
Dynamic Subjectivity:
Implementation Issues and Computational Reflection

Jane Pryor and Natalio Bastán

UNICEN - Fac. de Ciencias Exactas
ISISTAN - Grupo de Objetos y Visualización

San Martín 57, (7000) Tandil, Bs. As. Argentina
TE: +54-293-40363 FAX: +54-293-40362

E-mail: {jpryor,nbastan}@exa.unicen.edu.ar
URL: http://www.exa.unicen.edu.ar/~isistan

Abstract
Subjectivity, and in particular dynamic subjectivity, is a desirable
feature in programming languages, so as to allow the implementation of
different views in order to enhance the reusability and integration of the
key abstractions or components of these systems. This work presents a
reflective meta-level architecture that supports dynamic subjectivity in
an object-oriented system. This architecture has the advantage that the
subjective behaviour is handled by a meta-level, such that the
application that resides at the base level does not need to be modified.

Keywords: Object-oriented programming, Dynamic subjectivity,
Computational reflection.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dynamic Subjectivity:
Implementation Issues and Computational Reflection

1. Introduction
Complex software systems must be able to expand and change according to new

requirements. This means that they should consist of components that are adaptable to these
changes.

In the case of object-oriented systems, these are based on a set of abstractions modeled
by a corresponding class in terms of abstract state and behaviour. When these systems expand
into an integrated suite of applications, the different clients require context-specific views on
such abstractions.

The language support for implementing such systems plays a central role as to the ease
with which these large applications are modified and expanded. Experience has shown that a
desirable feature of a programming language is to allow the implementation of different views
in order to enhance the reusability and integration of the key abstractions or components of
these systems.

The notion of Subject Oriented Programming was proposed as a vehicle for facilitating
the development and evolution of suites of cooperating applications. In this case the term
subject is used to mean a collection of state and behaviour specifications that reflect a particular
perception of the world, such as is seen by a particular application or tool. The essential
characteristic of subject-oriented programming is that different subjects can separately define
and operate upon shared objects, without any subject needing to know the details associated
with those objects by other subjects [Harrison93].

Dynamic Subjectivity (DS) is an alternative paradigm whereby the behaviour of an
object is determined not by its class, but by a runtime context [Nolan97]. Contexts are
descriptions used to dynamically bind identity, state, and behaviour to an object. The behaviour
is subjective because the response to a given message will depend on the context in which it is
sent. The identity of an object remains the same; however the state and behaviour may differ
according to the context. This characteristic of a programming language would enable the
development of much more flexible systems than conventional object-oriented programming.
Viewing a system as a composition of subjective behaviours, these behaviours could be reused
across different applications without any change in the structure of the objects. This facility,
however, is not available in current object-oriented languages.

In this work we analyze different approaches to provide support for DS in the context
of the Smalltalk environment. The analysis evaluates the flexibility and extendibility that these
DS approaches provide. It also considers the ease with which DS can be incorporated to an
existent programming environment. We show that a reflective approach based on a meta-level
architecture brings the benefits of DS to an existing language. Computational reflection
provides the advantage that the base application does not need to be modified, and the
incorporation of subjectivity to a system at a meta-level, will provide a much more powerful,
flexible and transparent environment. Under this approach, the paper presents a meta-
architecture that meets the requirements mentioned and shows how this meta-architecture can
be used to implement subjective applications.

This paper is structured as follows. Section 2 presents an overview of Dynamic
Subjectivity. Section 3 analyzes different approaches to implement subjectivity. Section 4
describes an architecture for DS in Smalltalk 80 by means of computational reflection, and
Section 5 presents some preliminary conclusions.

2. Dynamic Subjectivity
According to the accepted way of thinking about objects, an object encapsulates all its

state and behaviour. Ideally, the designer of an object (or class) defines and implements the
intrinsic properties and behaviour of an object, and all the other properties and behaviour
required by clients can be derived from these by using the public properties .

This classical ideal is inadequate to deal with situations in which different, subjective
views of shared objects are used in different parts of a system, by different users, or at different
times.

For example, in the case of a company that sells goods or services, the employees will
have different responsibilities according to the work they do. They may act as managers,
salesmen, administrative staff, etc. It is possible for the same employee to carry out more than
one of these activities, as for example a salesman who also acts as a manager (Figure 1).

The different roles may need different features in the computer systems within the
organization. The corresponding objects don’t all have the same behaviour, but they may have
some common behaviour. There are complications in applying inheritance, as an object may
take on more than one role (or set of behaviours), or may take on new roles during its lifetime.
This is the case of a manager who is also a salesman, or an administrative employee who also
becomes a salesman.

The different clients of these objects may require different (subjective) views of the
same employee. In some cases a sub-system will need to process all the views, in others it will
be interested in only one view. A system that calculates salaries and commissions (payments) to
employees will need to process all the views of the same employee, and a sales system will only
be interested in the salesman view.

A system of subjects is defined by [Harrison93] as meaning “a collection of state and
behaviour specifications reflecting a particular gestalt, a perception of the world at large, as is
seen by a particular application or tool”. This proposal is based on a scheme of composition
rules which instantiate subjects and route messages between them. These composition rules
deal with matching classes and method names across dissimilar hierarchies and interface
specifications.

There have been many different intents through workshops and discussion groups
[Harrison94] [Harrison95] [Nolan96] to define the term subjectivity other than the many related
and similar terms currently being used in this area of research (views, roles, perspectives,
aspects).

For instance, [Kristensen95] defines “A role of an object is a set of properties which are
important for an object to be able to behave in a certain way expected by a set of other objects.
A role is a description and models an abstraction. A role instance has state and behaviour, and

Figure1. Employee subtype relationship

Employee

Manager Salesman Administrative

models a perspective on a phenomenon. An object with its roles referred to as a single entity
will be called a subject.”

Aspects [Richardson91] have a similar purpose. They are sets of extensions or chunks
of attributes and methods that an object may acquire or lose during its lifetime.

The overall goal of subject-oriented programming according to [Harrison93] is to
facilitate the development and evolution of suites of cooperating applications. This remains a
valid statement across all the various uses and implementations of subjectivity.

John Nolan in [Nolan97] presents Dynamic Subjectivity as a variant, where the
behaviour of an object is determined not by its class but by the user’s runtime context and
viewpoint, the latter being determined by the current state of the object. The response to a
message may then vary according to the context in which it is sent, and these variations in
behaviour will therefore present different views of the object.

Thus, the context is constructed from a set of relationships among objects, with the
context description similar to a set of rules. Methods are then defined with respect to a context,
including in the declaration a series of conditions that must be met for this method to be used.
When there are a number of appropriate implementations available, the one that describes the
most accurate context is to be used.

The dynamic binding at runtime of behaviour based upon the current contextual
information leads to greater possibilities in reuse and customizable systems. The technology
required to build these languages is available: AI-like rule matching and object-message
passing.

As an extension to Nolan’s proposal, the context which will define the actual behaviour
may not only depend on the current state, but also on the sender of the message, or even the
actual application or sub-system being used (in the case of suites of applications).

There are several proposals of patterns for the design of roles, which in a more
generalized fashion are adaptable to the concept of subjective views of a unique identifiable
object. However, the current behaviour which corresponds to a role is determined by an
explicitly defined context, with the limitation that the runtime context cannot be determined
implicitly by the state or other factors.

The next section presents the most used design patterns for roles, with the proposal for
the inclusion of rules sets which would permit the implicit runtime evaluation and
determination of the context.

3. Some Approaches to Support Subjectivity
A variety of approaches for applying subjectivity have been explored and proposed in

the last years. They vary in how and where the division between objective and subjective
knowledge is made.

There have been various proposals for new or extended programming languages and
tools that would support subjectivity. Most are at a prototype stage, such as the Watson Subject
Compiler whose goal is to compose pre-compiled subjective code without recompilation,
initially using C++ [Kaplan96]. Others include the programming language Cecil, a descendant
of SELF, by Craig Chambers, which is a new object-oriented language which combines multi-
methods with a classless object model, object-based encapsulation, and optional static type
checking. Cecil uses “Predicate Classes” which define an object as being a member of a clas
whenever it satisfies a predicate expression [Chambers95].

For the handling of subjectivity in object-oriented languages, different design patterns
have been proposed. These patterns offer different advantages and disadvantages according to
the characteristics of the application and the type of subjectivity involved.

The Role Object pattern [Bäumer97] [Fowler97] models context-specific views of an
object as separate “role objects” which are dynamically attached to and removed from a “core
object”. The core object models and implements a particular key abstraction, and each of the
role objects model and implement a context-specific extension of the core object. This proposal
makes the role object a decorator of the core object, as it provides a flexible alternative to
subclassing for extending functionality [Gamma95].

The resulting composite object structure, consisting of the core and its role objects, is
called a subject. A subject often plays several roles and the same role is likely to be played by
different subjects. To work with a specific role of an object, the client must explicitly identify
it.

The Role Object pattern has the following disadvantages:

• Clients are likely to get more complex due to a slight coding overhead. A client has
to check whether the object plays the role in question. If it does, the client needs to
query for the role; if it does not, the client is responsible for extending the core
object in its use-context provided that the core object actually can play the role.

• Maintaining constraints between roles becomes difficult. Since a subject consists of
several objects which are mutually dependent, maintaining constraints and
preserving the overall subject consistency might become difficult.

• Constraints on roles cannot be enforced by the type system. It might be necessary
to exclude certain roles from being attached to the same core object in combination.
Also, some roles may depend on the existence of others. With the role object
pattern, the type system cannot be relied on to enforce the constraints. Runtime
checks will have to be used instead.

• Maintaining object identity becomes more complex. The core object and its role
instances form a conceptual unit, which should have a conceptual identity of its
own. While technical object identity can be handled directly in any given
programming language (checking objects for technical identity is carried out by
comparing object references), checking for conceptual identity requires additional
operations.

Another pattern that allows for the incorporation of subjectivity is the Extension
Objects pattern [Gamma97], which in a similar fashion to the Role Object pattern (and with the
same disadvantages), represents a key abstraction that plays different roles for different clients.

In these design patterns the change of context (and role) must be specified explicitly. A
possible alternative for the handling of Dynamic Subjectivity in an implicit fashion, whereby
the runtime context determines the role, would be the incorporation of sets of rules in the core
object.

This would permit the definition of the runtime context depending on the state of the
object, such that the selection of the role object is handled implicitly and at runtime.
Additionally, this means that the client object does not have to have prior knowledge of the
available roles.

On the other hand, this proposal increases the complexity of the core object. It also
limits the handling of new contexts or modification of existent rules, as recompilation would be
necessary.

4. The support of Dynamic Subjectivity with Computational Reflection
This section presents the concept of computational reflection and a framework for

meta-object support that provides a reflection mechanism for the Smalltalk 80 language. A
reflective meta-level architecture that supports dynamic subjectivity is then presented and
described.

4.1. Computational Reflection

Reflection is the capability of a computational system to reason about and act upon
itself and adjust itself to changing conditions [Maes87]. The computational domain of a
reflective system is the structure and the computations of the system itself.

A reflective system incorporates data representing static and dynamic aspects of itself;
this activity is called reification. This self-representation makes it possible for the system to
answer questions about and support actions on itself. In a reflective architecture, a
computational system is viewed as incorporating an object part and a reflective part. The task of
the object computation is to solve problems and return information about an external domain,
while the task of the reflective is to solve problems and return information about the system
itself.

The components that deal with the self-representation and the application reside at two
different software levels: the meta-level and the base level, respectively. Components that deal
with the functionality of the application are at the base level. Similarly, components that deal
with the application’s self-representation are at the meta-level.

• The Base Level contains program objects that solve a problem and return
information about the application domain. According to Maes [Maes87] this is the
external system domain.

• The Meta-level or Reflective Level is formed by objects that carry out computation
about the computational system materialized by the objects at the base level. The
computational domain, or internal system domain, deals with the information
relative to the structures and mechanisms that carry out the program execution.

Both levels are related in such a way that changes at the base level are reflected at the
meta-level, in a causal connection way [Maes86]. The meta-level has access to the information
at the base level, but the base level does not have any knowledge about the meta-level.

4.2. Luthier MOPs: A Framework for the Support of Meta-Objects

The framework for the support of meta-objects, called Luthier MOPs (Meta Object
Protocols), provides a flexible infra-structure for the association of meta-objects with classes,
instances or specific methods. A meta-object can be associated with a method, a group of
methods (of the same or different classes), an instance or a group of instances of different
classes, with a class or a group of classes. A method, instance or class may be associated to
various meta-objects [Campo97].

The most relevant aspect introduced by Luthier MOPs is the mechanism that associates
and activates the meta-objects, called meta-object managers. A meta-object manager determines
how meta-objects are associated with base-level objects and how those meta-objects are
activated, hiding the mechanisms used to implement the reflective behaviour. When a reflected
object receives a message, this message is captured and sent to the associated manager. The
manager decides whether to transfer the control to a meta-object or execute the original
method.

This framework for meta-object support provides a flexible and reusable reflection
mechanism to the Smalltalk-80 system. The framework provides an infra-structure over which
different policies of meta-object management can be built, based on managers and method
interception models [Campo98].

4.3. A Reflective Meta-level Architecture for the Support of Subjectivity

In this work we propose a reflective meta-level architecture for the incorporation of
dynamic subjectivity to an object-oriented system. The Luthier MOPs framework is used to
support the reflective mechanism.

The proposed architecture consists of two levels: a base level and a meta level. The
base level of this architecture consists of the (existent) object-oriented application. The meta-
level manages the subjectivity of the system by means of rules that determine the runtime
context and invoke the corresponding subjective behaviour.

Figure 2 presents a scheme of the architecture, which shows the association between
the base and meta levels. The two-ended arrows indicate the interception of messages by the
reflection mechanism, and the simple arrows show that the meta-object delegates the
intercepted messages to the context-specific-view objects.

Each instance of a class of the application to which one wishes to add dynamic
subjectivity has an associated meta-object. This meta-object maintains a set of rules that
represent the different contexts pertaining to the associated object. Additionally, the meta-
object contains the references to all the objects that correspond to the different subjective
behaviours.

At execution time, when an object at the base level receives a message the reflection
mechanism intercepts the message. The reflection mechanism then redirects the thread of
control to the meta-object associated with that object. At the meta-level, the meta-object does
its corresponding evaluation of the context, and sends the intercepted message to the context-
specific-view object. When its execution finishes, the reflection mechanism returns the thread
of control to the method that was intercepted.

Meta-objects can be added dynamically in the following ways:

ReflectionManager reflectEachInstanceOf: aBaseObjectClass on: aMetaObjectClass.

Meta-level
 meta-object

context-specific-
view objectsapplication

object

Intercept
messages

Base-level

Figure 2. Reflective architecture behaviour

ensures that for each new instance of aBaseObjectClass a new instance of aMetaObjectClass
will be created with the corresponding association between the new instances.

ReflectionManager reflectObject: aBaseObject on: aMetaObjectClass

this method creates a new instance of aMetaObjectClass for the specific object aBaseObject,
establishing the corresponding association.

Similar methods are used to dynamically remove the meta-objects from the associated
objects in the base level.

Figure 3 presents the example already described in Section 2, of a sales company whose
employees can simultaneously carry out more than one role (salesman, manager, administrative
staff).

In this example, Employee A is simultaneously a Salesman and a Manager, and
Employee B is Administrative staff. Each of the employees will be associated with a meta-
object at the meta-level. The meta-object associated to Employee A intercepts all the messages
it receives, and evaluates the runtime context of the message. According to this evaluation, the
message is delegated to the corresponding context-specific-view object, in this case either
Salesman or Manager.

This reflective meta-level architecture that adds dynamic subjectivity to a system has
the following advantages:

• It supports the desired characteristics that the incorporation of subjectivity offers.

• The subjective behaviour is managed at a meta-level in a transparent fashion,
without the need for modifications to the base-level application.

• The handling of the subjectivity at a meta-level results in a flexible mechanism that
permits the addition and modification of the rules that define the contexts.

• As the subjectivity is determined at a meta-level, the system may respond
subjectively (at runtime) to a wide scope of factors. These factors include the
message sender, the message arguments, the internal state of an object, and the
general context such as the user, the sub-system and any other characteristic that
can be evaluated by a set of rules.

Administrative

 Employee B

Salesman

Manager

 employee meta-objects

Employee A

intercept

messages

 Meta-level

Base-level

Figure 3. Reflective architecture behaviour in the example application

• The combinatorial explosion of classes through multiple inheritance is avoided.

• It can handle constraints between the different subjective behaviours, by
implementing them in the meta-objects.

• The client objects do not require any coding overhead in order to determine the
subjective behaviour, as is the case in the Role Object pattern.

5. Conclusions
This paper presents an overview of subjectivity and different approaches that support it.

These approaches are analyzed, and modifications that would enable subjectivity to be
implemented dynamically are suggested.

A reflective meta-level architecture that permits the incorporation of dynamic
subjectivity to a system is described and evaluated. This design handles dynamic subjectivity at
a meta-level without the need to modify the object-oriented application which resides at the
base level. Additionally, a wide scope of subjective factors can be handled dynamically with
this architecture.

In conclusion, the proposed architecture has the advantages of adding dynamic
subjectivity to classical object-oriented systems, in addition to a greater versatility and
transparency due to the mechanism with which it is handled.

This architecture is being implemented with concrete applications in order to analyze
and evaluate its effectiveness and efficiency.

References
[Bäumer97] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. “The Role Object

Pattern”. In Proceedings of the 1997 Conference on Pattern Languages of
Programs (PLoP ’97).

[Campo97] Marcelo Campo. “Compreensao Visual de Frameworks a través da Introspecao
de Exemplos”. Ph.D. Thesis. UFRGS, Porto Alegre, Brasil., 1997. (in
portuguese).

[Campo98] Marcelo Campo and Tom Price. “Luthier: : A Framework for Building
Framework-Visualization Tools”. To appear in “Object-Oriented Application
Frameworks”. Mohamed Fayad, Ralph Johnson (Eds.), John Wiley & Sons,
USA, estimated November 1998.

[Chambers95] Craig Chambers. “The Cecil Language: Specification and Rationale, Version
2.1”. Technical report, 1995.

[Fowler97] Martin Fowler. “Dealing with Roles”.
http://ourworld.compuserve.com/homepages/Martin_Fowler

[Gamma95] Gamma E., Helm R., Johnson R., Vlissides J. “Design Patterns. Elements of
Reusable Object Oriented Software”. Addison Wesley. 1995.

[Gamma97] Erich Gamma. “Extension Object”. In “Pattern Languages of Program Design
3”. Robert C. Martin, Dirk Riehle, and Frank Buschmann (eds.). Addison-
Wesley, 1998.

[Harrison93] William Harrison, and Harold Ossher. “Subject-Oriented Programming (A
Critique of Pure Objects)”. In Proceedings of OOPSLA ’93.

[Harrison94] William Harrison, Harold Ossher, Randall B. Smith, and David Ungar.
“Subjectivity in Object-Oriented Systems. Workshop Summary”. OOPSLA
1994.

[Harrison95] William Harrison, Harold Ossher, and Hafedh Mili. “Subjectivity in Object-
Oriented Systems. Workshop Summary”. OOPSLA 1995.

[Kaplan96] Matthew Kaplan, Harold Ossher, William Harrison, and Vincent Kruskal.
“Subject-Oriented Design and the Watson Subject Compiler”. In Proceedings
of the 3rd Workshop on Subjectivity in Object-Oriented Systems. OOPSLA
1996.

[Kristensen95] Bent Bruun Kristensen. “Position Paper: Subjectivity and Roles”. In
Proceedings of the 2nd Workshop on Subjectivity in Object-Oriented Systems.
OOPSLA 1995.

[Maes86] Maes P. “Reflection in an Object Oriented Language”. AI MEMO n. 86-8.
Artificial Intelligence Laboratory. Vrije Universiteit Brussel. Brussel, Belgique,
1986.

[Maes87] Maes, P. “Concepts and Experiments in Computational Reflection”. In
Proceedings of OOPSLA ’87.

[Nolan96] John Nolan and Bruce Anderson. “Birds-of-a-Feather (BOF) session on
subjectivity at Object Technology ‘96”. Object Technology 1996, organized by
the British Computer Society. Oxford, England. 1996.

[Nolan97] Nolan, J. “Dynamic Subjectivity”. Object Expert. Vol 2 (3). March-April 1997.

[Richardson91] J. Richardson, and P. Schwartz. “Aspects: Extending Objects to Support
Multiple, Independent Roles”. ACM-SIGMOD, International Conference on
Management of Data. Denver, Colorado. 1991.

