and pressure ph,
namely k + 1 and k, respectively in the L2(Ω) and H1(Ω) norms. The table also
shows that the error in the computation of the postprocessed solution u?h also
asymptotically approaches the optimal rate of convergence, namely k+2 and k+1
respectively in the L2(Ω) and H1(Ω) norms.

Finally Figure 5.8 shows the error of the numerical solution and the postpro-
cessed solution obtaned using the Neumann formulation of the HDG method as
a function of the element size in logarithmic scale for a degree of approximation
from k = 1 up to k = 4, for velocity, postprocessed velocity (5.8c and 5.8d) and
pressure (5.8a and 5.8b) in both the L2(Ω) and H1(Ω) norms. In this case too the
convergence rates are reported in Table 5.6 showing that, in all cases, the error
in the computation of the numerical solution uh and pressure ph asymptotically
approaches the optimal rate of convergence, namely k + 1 in the L2(Ω) norm and
k in the H1(Ω) norm, while that of the postprocessed solution, u?h, approaches its
optimal rate of convergence of k + 2 in the L2(Ω) norm and k + 1 in the H1(Ω)
norm.
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(a) Pressure, Mesh 1, k = 3 (b) Pressure, Mesh 2, k = 2

(c) Velocity, Mesh 1, k = 3 (d) Velocity, Mesh 2, k = 2

(e) Velocity postprocessed,
Mesh 1, k = 3

(f) Velocity postprocessed,
Mesh 2, k = 2

Figure 5.6: Numerical solution for Stokes problem in 2D obtained with two
different meshes with quadrilateral elements.
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Figure 5.7: h-convergence for different degrees of approximation k for 2D Stokes
problem for meshes with quadrilateral elements using classical formulation of HDG.

Table 5.5: Rates of convergence for the numerical solution of velocity and pressure
and postprocessed solution for 2D Stokes problem for meshes with quadrilateral
elements using classical formulation of HDG.

k
||e ||L2 ||e ||H1

u u? p u u? p

1 1.9 2.7 1.6 0.8 1.7 0.6
2 2.9 3.8 2.7 1.9 2.7 1.7
3 3.9 4.8 3.7 2.9 3.8 2.7
4 4.9 5.8 4.7 3.9 4.8 3.7
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Figure 5.8: h-convergence for different degrees of approximation k for 2D Stokes
problem for meshes with quadrilateral elements using Neumann formulation of
HDG.

Table 5.6: Rates of convergence for the numerical solution of velocity and pressure
and postprocessed solution for 2D Stokes problem for meshes with quadrilateral
elements using Neumann formulation of HDG.

k
||e ||L2 ||e ||H1

u u? p u u? p

1 1.9 2.7 1.6 0.8 1.7 0.6
2 2.9 3.8 2.7 1.9 2.7 1.7
3 3.9 4.8 3.7 2.9 3.8 2.7
4 4.9 5.8 4.7 3.9 4.8 3.7



50 Numerical examples

5.1.1.3 Hybrid mesh

(a) Mesh with k = 1 (b) Mesh with k = 3

Figure 5.9: Two dimensional hybrid meshes.

A computational mesh comprising of both quadrilateral and triangular elements
is considered in which the order of the approximation, k, is increased from k = 1
to k = 6. Figure 5.9 shows the two of the meshes with the nodal distribution
corresponding to a degree of approximation k = 1 and k = 3.

Figure 5.10 shows the numerical solution for velocity and pressure computed
with linear and cubic approximation, k = 1 and k = 3, in the hybrid mesh shown
in Figure 5.9. The postprocessed solution is also represented in each case. Even
with in the case of the hybrid mesh it can be clearly observed that postprocessing
offers a significant improvement in the solution.

An h-convergence study is not performed here as the implementation of the
code has been validated for meshes with only triangles and only quadrilateral el-
ements, as shown in subsections 5.1.1.1 and 5.1.1.2. The solution obtained with
these meshes are visually inspected and they show great agreement with the ana-
lytical solution.
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(a) Pressure, k = 1 (b) Pressure, k = 3

(c) Velocity, k = 1 (d) Velocity, k = 3

(e) Velocity postprocessed,
k = 1

(f) Velocity postprocessed,
k = 3

Figure 5.10: Numerical solution for Stokes problem in 2D obtained with two
different degrees of approximation in a mesh with both triangular and quadrilateral
elements.
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5.1.1.4 Comparison of triangular and quadrilateral meshes

From the discussion in subsection 5.1.1.1 and 5.1.1.2, it could be seen that in
both the cases, i.e, meshes with triangular and quadrilateral elements, the error
in the computation of the variables was asymptotically converging at the optimal
rate of convergence. Also it is worth noting that in the case of meshes with
triangles with only four mesh refinements, the optimal rates of convergence were
seen. However, in the case of quadrilateral meshes, six levels of mesh refinement
were not sufficient to see the error converge at the optimal convergence rate. At
face value, this seems to be indicating that triangular meshes perform better than
meshes with quadrilateral elements. This is, however, not completely true.
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0

Figure 5.11: Comparison of triangular and quadrilateral meshes: error of uh and
u?h in the L2(Ω) norm as a function of

√
dim(û) for the HDG formulation with

triangular and quadrilateral meshes
.

Figure 5.11 shows the evolution of the error of uh and u?h in the L2(Ω) norm
as a function of the square root of the number of degrees of freedom of the global
system of equations, i.e. ndof = dim(û). From this plot it can be clearly seen that
to compute a solution with a given error, quadrilateral meshes require less degrees
of freedom in the global system. This is key in terms of computational time as
a smaller global system ensures lesser computational time to solve the system of
equations. Thus,in the case of meshes with quadrilateral elements, though the
error in the computation of the variables seems to approach the optimal rate
of convergence with more levels of mesh refinement than in the case of meshes
with triangular elements, it appears that due to the smaller size of global system,
quadrilateral meshes are bound to be computationally cheaper than triangular
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meshes when the solution has to be computed with a certain level of accuracy.

5.1.1.5 Comparison of classical and Neumann formulations of HDG

(a) λ = 10 (b) λ = 40

(c) λ = 10 (d) λ = 40

Figure 5.12: Comparison of classical and Neumann formulations: Analytical
solutions (top) and error of uh and u?h in the L2(Ω) norm as a function of

√
dim(û)

(bottom), for different values of λ

Here, a h-convergence study is performed in order to check the optimality of the
approximation using the formulation with Neumann local problems and to com-
pare the accuracy of the two HDG formulations considered in this work. Figure
5.12 shows the evolution of the error of uh and u?h in the L2 norm as a function of
the square root of the number of degrees of freedom of the global system of equa-
tions. Two different cases are considered. In these cases the value of coefficient λ
appearing in the analytical solution is changed from 10 to 40 to produce a very
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thin boundary layer. The degree of approximation is increased in each mesh from
p = 1 to p = 4.

From Figure 5.12 it can be seen that there is a very small improvement in
the solution using the Neumann formulation which can be seen in the case when
λ = 40. However, in both the cases there is not much difference in the case of
the postprocessed solution. Finally the Neumann formulation comes with slightly
lower degrees of freedom of the global variable. It is important to stress that the
differences between the formulation with Dirichlet and Neumann local problems
are noticed even if a global measure of the error is employed. Obviously, the extra
accuracy provided by the formulation with Neumann problems is expected to be
more relevant if the output of interest is defined near the Neumann boundary or
on the Neumann boundary.

5.1.2 The 3-D case

In order to illustrate the results of HDG for Stokes equations for a 3-D case, the
model problem in (3.1) is solved in Ω :=]0, 1[×]0, 1[×]0, 1[ with ΓN = {(x, y, z) ∈
∂Ω|y = 0} and ΓD = ∂Ω\ΓN . The source and boundary conditions are taken such
that the analytical solution is given by

u =

b exp(a(x− z) + b(y − z))− a exp(a(z − y) + b(x− y))
b exp(a(y − x) + b(z − x))− a exp(a(x− z) + b(y − z))
b exp(a(z − y) + b(x− y))− a exp(a(y − x) + b(z − x))


and

p = sin(xyz).

This test case, proposed by [57], is used to test the performance of the HDG for a
three dimensional flow. The coefficients appearing in the analytical expression of
the velocity are set to a = 1 and b = 0.5. The problem is solved in meshes with
tetrahedral elements, hexahedral elements and those containing a mixture of four
kinds of elements, tetrahedrons, hexahedrons, prisms and pyramids.

5.1.2.1 Meshes with tetrahedral elements

Three computational meshes are considered with characteristic element size, h,
equal to 1, 1/2 and 1/4 respectively and the order of the approximation, k, in
each mesh, is increased from k = 1 to k = 3. Figure 5.13 shows the second
and the third meshes with the nodal distribution corresponding to a degree of
approximation k = 2 and k = 1.

Figure 5.15 shows the numerical solution for velocity and pressure computed
with quadratic and cubic approximation, k = 2 and k = 3, in the meshes shown in
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Figure 5.13. The postprocessed solution is also represented in each case. In this
case the solution and the postprocessed solution appear to be almost similar and it
seems that postprocessing does not offer a significant improvement in the solution.
This is because of the nature of the problem chosen which is very simple and hence
is being captured very well by a coarse mesh with low degree of approximation.

(a) Mesh 2, k = 2 (b) Mesh 3, k = 1

Figure 5.13: Three dimensional tetrahedral meshes.

An h-convergence study is performed to validate the implementation. The
three meshes described above are considered and the relative error of the numerical
solution uh and the postprocessed solution u?h in the L2(Ω) norm and H1(Ω) norm
are evaluated in each case.

Figure 5.14 shows the error of the numerical solution and the postprocessed
solution as a function of the element size in logarithmic scale for a degree of ap-
proximation from k = 1 up to k = 3, for velocity, postprocessed velocity (5.14c and
5.14d) and pressure (5.14a and 5.14b) in both the L2(Ω) and H1(Ω) norms. The
convergence rates are reported in Table 5.7 showing that, in all cases, the opti-
mal rate of convergence for the numerical solution uh and pressure ph is obtained,
namely k + 1 and k, respectively, in the L2(Ω) and H1(Ω) norms. The table also
shows that optimal rate of convergence is obtained for the postprocessed solution
u?h, namely k + 2 and k + 1 respectively, in the L2(Ω) and H1(Ω) norms.

Finally Figure 5.16 shows the error of the numerical solution and the postpro-
cessed solution obtaned using the Neumann formulation of the HDG method as
a function of the element size in logarithmic scale for a degree of approximation
from k = 1 up to k = 3, for velocity, postprocessed velocity (5.16c and 5.16d)
and pressure (5.16a and 5.16b) in both the L2(Ω) and H1(Ω) norms. In this case
too the convergence rates are reported in Table 5.8 showing that, in all cases, the
optimal rate of convergence for the numerical solution uh and pressure ph is ob-
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Figure 5.14: h-convergence for different degrees of approximation k for 3D
Stokes problem for meshes with tetrahedral elements using classical formulation
of HDG.

tained, namely k + 1 and k in the L2(Ω) and H1(Ω) norms and the optimal rate
of convergence of k + 2 and k + 1 is obtained for the postprocessed solution u?h,
respectively in the L2(Ω) and H1(Ω) norms.
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(a) Pressure, Mesh 1, k = 3 (b) Pressure, Mesh 2, k = 2

(c) Velocity, Mesh 1, k = 3 (d) Velocity, Mesh 2, k = 2

(e) Velocity postprocessed,
Mesh 1, k = 3

(f) Velocity postprocessed,
Mesh 2, k = 2

Figure 5.15: Numerical solution for Stokes problem in 3D obtained with two
different meshes with tetrahedral elements.
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Table 5.7: Rates of convergence for the numerical solution of velocity and pressure
and postprocessed solution for 3D Stokes problem for meshes with tetrahedral
elements using classical formulation of HDG.

k
||e ||L2 ||e ||H1

u u? p u u? p

1 2.0 3.0 2.1 1.1 2.0 1.2
2 2.9 4.0 3.2 2.1 3.1 2.2
3 4.0 5.0 4.2 3.1 4.1 3.2
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Figure 5.16: h-convergence for different degrees of approximation k for 3D
Stokes problem for meshes with tetrahedral elements using Neumann formulation
of HDG.
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Table 5.8: Rates of convergence for the numerical solution of velocity and pressure
and postprocessed solution for 3D Stokes problem for meshes with tetrahedral
elements using Neumann formulation of HDG.

k
||e ||L2 ||e ||H1

u u? p u u? p

1 2.0 3.0 2.1 1.1 2.0 1.2
2 2.9 4.0 3.2 2.1 3.1 2.2
3 4.0 5.0 4.2 3.1 4.1 3.2

5.1.2.2 Meshes with hexahedral elements

Four computational meshes are considered with characteristic element size, h,
equal to 1, 1/2, 1/4 and 1/8 respectively and the order of the approximation, k,
in each mesh, is increased from k = 1 to k = 3. Figure 5.17 shows the second
and the third meshes with the nodal distribution corresponding to a degree of
approximation k = 2 and k = 1.

(a) Mesh 2, k = 2 (b) Mesh 3, k = 1

Figure 5.17: Three dimensional hexahedral meshes.

Figure 5.18 shows the numerical solution for velocity and pressure computed
with quadratic and cubic approximation, k = 2 and k = 3, in the meshes shown in
Figure 5.17. The postprocessed solution is also represented in each case. Similar to
the results presented in the previous section with tetrahedral elements, in this case
too, the solution and the postprocessed solution appear to be almost similar and it
seems that postprocessing does not offer a significant improvement in the solution.
As stated earlier this is because of the simple nature of the problem chosen which
is being captured very well by a coarse mesh with low degree of approximation.
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An h-convergence study is performed to validate the implementation. The
four meshes described above are considered and the relative error of the numerical
solution uh and the postprocessed solution u?h in the L2(Ω) norm and H1(Ω) norm
are evaluated in each case.

Figure 5.19 shows the error of the numerical solution and the postprocessed
solution as a function of the element size in logarithmic scale for a degree of ap-
proximation from k = 1 up to k = 3, for velocity, postprocessed velocity (5.19c
and 5.19d) and pressure (5.19a and 5.19b) in both the L2(Ω) and H1(Ω) norms.
The convergence rates are reported in Table 5.9. From the figure and the table it
can be seen that, in all cases, the error in computation is asymptotically approach-
ing the optimal rates of convergence for the numerical solution uh and pressure
ph, namely k + 1 and k, respectively in the L2(Ω) and H1(Ω) norms. The table
also shows that the error in the computation of the postprocessed solution u?h also
asymptotically approaches the optimal rate of convergence, namely k+2 and k+1
respectively in the L2(Ω) and H1(Ω) norms.

Finally Figure 5.20 shows the error of the numerical solution and the postpro-
cessed solution obtaned using the Neumann formulation of the HDG method as
a function of the element size in logarithmic scale for a degree of approximation
from k = 1 up to k = 3, for velocity, postprocessed velocity (5.20c and 5.20d) and
pressure (5.20a and 5.20b) in both the L2(Ω) and H1(Ω) norms. In this case too
the convergence rates are reported in Table 5.10 showing that, in all cases, the
error in the computation of the numerical solution uh and pressure ph asymptoti-
cally approaches the optimal rate of convergence, namely k+ 1 in the L2(Ω) norm
and k in the H1(Ω) norm, while that of the postprocessed solution, u?h, approaches
its optimal rate of convergence of k+ 2 in the L2(Ω) norm and k+ 1 in the H1(Ω)
norm.

Table 5.9: Rates of convergence for the numerical solution of velocity and pressure
and postprocessed solution for 3D Stokes problem for meshes with hexahedral
elements using classical formulation of HDG.

k
||e ||L2 ||e ||H1

u u? p u u? p

1 1.6 2.5 1.5 0.8 1.5 0.6
2 2.7 3.7 2.6 1.8 2.6 1.6
3 3.7 4.7 3.6 2.8 3.7 2.6
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(a) Pressure, Mesh 3, k = 1 (b) Pressure, Mesh 2, k = 2

(c) Velocity, Mesh 3, k = 1 (d) Velocity, Mesh 2, k = 2

(e) Velocity postprocessed,
Mesh 3, k = 1

(f) Velocity postprocessed,
Mesh 2, k = 2

Figure 5.18: Numerical solution for Stokes problem in 3D obtained with two
different meshes with hexahedral elements.
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Figure 5.19: h-convergence for different degrees of approximation k for 3D
Stokes problem for meshes with hexahedral elements using classical formulation of
HDG.

Table 5.10: Rates of convergence for the numerical solution of velocity and pres-
sure and postprocessed solution for 3D Stokes problem for meshes with hexahedral
elements using Neumann formulation of HDG.

k
||e ||L2 ||e ||H1

u u? p u u? p

1 1.6 2.5 1.5 0.8 1.5 0.6
2 2.7 3.7 2.6 1.8 2.6 1.6
3 3.7 4.7 3.6 2.8 3.7 2.6
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Figure 5.20: h-convergence for different degrees of approximation k for 3D
Stokes problem for meshes with hexahedral elements using Neumann formulation
of HDG.

5.1.2.3 Hybrid mesh

Similar to the case in 2D, a hybrid computational mesh comprising of tetrahedra,
hexahedral, prismatic and pyramid elements is considered in which the order of
the approximation, k, is increased from k = 1 to k = 4. Figure 5.21 shows two of
the meshes with the nodal distribution corresponding to a degree of approximation
k = 1 and k = 3.
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(a) Mesh with k = 1 (b) Mesh with k = 3

Figure 5.21: Three dimensional hybrid meshes.

Figure 5.22 shows the numerical solution for velocity and pressure computed
with linear and cubic approximation, k = 1 and k = 3, in the hybrid mesh shown
in Figure 5.21. Again, since the problem is very simple with a very smooth solu-
tion field, the postprocessed solution is represented in each case does not offer a
significant improvement in the solution.

An h-convergence study is not performed here as the implementation of the
code has been validated for meshes with only tetrahedral and only hexahedral el-
ements, as shown in subsections 5.1.2.1 and 5.1.2.2. The solution obtained with
these meshes are visually inspected and they show great agreement with the ana-
lytical solution.

5.1.2.4 Comparison of tetrahedral and hexahedral meshes

From the discussion in subsection 5.1.2.1 and 5.1.2.2, it could be seen that in both
the cases, i.e, meshes with tetrahedral and hexahedral elements, the error in the
computation of the variables was asymptotically converging at the optimal rate of
convergence. Also it is worth noting that in the case of meshes with tetrahedrons,
with only two mesh refinements, the optimal rates of convergence were seen. How-
ever, in the case of hexahedral meshes, three levels of mesh refinement were not
sufficient to see the error converge at the optimal convergence rate. Again, this
seems to be indicating that tetrahedral meshes perform better than meshes with
hexahedral elements. This is, however, not completely true.



65 Numerical examples

(a) Pressure, k = 1 (b) Pressure, k = 3

(c) Velocity, k = 1 (d) Velocity, k = 3

(e) Velocity postprocessed,
k = 1

(f) Velocity postprocessed,
k = 3

Figure 5.22: Numerical solution for Stokes problem in 3D obtained with two dif-
ferent degrees of approximation in a mesh with tetrahedral, hexahedral, prismatic
and pyramid elements.
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Figure 5.23: Comparison of tetrahedral and hexahedral meshes: error of uh and
u?h in the L2(Ω) norm as a function of

√
dim(û) for the HDG formulation with

tetrahedral and hexahedral meshes
.

Figure 5.23 shows the evolution of the error of uh and u?h in the L2(Ω) norm
as a function of the square root of the number of degrees of freedom of the global
system of equations, i.e. ndof = dim(û). From this plot it can be clearly seen
that to compute a solution with a given error, tetrahedral meshes require less de-
grees of freedom in the global system. This is key in terms of computational time
as a smaller global system ensures lesser computational time to solve the system
of equations. Thus, in the case of meshes with hexahedral elements, though the
error in the computation of the variables seems to approach the optimal rate of
convergence with more levels of mesh refinement than in the case of meshes with
tetrahedral elements, it appears that due to the smaller size of global system, hex-
ahedral meshes are bound to be computationally cheaper than hexahedral meshes
when the solution has to be computed with a certain level of accuracy.

5.2 Validation of HDG for Stokes equations us-

ing meshes with non uniform degree of ap-

proximation

These examples are performed in order to validate the code written to solve Stokes’
equations using the HDG method using meshes with varying degree of approxima-
tion within the elements. Validation of the code is done using convergence plots
for both the 2-D and 3-D cases. In this case validation is done by ensuring that
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the errors in the computation of the variables converge at optimal rates both when
seen from a global point of view and from a local element-wise point of view.

5.2.1 The 2-D case

In order to illustrate the results of HDG for Stokes equations for a 2-D case with
varying degree of approximation in the elements, the model problem in (3.1) is
solved in Ω :=]0, 1[×]0, 1[ with ΓN = {(x, y) ∈ ∂Ω|y = 0} and ΓD = ∂Ω\ΓN . The
source and boundary conditions are taken such that the analytical solution is given
by

u =

(
2ay − bλ exp(−λy) cos(λx)

bλ exp(−λy) sin(λx)

)
and

p = 0.

The coefficients appearing in the analytical expression of the velocity are set to
a = 1, b = 1 and λ = 10.

Five computational meshes are considered with characteristic element size, h,
equal to 1/2

√
2, 1/4

√
2, 1/8

√
2, 1/16

√
2 and 1/32

√
2 respectively and the order of

the approximation, k, in each mesh, is non uniform. Figure 5.24a shows the dis-
tribution of the degree of approximation, k, in the different regions of the domain.
Figures 5.24b, 5.24c and 5.24d show three levels of refinement of the mesh with
coloured elements being the element of interest for element-wise h-convergence
study.

An a priori estimate for an elliptic problem stands [58]

||e||L2 ≤ αhkmin+1, (5.3)

where kmin is related with the minimum degree of the complete polynomials in-
cluded in the interpolation. The constant α is independent of the element size h
but it is unknown. This represents a global measure, where h is a characteristic
element size. A local a priori error estimate stands [55]

||ei||L2 ≤ αh
ki+1+nsd/2
i , (5.4)

where hi and ki, respectively, are the characteristic size of and degree of approx-
imation in the element Ωi and nsd is the dimension of the problem (two for bidi-
mensional problems, three for tridimensional ones).

Figure 5.25 shows both the local and global error of the numerical solution and
the postprocessed solution as a function of the element size in logarithmic scale
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(a) k in different regions of the domain (b) Mesh 1

(c) Mesh 2 (d) Mesh 3

Figure 5.24: Two dimensional meshes with variable degrees of approximation,
k = 1, 2, 3 within the elements. Coloured elements are the elements of interest
considered for element-wise h-convergence study with the colours blue, green and
red respectively representing k = 1, k = 2 and k = 3
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Table 5.11: Rates of convergence for the numerical solution of velocity and
pressure and postprocessed solution for 2D Stokes problem for meshes with non
uniform degree of approximation in the elements.

Type of error estimate k ||eu ||L2 ||eu? ||L2 ||ep ||L2

Global
1,2,3 2.0 2.9 2.0
2,3,4 3.0 4.1 3.0
3,4,5 4.0 5.1 4.0

Local
1 2.9 4.0 2.8
2 4.1 4.9 3.9
3 4.8 5.8 4.7

for varying degrees of approximation. The element-wise error estimation is shown
for elements with degrees of approximation, k = 1, 2, 3. The convergence rates are
reported in Table 5.11 showing that, in all cases, the optimal rate of convergence
for the numerical solution uh and pressure ph is obtained, namely kmin + 1 in the
L2(Ω) norm for the global error, while ki + 1 + nsd/2 in the L2(Ω) norm for the
local element-wise error. The table also shows that optimal rate of convergence is
obtained for the postprocessed solution u?h, namely kmin + 2 in the L2(Ω) norm for
the global error, while ki + 2 + nsd/2 in the L2(Ω) norm for the local element-wise
error.

5.2.2 The 3-D case

In order to illustrate the results of HDG for Stokes equations for a 3-D case, the
model problem in (3.1) is solved in Ω :=]0, 1[×]0, 1[×]0, 1[ with ΓN = {(x, y, z) ∈
∂Ω|y = 0} and ΓD = ∂Ω\ΓN . The source and boundary conditions are taken such
that the analytical solution is given by

u =

b exp(a(x− z) + b(y − z))− a exp(a(z − y) + b(x− y))
b exp(a(y − x) + b(z − x))− a exp(a(x− z) + b(y − z))
b exp(a(z − y) + b(x− y))− a exp(a(y − x) + b(z − x))


and

p = sin(xyz).

The coefficients appearing in the analytical expression of the velocity are set to
a = 1 and b = 0.5.
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(d) global error ||eu||L2 and ||eu? ||L2

Figure 5.25: h-convergence for different combinations of non uniform degrees of
approximation k in the elements of the meshes for 2D Stokes problem.
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(a) k in different regions of the domain (b) Mesh 1

(c) Mesh 2 (d) Mesh 3

Figure 5.26: Three dimensional meshes with variable degrees of approximation,
k = 1, 2, 3 within the elements. Coloured elements are the elements of interest
considered for element-wise h-convergence study with the colours blue, green and
red respectively representing k = 1, k = 2 and k = 3

Four computational meshes are considered with characteristic element size, h,
equal to 1, 1/2, 1/4 and 1/8, respectively and the order of the approximation, k,
in each mesh, is non uniform. Figure 5.26a shows the distribution of the degree of
approximation, k, in the different regions of the domain. Figures 5.26b, 5.26c and
5.26d show three levels of refinement of the mesh with coloured elements being the
element of interest for element-wise h-convergence study.

Figure 5.27 shows both the local and global error of the numerical solution and
the postprocessed solution as a function of the element size in logarithmic scale
for varying degrees of approximation. The element-wise error estimation is shown
for elements with degrees of approximation, k = 1, 2, 3. The convergence rates are
reported in Table 5.12 showing that, in all cases, the optimal rate of convergence
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for the numerical solution uh and pressure ph is obtained, namely kmin + 1 in the
L2(Ω) norm for the global error, while ki + 1 + nsd/2 in the L2(Ω) norm for the
local element-wise error. The table also shows that optimal rate of convergence is
obtained for the postprocessed solution u?h, namely kmin + 2 in the L2(Ω) norm for
the global error, while ki + 2 + nsd/2 in the L2(Ω) norm for the local element-wise
error.

Table 5.12: Rates of convergence for the numerical solution of velocity and
pressure and postprocessed solution for 3D Stokes problem for meshes with non
uniform degree of approximation in the elements.

Type of error estimate k ||eu ||L2 ||eu? ||L2 ||ep ||L2

Global
1,2,3 2.0 2.9 2.2
1,2,3 3.0 3.9 3.1

Local
1 3.47 4.48 3.46
2 4.48 5.52 4.47
3 5.50 6.51 5.48
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Figure 5.27: h-convergence for different combinations of non uniform degrees of
approximation k in the elements of the meshes for 3D Stokes problem.
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5.3 Validation of NEFEM-HDG for Stokes equa-

tions

This example is performed in order to validate the code written to solve Stokes’
equations using the NEFEM-HDG method. Validation of the code is done using
convergence plots using a problem that has an analytical solution. The workability
of the code is shown for both the classical and Neumann formulations of HDG

In order to illustrate the results of NEFEM-HDG for Stokes equations for a 2-D
case, the model problem in (3.1) is solved in a domain bounded by the lines x = 0,
y = 1 and x = 1 on the left right and top and by the curve y =

(
1 + cos(5πx)

)
/10

with ΓN = {(x, y) ∈ ∂Ω|y =
(
1 + cos(5πx)

)
/10} and ΓD = ∂Ω\ΓN . The source

and boundary conditions are taken such that the analytical solution is given by

u =

 a
(
y − f(x)

)
− bλ exp

(
− λ
(
y − f(x)

))(
a
(
y − f(x)

)
− bλ exp

(
− λ
(
y − f(x)

)))
f ′(x)


with

f(x) =

(
1 + cos(5πx)

)
10

; f ′(x) = −π
2

sin(5πx)

and

p = 0.

This test case, is a modification of the one proposed by [56], is used to test the
performance of the HDG for a two dimensional flow. The modification is done
to ensure that the boundary layer follows the curved boundary. The coefficients
appearing in the analytical expression of the velocity are set to a = 1, b = 1 and
λ = 10, leading to large variations of the velocity along the curved boundary. The
problem is solved in meshes with triangular elements.

Five computational meshes are considered with characteristic element size, h,
equal to 1.45 × 10−1, 7.32 × 10−2, 3.69 × 10−2, 1.83 × 10−2 and 9.20E × 10−3

respectively and the order of the approximation, k, in each mesh, is increased
from k = 1 to k = 3. Figure 5.28 shows the first three meshes with the nodal
distribution corresponding to a degree of approximation k = 3, k = 2 and k = 1.
The total number of elements and global degrees of freedom in each mesh and for
different degree of approximation is summarized in Table 5.13. .

Figure 5.29 shows the numerical solution for velocity and pressure computed
with quadratic and cubic approximation, k = 2 and k = 3, in the first and second of
the meshes shown in Figure 5.28. The postprocessed solution is also represented
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(a) Mesh 1, k = 3 (b) Mesh 2, k = 2

(c) Mesh 3, k = 1

Figure 5.28: NEFEM-HDG validation: Two dimensional triangular meshes.

Table 5.13: Total number of elements and global degrees of freedom in each mesh
with quadrilateral and for different degree of approximation

h nel

ndof
k

1 2 3

1.45E-01 74 533 725 917
7.32E-02 253 1907 2607 3307
3.69E-02 884 6833 9365 11897
1.83E-02 3489 27431 37657 47883
9.20E-03 13609 107907 148251 188595
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in each case. It can be clearly observed that postprocessing offers a significant
improvement in the solution.

An h-convergence study is performed to validate the implementation. The
five meshes described above are considered and the relative error of the numerical
solution uh and the postprocessed solution u?h in the L2(Ω) norm is evaluated in
each case.

Figure 5.30 shows the error of the numerical solution and the postprocessed
solution as a function of the element size in logarithmic scale for a degree of
approximation from k = 1 up to k = 3, for velocity, postprocessed velocity (5.30b)
and pressure (5.30a) in the L2(Ω) norm. The convergence rates are reported in
Table 5.14 showing that, in all cases, the optimal rate of convergence for the
numerical solution uh and pressure ph is obtained, namely k + 1 in the L2(Ω)
norm. The table also shows that optimal rate of convergence is obtained for the
postprocessed solution u?h, namely k + 2 in the L2(Ω) norm.

Finally Figure 5.31 shows the error of the numerical solution and the postpro-
cessed solution obtaned using the Neumann formulation of the HDG method as
a function of the element size in logarithmic scale for a degree of approximation
from k = 1 up to k = 3, for velocity, postprocessed velocity (5.31b) and pressure
(5.31a) in the L2(Ω) norm. In this case too the convergence rates are reported
in Table 5.14 showing that, in all cases, the optimal rate of convergence for the
numerical solution uh and pressure ph is obtained, namely k+1 in the L2(Ω) norm,
and the optimal rate of convergence of k+ 2 in the L2(Ω) norm is obtained for the
postprocessed solution u?h.

Table 5.14: Rates of convergence for the numerical solution of velocity and pres-
sure and postprocessed solution in the L2 norm for 2D Stokes problem for meshes
with triangular elements using classical and Neumann formulations of NEFEM-
HDG method.

k
Formulation

Classical Neumann
u u? p u u? p

1 2.0 3.1 2.0 2.1 3.1 2.0
2 3.1 4.2 3.0 3.2 4.1 3.0
3 4.1 5.3 4.1 4.1 5.2 4.1
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(a) Pressure, Mesh 1, k = 3 (b) Pressure, Mesh 2, k = 2

(c) Velocity, Mesh 1, k = 3 (d) Velocity, Mesh 2, k = 2

(e) Velocity postprocessed,
Mesh 1, k = 3

(f) Velocity postprocessed,
Mesh 2, k = 2

Figure 5.29: Numerical solution for Stokes problem in 2D obtained with two
different meshes with triangular elements solved using NEFEM formulation.
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(b) ||eu||L2 and ||eu? ||L2

Figure 5.30: h-convergence for different degrees of approximation k for 2D
Stokes problem for meshes with triangular elements using classical formulation of
NEFEM-HDG.
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Figure 5.31: h-convergence for different degrees of approximation k for 2D
Stokes problem for meshes with triangular elements using Neumann formulation
of NEFEM-HDG.

5.4 Degree adaptivite HDG for Stokes equations

The last set of examples are performed to show the working of degree adaptive
HDG method to solve Stokes’ equations. One example each for isoparametric
formulation and NEFEM formulation are shown in case of 2-D while an example
using isoparametric formulation is shown in the 3-D case. A comparison of the
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performance of the degree adaptive method is done with the cases of uniform k
and h mesh refinement.

5.4.1 The 2-D case

5.4.1.1 Isoparametric Formulation

In order to illustrate the results of degree adaptive HDG for Stokes equations for a
2-D case using isoparametric formulation, the model problem in (3.1) is solved in
Ω :=]0, 1[×]0, 1[ with ΓN = {(x, y) ∈ ∂Ω|y = 0} and ΓD = ∂Ω\ΓN . The source and
boundary conditions are taken such that the analytical solution is that proposed
by [56], with the coefficients appearing in the analytical expression of the velocity
to set to a = 1, b = 1 and λ = 10. The problem is solved in meshes with triangular
elements.

(a) Initial configuration (b) ε = 0.5× 10−2, after final iteration

(c) ε = 0.5× 10−4, after final iteration

Figure 5.32: Distribution of k in the elements for different tolerance values before
and after degree adaptive mesh refinement
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The desired tolerance of error is set to two different values of ε = 0.5×10−2 and
ε = 0.5× 10−4 (i.e. two and four significant digits, see [59], which cover the usual
engineering accuracy needs). The element wise error limit is set to 0.5ε. Figure
5.32a shows the initial distribution of k for a mesh with 64 elements. Figure 5.32b
shows the distribution of k after the error in the computation is less than the set
tolerance of ε = 0.5× 10−2 following the degree adaptive mesh refinement process,
while 5.32c shows a similar distribution of k after the error in the computation is
less than the set tolerance of ε = 0.5× 10−4.

Figure 5.33 shows the pressure and velocity profiles after first and final iter-
ations of degree adaptive mesh refined formulation for both the values of the set
error tolerance. These results are obtained with the methodology proposed in Sec-
tion 4.2. From the figure it is evident that there is a considerable improvement
in the solution after the degree adaptive process. However, visual inspection does
not provide a concrete proof of the performance of the degree adaptive method.

In order to compare the performance of the degree adaptive method, error
of uh in the L2(Ω) norm plotted as a function of

√
dim(û) in Figure 5.34 for

three different cases, degree adaptive mesh refinement strategy, uniform k and
h refinements. The initial mesh has 64 elements with a characteristic size of
h = 1/4

√
2 and uniform degree of approximation of 1 in all its elements. In the

case of uniform k refinement, the value of k is increased from 1 to 4, whereas in
the case of uniform h refinement, the characteristic size is decreased linearly from
h = 1/4

√
2 to h = 1/32

√
2. From the figure it can be clearly seen that adaptive

mesh refinement technique outperforms the uniform h refinement strategy while
it is on par with the uniform k refinement strategy.

5.4.1.2 NEFEM Formulation

Next, in order to illustrate the results of degree adaptive HDG for Stokes equations
for a 2-D case using NEFEM formulation, the model problem in (3.1) is solved in a
domain bounded by the lines x = 0, y = 1 and x = 1 on the left right and top and
by the curve y =

(
1+cos(5πx)

)
/10 with ΓN = {(x, y) ∈ ∂Ω|y =

(
1+cos(5πx)

)
/10}

and ΓD = ∂Ω\ΓN . The source and boundary conditions are taken such that the
analytical solution is similar to that proposed by [56]. It is modified, however,
in order to ensure that the boundary layer follows the curved boundary. The
coefficients appearing in the analytical expression of the velocity to set to a = 1,
b = 1 and λ = 10. The problem is solved in meshes with triangular elements.
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(a) Velocity, after first iter-
ation

(b) Velocity, after final iter-
ation, with ε = 0.5× 10−2

(c) Velocity, after final iter-
ation, with ε = 0.5× 10−4

(d) Pressure, after first iter-
ation

(e) Pressure, after final iter-
ation, with ε = 0.5× 10−2

(f) Pressure, after final iter-
ation, with ε = 0.5× 10−4

Figure 5.33: Results obtained from degree adaptive HDG for 2-D case using
isoparametric formulation.
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Figure 5.34: Comparison of performance of degree adaptive mesh refinement and
uniform k and h refinement for 2-D case of HDG using isoparametric formulation:
error of uh in the L2(Ω) norm as a function of

√
dim(û).
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(a) Initial configuration (b) ε = 0.5× 10−2, after final iteration

(c) ε = 0.5× 10−4, after final iteration

Figure 5.35: Distribution of k in the elements for different tolerance values before
and after degree adaptive mesh refinement

The desired tolerance of error is set to two different values of ε = 0.5×10−2 and
ε = 0.5×10−4, with the element wise error limit set to 0.5ε. The initial distribution
of k for a mesh with 64 elements is shown in Figure 5.35a. Figure 5.35b shows the
distribution of k after the error in the computation is less than the set tolerance of
ε = 0.5× 10−2 following the degree adaptive mesh refinement process, while 5.35c
shows a similar distribution of k after the error in the computation is less than the
set tolerance of ε = 0.5× 10−4.

Figure 5.36 shows the pressure and velocity profiles after first and final iter-
ations of degree adaptive mesh refined formulation for both the values of the set
error tolerance. These results are obtained with the methodology proposed in Sec-
tion 4.2. From the figure it is evident that there is a considerable improvement in
the solution after the degree adaptive process. Again, visual inspection does not
provide a enough evidence of the performance of the degree adaptive method.



82 Numerical examples

In order to compare the performance of the degree adaptive method, error
of uh in the L2(Ω) norm plotted as a function of

√
dim(û) in Figure 5.37 for

three different cases, degree adaptive mesh refinement strategy, uniform k and
h refinements. The initial mesh has 64 elements with a characteristic size of
h = 1/4

√
2 and uniform degree of approximation of 1 in all its elements. In the

case of uniform k refinement, the value of k is increased from 1 to 4, whereas in
the case of uniform h refinement, the characteristic size is decreased linearly from
h = 1/4

√
2 to h = 1/32

√
2. From the figure it can be clearly seen that adaptive

mesh refinement technique outperforms the uniform h refinement strategy while
it is on par with the uniform k refinement strategy.

(a) Velocity, after first iter-
ation

(b) Velocity, after final iter-
ation, with ε = 0.5× 10−2

(c) Velocity, after final iter-
ation, with ε = 0.5× 10−4

(d) Pressure, after first iter-
ation

(e) Pressure, after final iter-
ation, with ε = 0.5× 10−2

(f) Pressure, after final iter-
ation, with ε = 0.5× 10−4

Figure 5.36: Results obtained from degree adaptive HDG for 2-D case using
isoparametric formulation.
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Figure 5.37: Comparison of performance of degree adaptive mesh refinement and
uniform k and h refinement for 2-D case of HDG using isoparametric formulation:
error of uh in the L2(Ω) norm as a function of

√
dim(û).

5.4.2 The 3-D case

In this section the results of degree adaptive HDG for Stokes equations for a
2-D case using isoparametric formulation are illustrated, the model problem in
(3.1) is solved in Ω :=]0, 1[×]0, 1[×]0, 1[ with ΓN = {(x, y, z) ∈ ∂Ω|y = 0} and
ΓD = ∂Ω\ΓN . The source and boundary conditions are taken such that the
analytical solution is that proposed by [57], with the coefficients appearing in
the analytical expression of the velocity to set to a = 1 and b = 0.5. The problem
is solved in meshes with tetrahedral elements.

Similar to the 2-D case, the desired tolerance of error is set to two different
values of ε = 0.5× 10−2 and ε = 0.5× 10−4. The element wise error limit is set to
0.5ε. Figure 5.38a shows the initial distribution of k for a mesh with 24 elements.
Figure 5.38b shows the distribution of k after the error in the computation is
less than the set tolerance of ε = 0.5 × 10−2 following the degree adaptive mesh
refinement process, while 5.38c shows a similar distribution of k after the error in
the computation is less than the set tolerance of ε = 0.5× 10−4.

Figure 5.39 shows the pressure and velocity profiles after first and final it-
erations of degree adaptive mesh refined formulation for both the values of the
set error tolerance. As mentioned previously, these results are obtained with the
degree adaptivity methodology proposed in Section 4.2. From the figure it is ev-
ident that there is a considerable improvement in the solution after the degree
adaptive process. This is however not sufficient to provide a tangible proof of the
performance of the degree adaptive method.
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(a) Initial configuration (b) ε = 0.5× 10−2, after final iteration

(c) ε = 0.5× 10−4, after final iteration

Figure 5.38: Distribution of k in the elements for different tolerance values before
and after degree adaptive mesh refinement

In order to compare the performance of the degree adaptive method, error
of uh in the L2(Ω) norm plotted as a function of

√
dim(û) in Figure 5.40 for

three different cases, degree adaptive mesh refinement strategy, uniform k and
h refinements. The initial mesh has 24 elements with a characteristic size of
h = 1/2 and uniform degree of approximation of 1 in all its elements. In the
case of uniform k refinement, the value of k is increased from 1 to 4, whereas in
the case of uniform h refinement, the characteristic size is decreased linearly from
h = 1/4

√
2 to h = 1/32

√
2. From the figure it can be clearly seen that adaptive

mesh refinement technique outperforms the uniform h refinement strategy while
it is on par with the uniform k refinement strategy.
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(a) Velocity, after first iter-
ation

(b) Velocity, after final iter-
ation, with ε = 0.5× 10−2

(c) Velocity, after final iter-
ation, with ε = 0.5× 10−4

(d) Pressure, after first iter-
ation

(e) Pressure, after final iter-
ation, with ε = 0.5× 10−2

(f) Pressure, after final iter-
ation, with ε = 0.5× 10−4

Figure 5.39: Results obtained from degree adaptive HDG for 2-D case using
isoparametric formulation.
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Figure 5.40: Comparison of performance of degree adaptive mesh refinement and
uniform k and h refinement for 2-D case of HDG using isoparametric formulation:
error of uh in the L2(Ω) norm as a function of

√
dim(û).



Chapter 6

Conclusions and future
developments

The main purpose of this work was to gain a working understanding of the HDG
method and NEFEM, two relatively new approaches in the area of computational
methods based on finite elements, in order to integrate these two cutting-edge tech-
niques seamlessly into one working code for the analysis of problems of interest
to the aerodynamic aircraft design industry. A HDG degree adaptive technique is
proposed for the solution of Stokes flow. The proposed adaptive technique provides
uniform error distributions below a user defined tolerance, automatically placing
the correct polynomial degree in each element. Adaptivity is driven by an error
estimator derived exploiting the superconvergent properties of HDG, and involv-
ing only elemental computations. Thus, the error estimation is an inexpensive
computation compared to the solution.

This study presents numerical examples in two and three dimensions for the
Stokes problems solved using both uniform and non-uniform degrees of approxi-
mation in its elements, using both the isoparametric and NEFEM formulations. In
all the examples, the implementation of the codes developed during this work are
tested for up to order 4. In particular, for any order of approximation, optimal rate
of convergence for both the primal and dual variables are consistently obtained.
The postprocessing technique that enables to compute a solution that converges
with a rate k + 2 for a k-th degree approximation is detailed. This is a unique
feature of the HDG formulation considered in this research and only requires the
solution of an element-by-element problem. An example each is shown to show the
advantages of degree adaptive HDG technique using isoparametric formulation in
2-D and 3-D and NEFEM formulation in 2D.

NEFEM integrated to HDG presents a case of a high-order method that promises
to be devoid of the issues that are preventing the industry from embracing high-
order methods. However, there is a lot of research that needs to done in order to
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prove the competency of the method. The extension of degree adaptive NEFEM
to 3D, proving the competency of the degree adaptive method through more prac-
tical applications are some of the work that need immediate attention and will be
the areas of focus in the work that will follow this thesis.

The research presented here is an intermediate step towards the development
of a 3D DG solver able to tackle realistic flow problems. The incorporation of the
nonlinear terms corresponding to the Navier-Stokes equations are required as well
as the adoption of efficient methods and preconditioners for the numerical solution
of the linear system that arise in each Newton-Raphson iteration during the so-
lution of the non-linear systems of equations. For the compressible Navier-Stokes
equations it is necessary to implement efficient and robust shock capturing tech-
niques that are able to resolve shocks within an element without mesh refinement
in order to fully exploit the advantages of high-order approximations. Finally, the
implementation of a turbulence model is mandatory in order to solve problems of
industrial interest.
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[54] Ladevéze, P., Pelle, J.,P.: Mastering calculations in linear and nonlinear me-
chanics. Mechanical Engineering Series. New York: Springer-Verlag, 2005.
Translated from the 2001 French original by Theofanis Strouboulis. 33

[55] Dı́ez, P., Huerta, A.: A unified approach to remeshing strategies for finite
element h-adaptivity. Computer Methods in Applied Mechanics and Engi-
neering, 1999, 176: 215-229 33, 34, 67

[56] Wang, C.Y.: Exact solutions of the steady state Navier Stokes equations.
Annual Review of Fluid Mechanics, 1991, 23:159(177). 38, 73, 78, 79

[57] Ethier, C.R., Steinman, D.A.: Exact fully 3-D Navier-Stokes solutions for
benchmarking. International Journal for Numerical Methods in Fluids, 1991,
19(5): 369-375 54, 83

[58] Hughes, T.J.R.: The Finite Element Method. Prentice Hall International,
Stanford, 1987. 67

[59] Higham, N. J.: Accuracy and stability of numerical algorithms (Second ed.).
Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM),
2002. 79

[60] Piegl, W., Tiller, W.: The NURBS book. Springer, 1995. 95



Appendices

94



Appendix A

Curves

The two most common ways of describing curves in geometric modeling are implicit
equations and parametric functions [60]. A curve lying in the xy plane can be
represented using the implicit equation of the form f(x, y) = 0. On the other hand,
in parametric form, each of the coordinates of a point on the curve is represented
separately as an explicit function of an independent parameter

C(λ) = (x(λ), y(λ)) a ≤ λ ≤ b.

A.1 Power basis form of a curve

A great variety of curves are obtained by allowing the coordinate functions x(u)
and y(u) to be arbitrary. However, while implementing a geometric modeling
system, there are trade-offs. A class of functions that are capable of precisely
representing all the curves the users of the system need and are easily, efficiently,
and accurately processed in a computer are preferred over the others. A widely
used class of functions is the polynomials. Power basis and Bézier are the two
common methods of expressing polynomial functions.

An nth-degree power basis curve is given by

C(λ) = (x(λ), y(λ), z(λ)) =
n∑
i=0

aiλ
i 0 ≤ λ ≤ 1. (A.1)

The ai = (xi, yi, zi) are vectors, hence

x(λ) =
n∑
i=0

xiλ
i y(λ) =

n∑
i=0

yiλ
i z(λ) =

n∑
i=0

ziλ
i.
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A.2 Bézier curves

Bézier curve is yet another polynomial curve. Since both the power basis and
Bézier use polynomials for their coordinate functions, these forms are mathemat-
ically equivalent. The shortcomings of the power basis form are remedied by the
Bézier method. The coefficients {ai} of the power basis form convey very little
geometrical insight about the shape of the curve. Also algorithms for processing
power basis polynomials have an algebraic rather than a geometric essence.

An nth-degree Bézier curve is defined by

C(λ) =
n∑
i=0

Nin(λ)Pi 0 ≤ λ ≤ 1. (A.2)

The basis functions, {Ni,n(λ)}, are the classical nth-degree Bernstein polynomials
given by

Ni,n(λ) =
n!

i!(n− 1)!
λi(1− λ)n−i. (A.3)

The geometric coefficients {Pi} are the control points.

A.3 Rational Bézier curves

Although polynomials offer many advantages, there exist a number of important
curves such as, circles, ellipses and hyperbolas, to name a few, which cannot be
represented precisely using polynomials. It is known from classical mathematics
that all the conic curves, including the circle can be represented using rational
functions, which are defined as the ratio of two polynomials.

An nth-degree rational Bézier curve is defined by

C(λ) =

n∑
i=0

Ni,n(λ)wiPi

n∑
i=0

Ni,n(λ)wi

0 ≤ λ ≤ 1. (A.4)

The Pi = (xi, yi, zi) and Ni,n(λ) are as before; the wi are weights.

A.4 B-spline basis functions and curves

Curves consisting of just one polynomial or rational segment are often inadequate
as they have a number of shortcomings. While a high degree is required in order to
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satisfy a large number of constraints and to accurately fit some complex shaped,
these curves are inefficient to process and are numerically unstable. Also single-
segment curves are not well suited to interactive shape design as the control is not
sufficiently local. The solution is to use curves which are piecewise polynomials,
or piecewise rational.

In order to define a B-spline basis function, it is first requires to describe a
nondecreasing sequence of real numbers, Λ = {λ0, ..., λm} where λi ≤ λi+1, i =
0, ...,m − 1. The λi are called knots, and Λ is the knot vector. The ith B-spline
basis function of p-degree, denoted by Bi,p(λ), is defined as

Bi,0(λ) =

{
1 if λi ≤ λ < λi+1

0 otherwise

Bi,p(λ) =
λ− λi
λi+p − λi

Bi,p−1(λ) +
λi+p+1 − λ
λi+p+1 − λi+1

Bi+1,p−1(λ). (A.5)

A pth-degree B-spline curve is defined by

C(λ) =
n∑
i=0

Bi,p(λ)Pi a ≤ λ ≤ b, (A.6)

where the {Pi} are the control points, and the {Bi,p(λ)} are the pth-degree B-spline
basis function, see Equation (A.5) defined on the nonperiodic (and nonuniform)
knot vector

Λ = {a, ..., a︸ ︷︷ ︸
p+1

, λp+1, ..., λm−p−1, b, ..., b︸ ︷︷ ︸
p+1

},

(m+1 knots). The polygon formed by the {Pi} is the control polygon.

A.5 Non-Uniform Rational B-Splines (NURBS)

A pth-degree NURBS curve is a piecewise rational function defined in parametric
form as

C(λ) =

n∑
i=0

Bi,p(λ)wiPi

n∑
i=0

Bi,p(λ)wi

a ≤ λ ≤ b, (A.7)

where the {Pi}, the {wi} and the {Bi,p(λ)} are as before.



Appendix B

Implementational Details

This appendix is devoted to the detailed presentation of the matrices and vectors
appearing in the discrete version of both the local and global problems induced by
the HDG method.

B.1 Isoparametric formulation

The following compact form of the interpolation functions is introduced

N = [N1 N2 ... Nnen ]
T , N̂ = [N̂1 N̂2 ... N̂nfn ]

T ,

Nn = [N1n N2n ... Nnenn]T , N̂n = [N̂1n N̂2n ... N̂nfnn]T ,

∇N = [(J−1∇N1)T (J−1∇N2)T ... (J−1∇Nnen)
T ]T ,

Nnsd = [N1Insd N2Insd ... NnenInsd ]
T ,

Nn2sd
= [N1In2sd N2In2sd ... Nn2sd

In2sd ]
T ,

where n = (n1, ..., nnsd) denotes the outward unit normal vector to an edge/face
and Insd and In2sd are identity matrices of dimension nsd and n2

sd, respectively.
The matrices and vectors appearing in Equations (3.11) and (3.17), computed

for each element i = 1, ..., nen, can be expressed as

[ALL]i =

neip∑
g=1

Nn2sd
(ξeg)N

T
n2sd

(ξeg)w
e
g

[ALu]i = −
neip∑
g=1

∇N(ξeg)N
T (ξeg)w

e
g

[AuL]i = ν

neip∑
g=1

N(ξeg)∇NT (ξeg)w
e
g − ν

∑
∂Ωi

nfip∑
g=1

N(ξfg)N
T
n(ξfg)w

f
g

98



99 Implementational Details

[Auu]i = −
∑
∂Ωi

τi

nfip∑
g=1

Nnsd(ξ
f
g)N

T
nsd

(ξfg)w
f
g

[Aup]i =

neip∑
g=1

∇N(ξeg)N
T (ξeg)w

e
g −

∑
∂Ωi

nfip∑
g=1

Nn(ξfg)N
T (ξfg)w

f
g

[Apu]i =

neip∑
g=1

N(ξeg)∇NT (ξeg)w
e
g

[aρp]i =
∑
∂Ωi

nfip∑
g=1

NT (ξfg)w
f
g

[ALû]i = −
∑

∂Ωi\ΓD

nfip∑
g=1

Nn(ξfg)N̂
T

(ξfg)w
f
g

[Auû]i = −
∑

∂Ωi\ΓD

τi

nfip∑
g=1

N(ξfg)N̂
T

(ξfg)w
f
g

[Apû]i =
∑

∂Ωi\ΓD

nfip∑
g=1

N(ξfg)N̂
T

n(ξfg)w
f
g

[fL]i =
∑

∂Ωi∩ΓD

nfip∑
g=1

Nn(ξfg)u
T
D

(
x(ξfg)

)
wf
g

[fu]i = −
neip∑
g=1

Nnsd(ξ
e
g)s

T
(
x(ξeg)

)
we
g −

∑
∂Ωi∩ΓD

τi

nfip∑
g=1

Nnsd(ξ
f
g)u

T
D

(
x(ξfg)

)
wf
g

[fp]i =
∑

∂Ωi∩ΓD

nfip∑
g=1

NT (ξfg)n
(
x(ξfg)

)
uTD
(
x(ξfg)

)
wf
g

[AûL]i =
∑

∂Ωi\ΓD

ν

nfip∑
g=1

N̂(ξfg)N
T
n(ξfg)w

f
g

[Aûu]i =
∑

∂Ωi\ΓD

τi

nfip∑
g=1

N̂(ξfg)N
T (ξfg)w

f
g
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[Aûp]i =
∑

∂Ωi\ΓD

nfip∑
g=1

N̂n(ξfg)N
T (ξfg)w

f
g

[Aûû]i = −
∑

∂Ωi\ΓD

τi

nfip∑
g=1

N̂(ξfg)N̂
T

(ξfg)w
f
g

[f û]i = −
∑

∂Ωi∩ΓN

nfip∑
g=1

N̂(ξfg)t
T
(
x(ξfg)

)
wf
g

[aρû]i =
∑

∂Ωi\ΓD

nfip∑
g=1

N̂
T

n(ξfg)w
f
g

[fρ]i = −
∑

∂Ωi∩ΓD

nfip∑
g=1

n
(
x(ξfg)

)
uTD
(
x(ξfg)

)
wf
g

In the above expressions, ξeg and we
g are the neip integration points and weights

defined on the reference element and ξfg and wf
g are the nfip integration points and

weights defined on the reference edge/face.

B.2 NEFEM formulation

The following compact form of the interpolation functions is introduced

Nx = [Nx
1 Nx

2 ... Nx
nen

]T , N̂x = [N̂x
1 N̂x

2 ... N̂x
nfn ]

T ,

Nx
n = [Nx

1n Nx
2n ... Nx

nen
n]T , N̂x

n = [N̂x
1n N̂x

2n ... N̂x
nfnn]T ,

∇Nx = [(∇Nx
1 )T (∇Nx

2 )T ... (∇Nx
nen

)T ]T ,

Nx
nsd = [Nx

1 Insd Nx
2 Insd ... Nx

nen
Insd ]

T ,

Nx
n2sd

= [Nx
1 In2sd Nx

2 In2sd ... Nx
n2sd
In2sd ]

T ,

where n = (n1, ..., nnsd) denotes the outward unit normal vector to an edge/face
and Insd and In2sd are identity matrices of dimension nsd and n2

sd, respectively.
The matrices and vectors appearing in Equations (3.11) and (3.17), computed

for each element i = 1, ..., nen, can be expressed as

[ALL]i =

neip∑
g=1

Nx
n2sd

(xe
g)N

xT
n2sd

(xe
g)w

e
g
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[ALu]i = −
neip∑
g=1

∇Nx(xe
g)N

xT (xe
g)w

e
g

[AuL]i = ν

neip∑
g=1

Nx(xe
g)∇NxT (xe

g)w
e
g − ν

∑
∂Ωi

nfip∑
g=1

Nx(xf
g)N

xT
n(xf

g)w
f
g

[Auu]i = −
∑
∂Ωi

τi

nfip∑
g=1

Nx
nsd(x

f
g)N

xT
nsd

(xf
g)w

f
g

[Aup]i =

neip∑
g=1

∇Nx(xe
g)N

xT (xe
g)w

e
g −

∑
∂Ωi

nfip∑
g=1

Nx
n(xf

g)N
xT (xf

g)w
f
g

[Apu]i =

neip∑
g=1

Nx(xe
g)∇NxT (xe

g)w
e
g

[aρp]i =
∑
∂Ωi

nfip∑
g=1

NxT (xf
g)w

f
g

[ALû]i = −
∑

∂Ωi\ΓD

nfip∑
g=1

Nx
n(xf

g)N̂
x
T (
x(ξfg)

)
wf
g

[Auû]i = −
∑

∂Ωi\ΓD

τi

nfip∑
g=1

Nx(xf
g)N̂

x
T (
x(ξfg)

)
wf
g

[Apû]i =
∑

∂Ωi\ΓD

nfip∑
g=1

Nx(xf
g)N̂

x
T

n

(
x(ξfg)

)
wf
g

[fL]i =
∑

∂Ωi∩ΓD

nfip∑
g=1

Nx
n(xf

g)u
T
D(xf

g)w
f
g

[fu]i = −
neip∑
g=1

Nx
nsd(x

e
g)s

T (xe
g)w

e
g −

∑
∂Ωi∩ΓD

τi

nfip∑
g=1

Nx
nsd(x

f
g)u

T
D(xf

g)w
f
g

[fp]i =
∑

∂Ωi∩ΓD

nfip∑
g=1

NxT (xf
g)n(xf

g)u
T
D(xf

g)w
f
g

[AûL]i =
∑

∂Ωi\ΓD

ν

nfip∑
g=1

N̂x
(
x(ξfg)

)
NxT

n(xf
g)w

f
g
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[Aûu]i =
∑

∂Ωi\ΓD

τi

nfip∑
g=1

N̂x
(
x(ξfg)

)
NxT (xf

g)w
f
g

[Aûp]i =
∑

∂Ωi\ΓD

nfip∑
g=1

N̂x
n

(
x(ξfg)

)
NxT (xf

g)w
f
g

[Aûû]i = −
∑

∂Ωi\ΓD

τi

nfip∑
g=1

N̂x
(
x(ξfg)

)
N̂x

T (
x(ξfg)

)
wf
g

[f û]i = −
∑

∂Ωi∩ΓxN

nfip∑
g=1

N̂x
(
x(ξfg)

)
tT (xf

g)w
f
g

[aρû]i =
∑

∂Ωi\ΓD

nfip∑
g=1

N̂x
T

n

(
x(ξfg)

)
wf
g

[fρ]i = −
∑

∂Ωi∩ΓD

nfip∑
g=1

n(xf
g)u

T
D(xf

g)w
f
g

In the above expressions, xe
g and we

g are the neip integration points and weights
defined in the physical space of the element and xf

g and wf
g are the nfip integration

points and weights defined on the edge/face.
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